KR20230023682A - A Method for Producing a Coating Lens - Google Patents
A Method for Producing a Coating Lens Download PDFInfo
- Publication number
- KR20230023682A KR20230023682A KR1020230012683A KR20230012683A KR20230023682A KR 20230023682 A KR20230023682 A KR 20230023682A KR 1020230012683 A KR1020230012683 A KR 1020230012683A KR 20230012683 A KR20230012683 A KR 20230012683A KR 20230023682 A KR20230023682 A KR 20230023682A
- Authority
- KR
- South Korea
- Prior art keywords
- lens
- coated
- coating layer
- lens substrate
- present
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 24
- 238000000576 coating method Methods 0.000 title description 14
- 239000011248 coating agent Substances 0.000 title description 10
- 238000000034 method Methods 0.000 claims abstract description 51
- 239000000758 substrate Substances 0.000 claims abstract description 33
- 238000004140 cleaning Methods 0.000 claims abstract description 11
- 238000001771 vacuum deposition Methods 0.000 claims abstract description 11
- 239000011247 coating layer Substances 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 22
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 14
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 5
- 229920000742 Cotton Polymers 0.000 claims description 4
- 239000004745 nonwoven fabric Substances 0.000 claims description 4
- 238000005201 scrubbing Methods 0.000 claims description 4
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 3
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims description 3
- 229920002994 synthetic fiber Polymers 0.000 claims description 3
- 230000035939 shock Effects 0.000 abstract description 8
- 230000008569 process Effects 0.000 description 27
- 238000012360 testing method Methods 0.000 description 21
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 18
- 238000009498 subcoating Methods 0.000 description 18
- 238000007689 inspection Methods 0.000 description 16
- 239000010410 layer Substances 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 8
- 239000004922 lacquer Substances 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- 239000002253 acid Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 241000511976 Hoya Species 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- 229910017768 LaF 3 Inorganic materials 0.000 description 1
- 235000016787 Piper methysticum Nutrition 0.000 description 1
- 240000005546 Piper methysticum Species 0.000 description 1
- 201000009310 astigmatism Diseases 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/00865—Applying coatings; tinting; colouring
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/22—Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
- C03C17/23—Oxides
- C03C17/245—Oxides by deposition from the vapour phase
- C03C17/2456—Coating containing TiO2
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3411—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
- C03C17/3429—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating
- C03C17/3447—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide
- C03C17/3452—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials at least one of the coatings being a non-oxide coating comprising a halide comprising a fluoride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/028—Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0694—Halides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/35—Sputtering by application of a magnetic field, e.g. magnetron sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
- G02B1/115—Multilayers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/78—Coatings specially designed to be durable, e.g. scratch-resistant
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/151—Deposition methods from the vapour phase by vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/10—Deposition methods
- C03C2218/15—Deposition methods from the vapour phase
- C03C2218/152—Deposition methods from the vapour phase by cvd
- C03C2218/153—Deposition methods from the vapour phase by cvd by plasma-enhanced cvd
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2218/00—Methods for coating glass
- C03C2218/30—Aspects of methods for coating glass not covered above
- C03C2218/31—Pre-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Ophthalmology & Optometry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Surface Treatment Of Optical Elements (AREA)
Abstract
Description
본 발명은 코팅 렌즈의 제조 방법에 관한 것이고, 구체적으로 다수의 코팅 층이 형성된 코팅 렌즈의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing a coated lens, and specifically to a method for manufacturing a coated lens having a plurality of coating layers.
