KR102556721B1 - Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same - Google Patents
Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same Download PDFInfo
- Publication number
- KR102556721B1 KR102556721B1 KR1020210109671A KR20210109671A KR102556721B1 KR 102556721 B1 KR102556721 B1 KR 102556721B1 KR 1020210109671 A KR1020210109671 A KR 1020210109671A KR 20210109671 A KR20210109671 A KR 20210109671A KR 102556721 B1 KR102556721 B1 KR 102556721B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- nitride semiconductor
- group iii
- iii nitride
- substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 159
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 244
- 150000004767 nitrides Chemical class 0.000 claims abstract description 167
- 238000000034 method Methods 0.000 claims abstract description 115
- 239000010409 thin film Substances 0.000 claims abstract description 19
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 239000000919 ceramic Substances 0.000 claims abstract description 10
- 230000004888 barrier function Effects 0.000 claims description 17
- 238000002161 passivation Methods 0.000 claims description 15
- 230000002829 reductive effect Effects 0.000 claims description 10
- 239000010410 layer Substances 0.000 description 401
- 239000010408 film Substances 0.000 description 72
- 239000000463 material Substances 0.000 description 60
- 230000002265 prevention Effects 0.000 description 55
- 229910052594 sapphire Inorganic materials 0.000 description 44
- 239000010980 sapphire Substances 0.000 description 44
- 230000008569 process Effects 0.000 description 34
- 229910002704 AlGaN Inorganic materials 0.000 description 29
- 239000013078 crystal Substances 0.000 description 19
- 230000007547 defect Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 238000005530 etching Methods 0.000 description 15
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 206010053759 Growth retardation Diseases 0.000 description 9
- 229920002120 photoresistant polymer Polymers 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 9
- 239000004020 conductor Substances 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 238000001312 dry etching Methods 0.000 description 6
- 229910015269 MoCu Inorganic materials 0.000 description 5
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 239000003989 dielectric material Substances 0.000 description 5
- 229910052737 gold Inorganic materials 0.000 description 5
- 230000017525 heat dissipation Effects 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 239000012790 adhesive layer Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- 108091006149 Electron carriers Proteins 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000002942 anti-growth Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- -1 for example Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 229910017083 AlN Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910019912 CrN Inorganic materials 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000004581 coalescence Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 230000009036 growth inhibition Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 229910052702 rhenium Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000005533 two-dimensional electron gas Effects 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910016048 MoW Inorganic materials 0.000 description 1
- 208000012868 Overgrowth Diseases 0.000 description 1
- 229910019899 RuO Inorganic materials 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910008599 TiW Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000001657 homoepitaxy Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66446—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
- H01L29/66462—Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/778—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
- H01L29/7786—Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
Abstract
본 개시는 성장 기판에 비발광 3족 질화물 적층체를 형성하는 단계; 성장 기판과 대향하는 적층체 측에 임시 기판을 부착하는 단계; 성장 기판을 제거하는 단계; 성장 기판이 제거된 적층체 측에 전기절연성 세라믹층과 금속층을 포함하는 다층 박막을 세라믹층, 금속층 순으로 형성하는 단계; 다층 박막에 지지 기판을 부착하는 단계; 그리고, 임시 기판을 제거하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 관한 것이다.The present disclosure includes forming a non-emissive group III nitride laminate on a growth substrate; attaching a temporary substrate to the side of the stack facing the growth substrate; removing the growth substrate; forming a multi-layered thin film including an electrically insulating ceramic layer and a metal layer on a side of the stack from which the growth substrate is removed, in that order; attaching a support substrate to the multilayer thin film; And, it relates to a method for manufacturing a non-emission group III nitride semiconductor laminate comprising the step of removing the temporary substrate.
Description
본 개시(Disclosure)는 전체적으로 비발광 3족 질화물 반도체 적층체 내지 3족 질화물 반도체 소자 및 이를 제조하는 방법에 관한 것으로 특히, 전력소자(예: 다이오드, 트랜지스터, HEMT, JFET)와 같은 비발광(Non-emitting) 3족 질화물 반도체 적층체 내지 3족 질화물 반도체 소자 및 이를 제조하는 방법에 관한 것이다.The present disclosure generally relates to a non-emissive group 3 nitride semiconductor laminate to a group 3 nitride semiconductor device and a method for manufacturing the same, and in particular, to a non-emission (Non-emission) device such as a power device (e.g., diode, transistor, HEMT, JFET) -emitting) to a group 3 nitride semiconductor laminate to a group 3 nitride semiconductor device and a method for manufacturing the same.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).Here, background art related to the present disclosure is provided, and they do not necessarily mean prior art (This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 미국 등록특허공보 제7,230,284호에 제시된 3족 질화물 반도체 소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 소자는(예: AlGaN/GaN based HEMT)는 성장 기판(11; 예: 사파이어 기판, SiC 기판), 버퍼층(12; 예: AlxGa1-xN (0≤x≤1) 버퍼층), 채널층(20; 예: GaN 채널층), 2DEG(22; two-dimensional electron gas)(22), 배리어층(18; 예: AlGaN 배리어층), 절연층(24; SiN 절연층), 드레인 전극(14), 게이트 전극(16) 및 소스 전극(17)을 포함한다.1 is a view showing an example of a group III nitride semiconductor device presented in US Patent Registration No. 7,230,284, and the group III nitride semiconductor device (eg AlGaN / GaN based HEMT) is a growth substrate 11; example: sapphire substrate , SiC substrate), buffer layer (12; ex: Al x Ga 1-x N (0≤x≤1) buffer layer), channel layer (20; ex: GaN channel layer), 2DEG (22; two-dimensional electron gas) 22, a barrier layer 18 (eg, an AlGaN barrier layer), an insulating layer 24 (SiN insulating layer), a drain electrode 14, a gate electrode 16, and a source electrode 17.
재료비와 결정성의 관점에서 성장 기판(11)으로 사파이어 기판을 활용하는 것이 바람직하지만, 방열의 관점에서 적합하지 않다. SiC 기판은 결정성의 관점과 방열의 관점에서 고려될 수 있지만, 재료비가 고가이며, 소자가 대면적화함에 따라 더 크게 문제될 수 있다. 재료비의 관점에서 저가인 Si 기판을 사용하는 것을 고려할 수 있는데, 그 위에 성장되는 3족 질화물 반도체층의 결정성을 향상하는 방안이 반드시 수반되어야만 한다. 이하에서, 성장의 과정에서 3족 질화물 반도체층의 결정성을 향상하는 방법을 먼저 살핀다.Although it is preferable to utilize a sapphire substrate as the growth substrate 11 from the viewpoint of material cost and crystallinity, it is not suitable from the viewpoint of heat dissipation. SiC substrates can be considered from the viewpoints of crystallinity and heat dissipation, but the material cost is high and may become a bigger problem as the device becomes larger. From the viewpoint of material cost, it can be considered to use a low-cost Si substrate, but a method of improving the crystallinity of the group III nitride semiconductor layer grown thereon must be accompanied. Hereinafter, a method of improving the crystallinity of a group III nitride semiconductor layer in the process of growth is first looked at.
도 2는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 이러한 성장법을 통해 3족 질화물 반도체 적층체 내의 결정 결함을 감소시킬 수 있다.2 is a view showing an example of a group 3 nitride semiconductor laminate proposed in US Patent Publication No. 2005-0156175, the group 3 nitride semiconductor laminate includes a c-plane sapphire substrate 100, a c-plane sapphire substrate 100 A growth prevention film 150 made of SiO 2 formed thereon, and a Group III nitride semiconductor layer 310 selectively grown thereon. Through this growth method, crystal defects in a group III nitride semiconductor laminate can be reduced.
도 3은 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 c면 사파이어 기판(100), c면 사파이어 기판(100) 위에 미리 형성된 3족 질화물 반도체 템플릿(210), 3족 질화물 반도체 템플릿(210) 위에 형성된 SiO2로 된 성장 방지막(150), 그리고, 그 위에 선택 성장된(selectively grown) 3족 질화물 반도체층(310)을 포함한다. 3족 질화물 반도체 템플릿(210)은 종래에 c면 사파이어 기판(100)에 3족 질화물 반도체를 성장하는 방법에 의해 형성된다. 즉, 550℃ 부근의 성장온도와 수소 분위기에서, 씨앗층을 형성한 다음, 1050℃의 성장온도에서 GaN을 성장하는 방법에 의해 1~3um의 두께로 형성된다. 도면 부호 180은 결함(Defecsts; Treading Dislocations)을 나타내며, 성장 방지막(150) 아래의 결함의 전개가 차단됨으로써, 전체적으로 결정성의 향상을 가져오게 된다. 즉, 성장 방지막(150)은 도 1에 제시된 3족 질화물 반도체 적층체에서와 마찬가지로 ELOG(Epitaxially Lateral Overgrowth)가 가능하게 하는 한편, 아래쪽에서 발생한 결함(180)을 차단하는 역할을 한다.3 is a view showing another example of a group 3 nitride semiconductor laminate proposed in US Patent Publication No. 2005-0156175, a group 3 nitride semiconductor laminate comprising a c-plane sapphire substrate 100, a c-plane sapphire substrate ( 100), a group 3 nitride semiconductor template 210 formed in advance, a growth prevention film 150 made of SiO 2 formed on the group 3 nitride semiconductor template 210, and a group 3 nitride semiconductor layer selectively grown thereon. (310). The group III nitride semiconductor template 210 is conventionally formed by a method of growing a group III nitride semiconductor on a c-plane sapphire substrate 100 . That is, a seed layer is formed at a growth temperature around 550 ° C and a hydrogen atmosphere, and then it is formed to a thickness of 1 to 3 μm by a method of growing GaN at a growth temperature of 1050 ° C. Reference numeral 180 denotes defects (Treading Dislocations), and the development of defects under the growth prevention layer 150 is blocked, resulting in improved crystallinity as a whole. That is, the growth prevention layer 150 enables ELOG (Epitaxially Lateral Overgrowth) as in the group III nitride semiconductor stack shown in FIG.
도 4는 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 사파이어 기판(100), 사파이어 기판(100) 위에 성장되는 n형 3족 질화물 반도체층(300), n형 3족 질화물 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 3족 질화물 반도체층(500)을 포함한다. 사파이어 기판(100)에는 돌기(110)가 형성되어 있으며, 돌기(110)는 사파이어 기판(100) 위에 성장되는 3족 질화물 반도체층(300,400,500)의 결정질(Growth Quality)을 향상시키는 한편, 활성층(400)에서 생성되는 빛을 발광소자 외부로 방출하는 효율을 향상시키는 산란면으로 기능한다. 이와 같이 돌기(110)가 형성된 사파이어 기판(100)을 패턴드 사파이어 기판(PSS; Patterned Sapphire Substrate)이라 한다.4 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2003-0057444, wherein the group III nitride semiconductor light emitting device is grown on a sapphire substrate 100 and a sapphire substrate 100 n It includes a group III nitride semiconductor layer 300 , an active layer 400 grown on the n-type group III nitride semiconductor layer 300 , and a p-type group III nitride semiconductor layer 500 grown on the active layer 400 . Protrusions 110 are formed on the sapphire substrate 100, and the protrusions 110 improve the growth quality of the group III nitride semiconductor layers 300, 400, and 500 grown on the sapphire substrate 100, while the active layer 400 ) functions as a scattering surface that improves the efficiency of emitting light generated from the light emitting device to the outside. The sapphire substrate 100 on which the protrusion 110 is formed as described above is referred to as a patterned sapphire substrate (PSS).
도 5는 미국 공개특허공보 제2005-082546호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자는 돌기(111)가 형성된 사파이어 기판(101)과 3족 질화물 반도체층(301)을 포함한다. 도 4에 제시된 예와 달리 단면이 둥근 형태의 돌기(111)가 제시되어 있으며, 이는 도 4에서와 같은 돌기(110)를 이용하는 경우에, 돌기(110)의 바닥면(돌기(110)가 형성하는 요철에서 요부에 해당)과 돌기(110)의 상면 모두에서 에피 성장이 이루어지고 따라서 바닥면 및 상면 모두에서 결정 결함인 관통 전위(Threading Dislocation)가 발생하게 되는데, 단면이 둥근 형태의 돌기(111)를 이용함으로써 돌기(111) 상면에서의 에피 성장을 억제하여 관통 전위의 발생을 억제시키는 이점을 가지게 된다.5 is a view showing an example of a group 3 nitride semiconductor light emitting device presented in US Patent Publication No. 2005-082546, the group 3 nitride semiconductor light emitting device includes a sapphire substrate 101 having protrusions 111 and a group 3 nitride A semiconductor layer 301 is included. Unlike the example shown in FIG. 4, a protrusion 111 having a round cross section is presented, which is when using the protrusion 110 as in FIG. 4, the bottom surface of the protrusion 110 (protrusion 110 is formed Epi growth occurs on both the upper surface of the projection 110 and the upper surface of the projection 110, and thus threading dislocation, which is a crystal defect, occurs on both the bottom and top surfaces. ) has an advantage of suppressing the occurrence of threading dislocations by suppressing epitaxial growth on the upper surface of the protrusion 111 .
도 6은 미국 공개특허공보 제2011-0042711호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자(10)는 사파이어 기판(11), 사파이어 기판(11) 위에 성장되는 n형 3족 질화물 반도체 영역(12a), n형 3족 질화물 반도체 영역(12a) 위에 성장되는 활성 영역(12b), 활성 영역(12b) 위에 성장되는 p형 3족 질화물 반도체 영역(12c)을 포함한다. 마찬가지로, 사파이어 기판(110)에는 돌기(13)가 마련되어 있다. 다만, 돌기(13)는 뾰족한 형태의 단면을 가진다. 뾰족한 형태의 돌기(13)를 구비함으로써, 돌기(13)의 상부가 점 또는 선 형태(돌기(13)가 원뿔 형상인 경우에 점이 되고, 돌기(13)가 뾰족한 스트라이프 형상인 경우에 선이 된다.)가 되어 그 상부에서의 관통 전위 형성을 억제하는 한편, 돌기(13)의 상부와 바닥면을 이어주는 측면에서의 에피 성장을 억제하여 돌기(13) 측면에서의 관통 전위 발생도 억제할 수 있게 된다.6 is a view showing an example of a Group 3 nitride semiconductor light emitting device proposed in US Patent Publication No. 2011-0042711, and the Group 3 nitride semiconductor light emitting device 10 is on a sapphire substrate 11 and a sapphire substrate 11. An n-type group III nitride semiconductor region 12a grown, an active region 12b grown over the n-type group III nitride semiconductor region 12a, and a p-type group III nitride semiconductor region 12c grown over the active region 12b. includes Similarly, protrusions 13 are provided on the sapphire substrate 110 . However, the protrusion 13 has a pointed cross section. By having a pointed protrusion 13, the upper part of the protrusion 13 is in the form of a dot or line (when the protrusion 13 is conical, it becomes a point, and when the protrusion 13 is a sharp stripe, it becomes a line). .) to suppress the formation of threading dislocation on the upper side, while suppressing the epi growth on the side connecting the top and bottom surfaces of the protrusion 13, so that the occurrence of threading dislocation on the side of the protrusion 13 can also be suppressed. do.
도 7은 미국 등록특허공보 제10,361,339호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체는 사파이어 기판(10), 버퍼 영역(20) 및 3족 질화물 반도체 영역(35)을 포함하며, 도 6에 제시된 형태의 돌기를 구비하더라도 돌기의 상부는 여전히 관통 전위(35)을 형성됨을 보여준다.7 is a view showing an example of a group 3 nitride semiconductor laminate proposed in US Patent Registration No. 10,361,339. The group 3 nitride semiconductor laminate includes a sapphire substrate 10, a buffer region 20 and a group 3 nitride semiconductor region. 35, showing that threading dislocations 35 are still formed at the top of the protrusion even if the protrusion is provided in the form shown in FIG. 6 .
도 26 및 도 27은 미국 등록특허공보 제9,324,844호에 제시된 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면으로서, 비발광 3족 질화물 반도체 적층체 내지 소자로서 수직 구조의 접합형 전계효과 트랜지스터(1000; Vertical Juction Field Effect Transistor; JFET)가 제시되어 있다. 비발광 3족 질화물 반도체 소자(1000)는 드레인 영역(102), 드리프트 영역(103), 게이트 영역(104), 소스 영역(105), 드레인 전극(106), 게이트 전극(107) 그리고 소스 전극(108)을 포함한다. 도 26은 디폴트 모드인 off 상태를 나타내며, 공핍 영역(109)이 채널(121; 도 27 참조) 내에서 위치 120에 오버랩되어 전류가 흐르는 것을 막고 있다. 도 27은 on 상태를 나타내며, 게이트 전극(107)과 소스 전극(108)에 전압(VD,VS)이 인가될 때, 게이트 전압(VD)이 공핍 영역(109)의 크기를 감소시켜 전류가 흐를 수 있는 채녈(108)을 제공하여 수직 구조의 JFET(1000)을 on시키고, 공핍 영역(109)이 분리되어, 전류가 드레인 영역(102)으로부터 드리프트 영역(103) 및 채널 영역(121)을 거쳐 소스 영역(106)으로 수직 방향(122)으로 흐를 수 있게 된다.26 and 27 are diagrams showing an example of a group III nitride semiconductor laminate or device proposed in US Patent Registration No. 9,324,844, a junction-type field effect transistor having a vertical structure as a non-emitting group III nitride semiconductor laminate or device. (1000; Vertical Junction Field Effect Transistor; JFET) is presented. The non-emitting group III nitride semiconductor device 1000 includes a drain region 102, a drift region 103, a gate region 104, a source region 105, a drain electrode 106, a gate electrode 107, and a source electrode ( 108). 26 shows the off state, which is the default mode, and the depletion region 109 overlaps the position 120 in the channel 121 (see FIG. 27) to prevent current from flowing. 27 shows an on state, and when voltages (V D , V S ) are applied to the gate electrode 107 and the source electrode 108, the gate voltage (V D ) reduces the size of the depletion region 109 A channel 108 through which current can flow is provided to turn on the JFET 1000 in a vertical structure, and the depletion region 109 is separated so that current flows from the drain region 102 to the drift region 103 and the channel region 121 ) to the source region 106 in the vertical direction 122 .
도 41은 미국 등록특허공보 제7,388,236호에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 소자는(예: AlGaN/GaN based HEMT)는 도 1에 제시된 소자와 마찬가지로 성장 기판(11; 예: 사파이어 기판, SiC 기판), 버퍼층(12; 예: AlxGa1-xN (0≤x≤1) 버퍼층), 채널층(20; 예: GaN 채널층), 2DEG(22; two-dimensional electron gas)(22), 배리어층(18; 예: AlGaN 배리어층), 절연층(24; 예: SiN 절연층), 드레인 전극(14), 게이트 전극(16) 및 소스 전극(17)을 포함하며, 게이트 전극(16)에 게이트 필드 플레이트(25; Gate Field Plate)가 추가로 구비되어 있다. 한편, 게이트 전극(16)과 배리어층(17) 사이에 다른 도전성의 3족 질화물층(26; 예: p형 GaN)을 구비함으로써, D-mode (Depletion-mode) AlGaN/GaN HEMT(게이트 전압이 인가되지 않을 때 turn-on 상태, 즉 normally-on 상태인 소자)를 E-mode (Enhancement-mode) HEMT(게이트 전압이 인가되지 않을 상태에서 turn-off 상태, 즉 normally-off 상태인 소자)를 구현할 수 있게 된다. 게이트 필드 플레이트(25)는 높은 전기 에너지(고전압, 고주파수)를 게이트 전극(16)을 통해 인가(또는, 주입)할 때 큰 전기장이 게이트 전극(16) 주변에 집중되어 3족 질화물 반도체 소자 일부에 전기적 충격을 주어 소자의 수명 및 신뢰성에 악영향을 미치는데, 이를 방지하기 위해 게이트 전극(16)에서 연장된 전극 플레트 형태를 설계함으로써 집중된 전기장을 분산시켜 소자를 보호하는 기능을 한다.41 is a view showing an example of a non-emission Group III nitride semiconductor laminate or device proposed in US Patent Registration No. 7,388,236, and a Group III nitride semiconductor device (eg, AlGaN / GaN based HEMT) is shown in FIG. Similarly to the device, a growth substrate (11; ex: sapphire substrate, SiC substrate), a buffer layer (12; ex: Al x Ga 1-x N (0≤x≤1) buffer layer), a channel layer (20; ex: GaN channel layer) ), 2DEG (22; two-dimensional electron gas) 22, barrier layer (18; example: AlGaN barrier layer), insulating layer (24; example: SiN insulation layer), drain electrode 14, gate electrode 16 ) and a source electrode 17, and a gate field plate 25 is additionally provided on the gate electrode 16. On the other hand, by providing a group III nitride layer 26 (eg: p-type GaN) of different conductivity between the gate electrode 16 and the barrier layer 17, D-mode (Depletion-mode) AlGaN / GaN HEMT (gate voltage E-mode (Enhancement-mode) HEMT (turn-off state when gate voltage is not applied, that is, normally-off device) can be implemented. When high electric energy (high voltage, high frequency) is applied (or injected) through the gate electrode 16 to the gate field plate 25, a large electric field is concentrated around the gate electrode 16, and a part of the group III nitride semiconductor element An electric shock is given to adversely affect the lifespan and reliability of the device. In order to prevent this, an electrode plate shape extended from the gate electrode 16 is designed to disperse the concentrated electric field to protect the device.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Carrying Out the Invention'.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 실리콘(Si)을 함유하는 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 방지막을 형성하는 단계; 성장 방지막을 통해 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to one aspect according to the present disclosure (According to one aspect of the present disclosure), in a method for manufacturing a non-emission Group III nitride semiconductor laminate, preparing a growth substrate containing silicon (Si); Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; Forming a plurality of growth prevention films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed through the growth prevention layer; And, forming a non-emission group III nitride semiconductor laminate on the second buffer layer; there is provided a method for manufacturing a non-emission group III nitride semiconductor laminate including.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 억제막을 형성하는 단계; 복수의 성장 억제막으로부터 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a method for manufacturing a non-emission Group III nitride semiconductor laminate, preparing a growth substrate; Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; forming a plurality of growth inhibiting films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed from the plurality of growth suppression films; And, forming a non-emission group III nitride semiconductor laminate on the second buffer layer; there is provided a method for manufacturing a non-emission group III nitride semiconductor laminate including.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 제1 버퍼층을 성장하는 단계; 제1 버퍼층에 제1 버퍼층으로 된 복수의 돌기를 형성하는 단계; 제1 버퍼층 위에 제2 버퍼층을 성장하는 단계; 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계; 그리고, 제2 버퍼층을 성장하는 단계에 앞서, 복수의 돌기 위에 제2 버퍼층의 성장을 느리게 하거나 방지하는 물질층을 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a method for manufacturing a non-emission Group III nitride semiconductor laminate, preparing a growth substrate; growing a first buffer layer on the growth substrate; Forming a plurality of protrusions made of the first buffer layer on the first buffer layer; growing a second buffer layer over the first buffer layer; Forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; And, prior to the step of growing the second buffer layer, forming a material layer on the plurality of protrusions to slow down or prevent the growth of the second buffer layer; Provided.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체에 있어서, 순차로 적층된 드레인 영역; 드리프트 영역; 및 게이트 영역; 드레인 영역에 전기적으로 연결되는 지지 기판; 게이트 영역에 전기적으로 연결되는 게이트 전극; 게이트 영역을 통해 노출된 드리프트 영역이 형성하는 채널에 전기적으로 연결되는 소스 전극; 게이트 전극과 소스 전극이 위치하는 적층체 전체를 덮고 있으며, 복수의 개구가 형성되어 있는 패시베이션 층; 복수의 개구 중 하나를 통해 게이트 전극에 전기적으로 연결되는 본딩용 게이트 전극; 그리고, 복수의 개구 중 다른 하나를 통해 소스 전극에 전기적으로 연결되는 본딩용 소스 전극;을 포함하는, 비발광 3족 질화물 반도체 적층체가 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a non-emitting group III nitride semiconductor laminate, a sequentially stacked drain region; drift area; and a gate area; a support substrate electrically connected to the drain region; a gate electrode electrically connected to the gate region; a source electrode electrically connected to a channel formed by the drift region exposed through the gate region; a passivation layer covering the entire stack where the gate electrode and the source electrode are positioned and having a plurality of openings; a gate electrode for bonding electrically connected to the gate electrode through one of the plurality of openings; And, a source electrode for bonding electrically connected to the source electrode through the other one of the plurality of openings; including, a non-emitting group III nitride semiconductor laminate is provided.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판에 비발광 3족 질화물 적층체를 형성하는 단계; 성장 기판과 대향하는 적층체 측에 임시 기판을 부착하는 단계; 성장 기판을 제거하는 단계; 성장 기판이 제거된 적층체 측에 전기절연성 세라믹층과 금속층을 포함하는 다층 박막을 세라믹층, 금속층 순으로 형성하는 단계; 다층 박막에 지지 기판을 부착하는 단계; 그리고, 임시 기판을 제거하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법이 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a method for manufacturing a non-emissive group III nitride semiconductor laminate, forming a non-emissive group III nitride semiconductor laminate on a growth substrate; attaching a temporary substrate to the side of the stack facing the growth substrate; removing the growth substrate; forming a multi-layered thin film including an electrically insulating ceramic layer and a metal layer on a side of the stack from which the growth substrate is removed, in that order; attaching a support substrate to the multilayer thin film; In addition, there is provided a method for manufacturing a non-emission Group III nitride semiconductor laminate including the step of removing the temporary substrate.
본 개시에 따른 또 다른 태양에 의하면(According to another aspect of the present disclosure), 비발광 3족 질화물 반도체 소자용 적층체에 있어서, 순차로 적층된, 지지 기판; 전기절연성 세라믹층과 금속층으로 구성된 다층 박막; 버퍼층, 채널층, 및 배리어층으로 구성된 비발광 3족 질화물 반도체 영역; 비발광 3족 질화물 반도체 영역에 전기적으로 연결된 게이트 전극, 소스 전극 및 드레인 전극; 소스 전극, 드레인 전극 및 게이트 전극이 위치하는 비발광 3족 질화물 반도체 영역를 덮고 있으며, 외부와의 전기적 연결이 가능하도록 소스 전극, 드레인 전극 및 게이트 전극을 개방하고 있는 패시베이션 층; 그리고, 소스 전극 및 게이트 전극 중의 하나와 전기적으로 연결되도록 패시베이션 층 상부에 구비되는 필드 플레이트;를 포함하는, 비발광 3족 질화물 반도체 적층체가 제공된다.According to another aspect according to the present disclosure (According to another aspect of the present disclosure), in a laminate for a non-emission Group III nitride semiconductor device, sequentially laminated, a support substrate; a multilayer thin film composed of an electrically insulating ceramic layer and a metal layer; a non-emitting group III nitride semiconductor region composed of a buffer layer, a channel layer, and a barrier layer; a gate electrode, a source electrode, and a drain electrode electrically connected to the non-emitting group III nitride semiconductor region; a passivation layer covering a non-emitting group III nitride semiconductor region where the source electrode, the drain electrode, and the gate electrode are positioned, and opening the source electrode, the drain electrode, and the gate electrode to enable electrical connection with the outside; And, a field plate provided on top of the passivation layer to be electrically connected to one of the source electrode and the gate electrode; including, a non-emitting group III nitride semiconductor laminate is provided.
이에 대하여 '발명을 실시하기 위한 구체적인 내용'의 후단에 기술한다.This will be described at the end of 'Specific Contents for Carrying Out the Invention'.
도 1은 미국 등록특허공보 제7,230,284호에 제시된 3족 질화물 반도체 소자의 일 예를 나타내는 도면,
도 2는 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,
도 3은 미국 공개특허공보 제2005-0156175호에 제시된 3족 질화물 반도체 적층체의 또 다른 일 예를 나타내는 도면,
도 4는 미국 공개특허공보 제2003-0057444호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 5는 미국 공개특허공보 제2005-082546호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 6은 미국 공개특허공보 제2011-0042711호에 제시된 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면,
도 7은 미국 등록특허공보 제10,361,339호에 제시된 3족 질화물 반도체 적층체의 일 예를 나타내는 도면,
도 8은 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면,
도 9는 본 개시에 따른 돌기와 성장 방지막의 배치 관계의 일 예를 나타내는 도면,
도 10은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 일 예를 나타내는 도면,
도 11은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면,
도 12는 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면,
도 13은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면,
도 14는 도 12에 제시된 돌기를 형성하는 방법의 구체 예를 나타내는 도면,
도 15 내지 도 17은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 18은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 19는 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 20는 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 21 내지 도 23은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면,
도 24 및 도 25는 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 또 다른 예를 나타내는 도면
도 26 및 도 27은 미국 등록특허공보 제9,324,844호에 제시된 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면,
도 28 내지 도 37은 본 개시에 따라 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 또 다른 예를 나타내는 도면,
도 38 내지 도 40은 도 37에 제시된 적층체에 사용되는 지지 기판의 일 예를 설명하는 도면,
도 41은 미국 등록특허공보 제7,388,236호에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타소자의 일 예를 나타내는 도면,
도 42 내지 도 46은 도 41에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 일 예를 나타내는 도면.1 is a view showing an example of a group III nitride semiconductor device presented in US Patent Registration No. 7,230,284;
2 is a view showing an example of a group III nitride semiconductor laminate presented in US Patent Publication No. 2005-0156175;
3 is a view showing another example of a group III nitride semiconductor laminate presented in US Patent Publication No. 2005-0156175;
4 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2003-0057444;
5 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2005-082546;
6 is a view showing an example of a group III nitride semiconductor light emitting device presented in US Patent Publication No. 2011-0042711;
7 is a view showing an example of a group III nitride semiconductor laminate presented in US Patent Registration No. 10,361,339;
8 is a view showing an example of a group III nitride semiconductor laminate or device according to the present disclosure;
9 is a view showing an example of the arrangement relationship between protrusions and growth prevention films according to the present disclosure;
10 is a view showing an example of a method of forming protrusions on a growth substrate according to the present disclosure;
11 is a view showing another example of a method of forming protrusions on a growth substrate according to the present disclosure;
12 is a view showing another example of a method of forming protrusions on a growth substrate according to the present disclosure;
13 is a view showing another example of a method of forming protrusions on a growth substrate according to the present disclosure;
14 is a view showing a specific example of a method of forming a protrusion shown in FIG. 12;
15 to 17 are views showing another example of a method of forming a growth prevention film according to the present disclosure;
18 is a view showing another example of a method of forming a growth prevention film according to the present disclosure;
19 is a view showing another example of a method of forming a growth prevention film according to the present disclosure;
20 is a view showing another example of a method of forming a growth prevention film according to the present disclosure;
21 to 23 are views showing another example of a method of forming a growth prevention film according to the present disclosure;
24 and 25 are views showing another example of a group III nitride semiconductor laminate or device according to the present disclosure;
26 and 27 are diagrams showing an example of a group III nitride semiconductor laminate or device presented in US Patent Registration No. 9,324,844;
28 to 37 are views showing another example of a method for manufacturing a group III nitride semiconductor laminate or device according to the present disclosure;
38 to 40 are views for explaining an example of a support substrate used in the laminate shown in FIG. 37;
41 is a view showing an example of a device that shows an example of a non-emission Group III nitride semiconductor laminate or device presented in US Patent Registration No. 7,388,236;
42 to 46 are diagrams illustrating an example of a method of manufacturing the non-emission Group III nitride semiconductor laminate or device shown in FIG. 41;
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).Hereinafter, the present disclosure will now be described in detail with reference to the accompanying drawing(s).
도 8은 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 일 예를 나타내는 도면으로서, 예시로 HEMT가 제시되어 있다. 3족 질화물 반도체 소자는 돌기(41)가 구비된 성장 기판(42; 6인치 또는 8인치 Si 기판), 제1 버퍼층(43), 성장 방지막(44; 예: SiO2, SiNx와 같은 유전체 물질), 제2 버퍼층(45), 채널층(46; 예: 3㎛ 두께의 GaN 채널층), 2DEG(47), 인터레이어(48; 예: 10nm 두께의 thin AlN 층, 생략가능), 배리어층(49; 예: 10~50nm 두께의 AlxGa1-xN (0.2≤x≤0.3~0.6) 배리어층 또는 AlGaInN 배리어층 또는 AlScN 배리어층), 캡층(50; 예: 5~20nm 두께의 GaN 캡층, n층 또는 p층으로 도핑 가능, 생략 가능), 소스 전극(51), 게이트 전극(52), 그리고 드레인 전극(53)을 포함한다.8 is a diagram showing an example of a group III nitride semiconductor laminate or device according to the present disclosure, in which HEMT is presented as an example. The group III nitride semiconductor device includes a growth substrate 42 (6-inch or 8-inch Si substrate) having protrusions 41, a first buffer layer 43, a growth prevention film 44; for example, a dielectric material such as SiO 2 or SiN x ), second buffer layer 45, channel layer 46 (eg: GaN channel layer with a thickness of 3 μm), 2DEG 47, interlayer 48 (eg: thin AlN layer with a thickness of 10 nm, can be omitted), barrier layer (49; Example: Al x Ga 1-x N (0.2≤x≤0.3~0.6) barrier layer or AlGaInN barrier layer or AlScN barrier layer with a thickness of 10 to 50 nm), cap layer (50; Example: GaN with a thickness of 5 to 20 nm) It includes a cap layer, an n layer or a p layer, which can be doped or omitted), a source electrode 51, a gate electrode 52, and a drain electrode 53.
실리콘(Si)으로 된 성장 기판(42; 이하, Si 성장 기판(42))의 경우에, 불투명 기판이므로, 사파이어 기판에 사용되는 돌기(도 4 내지 도 7 참조, 이 돌기는 1차적으로 발광소자(LED)에 있어서 3족 질화물 반도체층의 굴절률과 사파이어 기판의 굴절률 차이에 인한 내부 전반사를 해소하기 위한 스캐터(scatter; 광 산란)로 기능하며, 2차적으로 돌기가 ELOG에서 성장 방지막(도 2 및 도 3 참조)처럼 기능하여 막질의 향상을 가져온다.)를 필요로 하지 않지만, 본 개시에 따른 비발광 3족 질화물 반도체 소자 내지 적층체에서는 막질의 향상을 위해 Si 성장 기판(42)임에도 돌기(41)를 채용하고 있다. 또한, 앞서 지적한 바와 같이, 돌기(41)를 채용하더라도 돌기(41)의 상부 내지 상면(41a)과 성장 기판(42)의 바닥면 내지 돌기(41)의 바닥면(42a)으로부터 제1 버퍼층(43)에 결정 결함, 구체적으로 관통 전위(54,55; Treading Dislocations)가 발생하며, 고품위 즉, 107/㎠ 이하의 TDD(Theading Dislocation Density)가 요구되는 경우에는 이에 이르기가 쉽지 않다. 본 개시는 이러한 문제점을 해소하기 위해, Si 성장 기판(42)에 돌기(41)를 채용하는 한편, 제1 버퍼층(43) 위에 성장 방지막(44)을 형성하여 제1 버퍼층(43)에 존재하는 관통 전위(54,55)의 일부를 차단하고, 그 위에 제2 버퍼층(45), 채널층(46), 배리어층(48)을 포함하는 3족 질화물 반도체 적층체를 형성함으로써, 이들의 막질이 107/㎠ 이하의 TDD(Theading Dislocation Density)를 갖도록 한다. 소자에 높은 방열 사양이 요구되는 경우에, 성장 기판(42)은 Si 성장 기판에서 SiC 성장 기판으로 변경될 수 있으며, 따라서 성장 기판(42)으로 Si을 포함하는 성장 기판(Si 성장 기판, SiC 성장 기판)이 사용될 수 있다. 돌기(41)는 도 4 내지 도 7에 제시된 다양한 형태를 가질 수 있으며, 돌기(41)의 상부 내지 상면(41a)에서의 관통 전위(54)를 최소화하기 위해, 종단면이 뾰족한 형상을 가지는 것이 바람직하다. 돌기(41)의 구조와 형상에 따라 돌기(41)를 구성하고 있는 물질은 성장 기판(42)과 동일한 물질(예: Si, SiC)이거나 성장 기판(42)과 다른 물질(예: AlN, AlNO, AlGaN, 또는 GaN)일 수 있다.In the case of the growth substrate 42 made of silicon (Si) (hereinafter referred to as the Si growth substrate 42), since it is an opaque substrate, the projections used in the sapphire substrate (see FIGS. 4 to 7, these projections are primarily light emitting elements). In (LED), it functions as a scatter (light scattering) to solve the total internal reflection caused by the difference between the refractive index of the group III nitride semiconductor layer and the refractive index of the sapphire substrate, and secondarily the protrusion is a growth prevention film in ELOG (FIG. 2 and see FIG. 3) to improve film quality.) is not required, but in the non-emitting group III nitride semiconductor device or laminate according to the present disclosure, even though the Si growth substrate 42 is a protrusion ( 41) is employed. In addition, as pointed out above, even if the protrusion 41 is employed, the first buffer layer ( 43), threading dislocations (54, 55; Treading Dislocations) occur, and it is not easy to reach this when a high quality, that is, TDD (Theading Dislocation Density) of 10 7 /cm 2 or less is required. In order to solve this problem, the present disclosure adopts the protrusion 41 on the Si growth substrate 42, while forming the growth prevention film 44 on the first buffer layer 43 to By blocking some of the threading dislocations 54 and 55 and forming a group III nitride semiconductor laminate including the second buffer layer 45, channel layer 46, and barrier layer 48 thereon, the film quality of these is improved. It should have TDD (Theading Dislocation Density) of 10 7 /cm 2 or less. In the case where high heat dissipation specifications are required for the device, the growth substrate 42 can be changed from a Si growth substrate to a SiC growth substrate, and therefore a growth substrate containing Si as the growth substrate 42 (Si growth substrate, SiC growth substrate) substrate) may be used. The protrusion 41 may have various shapes shown in FIGS. 4 to 7, and in order to minimize the threading dislocation 54 on the top or upper surface 41a of the protrusion 41, it is preferable to have a sharp longitudinal section. do. Depending on the structure and shape of the protrusion 41, the material constituting the protrusion 41 is the same material as the growth substrate 42 (eg Si, SiC) or a material different from the growth substrate 42 (eg AlN, AlNO) , AlGaN, or GaN).