굴절에 의하여 광을 모으거나 분산시키는 광학 수단에 해당하는 렌즈는 유리와 같은 투명 소재로 만들어지거나, 유리 또는 플라스틱으로 만들어질 수 있다. 이와 같은 소재로 만들어지는 렌즈에 다양한 형태의 코팅 층이 형성되어 렌즈의 사용 목적에 적합하도록 만들어질 수 있다. 예를 들어 안경용 렌즈에 눈부심 방지 및 선명한 시야의 확보를 위하여 반사 방지 코팅(Anti-Reflection Coating) 층이 형성될 수 있다. 또한 카메라 렌즈, 자동차 램프의 렌즈 또는 후사경의 렌즈의 경우 각각의 사용 환경 또는 용도에 따라 적절하게 코팅이 될 필요가 있다. 이와 같은 코팅 렌즈와 관련하여 특허공개번호 10-2019-0010221은 ta_c 및 Y2O3 코팅 박막층을 구비한 하이브리드 적외선 광학 렌즈에 대하여 개시한다. 또한 특허공개번호 10-2019-0053865는 광범위한 입사각에 걸쳐 가시광의 반사를 크게 감소시키는 반사 방지 코팅을 주면 중 어느 하나의 상에 포함하는 광학 렌즈에 대하여 개시한다. 또한 특허공개번호 10-2019-0020406은 진공증착에 의한 선글라스 렌즈 코팅 방법에 대하여 개시한다. 렌즈 코팅 층의 렌즈의 용도에 따른 기능을 가지도록 형성되면서 렌즈 자체의 성능을 저하시키지 않도록 형성될 필요가 있다. 예를 들어 렌즈 코팅 층은 렌즈 코팅 층은 기본적으로 높은 투과율을 가지면서 보호 기능을 위하여 충분한 강도를 가질 필요가 있다. 또한 사용 환경에 따라 열-충격에 대한 충분한 저항을 가지면서 내화학성을 가질 필요가 있다. 그러나 선행기술은 이와 같은 특성을 가진 렌즈의 코팅 층을 형성하는 방법에 대하여 개시하지 않는다.A lens corresponding to an optical means for collecting or dispersing light by refraction may be made of a transparent material such as glass or made of glass or plastic. Various types of coating layers may be formed on the lens made of such a material to suit the purpose of use of the lens. For example, an anti-reflection coating layer may be formed on a lens for glasses to prevent glare and secure a clear view. In addition, in the case of a camera lens, a lens of a car lamp, or a lens of a rearview mirror, it is necessary to be appropriately coated according to each use environment or purpose. In relation to such a coated lens, Patent Publication No. 10-2019-0010221 discloses a hybrid infrared optical lens having ta_c and Y 2 O 3 coating thin film layer. In addition, Patent Publication No. 10-2019-0053865 discloses an optical lens comprising an antireflection coating on one of the main surfaces, which greatly reduces reflection of visible light over a wide range of incident angles. In addition, Patent Publication No. 10-2019-0020406 discloses a method for coating sunglasses lenses by vacuum deposition. The lens coating layer needs to be formed so as not to degrade the performance of the lens itself while being formed to have a function according to the purpose of the lens. For example, the lens coating layer needs to have sufficient strength for a protective function while basically having a high transmittance. In addition, it is necessary to have chemical resistance while having sufficient resistance to heat-shock according to the use environment. However, the prior art does not disclose a method for forming a coating layer of a lens having such characteristics.
본 발명은 선행기술의 문제점을 해결하기 위한 것으로 아래와 같은 목적을 가진다.The present invention is to solve the problems of the prior art and has the following object.
본 발명의 목적은 진공 증착 방식으로 다중 코팅 층을 형성하면서 열 충격성, 내후성 및 내화성을 가진 코팅 렌즈의 제조 방법을 제공하는 것이다.An object of the present invention is to provide a method for manufacturing a coated lens having thermal shock resistance, weather resistance and fire resistance while forming multiple coating layers by a vacuum deposition method.
본 발명의 적절한 실시 형태에 따르면, 코팅 렌즈의 제조 방법은 렌즈 기재가 준비되는 단계; 렌즈 기재가 세척이 되는 단계; 세척이 된 렌즈 기재의 표면을 닦는 단계; 진공 증착 방식에 의하여 코팅 층이 형성되는 단계; 및 코팅 층이 경화가 되는 단계를 포함한다.According to a preferred embodiment of the present invention, a method for manufacturing a coated lens includes preparing a lens substrate; The step of cleaning the lens substrate; Wiping the surface of the cleaned lens substrate; Forming a coating layer by a vacuum deposition method; and curing the coating layer.
본 발명의 다른 적절한 실시 형태에 따르면, 표면을 닦든 단계는 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유에 의하여 진행된다. According to another suitable embodiment of the present invention, the step of wiping the surface is carried out by a wool, cotton fiber, non-woven fabric, natural fiber or man-made fiber.