도 9는 본 개시에 따른 돌기와 성장 방지막의 배치 관계의 일 예를 나타내는 도면으로서, 성장 기판(42) 또는 성장 기판(42)의 바닥면(42a)에 구비된 돌기(41)를 위에서 본 도면이며, 횡단면이 원형인 원뿔형의 돌기(41)가 대각선 방향으로 일정한 간격으로 두고 배치되어 있고, 돌기(41) 위에 위치하는 성장 방지막(44)이 44a로 표시되어 있으며, 바닥면(42a) 위에 위치하는 성장 방지막(44)이 44b로 표시되어 있다. 성장 방지막(44a)에 의해 관통 전위(54)가 차단되며, 성장 방지막(44b)에 의해 관통 전위(55)의 일부가 차단된다. 성장 방지막(44a)의 크기는 바닥면(42a)에서의 돌기(41)의 횡단면의 크기보다 작은 것이 바람직한데, 지나치게 커지면 제2 버퍼층(45)이 성장할 영역이 지나치게 축소되기 때문이다.9 is a view showing an example of the arrangement relationship between the protrusions and the growth preventing film according to the present disclosure, and is a view from above of the growth substrate 42 or the protrusions 41 provided on the bottom surface 42a of the growth substrate 42 . , Conical projections 41 having a circular cross section are arranged at regular intervals in the diagonal direction, and the growth prevention film 44 located on the projections 41 is indicated by 44a, and is located on the bottom surface 42a An anti-growth film 44 is indicated by 44b. The threading dislocation 54 is blocked by the growth prevention layer 44a, and a portion of the threading dislocation 55 is blocked by the growth prevention layer 44b. The size of the growth prevention layer 44a is preferably smaller than the size of the cross section of the protrusion 41 on the bottom surface 42a. If it is too large, the area where the second buffer layer 45 will grow is excessively reduced.
돌기(41)는 0.1~2㎛의 높이, 0.2~3.0㎛의 너비, 0.1~1.0㎛의 간격을 가질 수 있으며, 종단면이 콘(Cone), 스퀘어 피라미드(Square Pyramid), 돔(Dome), 트런케이티드 콘/피라미드(Truncated Cone/ Pyramid) 등의 형상을 가질 수 있다.The protrusion 41 may have a height of 0.1 to 2 μm, a width of 0.2 to 3.0 μm, and an interval of 0.1 to 1.0 μm, and the longitudinal section is a cone, square pyramid, dome, or trun. It may have a shape such as a truncated cone/pyramid.
제1 버퍼층(43)을 성장하기에 앞서, 성장 기판(42)의 종류(Si, SiC)에 따라 돌기(41) 유무에 무관하게 (도 10 및 도 11에 제시되 예에서 돌기(41)가 먼저 형성되고, 도 12 및 도 13에 제시된 예에서 돌기(41)가 이후에 형성됨) 20nm 전후 두께를 갖는 GaN, AlN, AlNO, 또는 AlGaN 씨드층(미도시; Seed Layer)을 CVD(MOCVD, ALD, MBE) 내지 PVD(Sputter, PLD) 방식으로 성막할 수 있다. 특히 Si 성장 기판(42) 상부에 AlN 씨드층을 CVD 방식을 사용하여 성막할 경우, 알루미늄(Al) 공급원인 TMAl 가스를 질소(N) 공급원인 암모니아(NH3) 가스 공급없이 단독으로 공급하는 프리씨딩(Pre-seeding) 공정을 도입하는 것도 바람직하다. Si 성장 기판(42) 상부에 3족 질화물 반도체로 된 제1 버퍼층(43)을 성장시키기 위해서는 최소 실제 성장 온도가 800℃ 이상의 고온이기 때문에 Si 성장 기판(42) 표면에서 Si 원자 탈착(Atomic Debonding & Desorption)되어 빠져나오게 되며, 또한 고온의 질소 분위기에서 Si 표면에는 Si-N 결합에 의한 미세한 비정질 물질 입자들이 발생하게 되어 고품질 3족 질화물 반도체 박막을 얻는 데 어려움이 있다. 이를 효과적으로 억제하기 위해서 Si 성장 기판(42) 표면에 수 초에서 수십 초까지 알루미늄(Al) 프리씨딩(Pre-seeding) 공정을 도입하면 3족 질화물 반도체 박막을 성장하는 데 유리하다. Si 성장 기판(42) 상부에 씨드층(미도시) 형성한 후, 연이은 후속 공정에서 제1 버퍼층(43)을 GaN 단층, AlN 단층 또는 다층 박막으로 TMGa, TMAl와 NH3를 소스 가스로, 수소(H2)를 캐리어 가스로 사용하여 실제 성장온도 800~1100℃ 구간에서 각각 상대적으로 높은 압력(예: 250mbar)에서 GaN 내지 Ga-rich AlGaN로 성장하고, 반면에 상대적으로 낮은 압력(예: 50mbar)에서 AlN 내지 Al-rich AlGaN로 성장할 수 있다. 경우에 따라 GaN와 AlN 물질을 합금화시킨 AlGaN층을 제1 버퍼층(43)의 일부로 도입할 수 있다. 즉, 제1 버퍼층(43)은 성장 기판(42) 상부에 GaN, GaN/AlGaN, AlN, AlN/AlGaN, AlN/AlGaN/GaN, 또는 GaN/AlGaN/AlN 등으로 구성될 수 있다.Prior to growing the first buffer layer 43, depending on the type (Si, SiC) of the growth substrate 42, whether or not there are projections 41 (in the example shown in FIGS. 10 and 11, the projections 41 are First formed, and in the examples shown in FIGS. 12 and 13, the protrusion 41 is formed later) GaN, AlN, AlNO, or AlGaN seed layer (not shown; seed layer) having a thickness of about 20 nm is CVD (MOCVD, ALD) , MBE) or PVD (Sputter, PLD) method. In particular, when the AlN seed layer is formed on the Si growth substrate 42 using the CVD method, TMAl gas, which is an aluminum (Al) source, is supplied alone without ammonia (NH 3 ) gas, which is a nitrogen (N) source. Free It is also desirable to introduce a seeding (Pre-seeding) process. In order to grow the first buffer layer 43 made of a group III nitride semiconductor on the Si growth substrate 42, since the minimum actual growth temperature is a high temperature of 800 ° C. or more, Si atoms are debonded from the surface of the Si growth substrate 42 (Atomic Debonding & Desorption), and in a high-temperature nitrogen atmosphere, fine amorphous material particles due to Si-N bonds are generated on the Si surface, making it difficult to obtain a high-quality group III nitride semiconductor thin film. In order to effectively suppress this, introducing an aluminum (Al) pre-seeding process on the surface of the Si growth substrate 42 from several seconds to several tens of seconds is advantageous for growing a group III nitride semiconductor thin film. After forming a seed layer (not shown) on the Si growth substrate 42, the first buffer layer 43 is a GaN single layer, an AlN single layer, or a multilayer thin film in a subsequent process using TMGa, TMAl and NH 3 as a source gas, hydrogen (H 2 ) is used as a carrier gas to grow GaN to Ga-rich AlGaN at a relatively high pressure (eg, 250 mbar) at an actual growth temperature of 800 to 1100 ° C., while growing at a relatively low pressure (eg, 50 mbar). ) from AlN to Al-rich AlGaN. In some cases, an AlGaN layer obtained by alloying GaN and AlN materials may be introduced as a part of the first buffer layer 43 . That is, the first buffer layer 43 may be formed of GaN, GaN/AlGaN, AlN, AlN/AlGaN, AlN/AlGaN/GaN, or GaN/AlGaN/AlN on the growth substrate 42.
제1 버퍼층(43)의 두께는 돌기(41)의 높이보다 높아야 하며, 성장 기판(42)과의 격자상수 차이로부터 발생되는 관통 전위를 일차적으로 차폐 감소시키기 위해서는 돌기(41)의 높이와 적어도 동등 또는 두껍게 성장 후, 측면(수평 방향)으로의 성장 속도를 수직 방향으로의 성장 속도보다 크게 하여 성장과 나란히 수직 방향으로 이동하는 관통 전위를 벤딩(Bending, 휘어지게)하게 만드는 것이 매우 중요하다. 돌기(41)의 높이까지 성장하는 조건은 측면으로의 성장 속도보다 수직 방향으로의 성장 속도를 크게하는 것이 바람직하다. 성장 기판(42)에 제1 버퍼층(43)이 성장된 웨이퍼 상태에서 휨(Bowing)이 발생할 수 있으며, 이는 성장 방지막(44)의 정확한 위치결정을 방해할 수 있다. 이러한 휨을 고려하는 하는 경우에, 제1 버퍼층(43)의 두께를 3㎛ 미만으로 제한할 수 있으며, 따라서 돌기(41)의 높이로 제1 버퍼층(43)의 두께 이하로 제한될 수 있다.The thickness of the first buffer layer 43 must be higher than the height of the protrusion 41, and is at least equal to the height of the protrusion 41 in order to primarily shield and reduce the threading dislocation generated from the difference in lattice constant with the growth substrate 42. Alternatively, after thick growth, it is very important to make the growth rate in the lateral direction (horizontal direction) higher than the growth rate in the vertical direction to bend threading dislocations moving in the vertical direction parallel to the growth. As for the conditions for growing up to the height of the protrusion 41, it is preferable to increase the growth rate in the vertical direction rather than the growth rate in the side. Bowing may occur in a wafer state in which the first buffer layer 43 is grown on the growth substrate 42 , which may interfere with accurate positioning of the growth prevention layer 44 . In the case of considering such warpage, the thickness of the first buffer layer 43 may be limited to less than 3 μm, and therefore, the height of the protrusion 41 may be limited to a thickness of the first buffer layer 43 or less.
성장 방지막(44)은 1nm~1㎛의 두께로 형성될 수 있으며, 제2 버퍼층(45)의 성장을 억제할 수 있다면, 그 두께가 특별히 제한되지 않는다. 성장 방지막(44)의 형상(Shape)과 위치(Position)는 종래 ELOG 내지 유사 3족 질화물 성장 공정(예; Pendeo Epitaxy)에서 SiO2 또는 SiNx와 같은 유전체를 사용한 스트립 마스크(Strip Mask) 형상으로 이들의 위치는 성장 방지막(44a)이 위치하는 돌기(41) 중심과 정렬된 영역과 성장 방지막(44b)이 위치하는 돌기(41) 간의 성장 기판(42)의 바닥면과 정렬된 영역이다. 예를 들어, 돌기(41)는 원형, 3각, 4각 또는 6각 등 다각형(Polygon)의 다양한 디멘젼(Dimension)의 고립(Isolation) 또는 섬(Island) 형상을 갖는다. 돌기(41)와 정렬된 성장 방지막(44a)의 너비와 폭은 돌기(41)의 형상과 디멘젼에 맞춰 우선적으로 결정하되, 최종적으로는 제1 버퍼층(43) 성장 시에 형성된 관통 전위의 위치와 분포를 고려하여 설정하는 것이 바람직하다.The growth prevention layer 44 may be formed to a thickness of 1 nm to 1 μm, and the thickness is not particularly limited as long as the growth of the second buffer layer 45 can be suppressed. The shape and position of the growth prevention film 44 is a strip mask shape using a dielectric material such as SiO 2 or SiN x in a conventional ELOG or similar group 3 nitride growth process (eg, Pendeo Epitaxy). These positions are a region aligned with the center of the protrusion 41 where the growth prevention layer 44a is located and a region aligned with the bottom surface of the growth substrate 42 between the protrusions 41 where the growth prevention layer 44b is located. For example, the protrusion 41 has an isolation or island shape of various dimensions of a polygon such as a circular shape, a triangular shape, a quadrangular shape, or a hexagonal shape. The width and width of the growth prevention film 44a aligned with the protrusion 41 are first determined according to the shape and dimension of the protrusion 41, but finally, the position of the threading dislocation formed during the growth of the first buffer layer 43 and It is desirable to set considering the distribution.
제2 버퍼층(45)은 제1 버퍼층(42)과 마찬가지로, GaN 단층, AlN 단층 또는 다층 박막으로 TMGa, TMAl와 NH3를 소스 가스로 수소(H2)를 캐리어 가스로 사용하여 실제 성장온도 800~1100℃ 구간에서 각각 상대적으로 높은 압력(250mbar)에서 GaN 내지 Ga-rich AlGaN로 성장하고, 반면에 상대적으로 낮은 압력(50mbar)에서 AlN 내지 Al-rich AlGaN으로 성장할 수 있다. 경우에 따라 GaN와 AlN 물질을 합금화시킨 AlGaN층을 제2 버퍼층(45)의 일부로 도입할 수 있다. 즉, 제2 버퍼층(45)은 제1 버퍼층(43)과 성장 방지막(44) 상부에 GaN, GaN/AlGaN, AlN, AlN/AlGaN, AlN/AlGaN/GaN, 또는 GaN/AlGaN/AlN 등으로 구성될 수 있다. 제2 버퍼층(45)의 두께는 기본적으로 성장 방지막(44)의 두께보다 두껍다. 일반적으로 제2 버퍼층(45)는 1-5㎛의 두께를 갖도록 성장할 수 있다. 성장 방지막(44)에 의해 성장 기판(420)에서 발생되는 관통 전위들은 이차적으로 차폐 소멸하고, 성장 방지막(44) 형성되지 않은 제1 버퍼층(43) 영역에서 관통 전위가 상당히 적은 3족 질화물 반도체가 재성장되어 ELOG 내지 이와 유사한 성장 공정을 통해 제2 버퍼층(45)을 형성한다. 본 개시의 목표인 관통 전위 밀도(TDD)가 107/㎠ 이하를 갖는 3족 질화물 반도체 적층체 내지 3족 질화물 반도체 소자를 제작할 수 있는 기반을 만들 수 있다.Like the first buffer layer 42, the second buffer layer 45 is a single layer of GaN, single layer of AlN, or a multilayer thin film using TMGa, TMAl, and NH 3 as a source gas and hydrogen (H 2 ) as a carrier gas at an actual growth temperature of 800°C. GaN to Ga-rich AlGaN can be grown at a relatively high pressure (250 mbar) in the range of ~1100 ° C, while AlN to Al-rich AlGaN can be grown at a relatively low pressure (50 mbar). In some cases, an AlGaN layer obtained by alloying GaN and AlN materials may be introduced as a part of the second buffer layer 45 . That is, the second buffer layer 45 is composed of GaN, GaN/AlGaN, AlN, AlN/AlGaN, AlN/AlGaN/GaN, or GaN/AlGaN/AlN on top of the first buffer layer 43 and the growth prevention film 44. It can be. The thickness of the second buffer layer 45 is basically thicker than the thickness of the growth prevention layer 44 . In general, the second buffer layer 45 may grow to have a thickness of 1-5 μm. Threading dislocations generated in the growth substrate 420 by the growth prevention layer 44 are secondarily shielded and extinguished, and a group III nitride semiconductor having a considerably small threading potential in the region of the first buffer layer 43 where the growth prevention layer 44 is not formed It is re-grown to form the second buffer layer 45 through ELOG or a similar growth process. A foundation for fabricating a group III nitride semiconductor laminate or group III nitride semiconductor device having a threading dislocation density (TDD) of 10 7 /cm 2 or less, which is the goal of the present disclosure, can be made.
도 10은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 일 예를 나타내는 도면으로서, 먼저 성장 기판(42)을 준비한 다음, 식각 마스크(60)를 형성하고, 성장 기판(42) 자체를 건식 식각 또는 습식 식각을 통해 돌기(41)를 형성한다. 일 예로, Si 성장 기판의 (100), (110), 또는 (111) 표면에 SiO2, SiNx 등으로 식각 마스크(60)를 형성한 다음, KOH 습식 용액과 건식 식각을 결합하면 다양한 형상 및 디멘젼으로 돌기(41)를 형성할 수 있다.10 is a diagram showing an example of a method of forming protrusions on a growth substrate according to the present disclosure. First, a growth substrate 42 is prepared, an etching mask 60 is formed, and the growth substrate 42 itself is dried. The protrusion 41 is formed through etching or wet etching. For example, when an etching mask 60 is formed of SiO 2 , SiN x , etc. on the (100), (110), or (111) surface of the Si growth substrate, and then combined with a KOH wet solution and dry etching, various shapes and The protrusion 41 may be formed in a dimension.
도 11은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 10에 제시된 방법에 추가하여, 돌기(41)가 구비된 성장 기판(42) 전면을 덮도록 씨드층 내지 씨앗층(70; Seed Layer, AlN, AlNO, Al2O3, 또는 Ga2O3)을 형성한다. 씨드층(70)은 PVD법으로 형성될 수 있으며, CVD법(예: MOCVD법)으로 성장되는 제1 버퍼층(43)의 성장을 도와주는 역할을 한다.FIG. 11 is a diagram showing another example of a method of forming protrusions on a growth substrate according to the present disclosure. In addition to the method shown in FIG. A layer to a seed layer (70; Seed Layer, AlN, AlNO, Al 2 O 3 , or Ga 2 O 3 ) is formed. The seed layer 70 may be formed by a PVD method and serves to help the growth of the first buffer layer 43 grown by a CVD method (eg, MOCVD method).
도 12는 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 11에 제시된 방법과 달리, 성장 기판(42)을 준비한 다음, 돌기 베이스층(71)을 형성한 다음, 그 위에 식각 마스크(60)를 형성한 후, 식각을 통해 돌기 베이스층(71)의 일부를 식각하여 돌기(41)를 형성한다. 따라서 돌기(41)는 성장 기판(42)을 구성하는 물질이 아니라 성장 기판(42)에 성막된 돌기 베이스층(71)을 구성하는 물질로 이루어진다. 이때 성장 기판(42)이 노출되지 않도록 식각함으로써, 제1 버퍼층(43)이 전체적으로 돌기 베이스층(71) 위에서 형성되므로, 양질의 막질을 구현할 수 있는 이점을 가진다. 돌기 베이스층(71)은 씨드층(70; 도 11 참조)과 그 위에 구비되는 3족 질화물 반도체층(예: AlGaN 및 GaN 등)으로 이루어질 수 있으며, 씨드층(70)은 전술한 바와 같이, PVD 또는 CVD 방법으로 200nm 이하의 두께를 갖는 AlN, AlNO, Al2O3, 또는 Ga2O3로 이루질 수 있고, 3족 질화물 반도체층은 CVD 방법으로 3㎛ 이하의 두께를 가지는 AlGaN 및 GaN 등으로 순차적이고 다층으로 이루어진 막으로 구성될 수 있으며, 스트레인 제어층(Strain Control Layer)으로 기능한다. 돌기(41) 형성을 위한 돌기 베이스층(71)의 식각은 씨드층(70)이 노출될 때까지 행해질 수 있다. 일 예로, 성장 기판(42) 상부에 씨드층(70)으로 CVD(MOCVD) 방법으로 150nm 두께의 AlN(경우에 따라 TMAl 가스로 프리씨딩 공정 도입 가능)를 성막하고, 이어서 3족 질화물 반도체층을 두 영역(제1, 제2)으로 구성된 다층으로 성막 구성할 수 있다. 제1 층은 500nm 두께의 AlxGa1-xN로 구성될 수 있으며, 알루미늄(Al) 조성(x)을 80%에서 20%까지 순차적으로 감소시키면서 성막하여 일차적으로 인장 응력(Tensile Stress)을 완화시키는 역할을 하게 한다. 제2 층은 2㎛ 두께의 GaN으로 구성될 수 있다. 이어서, SiO2 또는 SiNx와 같은 물질로 된 식각 마스크(60)를 형성한 후, 건식 식각을 통해 돌기(41)를 형성한다.FIG. 12 is a diagram showing another example of a method of forming protrusions on a growth substrate according to the present disclosure. Unlike the method shown in FIG. 11, a growth substrate 42 is prepared and then a protrusion base layer 71 is formed. Next, after forming an etching mask 60 thereon, a portion of the protrusion base layer 71 is etched to form the protrusion 41 . Accordingly, the protrusion 41 is made of a material constituting the protrusion base layer 71 formed on the growth substrate 42 , rather than a material constituting the growth substrate 42 . At this time, since the growth substrate 42 is etched so as not to be exposed, the first buffer layer 43 is entirely formed on the projection base layer 71, and thus has an advantage of realizing a high-quality film quality. The protrusion base layer 71 may be formed of a seed layer 70 (see FIG. 11) and a Group III nitride semiconductor layer (eg, AlGaN and GaN) provided thereon, and the seed layer 70, as described above, It may be made of AlN, AlNO, Al 2 O 3 , or Ga 2 O 3 having a thickness of 200 nm or less by PVD or CVD method, and the group III nitride semiconductor layer is AlGaN and GaN having a thickness of 3 μm or less by CVD method It can be composed of sequential and multi-layered films such as, etc., and functions as a strain control layer. Etching of the protrusion base layer 71 to form the protrusion 41 may be performed until the seed layer 70 is exposed. For example, a 150 nm thick AlN (a pre-seeding process using TMAl gas may be introduced in some cases) is formed as a seed layer 70 on the growth substrate 42 by a CVD (MOCVD) method, followed by a group III nitride semiconductor layer may be configured as a multi-layered film formed of two regions (first and second). The first layer may be composed of 500 nm thick Al x Ga 1-x N, and is formed while sequentially reducing the aluminum (Al) composition (x) from 80% to 20% to primarily reduce tensile stress. play a mitigating role. The second layer may be composed of GaN with a thickness of 2 μm. Next, after forming an etching mask 60 made of a material such as SiO 2 or SiN x , the protrusion 41 is formed through dry etching.
도 13은 본 개시에 따라 성장 기판에 돌기를 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 11 및 도 12에 제시된 방법과 달리, 씨드층(70; 도 11 참조)을 형성하되, 식각을 이용하지 않고, 리프트 오프법(Lift-off)을 통해 형성하는 방법이 제시되어 있다. 성장 기판(42)을 준비한 다음, 패터닝된 포토레지스트 막(80; PR)를 형성하고, PVD법을 통해 돌기 베이스층(71; 예: 2㎛ 이하의 두께를 가지는 AlN층, AlNO층, Al2O3층 또는 Ga2O3층, 71a로 표시)의 일부를 형성하고, 포토레지스트 막(80)을 제거하면, 포토레지스트 막(80) 위에 형성된 돌기 베이스층(71a)도 함께 제거되어, 남겨진 돌기 베이스층(71a)이 돌기(41)의 형태로 성장 기판(42)에 남겨지며, 여기에 재차 PVD법을 통해 씨드층(70; 도 11 참조)으로 기능하는 돌기 베이스층(71; 예: 1㎛ 이하의 두께를 가지는 AlN층, AlNO층, Al2O3층 또는 Ga2O3층, 71b로 표시)을 형성하여, 돌기 베이스층(71b)이 성장 기판(42) 전체를 덮도록 하여, 제1 버퍼층(43)의 성장을 돕는다. 돌기 베이스층(71)을 구성하는 층(71a,71b)의 두께는 성장 기판(42)의 스트레스로 인한 웨이퍼 휨을 최소화하도록 설계 고려하여 설정하는 것이 바람직하다. 일 예로, 포토레지스트 막(80) 위에 성막되는 돌기 베이스층(71a)의 두께는 500nm일 수 있으며, 돌기 베이스층(71a)의 두께는 20nm일 수 있다.13 is a diagram showing another example of a method of forming protrusions on a growth substrate according to the present disclosure. Unlike the methods shown in FIGS. 11 and 12, a seed layer 70 (see FIG. 11) is formed, but etching is not performed. A method of forming through a lift-off method without using it has been proposed. After preparing the growth substrate 42, a patterned photoresist film 80 (PR) is formed, and a protrusion base layer 71 through a PVD method (eg: an AlN layer, an AlNO layer, Al 2 having a thickness of 2 μm or less) When a part of the O 3 layer or the Ga 2 O 3 layer (indicated by 71a) is formed and the photoresist film 80 is removed, the protrusion base layer 71a formed on the photoresist film 80 is also removed, leaving the remaining The projection base layer 71a is left on the growth substrate 42 in the form of projections 41, and the projection base layer 71 functions as a seed layer 70 (see FIG. 11) through the PVD method again; Example: An AlN layer, an AlNO layer, an Al 2 O 3 layer, or a Ga 2 O 3 layer, indicated as 71 b) having a thickness of 1 μm or less, so that the protrusion base layer 71 b covers the entire growth substrate 42, , helps the growth of the first buffer layer 43. It is preferable to set the thickness of the layers 71a and 71b constituting the protrusion base layer 71 in consideration of design to minimize wafer warpage due to stress of the growth substrate 42 . For example, the thickness of the projection base layer 71a formed on the photoresist layer 80 may be 500 nm, and the thickness of the projection base layer 71a may be 20 nm.
도 14는 도 12에 제시된 돌기를 형성하는 방법의 구체 예를 나타내는 도면으로서, 성장 기판(42)에 씨드층(70; 예: 200nm 이하 두께의 AlN), 제1 층(71c; 예: 500nm 두께의 AlxGa1-xN) 및 제2 층(71d; 예: 2㎛ 두께의 GaN)으로 된 돌기 베이스층(71)을 순차로 성막한 다음, 돌기 베이스층(71)으로 이루어진 돌기(41)를 형성하는 공정이 제시되어 있다. 여기서 돌기(41)는 제2 층(71d)만으로 이루어지거나(Case I), 제1층(71c)-제2 층(71d)으로 이루어지거나(Case II), 씨드층(70)-제1층(71c)-제2 층(71d)으로 이루어질 수 있다(Case III).FIG. 14 is a diagram showing a specific example of the method of forming the protrusions shown in FIG. 12, wherein a seed layer 70 (eg: AlN having a thickness of 200 nm or less), a first layer 71c (eg: 500 nm thick) is formed on a growth substrate 42 Al x Ga 1-x N) and a second layer (71d; for example: 2 μm thick GaN) are sequentially formed, and then the protrusion 41 made of the protrusion base layer 71 ) is presented. Here, the protrusion 41 consists of only the second layer 71d (Case I), the first layer 71c - the second layer 71d (Case II), or the seed layer 70 - the first layer. (71c) - may be formed of a second layer (71d) (Case III).
도 15 내지 도 17은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 설명하는 도면으로서, 도 15에는 성장 기판(42)과, 그 위에 성장된 제1 버퍼층(43)이 도시되어 있다. 성장 기판(42)에는 돌기(41; 도 8 참조)가 형성되어 있지 않으며, 관통 전위(55)는 성장 기판(41)의 바다면(42a) 전체에 걸쳐서 제1 버퍼층(43)을 관통하는 형태로 형성되어 있다. 도 16에는 돌기(41)가 형성된 성장 기판(42)과 그 위에 성장된 제1 버퍼층(43)이 도시되어 있다. 돌기(41)가 형성되지 않은 성장 기판(42)의 바닥면(42a) 영역(A)에는 도 15에서와 마찬가지로 관통 전위(55)가 제1 버퍼층(43)을 관통하는 형태로 형성되어 있으며, 돌기(41)의 상부 내지 상면(41a) 영역(B)에도 관통 전위(54)가 제1 버퍼층(43)을 관통하는 형태로 형성되어 있다. 관통 전위(54)는 상부 내지 상면(41a)으로부터 직접 발생하거나 바닥면(42a)으로부터 성장되는 제1 버퍼층(43)이 돌기(41)의 상부 내지 상면(41a) 즉, 영역(B)에서 합체(Coalescence)되면서 발생할 수 있고, 돌기(42)의 상부 내지 상면(41a)을 뾰족한 형태로 형성함으로써, 상부 내지 상면(41a)으로부터 직접 발생하는 관통 전위(54)를 최소화할 수 있다. 영역(A)과 영역(B) 사이의 영역(C)에는 휘어진 관통 전위(56)가 형성되어 있으며, 관통 전위(56)는 성장 기판(42)의 바닥면(42a)으로부터 성장되는 제1 버퍼층(43)이 돌기(42)와 돌기(42) 사이의 공간(오목부)을 메우는 과정에서 휘어지는 형태로 형성되며, 성장 조건을 적절히 조절하면 대부분이 제1 버퍼층(43)의 상부로 이어지지 않게 되어, 그 위에 형성되는 제2 버퍼층(45; 도 8 참조)에서는 결정 결함으로 고려되지 않게 된다. 한편, 관통 전위가 돌기(41)의 측면(즉, 바닥면(42a)과 상부 내지 상면(41a) 사이의 돌기(41) 영역)에서 발생할 수 있는데, 이는 도 5 내지 도 7에 도시된 바와 같이, 돌기(41)의 측면이 결정면(예를 들어, 사파이어로 된 성장 기판(41)의 경우에, 바닥면(42a)으로 주로 c면을 사용한다.)이 되지 않도록 함으로써 최소화할 수 있다. 즉, 돌기(41)의 측면이 횡단면이 원형이고, 종단면이 직선 또는 위로 볼록한 곡선이 되게 하거나, 돌기(41)의 측면에 러프닝(roughning)을 주는 등의 방식으로 돌기(41)의 측면에서의 제1 버퍼층(43)의 성장을 방해할 수 있다. 따라서, 돌기(41)가 구비된 성장 기판(42)에 제1 버퍼층(43)을 성장시킬 때, 영역(C)을 영역(A) 및 영역(B)에 비해 결정 결함이 적은 영역으로 성장시킬 수 있음을 알 수 있다. 따라서, 도 17에 제시된 예에서는 영역(A)과 영역(B)에 성장 방지막(44)이 구비된 것을 특징으로 하며, 성장 기판(42)을 구성하는 물질은 Si, SiC에 더하여, 사파이어(Al2O3)로 확장될 수 있고, 나아가 HCP 결정 구조를 가지는 Sapphire, AlN, AlGaN, GaN 등으로 확장될 수 있으며, 성장이 이루어지는 면, 즉 바닥면(42a)으로 C면이 사용될 수 있다. 영역(A; 도 16 참조) 위에 위치하는 성장 방지막(44)이 관통 전위(55)를 차단하고, 영역(B; 도 16 참조) 위에 위치하는 성장 방지막(44)이 관통 전위(54)를 차단하며, 영역(C; 도 16 참조)에서 발생한 관통 전위(56)는 휘어져서 대부분 제1 버퍼층(43)을 관통하지 못하므로, 제1 버퍼층(43)의 상면에서 관통 전위는 최소화되고, 따라서 성장 방지막(44)을 통해 노출된 제1 버퍼층(43), 즉 영영(C)에서 해당하는 제1 버퍼층(43)으로부터 성장되는 제2 버퍼층(45)에서의 관통 전위(57,58)는 107/㎠ 이하의 TDD(Theading Dislocation Density)를 갖도록 최소화될 수 있다. 관통 전위(57)는 노출된 제1 버퍼층(43)으로부터 발생하는 관통 전위이며, 노출된 제1 버퍼층(43)이 이미 결정 결함이 최소화된 막질을 가지고, 이로부터 성장되므로 결정 결함의 수가 대폭 감소된다. 관통 전위(58)는 노출된 제1 버퍼층(43)으로부터 성장된 제2 버퍼층(45)이 성장 방지막(44) 위에서 합체(coalescence)되면서 형성되는 결정 결함이며, 성장 방지막(44)에 의해 차단되는 관통 전위(55)에 비해 대폭 감소된 수를 가진다. 돌기(42)는 폭과 높이가 1㎛ 이상인 마이크로 스케일(예: 폭-2.5㎛, 높이-1.6㎛, 돌기간 간격-0.4㎛)을 가질 수 있고, 폭과 높이가 1㎛ 미만인 나노 스케일(예: 폭-500nm 높이-500nm, 돌기간 간격-50nm)을 가질 수도 있다. 돌기(42)의 배치는 스트라이프 형상 또는 도트(dot) 형상일 수 있으며, 도트 형상일 경우에 하나의 돌기(41)를 중심으로 6개의 돌기(41)가 6각형의 꼭지점을 위치하는 배치를 가질 수 있고(돌기(42)의 열(an array of dots)의 관점에서 보면, 이웃한 열에 속하는 돌기(42)가 서로 정렬되지 않고, 지그재그 형태로 배치), 제1 버퍼층(43)이 성장될 수 있는 것을 전제로 성장이 이루어지는 바닥면(42a)이 최소화되는 것이 바람직하다.15 to 17 are diagrams for explaining another example of a method of forming a growth prevention film according to the present disclosure, and FIG. 15 shows a growth substrate 42 and a first buffer layer 43 grown thereon. . No protrusions 41 (see FIG. 8) are formed on the growth substrate 42, and threading dislocations 55 penetrate the first buffer layer 43 over the entire sea surface 42a of the growth substrate 41. is formed with 16 shows a growth substrate 42 on which protrusions 41 are formed and a first buffer layer 43 grown thereon. In the area A of the bottom surface 42a of the growth substrate 42 where the protrusion 41 is not formed, threading dislocations 55 are formed to penetrate the first buffer layer 43, as shown in FIG. 15. Threading dislocations 54 are also formed in the region B of the top or upper surface 41a of the protrusion 41 to penetrate the first buffer layer 43 . The threading dislocation 54 is directly generated from the top to top surface 41a, or the first buffer layer 43 grown from the bottom surface 42a is coalesced at the top to top surface 41a of the protrusion 41, that is, region B. Coalescence may occur, and threading dislocations 54 directly generated from the upper or upper surface 41a of the protrusion 42 may be minimized by forming the upper or upper surface 41a of the protrusion 42 in a pointed shape. A bent threading dislocation 56 is formed in the region C between regions A and B, and the threading dislocation 56 is a first buffer layer grown from the bottom surface 42a of the growth substrate 42. (43) is formed in a curved shape in the process of filling the space (concave part) between the protrusions 42 and the protrusions 42, and if the growth conditions are properly adjusted, most of them do not lead to the top of the first buffer layer 43. , is not considered as a crystal defect in the second buffer layer 45 (see FIG. 8) formed thereon. Meanwhile, a threading dislocation may occur on the side surface of the protrusion 41 (that is, in the area of the protrusion 41 between the bottom surface 42a and the top or top surface 41a), which is shown in FIGS. 5 to 7 . , can be minimized by preventing the side surface of the protrusion 41 from being a crystal plane (eg, in the case of the growth substrate 41 made of sapphire, the c-plane is mainly used as the bottom surface 42a). That is, from the side of the projection 41 in such a way that the side surface of the projection 41 has a circular cross section, the longitudinal section is a straight line or upwardly convex curve, or the side surface of the projection 41 is roughened. The growth of the first buffer layer 43 can be hindered. Therefore, when the first buffer layer 43 is grown on the growth substrate 42 provided with the protrusions 41, the area C is grown as an area with fewer crystal defects than the areas A and B. know that it can. Therefore, the example shown in FIG. 17 is characterized in that the growth prevention film 44 is provided in the region A and the region B, and the material constituting the growth substrate 42 is sapphire (Al) in addition to Si and SiC. 2 O 3 ), and can be further expanded to Sapphire, AlN, AlGaN, GaN, etc. having an HCP crystal structure, and the C plane can be used as the surface on which growth is made, that is, the bottom surface 42a. The growth preventing film 44 positioned on region A (see FIG. 16) blocks the threading dislocation 55, and the growth preventing film 44 positioned on the region B (see FIG. 16) blocks the threading dislocation 54. Since most of the threading dislocations 56 generated in the region C (see FIG. 16) are bent and do not penetrate the first buffer layer 43, the threading dislocations on the upper surface of the first buffer layer 43 are minimized and thus grow. Threading dislocations 57 and 58 in the first buffer layer 43 exposed through the prevention film 44, that is, the second buffer layer 45 grown from the corresponding first buffer layer 43 in the region C, are 10 7 It can be minimized to have a Theading Dislocation Density (TDD) of / cm 2 or less. The threading dislocation 57 is a threading dislocation generated from the exposed first buffer layer 43, and since the exposed first buffer layer 43 already has a film quality in which crystal defects are minimized and is grown therefrom, the number of crystal defects is greatly reduced. do. The threading dislocation 58 is a crystal defect formed when the second buffer layer 45 grown from the exposed first buffer layer 43 coalesces on the anti-growth film 44, and is blocked by the anti-growth film 44. It has a significantly reduced number compared to threading dislocations 55. The protrusion 42 may have a micro-scale (eg, width-2.5 μm, height-1.6 μm, spacing between protrusions-0.4 μm) having a width and height of 1 μm or more, and a nano-scale (eg, width and height of less than 1 μm). : width-500nm, height-500nm, spacing between protrusions-50nm). The arrangement of the protrusions 42 may be in a stripe shape or a dot shape, and in the case of the dot shape, six protrusions 41 centered on one protrusion 41 may have a disposition in which the vertexes of a hexagon are located. (Viewed from the point of view of an array of dots of the projections 42, the projections 42 belonging to adjacent rows are not aligned with each other and are arranged in a zigzag form), and the first buffer layer 43 can be grown. It is preferable that the bottom surface 42a on which growth is made is minimized on the premise that there is.
성장 방지막(44)은 전술한 바와 같이 SiO2 또는 SiNx와 같은 유전체(두께: 1~1000nm)로 형성하여, 성장 방지막(44) 위에서 제2 버퍼층(45)을 억제하거나, 제2 버퍼층(45)의 성장이 가능한 물질로 구성하되, 제1 버퍼층(43)의 상부를 구성하는 물질(예: GaN)보다는 제2 버퍼층(45)의 성장 속도가 느린 물질(예: AlN, AlNO, AlO)로 구성함(이는 PVD(Sputter, ALD, PLD) 장치로 소정의 두께(예: 1~100nm)로 AlN, AlNO, 또는 AlO를 증착한 후, 패터닝함으로써 형성)으로써, 성장 방지막(44) 위에서 제2 버퍼층(45)의 성장을 지연시키는 형태로 구성할 수 있다. 제2 버퍼층(45)의 성장 속도가 느린 물질(예: AlN, AlNO, AlO)로 된 성장 방지막(44)을 이용하는 경우에, 유전체로 된 성장 방지막(44)을 이용할 때와 마찬가지로, 노출된 제1 버퍼층(44)으로부터 성장되는 제2 버퍼층(45)이 성장 방지막(44) 위로 전개되지만, 성장 방지막(44)에서도 제2 버퍼층(45)의 성장이 이루어지므로(성장 방지막(44)이 제2 버퍼층(45)의 씨드층(Seed Layer)으로 기능), 유전체(SiO2, SiNx) 성장 방지막(44) 위에서 제2 버퍼층(45)이 합체(coalescence)하는 과정에서 생성된 관통 전위의 생성 메커니즘과는 다른 거동을 나타낸다.As described above, the growth prevention film 44 is formed of a dielectric (thickness: 1 to 1000 nm) such as SiO 2 or SiN x to suppress the second buffer layer 45 on the growth prevention film 44, or the second buffer layer 45 ), but made of a material (eg, AlN, AlNO, AlO) whose growth rate of the second buffer layer 45 is slower than that of the material (eg, GaN) constituting the upper portion of the first buffer layer 43 (eg, AlN, AlNO, AlO). (This is formed by depositing AlN, AlNO, or AlO with a PVD (Sputter, ALD, PLD) device to a predetermined thickness (eg, 1 to 100 nm) and then patterning), so that the second layer on the growth prevention film 44 The growth of the buffer layer 45 may be delayed. In the case of using the growth prevention film 44 made of a material having a slow growth rate of the second buffer layer 45 (eg, AlN, AlNO, AlO), as in the case of using the growth prevention film 44 made of a dielectric material, the exposed second buffer layer 45 1 The second buffer layer 45 grown from the buffer layer 44 is spread over the growth prevention film 44, but the growth of the second buffer layer 45 is also made on the growth prevention film 44 (the growth prevention film 44 is the second buffer layer 45). Functioning as a seed layer of the buffer layer 45) and the dielectric (SiO2, SiNx) growth prevention film 44, the generation mechanism of the threading potential generated in the process of coalescence of the second buffer layer 45 is different. exhibit different behavior.