본 발명의 또 다른 적절한 실시 형태에 따르면, 코팅 층은 9 내지 12개의 동일하거나, 서로 다른 소재 층으로 이루어진다.According to another preferred embodiment of the present invention, the coating layer consists of 9 to 12 identical or different material layers.
본 발명의 또 다른 적절한 실시 형태에 따르면, 코팅 층은 Ti3O5, SiO2, MgF2, Al2O3 및 SiO2/Al2O3로 구성된 그룹으로부터 선택된 소재로 형성되는 다수 층으로 이루어진다.According to another preferred embodiment of the present invention, the coating layer consists of multiple layers formed of a material selected from the group consisting of Ti 3 O 5 , SiO 2 , MgF 2 , Al 2 O 3 and SiO 2 /Al 2 O 3 .
본 발명에 따른 코팅 렌즈의 제조 방법은 다중 코팅 층이 가진 투과율의 저하, 다습 환경에서 박리 현상이 방지되도록 한다. 본 발명에 따른 제조 방법은 외부 환경 또는 극한 환경에서 사용될 수 있는 막강도 및 내후성을 가진 코팅 층이 형성되도록 하면서 사용 환경에서 이물질에 의한 충격에 따른 스크래치 또는 흠집의 발생의 방지되도록 한다. 본 발명에 따른 제조 방법은 자동차용 렌즈에 적용될 수 있고, 바람직하게 자율 자동차의 카메라 렌즈의 코팅에 적용될 수 있지만 이에 제한되지 않는다.The method for manufacturing a coated lens according to the present invention prevents deterioration of transmittance of multiple coating layers and peeling in a humid environment. The manufacturing method according to the present invention enables the formation of a coating layer having film strength and weather resistance that can be used in an external environment or an extreme environment, while preventing the occurrence of scratches or scratches due to impact by foreign substances in a use environment. The manufacturing method according to the present invention can be applied to a lens for a vehicle, preferably applied to a coating of a camera lens of an autonomous vehicle, but is not limited thereto.
도 1은 본 발명에 따른 코팅 렌즈의 제조 방법의 실시 예를 도시한 것이다.
도 2는 본 발명에 따른 코팅 렌즈의 제조 방법의 다른 실시 예를 도시한 것이다.
도 3은 본 발명에 따른 제조 방법에 의하여 형성된 코팅 층의 실시 예를 도시한 것이다.
도 4a 및 도 4e는 본 발명에 따른 제조 방법에 의하여 제조된 코팅 렌즈에 대한 특성 시험의 결과를 도시한 것이다.1 shows an embodiment of a method for manufacturing a coated lens according to the present invention.
Figure 2 shows another embodiment of the manufacturing method of the coated lens according to the present invention.
Figure 3 shows an embodiment of the coating layer formed by the manufacturing method according to the present invention.
Figures 4a and 4e show the results of the characteristic test for the coated lens manufactured by the manufacturing method according to the present invention.
아래에서 본 발명은 첨부된 도면에 제시된 실시 예를 참조하여 상세하게 설명이 되지만 실시 예는 본 발명의 명확한 이해를 위한 것으로 본 발명은 이에 제한되지 않는다. 아래의 설명에서 서로 다른 도면에서 동일한 도면 부호를 가지는 구성요소는 유사한 기능을 가지므로 발명의 이해를 위하여 필요하지 않는다면 반복하여 설명이 되지 않으며 공지의 구성요소는 간략하게 설명이 되거나 생략이 되지만 본 발명의 실시 예에서 제외되는 것으로 이해되지 않아야 한다.Below, the present invention will be described in detail with reference to the embodiments presented in the accompanying drawings, but the embodiments are for a clear understanding of the present invention, and the present invention is not limited thereto. In the following description, components having the same reference numerals in different drawings have similar functions, so repeated descriptions are not made unless necessary for understanding the invention, and well-known components are briefly described or omitted, but the present invention It should not be understood as being excluded from the embodiment of.
도 1은 본 발명에 따른 코팅 렌즈의 제조 방법의 실시 예를 도시한 것이다.1 shows an embodiment of a method for manufacturing a coated lens according to the present invention.