도 18은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 앞선 예들과 달리, 성장 방지막(44)이 제1 버퍼층(43) 자체에 의해 형성되어 있다. 성장 방지막(44)은 성장 기판(42)에 형성된 돌기(41)와 같은 개념으로 돌기(44c)의 형태로 형성되며, 포토리소그라피 공정 및 식각 공정(플라즈마)을 통해 형성될 수 있다. 제2 버퍼층(45)에서 결정 결함이 감소되는 원리는 앞선 예들과 동일하다. 관통 전위(57)는 돌기(44c)가 형성되지 않은 제1 버퍼층(43) 위에서 제2 버퍼층(45)에 존재하는 관통 전위로서, 이 영역(영역(C; 도 16 참조)에서 제1 버퍼층(43)의 관통 전위(54)는 휘어져서 대부분 제1 버퍼층(43)의 위쪽까지 도달하지 못하므로 이 영역에서 제2 버퍼층(45)은 막질이 좋은 제1 버퍼층(43)으로부터 성장되어 감소된 관통 전위(57)를 가진다. 관통 전위(58)는 돌기(41)에 대응하는 위치에 위치하는 돌기(44c)의 상부 내지 상면(44d)에서 발생하는 관통 전위이며, 관통 전위(59)는 바닥면(42a)에 대응하는 위치에 위치하는 돌기(44c)의 상부 내지 상면(44d)에서 발생하는 관통 전위이며, 제1 버퍼층(43)에 존재하는 관통 전위(55)가 돌기(44c)까지 이어져 있지만, 돌기(44c)의 상부 내지 상면(44d)은 폭이 좁은 평면이거나, 뾰족하여 관통 전위(55)가 제2 버퍼층(45)에서도 존재하기는 어렵다. 관통 전위(58,59)는 일부는 관통 전위(54)와 관통 전위(55)에 의해 발생하고, 일부는 돌기(44c)가 형성되지 않은 제1 버퍼층(43) 위에서 성장되는 제2 버퍼층(45)이 돌기(44c)의 상부 내지 상면(44d)에서 합체(Coalescence)되면서 발생한다. 도 17에 제시된 예와 비교할 때, HCP 결정 구조를 가지는 GaN 또는 AlGaN 단결정(Epitaxy) 위에 상대적으로 쉬운 공정(포토리소그라피 및 식각(플라즈마))으로 돌기(44c)를 형성하고, 동일한 물질(GaN 또는 AlGaN)로 제2 버퍼층을 성장하는 호모에피택시(Homo-epitaxy) 성막 공정이기에 관통 전위 및 그 이외의 결정 결점을 최소화할 수 있는 이점을 가진다. 돌기(44c)는 성장 기판(42)에 구비되는 돌기(44a)와 동일, 유사한 디멘젼을 가질 수 있으며, 폭과 높이가 1㎛ 이상인 마이크로 스케일보다는 폭과 높이가 1㎛ 미만인 나노 스케일(예: 폭-500nm 높이-500nm, 돌기간 간격-50nm)을 가지는 것이 바람직하다.18 is a diagram showing another example of a method of forming a growth prevention film according to the present disclosure. Unlike the previous examples, the growth prevention film 44 is formed by the first buffer layer 43 itself. The growth prevention layer 44 is formed in the form of a protrusion 44c with the same concept as the protrusion 41 formed on the growth substrate 42, and may be formed through a photolithography process and an etching process (plasma). The principle of reducing crystal defects in the second buffer layer 45 is the same as in the previous examples. The threading dislocation 57 is a threading dislocation existing in the second buffer layer 45 above the first buffer layer 43 where the protrusion 44c is not formed, and in this region (region C; see FIG. 16), the first buffer layer ( Since the threading dislocation 54 of 43) is bent and most of it does not reach the top of the first buffer layer 43, the second buffer layer 45 is grown from the first buffer layer 43 having a good film quality in this region to reduce penetration. It has a dislocation 57. The threading dislocation 58 is a threading dislocation generated on the top or upper surface 44d of the protrusion 44c located at a position corresponding to the protrusion 41, and the threading dislocation 59 is the bottom surface. This is a threading dislocation generated on the top or upper surface 44d of the protrusion 44c located at a position corresponding to (42a), and the threading dislocation 55 existing in the first buffer layer 43 extends to the protrusion 44c. , Since the top or upper surface 44d of the protrusion 44c is a narrow plane or sharp, it is difficult for threading dislocations 55 to exist even in the second buffer layer 45. Threading dislocations 58 and 59 are partially threaded The second buffer layer 45, which is generated by the dislocation 54 and the threading dislocation 55 and is partially grown on the first buffer layer 43 on which the protrusion 44c is not formed, is formed on the top or upper surface of the protrusion 44c ( Compared to the example shown in Fig. 17, the protrusion 44c is a relatively easy process (photolithography and etching (plasma)) on a GaN or AlGaN single crystal (Epitaxy) having an HCP crystal structure. ), and since it is a homo-epitaxy film formation process in which the second buffer layer is grown with the same material (GaN or AlGaN), threading dislocation and other crystal defects can be minimized. ) may have the same or similar dimensions as the protrusion 44a provided on the growth substrate 42, and may have a nanoscale width and height of less than 1 μm (eg, width-500 nm height) rather than a micro scale width and height of 1 μm or more. -500 nm, spacing between protrusions -50 nm) is preferred.
도 19는 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 18에 제시된 예와 달리, 성장 방지막(44)을 형성하는 돌기(44c)가 성장 기판(42)의 바닥면(42a)에 대응하는 위치, 즉 영역(A)에 대응하는 위치에서 제1 버퍼층(43)에 형성되어 있다. 영역(A)에 존재하는 관통 전위(55)는 돌기(44c)로 이어져 있지만 돌기(44c)의 상부 내지 상면(44d)은 폭이 좁거나 뾰족하므로, 소멸되거나 제2 버퍼층(45)으로 일부만이 이어져서 관통 전위(59)를 형성한다. 영역(B)에 존재하는 관통 전위(54) 중 일부는 제2 버퍼층(45)으로 이어져서 관통 전위(58a)를 형성하거나 제2 버퍼층(45)이 돌기(44c) 사이의 공간을 메우는 과정에서 휘어진 형태의 관통 전위(58b)가 되어 제2 버퍼층(45) 내에서 소멸한다. 영역(C)에는 관통 전위가 많지 않으므로, 영역(C)으로부터 성장하는 제2 버퍼층(45)에도 결정 결함이 발생의 최소화된다.FIG. 19 is a view showing another example of a method of forming a growth prevention film according to the present disclosure. Unlike the example shown in FIG. It is formed on the first buffer layer 43 at a position corresponding to the surface 42a, that is, a position corresponding to the region A. The threading dislocation 55 existing in the region A is connected to the protrusion 44c, but since the top or upper surface 44d of the protrusion 44c is narrow or sharp, it is eliminated or only partially covered by the second buffer layer 45. This leads to the formation of threading dislocations 59. Some of the threading dislocations 54 present in the region B are connected to the second buffer layer 45 to form threading dislocations 58a or the second buffer layer 45 fills the space between the protrusions 44c. It becomes a bent threading dislocation 58b and disappears in the second buffer layer 45 . Since there are not many threading dislocations in the region C, occurrence of crystal defects in the second buffer layer 45 growing from the region C is also minimized.
도 20은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 18에 제시된 예와 달리, 성장 방지막(44)을 형성하는 돌기(44c)가 돌기(41)의 상부 내지 상면(41a)에 대응하는 위치, 즉 영역(B)에 대응하는 위치에서 제1 버퍼층(43)에 형성되어 있다. 영역(A)에 존재하는 관통 전위(55) 중 일부는 제2 버퍼층(45)으로 이어져서 관통 전위(59b)로 존재하지만, 일부는 제2 버퍼층(45)이 돌기(44c) 사이의 공간을 메우는 과정에서 휘어진 형태의 관통 전위(59b)가 되어 제2 버퍼층(45) 내에서 소멸한다. 영역(B)에 존재하는 관통 전위(54)는 돌기(44c)로 이어져 있지만 돌기(44c)의 상부 내지 상면(44d)은 폭이 좁거나 뾰족하므로, 소멸되거나 제2 버퍼층(45)으로 일부만이 이어져서 관통 전위(58a)를 형성한다. 영역(C)에는 관통 전위가 많지 않으므로, 영역(C)으로부터 성장하는 제2 버퍼층(45)에도 결정 결함의 발생이 최소화된다.FIG. 20 is a view showing another example of a method of forming a growth preventing film according to the present disclosure. Unlike the example shown in FIG. It is formed on the first buffer layer 43 at a position corresponding to the upper surface 41a, that is, a position corresponding to the region B. Some of the threading dislocations 55 existing in the region A lead to the second buffer layer 45 and exist as threading dislocations 59b, but some of the threading dislocations 55 in the second buffer layer 45 cover the space between the protrusions 44c. During the filling process, the threading dislocation 59b is bent and disappears in the second buffer layer 45 . The threading dislocation 54 existing in the region B is connected to the protrusion 44c, but since the top or upper surface 44d of the protrusion 44c is narrow or sharp, it is eliminated or only partially covered by the second buffer layer 45. This leads to the formation of threading dislocations 58a. Since there are not many threading dislocations in region C, generation of crystal defects is minimized even in the second buffer layer 45 growing from region C.
도 21 내지 도 23은 본 개시에 따라 성장 방지막을 형성하는 방법의 또 다른 예를 나타내는 도면으로서, 도 21에는 도 18에 제시된 구성에 더하여, 돌기(44c)가 형성된 제1 버퍼층(43) 위에 AlN, AlNO, 또는 AlO로 된 물질층(45a)이 되어 형성되어 있다. 물질층(45a)은 도 17에 제시된 성장 방지막(44)과 동일한 물질로서 같은 방식(PVD(Sputter, ALD, PLD) 장치로 증착)으로 1~100nm의 두께로 형성될 수 있다. 도 22에는 물질층(45a)이 영역(A)에만 형성되어 있으며, 도 23에는 물질층(45a)이 적어도 돌기(44c)의 일부를 덮도록 형성되어 있다. 도 21 내지 도 23에 제시된 물질층(45a)은 도 19에 제시된 구성 및 도 20에 제시된 구성에도 마찬가지로 적용될 수 있다. 물질층(45a)을 도입함으로써, 성장 기판(42)에서 발생되어 제1 버퍼층(43) 표면에 노출된 관통 전위를 차단 감소시키는 한편, 두 영역(A, B; 도 16 참조)에서 성장되는 제2 버퍼층(45)은 AlN, AlNO, 또는 AlO로 된 물질층(45a)과의 격자 상수 차가 적어 관통 전위 생성을 억제하여 전반적으로 관통 전위 수를 최소화할 수 있게 된다. 도 17에 제시된 예에 물질층(45a)을 도입할 수 있음은 물론이다. 물질층(45a)은 성장 방지막(44) 및 돌기(44c)의 형성 공정에서 노출되는 제1 버퍼층(43)에 발생할 수 있는 손상을 회복하는 기능도 할 수 있다.21 to 23 are diagrams showing another example of a method of forming a growth prevention film according to the present disclosure, and in FIG. 21, in addition to the configuration shown in FIG. 18, AlN on the first buffer layer 43 on which protrusions 44c are formed. , AlNO , or AlO material layer 45a is formed. The material layer 45a is the same material as the growth prevention film 44 shown in FIG. 17 and may be formed to a thickness of 1 to 100 nm by the same method (deposited using a PVD (Sputter, ALD, PLD) device). In FIG. 22, the material layer 45a is formed only in the region A, and in FIG. 23, the material layer 45a is formed to cover at least a part of the protrusion 44c. The material layer 45a shown in FIGS. 21 to 23 may be similarly applied to the structure shown in FIG. 19 and the structure shown in FIG. 20 . By introducing the material layer 45a, the threading potential generated in the growth substrate 42 and exposed to the surface of the first buffer layer 43 is blocked and reduced, while the first grown in the two regions A and B; see FIG. 16 . The lattice constant of the second buffer layer 45 with the material layer 45a made of AlN, AlNO, or AlO is small, so that the number of threading dislocations can be minimized overall by suppressing generation of threading dislocations. Of course, the material layer 45a may be introduced in the example shown in FIG. 17 . The material layer 45a may also perform a function of restoring damage that may occur to the first buffer layer 43 exposed in the process of forming the growth prevention layer 44 and the protrusion 44c.
도 17 내지 도 23에 제시된 예를 모두 고려할 때, 성장 방지막(44)은 제2 버퍼층(45)의 성장을 방지하거나 느리게 한다는 점에서 성장 억제막(44)이라 칭할 수 있다.Considering all the examples shown in FIGS. 17 to 23 , the growth prevention layer 44 may be referred to as a growth inhibition layer 44 in that it prevents or slows down the growth of the second buffer layer 45 .
도 24 및 도 25는 본 개시에 따른 3족 질화물 반도체 적층체 내지 소자의 또 다른 예를 나타내는 도면으로서, 도 14에 제시된 형태의 돌기(41)와 도 21에 제시된 물질층(45a)이 결합된 형태의 예가 제시되어 있다. 도 14에 제시된 예의 관점에서, 성장 기판(42; 예: 사파이어 기판)에 성장 기판(42)을 구성하는 물질(Al2O3)로 된 돌기(41; 도 16 내지 도 23 참조)를 형성한 것이 아니라, 성막을 통해 돌기 베이층(71)을 형성한 다음, 이를 패터닝하여 돌기(41)를 형성한 다음, 그 위에 도 21에 제시된 물질층(45a)을 형성한 것이며, 이때 성장 방지막 내지 성장 억제층(44)은 생략될 수 있으며, 이때 돌기 베이스층(71)이 제1 버퍼층(43)에 대응하게 된다. 도 21에 제시된 예의 관점에서, 성장 기판(42)에 구비되는 돌기(41)를 생략하고, 제1 버퍼층(43)을 형성한 다음, 제1 버퍼층(43)에 성장 억제층(44)으로서 돌기(44c)를 형성하고, 그 위에 물질층(45a)을 형성한 것이다. 그 위에 제2 버퍼층(45)과 비발광 3족 질화물 반도체 적층체 내지 소자(A)를 적층한다. 도 22 및 도 23에 도시된 것과 같은 형태로 물질층(45a)이 부분적으로 형성될 수 있음은 물론이며, 도 23에 제시된 것과 같은 형태로 물질층(45a)을 형성하는 경우에, 물질층(45a)을 제2 버퍼층(45)의 성장 속도를 늦추는 AlN, AlNO, AlO와 같은 Al 함유 물질이 아니라, 돌기(41) 상에서 제2 버퍼층(45)의 성장을 방지하는 물질인 SiO2, SiNx와 같은 유전체 물질로 구성할 수 있음은 물론이다. 이러한 구조를 이용함으로써, 도 21 내지 도 23과 관련하여 설명한 바와 같이, 관통 전위를 줄일 수 있는 한편, 도 25에 도시된 바와 같이, 비발광 3족 질화물 반도체 적층체 내지 소자(A) 측에 지지 기판(S)을 구비한 다음, LLO(Laser Lift-Off)와 같은 공정을 통해 성장 기판(42)을 제거할 때, 성장 기판(42)과 동일한 물질로 된 돌기(41)를 구비한 경우에 비해 쉽게 성장 기판(42)을 비발광 3족 질화물 반도체 적층체 내지 소자(A) 측으로부터 분리할 수 있는 이점을 가진다. 3족 질화물 반도체를 이용한 수직 방향의 전류 흐름을 갖는 비발광 소자를 제작할 때, 사파이어 성장 기판(42)에 단파장 고밀도 레이저 빔(Shorter Wavelength & Higher Optical Flux Laser Beam)을 조사하여 광학적, 열적 및 기계적 손상(Damage)없이 분리 제거하는 공정(LLO 공정)과 후속하는 웨이퍼 본딩 공정을 통해 수직 방향의 전류 흐름을 갖는 비발광 소자(예; 트랜지스터 또는 다이오드) 성능(특히, Breakdown Voltage)과 신뢰성을 개선하는 것이 요구되는데, 사파이어 성장 기판(42)에 성장 기판(42)을 구성하는 물질(Al2O3)로 된 돌기(41)를 갖는 경우에 비발광 3족 질화물 반도체 적층체(A)를 성막한 후에 LLO 공정에서 단파장 고밀도 레이저 빔을 사파이어 성장 기판(42) 후면(Backplane)에 조사 분리할 때, 돌기(41)가 형성된 경계면에서 레이저 빔의 산란이 다량으로 발생하게 되어 사파이어 성장 기판(42)으로부터 비발광 3족 질화물 반도체 적층체(A)를 분리하는데 광 에너지 부족으로 어려움이 발생함과 동시에, 산란된 레이저 빔이 비발광 3족 질화물 반도체 적층체(A)까지 도달하게 되어 예기치않은 영향(Side Effect)을 미치게 된다. 따라서 사파이어 성장 기판(42)으로부터 비발광 3족 질화물 반도체 적층체(A)를 분리한 다음, 수직방향의 전류 흐름을 갖는 고품위 3족 질화물 반도체 비발광 소자를 제작하기 위해서는 돌기(41)를 제1 버퍼층(43) 상부에 형성하여 관통 전위(Threading Dislocation) 포함 결정 결함을 억제함과 동시에 후속하는 소자 제작 공정에서 손상을 최소화할 수 있게 된다. 돌기 베이스층(71) 내지 제1 버퍼층(43)은 앞선 예들에서와 마찬가지의 조성과 성장 조건으로 형성될 수 있으며, 씨드층을 형성한 다음, 관통 전위 포함 결정 결함(Crystalline Defect) 억제와 스트레스 스트레인을 조절하기 위한 물질층(GaN, AlN, AlGaN, SiNx) 또는 이들로 이루어진 다층 구조(Superlattice)가 도입될 수도 있다.24 and 25 are views showing another example of a group III nitride semiconductor laminate or device according to the present disclosure, in which the protrusion 41 of the form shown in FIG. 14 and the material layer 45a shown in FIG. 21 are combined. An example of the form is given. In view of the example shown in FIG. 14, projections 41 (see FIGS. 16 to 23) made of a material (Al 2 O 3 ) constituting the growth substrate 42 are formed on the growth substrate 42 (eg, a sapphire substrate). Rather, the protrusion bay layer 71 is formed through film formation, then the protrusion 41 is formed by patterning, and then the material layer 45a shown in FIG. 21 is formed thereon. At this time, the growth prevention film or growth The suppression layer 44 may be omitted, and in this case, the protrusion base layer 71 corresponds to the first buffer layer 43 . In view of the example shown in FIG. 21 , the protrusions 41 provided on the growth substrate 42 are omitted, the first buffer layer 43 is formed, and then the protrusions are formed on the first buffer layer 43 as the growth inhibition layer 44. 44c is formed, and a material layer 45a is formed thereon. A second buffer layer 45 and a non-emission Group III nitride semiconductor stack or element A are stacked thereon. Of course, the material layer 45a may be partially formed in the form shown in FIGS. 22 and 23, and when the material layer 45a is formed in the form shown in FIG. 23, the material layer ( 45a) is not an Al-containing material such as AlN, AlNO, or AlO that slows down the growth of the second buffer layer 45, but a material that prevents the growth of the second buffer layer 45 on the protrusion 41, SiO 2 , SiN x Of course, it can be composed of a dielectric material such as. By using this structure, as described with reference to FIGS. 21 to 23, threading dislocation can be reduced, while as shown in FIG. 25, it is supported on the side of the non-emitting group III nitride semiconductor laminate or element A. After the substrate S is provided, when the growth substrate 42 is removed through a process such as LLO (Laser Lift-Off), in the case of having protrusions 41 made of the same material as the growth substrate 42 It has the advantage of being able to easily separate the growth substrate 42 from the non-emission Group III nitride semiconductor laminate or device A side. When fabricating a non-light emitting device having a vertical current flow using a group III nitride semiconductor, a short wavelength high-density laser beam (Shorter Wavelength & Higher Optical Flux Laser Beam) is irradiated to the sapphire growth substrate 42 to cause optical, thermal, and mechanical damage. Improving the performance (especially breakdown voltage) and reliability of non-light emitting devices (e.g., transistors or diodes) having a vertical current flow through a process of separation and removal without damage (LLO process) and subsequent wafer bonding process It is required, in the case where the sapphire growth substrate 42 has protrusions 41 made of the material (Al 2 O 3 ) constituting the growth substrate 42, after forming the non-luminescent group III nitride semiconductor laminate (A) into a film In the LLO process, when irradiating and separating a short-wavelength high-density laser beam to the backplane of the sapphire growth substrate 42, a large amount of scattering of the laser beam occurs at the interface where the protrusion 41 is formed, so that the sapphire growth substrate 42 does not Difficulties arise due to lack of light energy in separating the light-emitting group III nitride semiconductor laminate (A), and at the same time, the scattered laser beam reaches the non-emitting group III nitride semiconductor laminate (A), resulting in unexpected effects (Side Effect ) goes crazy. Therefore, in order to manufacture a high-quality group III nitride semiconductor non-light emitting device having a vertical current flow after separating the non-emission group III nitride semiconductor laminate A from the sapphire growth substrate 42, the protrusion 41 is first formed. By forming on the buffer layer 43, it is possible to suppress crystal defects including threading dislocation and at the same time minimize damage in a subsequent device manufacturing process. The protrusion base layer 71 to the first buffer layer 43 may be formed with the same composition and growth conditions as in the previous examples, and after forming the seed layer, suppression of crystal defect including threading dislocation and stress strain A material layer (GaN, AlN, AlGaN, SiNx) or a multi-layer structure (Superlattice) made of these may be introduced to control the .
도 28 내지 도 37은 본 개시에 따라 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 3족 질화물 반도체 적층체 내지 소자로서 도 26 및 도 27에 제시된 것과 같은 수직 구조의 접합형 전계효과 트랜지스터(Vertical Junction Field Effect Transistor)가 예시된다.28 to 37 are diagrams showing another example of a method of manufacturing a group III nitride semiconductor laminate or device according to the present disclosure, as shown in FIGS. 26 and 27 as a group III nitride semiconductor laminate or device. A junction type field effect transistor of the structure is exemplified.
먼저, 도 28에 도시된 바와 같이, 성장 기판(81) 위에 버퍼층(82)을 형성한다. 버퍼층(82)의 형성에는 도 8 내지 도 25에 걸쳐서 설명된 방식이 적용될 수 있음은 물론이다. 도 26 및 도 27에 제시된 소자와 비교할 때, GaN 성장 기판이 아니라, 이종 기판(예: Si 기판, Al2O3 기판)이 사용된다는 점에서 차이를 가진다. 버퍼층(82)은 low 107/㎠ 이하의 TDD를 가지는 un-doped GaN(uGaN)으로 이루어지는 것이 바람직하다. 버퍼층(82)의 두께는 결정 결함(관통 전위, Vacancy, Interstitial, Substitutional)을 최소화하는데 목적이 있기 때문에 이를 달성하는데 필요한 두께라면 제한을 두지 않는다. 도 8 내지 도 25에 걸쳐서 설명된 방식과 두께를 우선적으로 적용한다.First, as shown in FIG. 28 , a buffer layer 82 is formed on the growth substrate 81 . Of course, the method described above in FIGS. 8 to 25 may be applied to the formation of the buffer layer 82 . Compared with the devices shown in FIGS. 26 and 27 , it is different in that a heterogeneous substrate (eg, a Si substrate or an Al 2 O 3 substrate) is used instead of a GaN growth substrate. The buffer layer 82 is preferably made of undoped GaN (uGaN) having a TDD of low 10 7 /cm 2 or less. Since the purpose of the thickness of the buffer layer 82 is to minimize crystal defects (threading dislocation, vacancy, interstitial, and substitutional), there is no limitation as long as it is necessary to achieve this. The method and thickness described over FIGS. 8 to 25 are preferentially applied.
다음으로, 도 29에 도시된 바와 같이, 드레인 영역(83)과 드리프트 영역(84)을 형성한다. 드레인 영역(83)은 드레인 전극과 접촉하는 영역으로서, 예를 들어 low 1018/㎤ 이상의 ND(유효 전자 캐리어 밀도)를 가지는 n+ GaN으로 이루어질 수 있으며, n+ (Al)GaN, n++ (Al)GaN, Superlattice(AlGaN/GaN, AlInN/GaN, GaInN/GaN) 등으로도 이루어질 수 있다. 드레인 영역(83)의 두께는 오믹접촉 전극을 형성하는데 필요한 두께와 도핑 농도가 중요하며, 예를 들어, 1nm ~ 100nm의 두께가 적용될 수 있다.Next, as shown in FIG. 29, a drain region 83 and a drift region 84 are formed. The drain region 83 is a region in contact with the drain electrode and may be formed of, for example, n + GaN having an N D (effective electron carrier density) of low 10 18 /cm 3 or higher, n + (Al)GaN, n + + ( Al)GaN, superlattice (AlGaN/GaN, AlInN/GaN, GaInN/GaN), etc. The thickness of the drain region 83 is important in terms of the thickness and doping concentration necessary for forming an ohmic contact electrode, and for example, a thickness of 1 nm to 100 nm may be applied.
드리프트 영역(84)은 드레인 영역(83)의 ND보다 낮은 유효 전자 캐리어 밀도를 가지는 것이 일반적이며, 그 두께가 두꺼워짐에 따라 높아질 수 있고, 예를 들어 low 1016/㎤ 이하의 ND, 바람직하게는 2x1014/㎤ ~ 2x016/㎤ 범위의 ND를 가지는 n- GaN으로 이루어질 수 있다. 두께는 3㎛ ~ 20㎛ 범위를 가질 수 있으며, 두껍게 형성할수록 감소되는 결정 결함과 함께 결정성 개선과 외부에서 인가된 전기적 스트레스(Electric Stress)를 분산 완화하여 소자가 파괴되는 임계 전압, 즉 항복 전압(Breakdown/Blocking Voltage)을 획기적으로 개선할 수 있는 것으로 알려져 있다.The drift region 84 generally has an effective electron carrier density lower than N D of the drain region 83, and may increase as its thickness increases, for example, N D of low 10 16 /cm 3 or less, Preferably, it may be made of n - GaN having N D in the range of 2x10 14 /cm 3 to 2x0 16 /cm 3 . The thickness may range from 3㎛ to 20㎛, and the threshold voltage at which the device is destroyed by improving crystallinity and dispersing and mitigating electrical stress applied from the outside, along with crystal defects that are reduced as the thickness is formed, that is, the breakdown voltage (Breakdown/Blocking Voltage) is known to be dramatically improved.
다음으로, 도 30에 도시된 바와 같이, 드리프트 영역(84) 위에 식각 마스크(91; 예: PR, 금속 및/또는 산화물(예: SiO2 등))를 형성하고, 식각(예: 건식 식각 및/또는 습식 식각)을 통해 드리프트 영역(84)의 일부를 제거하여 채널(85)을 형성한다. 남은 식각 마스크(91)는 제거한다. 전하(전기적 질량)를 갖는 전자 캐리어의 움직임 통로인 채널(85)의 높이는 100nm ~ 1000nm 범위이고 바람직하게는 500nm 전후이며, 단면 폭은 10nm 이하가 통상적이다. 바람직한 형상은 직사각형인데 정사각형 및 원형도 가능하다.Next, as shown in FIG. 30, an etching mask 91 (eg, PR, metal, and/or oxide (eg, SiO 2 )) is formed on the drift region 84, and etching (eg, dry etching and A channel 85 is formed by removing a portion of the drift region 84 through wet etching. The remaining etching mask 91 is removed. The height of the channel 85, which is a movement path of electron carriers having charge (electrical mass), is in the range of 100 nm to 1000 nm, preferably around 500 nm, and the cross-sectional width is usually 10 nm or less. A preferred shape is a rectangle, but square and circular shapes are also possible.
다음으로, 도 31에 도시된 바와 같이, 게이트 영역(86)을 재성장(Regrowth)을 통해 형성한다. 그리고 소스 전극의 형성을 위해 채널(85) 상측의 게이트 영역(86)을 제거하여 채널(85)을 형성하는 드리프트 영역(84)이 노출되도록 한다. 게이트 영역(86)은 예를 들어, p GaN으로 이루어질 수 있으며, p+ (Al,In)GaN, p++ (Al,In)GaN 등으로도 이루어질 수 있다. 게이트 영역(86)과 드리프트 영역(84)의 도전성이 바뀔 수 있으나, 이종 기판을 이용하는 경우에 일반적이지는 않다. 여기서, n-는 ND ≤ 2x016/㎤, n,p는 2x016/㎤ ≤ ND,NA ≤ 2x018/㎤, n+,p+는 2x018/㎤ ≤ ND,NA ≤ 2x019/㎤, n++,p++는 2x019/㎤ ≤ ND,NA로 정의한다. 통상적으로 박막 단차를 완화하는 평탄화 작업은 액상의 포토레지스터(PR) 물질을 코팅 & 큐어링(Coating & Curing) 다음에 건식(Dry Etch) 공정을 통해 코팅된 PR 물질과 함께 돌기된 게이트 영역(86) 부분을 순차적으로 식각하여 채널(85)의 드리프트 영역(84)이 노출될 때까지 실행한다. Next, as shown in FIG. 31 , the gate region 86 is formed through regrowth. In order to form the source electrode, the gate region 86 on the upper side of the channel 85 is removed so that the drift region 84 forming the channel 85 is exposed. The gate region 86 may be formed of, for example, p GaN, p + (Al, In) GaN, p ++ (Al, In) GaN, or the like. The conductivity of the gate region 86 and the drift region 84 may be changed, but this is not common in the case of using a different substrate. Here, n - is N D ≤ 2x0 16 /cm 3, n,p is 2x0 16 /cm ≤ N D ,N A ≤ 2x0 18 /cm 3, n + ,p + is 2x0 18 /cm ≤ N D ,N A ≤ 2x0 19 /cm3, n ++ ,p ++ is defined as 2x0 19 /cm3 ≤ N D ,N A. In general, the flattening operation to alleviate the step difference in the thin film involves coating and curing a liquid photoresist (PR) material, followed by a dry etch process, and the protruded gate area (86) with the coated PR material. ) parts are sequentially etched until the drift region 84 of the channel 85 is exposed.
다음으로, 도 32에 도시된 바와 같이, 소스 전극(87)과 게이트 전극(88)을 형성한다. 소스 전극(87)은 드레인 영역(84)과 오믹 접촉하도록 형성되며, 게이트 전극(88)은 게이트 영역(86)과 오믹 또는 쇼키 접촉하도록 형성된다. 소스 전극(87)은 Cr, Ti, Al, V, W, Re, TiN, CrN, Ni, Pt, Au 물질 중에서 적어도 두 층 이상으로 형성될 있으며, 예를 들어, Cr/W/Pt/Au 또는 Ti/Cr/W/Pt/Au와 같이 4층 또는 5층으로 구성될 수 있다. 게이트 전극(88)은 Pd, Ni, Pt, Ru, Rh, Cr, Ti, TiN, NiO, RuO2, Au 물질 중에서 적어도 두 층 이상으로 형성될 수 있으며, 예를 들어, Pd/Ni/Pt/Au 또는 Cr/Ni/Pt/W/Au와 같이 4층 또는 5층으로 구성한다.Next, as shown in FIG. 32, a source electrode 87 and a gate electrode 88 are formed. The source electrode 87 is formed to make ohmic contact with the drain region 84 , and the gate electrode 88 is formed to make ohmic or Schorky contact with the gate region 86 . The source electrode 87 may be formed of at least two layers of Cr, Ti, Al, V, W, Re, TiN, CrN, Ni, Pt, and Au materials, for example, Cr/W/Pt/Au or It may be composed of 4 or 5 layers such as Ti/Cr/W/Pt/Au. The gate electrode 88 may be formed of at least two layers of Pd, Ni, Pt, Ru, Rh, Cr, Ti, TiN, NiO, RuO 2 , and Au materials, for example, Pd/Ni/Pt/ It consists of 4 or 5 layers such as Au or Cr/Ni/Pt/W/Au.
다음으로, 도 33에 도시된 바와 같이, 소스 전극(87) 및 게이트 전극(88)이 위치하는 소자의 상면 전체를 덮도록 보호막으로 기능하는 패시베이션 층(89)을 형성한 다음, 임시 기판(92)을 접합층(93)을 이용하여 부착한다. 바람직하게는 임시 기판(92)과 접합층(93) 사이에는 이후 임시 기판(92)을 분리하기 위한 희생층(94)이 구비된다. 접합층(93)은 양측 또는 일측에 구비될 수 있다. 임시 기판(92)은 성장 기판(81)과 동일한 물질을 이용하는 것이 바람직하며, 예를 들어 성장 기판(81)이 사파이어 기판인 경우에 임시 기판(92) 또한 사파이어로 이루어질 수 있다. 이러한 기술의 상세는 국제 공개특허공보 WO2020/175971호 및 WO2021/112648호에 제시되어 있다.Next, as shown in FIG. 33, a passivation layer 89 serving as a protective film is formed to cover the entire upper surface of the device where the source electrode 87 and the gate electrode 88 are located, and then the temporary substrate 92 ) is attached using the bonding layer 93. Preferably, a sacrificial layer 94 for separating the temporary substrate 92 is provided between the temporary substrate 92 and the bonding layer 93 thereafter. The bonding layer 93 may be provided on both sides or one side. It is preferable to use the same material as the growth substrate 81 for the temporary substrate 92. For example, when the growth substrate 81 is a sapphire substrate, the temporary substrate 92 may also be made of sapphire. Details of this technique are presented in International Publication Nos. WO2020/175971 and WO2021/112648.
다음으로, 도 34에 도시된 바와 같이, 성장 기판(81)을 제거(예: LLO 공정 후, 성장 기판(81)의 제거 과정에 발생한 잔류물(Residue)과 함께 버퍼층(82)을 제거(예: 건식 식각 및/또는 습식 식각)하여, 드레인 영역(83)을 노출시킨다. Next, as shown in FIG. 34, the growth substrate 81 is removed (e.g., after the LLO process, the buffer layer 82 is removed along with residues generated during the removal process of the growth substrate 81 (e.g., : dry etching and/or wet etching) to expose the drain region 83 .
다음으로, 도 35에 도시된 바와 같이, 성장 기판(81)과 버퍼층(82)이 제거되어 노출된 드레인 영역(83)에 오믹 접촉하도록 드레인 전극(95)을 형성한다. 노출된 드레인 영역(83)에는 버퍼층(82)을 제거하는 과정에서 표면 텍스쳐(Surface Texture)가 형성되도록 하여 드레인 전극(95)과의 접합 면적을 넓힐 수 있으며, 활성 가스 플라즈마 처리(Plasma Treatment)를 하는 것도 가능하다. 드레인 전극(95)은 노출된 드레인 영역(83) 전체에 걸쳐 형성된다. 드레인 전극(95) 물질은 소스 전극(87)과 같거나 유사하게 형성될 수 있으며, Cr, Ti, Al, V, W, Re, TiN, CrN, Ni, Pt, Au 물질 중에서 적어도 두 층 이상으로 형성될 수 있고, 예를 들어, Cr/W/Pt/Au 또는 Ti/Cr/W/Pt/Au와 같이 4층 또는 5층으로 구성될 수 있다.Next, as shown in FIG. 35 , the drain electrode 95 is formed to make ohmic contact with the drain region 83 exposed by removing the growth substrate 81 and the buffer layer 82 . In the process of removing the buffer layer 82, a surface texture may be formed in the exposed drain region 83 to increase a junction area with the drain electrode 95, and active gas plasma treatment may be performed. It is also possible to do The drain electrode 95 is formed over the entire exposed drain region 83 . The material of the drain electrode 95 may be formed the same as or similar to that of the source electrode 87, and may be made of at least two layers of Cr, Ti, Al, V, W, Re, TiN, CrN, Ni, Pt, and Au materials. It may be formed, for example, it may be composed of 4 or 5 layers, such as Cr/W/Pt/Au or Ti/Cr/W/Pt/Au.
다음으로, 도 36에 도시된 바와 같이, 접합층(96)을 통해 지지 기판(97)을 드레인 전극(95)에 부착한다. 접합층(96)은 양측 또는 일측에 구비될 수 있다. 지지 기판(97)은 세라믹 물질(예: Sapphire, AlN, Si), MC(Cu/Mo/Cu, u/MoCu/Cu), CIC(Cu/Invar/Cu) 등의 Composite 등으로 이루어질 수 있고, 임시 기판(92)과 열팽창 계수의 차이가 ±5ppm 미만인 물질이 바람직하며, 예를 들어, 임시 기판(92)이 사파이어 기판인 경우에 사파이어로 이루어질 수 있다. 그러나, 지지 기판(97)이 절연성 물질인 경우에, 수직 구조의 JFET을 구현할 수 없으므로, 지지 기판(97)에 열적 및 전기적 통로를 마련하는 것이 필요하며, 이에 대해서는 후술한다. 웨이퍼 본딩법을 이용하여 지지 기판(97)을 형성하는 것 이외에, 고속 PVD 증착기를 이용한 고방열 전기전도성 금속성 물질(예:Cu, MoCu)을 후막으로 성막하거나 도금을 이용하는 것이 가능하다. 다음으로, 희생층(94)에 레이저를 조사하여 임시 기판(92)을 분리하고, 접합층(93)을 제거하여, 패시베이션 층(89)을 노출시킨다.Next, as shown in FIG. 36 , the support substrate 97 is attached to the drain electrode 95 via the bonding layer 96 . The bonding layer 96 may be provided on both sides or one side. The support substrate 97 may be made of a composite such as a ceramic material (eg, Sapphire, AlN, Si), MC (Cu/Mo/Cu, u/MoCu/Cu), or CIC (Cu/Invar/Cu). A material having a difference in coefficient of thermal expansion between the temporary substrate 92 and the thermal expansion coefficient of less than ±5 ppm is preferable. For example, when the temporary substrate 92 is a sapphire substrate, it may be made of sapphire. However, when the support substrate 97 is made of an insulating material, since a JFET having a vertical structure cannot be implemented, it is necessary to provide thermal and electrical passages in the support substrate 97, which will be described later. In addition to forming the support substrate 97 using a wafer bonding method, it is possible to form a thick film of a highly heat dissipating electrically conductive metallic material (eg, Cu, MoCu) using a high-speed PVD deposition machine or use plating. Next, laser is irradiated on the sacrificial layer 94 to separate the temporary substrate 92, and the bonding layer 93 is removed to expose the passivation layer 89.