도 1을 참조하면, 코팅 렌즈의 제조 방법은 렌즈 기재가 준비되는 단계(P11); 렌즈 기재가 1차 세척이 되고, 센터링이 검사되는 단계(P12); 1차 세척이 된 렌즈 기재의 표면을 닦는 단계(P13); 진공 증착 방식에 의하여 코팅 층이 형성되는 단계(P15); 및 코팅 층이 경화가 되는 단계(16)를 포함한다.Referring to Figure 1, the manufacturing method of the coated lens step (P11) to prepare a lens substrate; The lens substrate is first washed and centering is inspected (P12); Step of wiping the surface of the primary washed lens substrate (P13); Forming a coating layer by a vacuum deposition method (P15); and step 16 where the coating layer is cured.
렌즈 기재는 렌즈의 용도에 따라 유리, 합성수지 또는 이와 유사한 소재로 만들어질 수 있고, 다양한 구경 또는 초점을 가질 수 있다. 예를 들어 렌즈 기재는 기재 소재 준비, 양면 황삭, 양면 정삭 및 양면 연마 과정을 통하여 준비될 수 있다(P11). 렌즈 기재에 대한 굴절률, 치수, 초점, 곡률 또는 두께가 검사될 수 있고, 검사가 완료된 렌즈 기재에 대하여 1차 세척이 될 수 있다(P12). 1차 세척은 세척 홀더에 각각의 렌즈를 고정시키고, 예를 들어 이소프로필알코올(IPA)에 의하여 세척이 될 수 있지만 이에 제한되지 않고, 증류수 또는 에틸알코올과 같은 다양한 용액에 의하여 세척될 수 있고, 이에 의하여 본 발명은 제한되지 않는다. 1차 세척이 된 렌즈 기재에 대하여 외관 검사가 될 수 있고, 예를 들어 스크래치. 흠집 검사, 얼룩 검사 또는 이와 유사한 다양한 외관 검사가 될 수 있다. 이와 같은 외관 검사가 완료되면, 심취 검사 또는 센터링 검사가 될 수 있다(P12). 센터링 검사 과정에서 흑칠 전 심취 치수 또는 센터링 위치가 설정될 수 있다. 이후 센터링 설정이 된 렌즈 기재에 대하여 외경, 편심, 단차 또는 Sag(Sagittal Height) 검사가 될 수 있다. 이와 같은 검사와 완료되면 렌즈 기재의 표면을 닦는 공정이 진행될 수 있다(P13). 렌즈 기재에 형성된 코팅 층은 외부 환경에서 박리가 될 수 있고, 특히 자동차의 카메라용 렌즈의 경우 다양한 외부 환경에 코팅 층이 노출되어 시간의 경과에 따라 박리 형상의 발생될 수 있다. 표면을 닦는 공정은 렌즈 기재에 대한 코팅 층의 부착 특성 또는 코팅 층의 강도를 증가시키는 기능을 가질 수 있다. 이와 같이 렌즈 기재의 코팅 층을 닦는 공정은 코팅 층의 강도 특성, 박리 방지 특성 또는 부착 특성을 향상시키는 기능을 할 수 있다. 닦는 공정은 예를 들어 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유에 의하여 진행될 수 있고, 아세탈 지그에서 진행될 수 있다. 구체적으로 아세탈 지그에 렌즈 기재의 표면 형상에 대응되는 적어도 하나의 문지름(scrubbing) 홈이 형성될 수 있고, 각각의 문지름 홈에 패드 형상 또는 판 형상의 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유로 만들어진 문지름 소재가 준비될 수 있다. 그리고 코팅이 되어야 하는 렌즈 표면이 문지름 소재에 접촉되어 닦기 공정이 진행될 수 있다. 닦기 공정 과정에서 렌즈 표면에 렌즈 소재에 의한 흠집 또는 스크래치가 발생되지 않아야 한다. 이를 위하여 문지름 소재는 마찰력은 작은 부드러운 소재로 만들어질 수 있고, 마찰 계수를 감소시킬 수 있는 이소프로필알코올, 증류수 또는 이와 유사한 다양한 액체가 문지름 소재에 흡수된 상태로 사용될 수 있다. 렌즈 기재의 접촉 압력이 예를 들어 1 내지 500,000 pa이 될 수 있고, 문지름 소재의 마찰 계수는 0.2 이하가 되도록 조절될 수 있다. 렌즈 기재는 예를 들어 0.01 내지 10(회/초)의 속도로 회전 되거나, 0.01 내지 10 m/sec의 속도로 왕복 운동이 되면서 문지름 공정이 진행될 수 있다. 문지름 공정 또는 닦기 공정은 다양한 방법으로 진행될 수 있고 제시된 실시 예에 제한되지 않는다. 이와 같은 닦기 공정이 완료되면(P13), 선택적으로 검사 공정 및 2차 세척 공정이 진행될 수 있다(P14). 검사 공정은 예를 들어 외관 검사 공정이 될 수 있고, 세척은 이소프로필알코올과 같은 세척 용액에 의하여 진행될 수 있다. 이와 같은 세척 공정이 완료되면 코팅 공정이 진행될 수 있다(P15). 코팅 공정은 진공 증착 방식으로 이루어질 수 있고, 예를 들어 진공 증착 장치 또는 마그네트론 스퍼터링 장치에서 진행될 수 있다. 본 발명의 하나의 실시 예에 따르면, 코팅 층은 9 내지 12개의 동일하거나, 서로 다른 소재 층으로 이루어질 수 있다. 또한 코팅 층은 Ti3O5, SiO2, MgF2, Al2O3 및 SiO2/Al2O3로 구성된 그룹으로부터 선택된 소재로 형성될 수 있다. 렌즈 구조에 따라 오목 면이 코팅이 된 후 블록 면이 코팅이 될 수 있다. 이와 같이 양쪽 면이 코팅이 되는 경우 한쪽 면이 코팅이 된 후 분광 측정이 될 수 있다. 그리고 이소프로필알코올과 같은 세척 용액에 의하여 세척이 되고 건조가 된 후 다른 면이 코팅이 될 수 있다. 예를 들어 오목 면이 코팅이 된 후 분광 측정, 세척 및 건조가 된 후 볼록 면이 코팅이 될 수 있다. 코팅 층은 다수 개의 서브 코팅 층으로 이루어질 수 있고, 서로 다른 서브 코팅 층은 동일하거나, 서로 다른 두께를 가질 수 있다. 또는 서로 다른 서브 코팅 층은 동일하거나, 서로 다른 소재로 형성될 수 있다. 서브 코팅 층을 형성하는 Ti3O5는 굴절률이 우수하다는 장점을 가지고, SiO2는 투과율이 양호하면서 막 강도가 우수하면서 투과율이 양호하다는 이점을 가진다. 이에 비하여 MgF2는 투과율이 우수하지만 높은 습도에서 박리가 된다는 단점을 가진다. 또한 SiO2/Al2O3는 투과율이 우수하지만 코팅 면에 얼룩 또는 흡집이 발생된다는 단점을 가진다. 그러므로 이와 같은 각각의 소재의 장점 및 단점에 기초하여 서브 코팅 층의 형성 순서 및 두께가 조절될 수 있다. 예를 들어 서브 코팅 층은 STSTSTSTATS와 같은 순서로 형성될 수 있고, T, S 및 A는 각각 Ti3O5, SiO2 및 Al2O3를 나타낸다. 각각의 서브 층의 두께는 20 내지 2,000 ㎚가 될 수 있다. 다수 개의 서브 코팅 층은 다양한 순서 또는 다양한 두께로 형성될 수 있고, 제시된 실시 예에 제한되지 않는다. 이와 같은 같은 방법으로 9 내지 12개의 서브 층으로 이루어진 코팅 층이 형성되면(P15), 코팅 렌즈는 경화가 될 수 있다(P16). 경화는 예를 들어 120 내지 200 ℃의 온도에서 1 내지 5 시간 진행될 수 있다. 이와 같은 경화 공정이 완료되면(P16), 코팅 렌즈는 후처리가 될 수 있다(P17). 후처리 공정은 예를 들어 코팅 렌즈의 표면 처리 또는 건조와 같은 공정을 포함할 수 있다. 또한 렌즈의 종류에 따라 코팅 렌즈에 대하여 흑칠 공정이 될 수 있다.The lens substrate may be made of glass, synthetic resin, or a similar material according to the purpose of the lens, and may have various apertures or focal points. For example, the lens substrate may be prepared through substrate material preparation, double-side roughing, double-side finishing, and double-side polishing processes (P11). The refractive index, dimension, focus, curvature, or thickness of the lens substrate may be inspected, and the lens substrate may be first washed (P12). The primary cleaning is to fix each lens to the cleaning holder, and may be washed with, for example, isopropyl alcohol (IPA), but is not limited thereto, and may be washed with various solutions such as distilled water or ethyl alcohol, The present invention is not limited thereby. Appearance can be inspected for the lens base material that has undergone primary washing, for example, scratches. It can be a scratch test, a stain test, or a variety of similar visual tests. When such an appearance inspection is completed, it may be an infatuation inspection or a centering inspection (P12). In the centering inspection process, the black lacquer depth or centering position can be set. Thereafter, an outer diameter, eccentricity, step difference, or Sag (Sagittal Height) test may be performed on the lens substrate for which centering has been set. Upon completion of such inspection, a process of wiping the surface of the lens substrate may proceed (P13). The coating layer formed on the lens substrate may be exfoliated in an external environment, and in particular, in the case of a lens for an automobile camera, the coating layer may be exposed to various external environments and peeling may occur over time. The process of wiping the surface may have a function of increasing the adhesion property of the coating layer to the lens substrate or the strength of the coating layer. In this way, the process of wiping the coating layer of the lens substrate may function to improve strength characteristics, anti-peeling characteristics, or adhesion characteristics of the coating layer. The wiping process may be performed with, for example, wool, cotton fiber, non-woven fabric, natural fiber or artificial fiber, and may be performed in an acetal jig. Specifically, at least one scrubbing groove corresponding to the surface shape of the lens substrate may be formed in the acetal jig, and pad-shaped or plate-shaped fleece, cotton fiber, nonwoven fabric, natural fiber, or artificial fiber may be formed in each scrubbing groove. The made rubbing material may be prepared. In addition, the surface of the lens to be coated may come into contact with the rubbing material to perform a wiping process. In the course of the wiping process, there should be no flaws or scratches caused by the lens material on the surface of the lens. To this end, the rubbing material may be made of a soft material with low frictional force, and isopropyl alcohol, distilled water, or various liquids similar thereto that can reduce the friction coefficient may be used in a state in which the rubbing material is absorbed. The contact pressure of the lens substrate may be, for example, 1 to 500,000 pa, and the friction coefficient of the rubbing material may be adjusted to be 0.2 or less. The rubbing process may be performed while the lens substrate rotates at a speed of, for example, 0.01 to 10 (times/sec) or reciprocates at a speed of 0.01 to 10 m/sec. The rubbing process or wiping process may be performed in various ways and is not limited to the presented embodiment. When such a wiping process is completed (P13), an inspection process and a secondary cleaning process may optionally be performed (P14). The inspection process may be, for example, a visual inspection process, and cleaning may be performed by a cleaning solution such as isopropyl alcohol. When such a washing process is completed, a coating process may proceed (P15). The coating process may be performed in a vacuum deposition method, and may be performed in, for example, a vacuum deposition device or a magnetron sputtering device. According to one embodiment of the present invention, the coating layer may be made of 9 to 12 identical or different material layers. In addition, the coating layer may be formed of a material selected from the group consisting of Ti 3 O 5 , SiO 2 , MgF 2 , Al 2 O 3 and SiO 2 /Al 2 O 3 . Depending on the structure of the lens, the block face may be coated after the concave face is coated. In this way, when both sides are coated, spectroscopic measurement may be performed after one side is coated. In addition, after washing with a washing solution such as isopropyl alcohol and drying, the other surface may be coated. For example, the concave surface may be coated, followed by spectroscopic measurement, washing, and drying, and then the convex surface may be coated. The coating layer may include a plurality of sub-coating layers, and different sub-coating layers may have the same or different thicknesses. Alternatively, the different sub-coating layers may be formed of the same or different materials. Ti 3 O 5 forming the sub-coating layer has the advantage of excellent refractive index, and SiO 2 has the advantage of good transmittance, excellent film strength, and good transmittance. In contrast MgF 2 has an excellent transmittance, but has a disadvantage of exfoliation at high humidity. In addition, SiO 2 /Al 2 O 3 has excellent transmittance, but has a disadvantage in that stains or scratches occur on the coated surface. Therefore, the formation order and thickness of the sub-coating layer may be adjusted based on the advantages and disadvantages of each material. For example, the sub-coating layer may be formed in the same order as in STSTSTSTATS, and T, S and A represent