다음으로, 도 37에 도시된 바와 같이, 패시베이션 층(89)에 개구(98)를 형성하고, 본딩용 소스 전극(99S)과 본딩용 게이트 전극(99G)을 증착을 통해 형성한다. 필요에 따라, 지지 기판(97)에 본딩용 드레인 전극(99D)을 증착을 통해 형성한다. 지지 기판(97)에 본딩용 전극(99D)을 형성하는 과정에 앞서, 지지 기판(97)의 두께를 연마 등의 방법을 통해 감소시키는 공정이 추가될 수 있으며, 이러한 공정들을 통해 본 개시에 따른 비발광 3족 질화물 적층제 내지 소자의 일 예로서 수직 구조의 JFET가 완성될 수 있다.Next, as shown in FIG. 37, an opening 98 is formed in the passivation layer 89, and a source electrode 99S and a gate electrode 99G for bonding are formed through deposition. If necessary, a drain electrode 99D for bonding is formed on the support substrate 97 through deposition. Prior to the process of forming the bonding electrode 99D on the support substrate 97, a process of reducing the thickness of the support substrate 97 through a method such as polishing may be added, and through these processes, according to the present disclosure As an example of a non-emissive group III nitride laminate or device, a vertical structure JFET can be completed.
도 38 내지 도 40은 도 37에 제시된 적층체에 사용되는 지지 기판의 일 예를 설명하는 도면으로서, 도 38에 도시된 바와 같이, 지지 기판(97; 예: 사파이어, AlN, Si 기판)은 그 상면에 다수의 트렌치 내지 비아(97T)를 구비하며, 트렌치 내지 비아(97T)는 도전성 물질(97C)로 메워져 있다. 도전성 물질(97C)은 지지 기판(97)이 절연성 물질로 이루어지는 경우에 열적 및 전기적 통로로 역할하며, 도전성 물질로 이루어지는 경우에도 더 향상된 열적 및/또는 전기적 통로로 역할할 수 있다. 접합층 내지 지지 기판 상부층(96)은 별도로 형성되거나, 도전성 물질(97C)을 형성하는 과정의 일부로서 형성될 수 있다. 트렌치 내지 비아(97T)를 형성하고, 이를 도전성 물질(97C)로 메우는 다양한 방법(도금, 와이어 본딩, 압입, 인서트 등)이 국제 특허공개공보 WO2020/262957호 및 WO2018/106070호에 제시되어 있다. 도 39는 도 37에서 제시된 것과 같이 지지 기판(97)이 연마되어 후면을 통해 도전성 물질(97C)이 노출된 상태를 보여준다. 이를 통해 도전성 물질(97C)이 지지 기판(97)에서 열적 및 전기적 통로로 역할 수 있게 된다. 도 40은 도 37에서 제시된 것과 같이 노출된 도전성 물질(97C)에 본딩용 드레인 전극(99D)을 형성한 상태를 보여준다.38 to 40 are diagrams for explaining an example of a support substrate used in the laminate shown in FIG. 37, and as shown in FIG. 38, the support substrate 97 (eg, sapphire, AlN, Si substrate) is A plurality of trenches or vias 97T are provided on the upper surface, and the trenches or vias 97T are filled with a conductive material 97C. The conductive material 97C serves as a thermal and electrical passage when the support substrate 97 is made of an insulating material, and may serve as a more improved thermal and/or electrical passage even when the support substrate 97 is made of a conductive material. The bonding layer or the upper layer 96 of the supporting substrate may be formed separately or may be formed as part of a process of forming the conductive material 97C. Various methods (plating, wire bonding, press fit, insert, etc.) of forming the trench or via 97T and filling it with the conductive material 97C are proposed in International Patent Publication Nos. WO2020/262957 and WO2018/106070. FIG. 39 shows a state in which the conductive material 97C is exposed through the rear surface by polishing the support substrate 97 as shown in FIG. 37 . Through this, the conductive material 97C can serve as a thermal and electrical passage in the support substrate 97 . FIG. 40 shows a state in which a drain electrode 99D for bonding is formed on the exposed conductive material 97C as shown in FIG. 37 .
도 42 내지 도 46은 도 41에 제시된 비발광 3족 질화물 반도체 적층체 내지 소자를 제조하는 방법의 일 예를 나타내는 도면으로서, 먼저, 도 42에 도시된 바와 같이, 성장 기판(42; 예: 사파이어 기판, Si 기판)에, 씨앗층(423; 예: AlN), 버퍼층(435), 채널층(46; 예: 2㎛ 두게의 GaN) 및 배리어층(49; 예: 20nm 이내의 AlGaN)을 순차로 형성한다. 도 8에 도시된 바와 같이, 인터레이어(48)와 캡층(50)이 구비될 수 있음은 물론이며, 도 41에 도시된 바와 같이, 3족 질화물층(26; 예: 20nm 이내의 p형 GaN)이 구비될 수 있음도 물론이다. 여기서, HEMT가 예시되었지만, 비발광 3족 질화물 소자로 확장될 수 있음은 물론이다. 바람직하게는, 도 8 내지 도 25에 걸쳐서 설명된 방식을 적용하여 버퍼층(435)을 형성할 수 있다. 다음으로, 버퍼층(435)이 노출되도록 배리어층(49)과 채널층(46)을 메사 식각(MESA Etching)하고, 이어서 배리어층(49) 상면에 소스 전극(51)과 드레인 전극(53)을 형성한다. 여기서, 소스 전극(51)과 드레인 전극(53)은 공기에 노출된 버퍼층(435) 또는 채널층(46) 상면에 직접 형성하는 것도 가능하다(미도시).42 to 46 are diagrams illustrating an example of a method of manufacturing the non-emission group III nitride semiconductor laminate or device shown in FIG. 41. First, as shown in FIG. 42, a growth substrate 42 (eg: sapphire) substrate, Si substrate), a seed layer 423 (eg: AlN), a buffer layer 435, a channel layer 46 (eg: GaN with a thickness of 2 μm) and a barrier layer 49 (eg: AlGaN within 20 nm) are sequentially formed. form with As shown in FIG. 8, of course, an interlayer 48 and a cap layer 50 may be provided, and as shown in FIG. 41, a group III nitride layer 26 (eg: p-type GaN within 20 nm) ) can be provided as well. Here, HEMT is exemplified, but it goes without saying that it can be extended to a non-emissive group III nitride device. Preferably, the buffer layer 435 may be formed by applying the method described above with reference to FIGS. 8 to 25 . Next, the barrier layer 49 and the channel layer 46 are mesa-etched to expose the buffer layer 435, and then the source electrode 51 and the drain electrode 53 are formed on the upper surface of the barrier layer 49. form Here, the source electrode 51 and the drain electrode 53 may be directly formed on the upper surface of the buffer layer 435 or the channel layer 46 exposed to air (not shown).
다음으로, 도 43에 도시된 바와 같이, 게이트 전극(52)을 형성하고, 소자의 상면 전체를 덮도록 보호막으로 기능하는 절연층 내지 패시베이션 층(61)을 형성한다. 필요에 따라, 패시베이션 층(61)에 필요한 개구를 형성하여 필드 플레이트(51F)를 형성하는 공정 등을 행한다. 도 42에서, 소스 전극(51)에 필드 플레이트(51F)가 형성되어 있지만, 도 41에 도시된 바와 같이, 게이트 전극(52)에도 필드 플레이트(26)가 구비될 수 있으며, 드레인 전극(53)에도 구비될 수 있음은 물론이다. 전극(51,52,53)을 형성하는 순서가 변경될 수 있음은 물론이다.Next, as shown in FIG. 43, a gate electrode 52 is formed, and an insulating layer or passivation layer 61 serving as a protective film is formed to cover the entire upper surface of the device. If necessary, a step of forming a field plate 51F by forming necessary openings in the passivation layer 61 is performed. In FIG. 42, the field plate 51F is formed on the source electrode 51, but as shown in FIG. 41, the field plate 26 may also be provided on the gate electrode 52, and the drain electrode 53 Of course, it can also be provided. It goes without saying that the order of forming the electrodes 51, 52, and 53 can be changed.
다음으로, 도 44에 도시된 바와 같이, 도 33에서 설명된 것과 유사하게, 희생층(94)을 구비하는 임시 기판(92)을 접착층(93)을 통해 3족 질화물 반도체 적층체에 부착한다. 이때, 패시페이션 층(61)이 도 33의 패시베이션 층(89)과 동일하게 기능한다. 접착층(93)로 SOG, BCB, FOx와 같은 유기 접착제(Adhesive)가 사용될 ㅅ 있으며, 임시 기판(92)을 비발광 3족 질화물 소자용 적층체에 접합한 후, 250℃ 이상의 고온에서 후속 공정이 필요할 경우에 접착층(93)으로 금속(Sn, In, Zn, Au, Ag, Cu, Pd, Ni)을 포함한 물질이 바람직한데, 이러한 경우에는 게이트 전극(52) 및/또는 필드 플레이트(51F) 형성 공정을 지지 기판(97,97a)을 접합한 다음에 실행한다.Next, as shown in FIG. 44 , similar to that described in FIG. 33 , a temporary substrate 92 having a sacrificial layer 94 is attached to the group III nitride semiconductor laminate through an adhesive layer 93 . At this time, the passivation layer 61 functions the same as the passivation layer 89 of FIG. 33 . Organic adhesives such as SOG, BCB, and FO x may be used as the adhesive layer 93, and after bonding the temporary substrate 92 to the laminate for non-emitting group III nitride devices, a subsequent process at a high temperature of 250 ° C. or higher When this is required, a material including metal (Sn, In, Zn, Au, Ag, Cu, Pd, Ni) is preferable for the adhesive layer 93. In this case, the gate electrode 52 and/or the field plate 51F The formation process is performed after bonding the support substrates 97 and 97a.
다음으로, 도 45에 도시된 바와 같이, 도 34에 도시된 것과 마찬가지로, 성장 기판(42)을 제거(예: 사파이어 기판의 경우는 LLO 공정, Si 기판의 경우는 CLO 공정)하고, 성장 기판(42)의 제거 과정에 발생한 잔류물과 함께 버퍼층(435)의 일부를 제거(예: 건식 식각 및/또는 습식 식각)하여 버퍼층(435; 예: undoped GaN(unGaN))을 노출시킨다. 바람직하게는, N극성 uGaN 일부 표면이 노출될 때까지 건식 식각하고, 접착력 강화를 위해 표면 텍스쳐링(Surface Texturing)을 통해 거친 표면 또는 표면 텍스쳐(435a)를 형성한다. 활성 가스 플라즈마 처리(Plasma Treatment)를 하는 것도 가능하다. 이어서, 절연파괴 방지와 고방열능을 강화하기 위해, 전기절연성 세라믹층과 금속층으로 구성된 다층 박막(62)을 형성한다. 다층 박막(62)은 버퍼층(435)에 최소 (세라믹/금속)을 1쌍(pair) 구성하되, 반복적으로 n쌍(pair) 진행하여 스트레스를 완충하는 기능을 할 수 있다. 전기절연성 세라믹층은 예를 들어, AlN, BN, Diamond, SiNx, SiO2로 이루어질 수 있으며, 금속층은 원자충진율과 열전도율이 우수한 Pt, W, Ru, Rh, Mo, Cu, Cr, TiW, MoW, CuW 등으로 이루어질 수 있다. 구체적으로, N극성 GaN(버퍼층)/AlN/Pt, N극성 GaN(버퍼층)/AlN/TiW, N극성 GaN(버퍼층)/SiNx/Pt 등으로 이루어질 수 있다. 이어서, 다층 박막(62)에, 도 36에서와 마찬가지로, 접합층(96)을 통해 지지 기판(97,97a)을 부착한다. 접합층(96)은 양측 또는 일측에 구비될 수 있다. 지지 기판(97,97a)은 세라믹 물질(예: Sapphire, AlN, Si), MC(Cu/Mo/Cu, Cu/MoCu/Cu), Cu/MoCu/Cu, CIC(Cu/Invar/Cu) 등의 Composite 등으로 이루어질 수 있고, 임시 기판(92)과 열팽창 계수의 차이가 ±5ppm 미만인 물질이 바람직하며, 예를 들어, 임시 기판(92)이 사파이어 기판인 경우에 사파이어로 이루어질 수 있다. 웨이퍼 본딩법을 이용하여 지지 기판(97)을 형성하는 것 이외에, 고속 PVD 증착기를 이용한 고방열 전기전도성 금속성 물질(예:Cu, MoCu)을 후막으로 성막하거나 도금을 이용하여 지지 기판(97a)을 형성하는 것도 가능하다.Next, as shown in FIG. 45, as shown in FIG. 34, the growth substrate 42 is removed (eg, a LLO process in the case of a sapphire substrate, a CLO process in the case of a Si substrate), and the growth substrate ( A portion of the buffer layer 435 is removed (eg, dry etching and/or wet etching) along with residues generated in the removal process of 42) to expose the buffer layer 435 (eg, undoped GaN (unGaN)). Preferably, dry etching is performed until a part of the surface of N-polar uGaN is exposed, and a rough surface or surface texture 435a is formed through surface texturing to enhance adhesion. It is also possible to perform an active gas plasma treatment. Then, in order to prevent dielectric breakdown and enhance high heat dissipation, a multilayer thin film 62 composed of an electrically insulating ceramic layer and a metal layer is formed. The multi-layered thin film 62 configures at least one pair (ceramic/metal) in the buffer layer 435, but can function to buffer stress by repeatedly progressing n pairs. The electrical insulating ceramic layer may be made of, for example, AlN, BN, Diamond, SiN x , SiO 2 , and the metal layer may be Pt, W, Ru, Rh, Mo, Cu, Cr, TiW, or MoW having excellent atomic filling rate and thermal conductivity. , CuW, and the like. Specifically, it may be made of N-polar GaN (buffer layer)/AlN/Pt, N-polar GaN (buffer layer)/AlN/TiW, N-polar GaN (buffer layer)/SiNx/Pt, or the like. Subsequently, support substrates 97 and 97a are attached to the multilayer thin film 62 via a bonding layer 96, as in FIG. 36 . The bonding layer 96 may be provided on both sides or one side. The supporting substrates 97 and 97a are ceramic materials (eg, Sapphire, AlN, Si), MC (Cu/Mo/Cu, Cu/MoCu/Cu), Cu/MoCu/Cu, CIC (Cu/Invar/Cu), etc. It may be made of a composite, etc., and a material having a thermal expansion coefficient difference of less than ±5 ppm from the temporary substrate 92 is preferable. For example, when the temporary substrate 92 is a sapphire substrate, it may be made of sapphire. In addition to forming the support substrate 97 using a wafer bonding method, a high heat dissipation electrically conductive metallic material (eg, Cu, MoCu) is formed as a thick film using a high-speed PVD deposition machine or a support substrate 97a is formed using plating. It is also possible to form
다음으로, 도 46에 도시된 바와 같이, 도 36에 도시된 것과 마찬가지로, 임시 기판(92)을 제거(예: 사파이어 기판의 경우에 LLO 공정, Si 기판의 경우에 CLO 공정)한다. 이어서, 접착층(93)을 제거하여, 소자를 완성한다. 지지 기판(97)이 절연성 기판(예: 사파이어 기판, AlN 기판, Si 기판)으로 이루어지는 경우에, 도 37 내지 도 40에 도시된 것과 마찬가지로, 열적 통로가 마련된 지지 기판(97)을 이용하고, 두께를 폴리싱을 통해 감소시킨 다음, 여기에 본딩 패드(63)을 형성하여, 소자를 완성한다.Next, as shown in FIG. 46 , the temporary substrate 92 is removed (eg, a LLO process in the case of a sapphire substrate or a CLO process in the case of a Si substrate), as shown in FIG. 36 . Then, the adhesive layer 93 is removed to complete the device. When the support substrate 97 is made of an insulating substrate (eg, a sapphire substrate, an AlN substrate, or a Si substrate), a support substrate 97 provided with a thermal passage is used as shown in FIGS. 37 to 40, and the thickness is reduced through polishing, and then bonding pads 63 are formed here to complete the device.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.Hereinafter, various embodiments of the present disclosure will be described.
(1) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 실리콘(Si)을 함유하는 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 방지막을 형성하는 단계; 성장 방지막을 통해 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(1) A method for manufacturing a non-emissive group III nitride semiconductor laminate, comprising: preparing a growth substrate containing silicon (Si); Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; Forming a plurality of growth prevention films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed through the growth prevention layer; And, forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; a method for manufacturing a non-emission Group III nitride semiconductor laminate.
(2) 성장 방지막을 형성하는 단계에서, 각 돌기의 상부 및 돌기와 돌기 사이에 위치하도록 복수의 성장 방지막을 형성하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(2) In the step of forming the growth prevention film, a plurality of growth prevention films are formed to be positioned on top of each protrusion and between the protrusions.
(3) 복수의 돌기와 성장 기판이 동일한 물질인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(3) A method of manufacturing a non-luminescent group III nitride semiconductor laminate in which a plurality of protrusions and a growth substrate are made of the same material.
(4) 실리콘(Si)을 함유하는 성장 기판은 Si 성장 기판 및 SiC 성장 기판 중의 하나인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(4) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the growth substrate containing silicon (Si) is one of a Si growth substrate and a SiC growth substrate.
(5) 복수의 돌기와 성장 기판이 다른 물질인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(5) A method for manufacturing a non-luminescent group III nitride semiconductor laminate in which the plurality of protrusions and the growth substrate are made of different materials.
(6) 복수의 돌기를 형성하는 단계에 앞서, 돌기 베이스층을 형성하는 단계;를 더 포함하며, 복수의 돌기는 돌기 베이스층을 식각하여 형성되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(6) prior to the step of forming a plurality of protrusions, forming a protrusion base layer; further comprising, wherein the plurality of protrusions are formed by etching the protrusion base layer, to produce a non-emitting group III nitride semiconductor laminate method.
(7) 돌기 베이스층은 성장 기판에 형성되는 씨드층, 씨드층 위에 형성되는 3족 질화물 반도체층으로 이루어지는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(7) A method for manufacturing a non-emitting group III nitride semiconductor laminate, wherein the projection base layer is composed of a seed layer formed on the growth substrate and a group III nitride semiconductor layer formed on the seed layer.
(8) 식각을 통해 돌기 베이스층의 3족 질화물 반도체층이 노출되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(8) A method for manufacturing a non-emissive group III nitride semiconductor laminate in which the group III nitride semiconductor layer of the protrusion base layer is exposed through etching.
(9) 식각을 통해 돌기 베이스층의 씨드층이 노출되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(9) A method of manufacturing a non-emitting group III nitride semiconductor laminate in which the seed layer of the protrusion base layer is exposed through etching.
(10) 복수의 돌기를 형성하는 단계에 앞서, 돌기 베이스층을 형성하는 단계;를 더 포함하며, 복수의 돌기는 돌기 베이스층을 리프트-오프하여 형성되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(10) prior to the step of forming a plurality of protrusions, forming a protrusion base layer; further comprising, the plurality of protrusions are formed by lifting-off the protrusion base layer, the non-emitting group III nitride semiconductor laminate How to manufacture.
(11) 리프트-오프된 돌기 베이스층과 리프트-오프되어 노출된 성장 기판을 덮는 씨드층을 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(11) forming a seed layer covering the lift-off protrusion base layer and the lift-off exposed growth substrate; a method for manufacturing a non-emission Group III nitride semiconductor laminate, further comprising the step.
(12) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 복수의 돌기를 형성하는 단계; 성장 기판에 복수의 돌기를 덮도록 제1 버퍼층을 성장하는 단계; 제1 버퍼층 위에 복수의 성장 억제막을 형성하는 단계; 복수의 성장 억제막으로부터 노출된 제1 버퍼층으로부터 제2 버퍼층을 성장하는 단계; 그리고, 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(12) A method of manufacturing a non-emissive group III nitride semiconductor laminate, comprising: preparing a growth substrate; Forming a plurality of protrusions on the growth substrate; growing a first buffer layer to cover the plurality of protrusions on the growth substrate; forming a plurality of growth inhibiting films on the first buffer layer; growing a second buffer layer from the first buffer layer exposed from the plurality of growth suppression films; And, forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; a method for manufacturing a non-emission Group III nitride semiconductor laminate.
(13) 복수의 성장 억제막을 형성하는 단계에서, 각 돌기의 상부 및 돌기와 돌기 사이에 위치하도록 복수의 성장 억제막을 형성하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(13) In the step of forming a plurality of growth suppression films, a plurality of growth suppression films are formed so as to be positioned on top of each protrusion and between the protrusions.
(14) 복수의 돌기와 성장 기판이 동일한 물질인, 비발광 3족 질화물 반도체 적층체를 제조하는 방법. (14) A method for manufacturing a non-luminescent group III nitride semiconductor laminate in which a plurality of protrusions and a growth substrate are made of the same material.
(15) 복수의 성장 억제막은 유전체 물질을 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법. (15) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films contain a dielectric material.
(16) 복수의 성장 억제막은 그로부터 제2 버퍼층의 성장이 가능하되, 제1 버퍼층으로부터의 제1 버퍼층의 성장 속도보다 성장 속도가 느린 물질을 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(16) The plurality of growth suppression films are capable of growing a second buffer layer therefrom, but the growth rate of the first buffer layer is slower than the growth rate of the first buffer layer from the first buffer layer. method.
(17) 복수의 성장 억제막은 AlN, AlNO, AlO 중의 하나를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(17) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films contain one of AlN, AlNO, and AlO.
(18) 복수의 성장 억제막은 제1 버퍼층을 구성하는 물질로 이루어지는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법. (18) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films are made of a material constituting the first buffer layer.
(19) 제2 버퍼층을 성장하는 단계에 앞서, 제1 버퍼층로부터 제2 버퍼층이 성장하는 속도보다 제2 버퍼층의 성장 속도를 느리게 하는 물질층을 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(19) prior to the step of growing the second buffer layer, forming a material layer that slows the growth rate of the second buffer layer from the first buffer layer compared to the rate at which the second buffer layer grows; A method for manufacturing a nitride semiconductor laminate.
(20) 제2 버퍼층을 성장하는 단계에 앞서, 제1 버퍼층로부터 제2 버퍼층이 성장하는 속도보다 제2 버퍼층의 성장 속도를 느리게 하는 물질층을 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(20) prior to growing the second buffer layer, forming a material layer that slows the growth rate of the second buffer layer from the first buffer layer compared to the rate at which the second buffer layer grows; A method for manufacturing a nitride semiconductor laminate.
(21) 복수의 성장 억제막은 AlN, AlNO, AlO 중의 하나를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(21) A method for manufacturing a non-luminescent group III nitride semiconductor laminate, wherein the plurality of growth suppression films contain one of AlN, AlNO, and AlO.
(22) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판을 준비하는 단계; 성장 기판에 제1 버퍼층을 성장하는 단계; 제1 버퍼층에 제1 버퍼층으로 된 복수의 돌기를 형성하는 단계; 제1 버퍼층 위에 제2 버퍼층을 성장하는 단계; 제2 버퍼층 위에 비발광 3족 질화물 반도체 적층체를 형성하는 단계; 그리고, 제2 버퍼층을 성장하는 단계에 앞서, 복수의 돌기 위에 제2 버퍼층의 성장을 느리게 하거나 방지하는 물질층을 형성하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(22) A method for manufacturing a non-emissive group III nitride semiconductor laminate, comprising: preparing a growth substrate; growing a first buffer layer on the growth substrate; Forming a plurality of protrusions made of the first buffer layer on the first buffer layer; growing a second buffer layer over the first buffer layer; Forming a non-emission Group III nitride semiconductor laminate on the second buffer layer; And, prior to the step of growing the second buffer layer, forming a material layer to slow down or prevent the growth of the second buffer layer on a plurality of protrusions; including, a method for manufacturing a non-emission Group III nitride semiconductor laminate.
(23) 물질층은 제2 버퍼층의 성장을 느리게 하는 물질로 이루어지며, 복수의 돌기가 형성된 제1 버퍼층 전체에 걸쳐 형성되는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(23) A method of manufacturing a non-emission group III nitride semiconductor laminate, wherein the material layer is made of a material that slows down the growth of the second buffer layer and is formed over the entire first buffer layer in which a plurality of protrusions are formed.
(24) 제1 버퍼층은 성장 기판에 형성되는 씨드층, 씨드층 위에 형성되는 3족 질화물 반도체층으로 이루어지는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(24) A method for manufacturing a non-emitting group III nitride semiconductor laminate, wherein the first buffer layer is composed of a seed layer formed on the growth substrate and a group III nitride semiconductor layer formed on the seed layer.
(25) 성장 기판을 비발광 3족 질화물 반도체 적층체 측으로부터 분리하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(25) Separating the growth substrate from the non-emission group III nitride semiconductor laminate side; a method for manufacturing a non-emission group III nitride semiconductor laminate, further comprising.
(26) 비발광 3족 질화물 반도체 적층체에 있어서, 순차로 적층된 드레인 영역; 드리프트 영역; 및 게이트 영역; 드레인 영역에 전기적으로 연결되는 지지 기판; 게이트 영역에 전기적으로 연결되는 게이트 전극; 게이트 영역을 통해 노출된 드리프트 영역이 형성하는 채널에 전기적으로 연결되는 소스 전극; 게이트 전극과 소스 전극이 위치하는 적층체 전체를 덮고 있으며, 복수의 개구가 형성되어 있는 패시베이션 층; 복수의 개구 중 하나를 통해 게이트 전극에 전기적으로 연결되는 본딩용 게이트 전극; 그리고, 복수의 개구 중 다른 하나를 통해 소스 전극에 전기적으로 연결되는 본딩용 소스 전극;을 포함하는, 비발광 3족 질화물 반도체 적층체.(26) In a non-luminescent group III nitride semiconductor laminate, sequentially stacked drain regions; drift area; and a gate area; a support substrate electrically connected to the drain region; a gate electrode electrically connected to the gate region; a source electrode electrically connected to a channel formed by the drift region exposed through the gate region; a passivation layer covering the entire stack where the gate electrode and the source electrode are positioned and having a plurality of openings; a gate electrode for bonding electrically connected to the gate electrode through one of the plurality of openings; And, a source electrode for bonding electrically connected to the source electrode through the other one of the plurality of openings; including, a non-emitting group III nitride semiconductor laminate.
(27) 지지 기판은 성장 기판과 동일한 물질로 이루어지며, 복수의 열적 및 전기적 통로를 구비하고, 적층체는 지지 기판 하부에 구비되는 본딩용 드레인 전극;을 더 포함하는, 비발광 3족 질화물 반도체 적층체.(27) The support substrate is made of the same material as the growth substrate, has a plurality of thermal and electrical passages, and the laminate is a bonding drain electrode provided below the support substrate; further comprising a non-emitting group III nitride semiconductor. laminate.
(28) 지지 기판은 사파이어로 이루어지는, 비발광 3족 질화물 반도체 적층체.(28) A non-luminescent group III nitride semiconductor laminate in which the support substrate is made of sapphire.
(29) 지지 기판은 AlN로 이루어지는, 비발광 3족 질화물 반도체 적층체.(29) A non-luminescent group III nitride semiconductor laminate in which the support substrate is made of AlN.
(30) 지지 기판은 Si으로 이루어지는, 비발광 3족 질화물 반도체 적층체.(30) A non-luminescent group III nitride semiconductor laminate in which the support substrate is made of Si.
(31) 비발광 3족 질화물 반도체 적층체를 제조하는 방법에 있어서, 성장 기판에 비발광 3족 질화물 적층체를 형성하는 단계; 성장 기판과 대향하는 적층체 측에 임시 기판을 부착하는 단계; 성장 기판을 제거하는 단계; 성장 기판이 제거된 적층체 측에 전기절연성 세라믹층과 금속층을 포함하는 다층 박막을 세라믹층, 금속층 순으로 형성하는 단계; 다층 박막에 지지 기판을 부착하는 단계; 그리고, 임시 기판을 제거하는 단계;를 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(31) A method for manufacturing a non-emissive group III nitride semiconductor laminate, comprising: forming a non-emissive group III nitride laminate on a growth substrate; attaching a temporary substrate to the side of the stack facing the growth substrate; removing the growth substrate; forming a multi-layered thin film including an electrically insulating ceramic layer and a metal layer on a side of the stack from which the growth substrate is removed, in that order; attaching a support substrate to the multilayer thin film; and removing the temporary substrate.
(32) 지지 기판은 열적 통로를 구비하며, 지지 기판의 두께를 감소시키는 단계; 및 두께가 감소된 지지 기판에 본딩 패드를 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.(32) the support substrate has a thermal passage, reducing the thickness of the support substrate; and forming bonding pads on the support substrate having a reduced thickness.
(33) 임시 기판이 제거된 적층체 적어도 하나의 전극을 형성하는 단계;를 더 포함하는, 발광 3족 질화물 반도체 적층체를 제조하는 방법.(33) forming at least one electrode of the laminate from which the temporary substrate is removed;
(34) 비발광 3족 질화물 반도체 소자용 적층체에 있어서, 순차로 적층된, 지지 기판; 전기절연성 세라믹층과 금속층으로 구성된 다층 박막; 버퍼층, 채널층, 및 배리어층으로 구성된 비발광 3족 질화물 반도체 영역; 비발광 3족 질화물 반도체 영역에 전기적으로 연결된 게이트 전극, 소스 전극 및 드레인 전극; 소스 전극, 드레인 전극 및 게이트 전극이 위치하는 비발광 3족 질화물 반도체 영역를 덮고 있으며, 외부와의 전기적 연결이 가능하도록 소스 전극, 드레인 전극 및 게이트 전극을 개방하고 있는 패시베이션 층; 그리고, 소스 전극 및 게이트 전극 중의 하나와 전기적으로 연결되도록 패시베이션 층 상부에 구비되는 필드 플레이트;를 포함하는, 비발광 3족 질화물 반도체 적층체.(34) A laminate for a non-emissive group III nitride semiconductor element, comprising: a support substrate, which is sequentially laminated; a multilayer thin film composed of an electrically insulating ceramic layer and a metal layer; a non-emitting group III nitride semiconductor region composed of a buffer layer, a channel layer, and a barrier layer; a gate electrode, a source electrode, and a drain electrode electrically connected to the non-emitting group III nitride semiconductor region; a passivation layer covering a non-emitting group III nitride semiconductor region where the source electrode, the drain electrode, and the gate electrode are positioned, and opening the source electrode, the drain electrode, and the gate electrode to enable electrical connection with the outside; And, a field plate provided on top of the passivation layer so as to be electrically connected to one of the source electrode and the gate electrode; including, a non-emitting group III nitride semiconductor laminate.
본 개시에 따른 하나의 비발광 3족 질화물 반도체 적층체 내지 소자에 의하면, 107/㎠ 이하의 TDD(Theading Dislocation Density)를 가지는 적층체 내지 소자가 구현될 수 있게 된다.According to one non-emission group III nitride semiconductor laminate or device according to the present disclosure, a laminate or device having a theading dislocation density (TDD) of 10 7 /cm 2 or less can be implemented.
본 개시에 따른 또 다른 하나의 비발광 3족 질화물 반도체 적층체 내지 소자에 의하면, 새로운 형태의 수직 구조의 JFET가 구현될 수 있게 된다.According to another non-emissive group III nitride semiconductor laminate or device according to the present disclosure, a new type of vertical structure JFET can be implemented.
본 개시에 따른 또 다른 하나의 비발광 3족 질화물 반도체 적층체 내지 소자에 의하면, 107/㎠ 이하의 TDD(Theading Dislocation Density)를 가지는 수직 구조의 JFET가 구현될 수 있게 된다.According to another non-emissive group III nitride semiconductor laminate or device according to the present disclosure, a vertical structure JFET having a theading dislocation density (TDD) of 10 7 /cm 2 or less can be implemented.
돌기(41), 성장 기판(42), 제1 버퍼층(43), 성장 방지막(44), 제2 버퍼층(45), 채널층(46), 2DEG(47), 인터레이어(48), 배리어층(49), 캡층(50), 소스 전극(51), 게이트 전극(52), 드레인 전극(53)Protrusion 41, growth substrate 42, first buffer layer 43, growth prevention layer 44, second buffer layer 45, channel layer 46, 2DEG 47, interlayer 48, barrier layer (49), cap layer 50, source electrode 51, gate electrode 52, drain electrode 53
Claims (4)
성장 기판에 비발광 3족 질화물 적층체를 형성하는 단계;
성장 기판과 대향하는 적층체 측에 임시 기판을 부착하는 단계;
성장 기판을 제거하는 단계;
성장 기판이 제거된 적층체 측에 전기절연성 세라믹층과 금속층을 포함하는 다층 박막을 세라믹층, 금속층 순으로 형성하는 단계;
다층 박막에 지지 기판을 부착하는 단계;
임시 기판을 제거하는 단계;
지지 기판의 두께를 감소시키는 단계; 그리고,
두께가 감소된 지지 기판에 본딩 패드를 형성하는 단계;를 포함하고,
지지 기판은 열적 통로를 구비하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.In the method for manufacturing a non-luminescent group III nitride semiconductor laminate,
Forming a non-emissive group III nitride laminate on the growth substrate;
attaching a temporary substrate to the side of the stack facing the growth substrate;
removing the growth substrate;
forming a multi-layered thin film including an electrically insulating ceramic layer and a metal layer on a side of the stack from which the growth substrate is removed, in that order;
attaching a support substrate to the multilayer thin film;
removing the temporary substrate;
reducing the thickness of the supporting substrate; and,
Forming a bonding pad on the supporting substrate having a reduced thickness; Including,
A method of manufacturing a non-emissive group III nitride semiconductor laminate, wherein the supporting substrate has a thermal path.
임시 기판이 제거된 적층체의 상면에 게이트 전극, 소스 전극 또는 드레인 전극을 형성하는 단계;를 더 포함하는, 비발광 3족 질화물 반도체 적층체를 제조하는 방법.The method of claim 1,
Forming a gate electrode, a source electrode, or a drain electrode on the upper surface of the laminate from which the temporary substrate is removed; further comprising a method for manufacturing a non-emitting group III nitride semiconductor laminate.
순차로 적층된, 본딩 패드; 지지 기판; 금속층과 전기절연성 세라믹층으로 구성된 다층 박막; 버퍼층, 채널층, 및 배리어층으로 구성된 비발광 3족 질화물 반도체 영역; 비발광 3족 질화물 반도체 영역에 전기적으로 연결된 게이트 전극, 소스 전극 및 드레인 전극;
소스 전극, 드레인 전극 및 게이트 전극이 위치하는 비발광 3족 질화물 반도체 영역를 덮고 있으며, 외부와의 전기적 연결이 가능하도록 소스 전극, 드레인 전극 및 게이트 전극을 개방하고 있는 패시베이션 층; 그리고,
소스 전극 및 게이트 전극 중의 하나와 전기적으로 연결되도록 패시베이션 층 상부에 구비되는 필드 플레이트;를 포함하고,
지지 기판은 열적 통로를 구비하는, 비발광 3족 질화물 반도체 적층체.In the laminate for the non-emissive group III nitride semiconductor device,
sequentially stacked bonding pads; support substrate; a multilayer thin film composed of a metal layer and an electrically insulating ceramic layer; a non-emitting group III nitride semiconductor region composed of a buffer layer, a channel layer, and a barrier layer; a gate electrode, a source electrode, and a drain electrode electrically connected to the non-emitting group III nitride semiconductor region;
a passivation layer covering a non-emitting group III nitride semiconductor region where the source electrode, the drain electrode, and the gate electrode are positioned, and opening the source electrode, the drain electrode, and the gate electrode to enable electrical connection with the outside; and,
A field plate provided on the passivation layer to be electrically connected to one of the source electrode and the gate electrode; includes,
A non-luminescent group III nitride semiconductor laminate, wherein the support substrate has a thermal passage.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210109671A KR102556721B1 (en) | 2021-08-19 | 2021-08-19 | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same |
US18/570,666 US20240282883A1 (en) | 2021-06-15 | 2022-06-15 | Method for manufactuing non-emitting iii-nitride semiconductor stacked structure |
PCT/KR2022/008481 WO2022265395A1 (en) | 2021-06-15 | 2022-06-15 | Method for manufactuing non-emitting iii-nitride semiconductor stacked structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210109671A KR102556721B1 (en) | 2021-08-19 | 2021-08-19 | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230027649A KR20230027649A (en) | 2023-02-28 |
KR102556721B1 true KR102556721B1 (en) | 2023-07-18 |
Family
ID=85326506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210109671A KR102556721B1 (en) | 2021-06-15 | 2021-08-19 | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102556721B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084976A (en) * | 2006-03-29 | 2013-05-09 | Cree Inc | High efficiency and/or high power density wide bandgap transistors |
US20160380090A1 (en) * | 2014-12-12 | 2016-12-29 | Gan Systems Inc. | GaN SEMICONDUCTOR DEVICE STRUCTURE AND METHOD OF FABRICATION BY SUBSTRATE REPLACEMENT |
-
2021
- 2021-08-19 KR KR1020210109671A patent/KR102556721B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013084976A (en) * | 2006-03-29 | 2013-05-09 | Cree Inc | High efficiency and/or high power density wide bandgap transistors |
US20160380090A1 (en) * | 2014-12-12 | 2016-12-29 | Gan Systems Inc. | GaN SEMICONDUCTOR DEVICE STRUCTURE AND METHOD OF FABRICATION BY SUBSTRATE REPLACEMENT |
Also Published As
Publication number | Publication date |
---|---|
KR20230027649A (en) | 2023-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1378012B1 (en) | Gallium nitride material devices including backside vias and methods of fabrication | |
US9130115B2 (en) | Light-emitting diode with textured substrate | |
KR20100068839A (en) | Fabricating method of light emitting element | |
US11362134B2 (en) | Vertical stacks of light emitting diodes and control transistors and method of making thereof | |
US20240282883A1 (en) | Method for manufactuing non-emitting iii-nitride semiconductor stacked structure | |
KR102556721B1 (en) | Non emitting iii-nitride semiconductor stacked structure and method of manufacturing the same | |
KR102549356B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR102591148B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR102712118B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR20070044099A (en) | Nitride-based light emitting diode and manufacturing method of the same | |
KR102570675B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR20230022482A (en) | Non emitting iii-nitride semiconductor stacked structure | |
KR102656083B1 (en) | Method of manufactuing non emitting iii-nitride semiconductor stacked structure | |
KR101600783B1 (en) | Method of fabricating light emitting diode with high efficiency | |
KR102591149B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor stacked structure | |
KR102591150B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor device | |
KR102591151B1 (en) | Method of manufacturing a non emitting iii-nitride semiconductor device | |
KR102591147B1 (en) | Method of manufactuing non emitting iii-nitride semiconductor stacked structure | |
KR102728898B1 (en) | Method of manufacturing a iii-nitride semiconductor lyaers | |
KR102618485B1 (en) | Method of manufactuing non emitting iii-nitride semiconductor stacked structure | |
KR101755670B1 (en) | Light emitting device and method for fabricating light emitting device | |
KR101765903B1 (en) | Light emitting device and method for fabricating the same and light emitting device package | |
KR101295468B1 (en) | Light emitting device and method of fabricating the same | |
KR20230149975A (en) | Method of manufacturing a iii-nitride semiconductor lyaers | |
KR20130095527A (en) | Semiconductor device and method for fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |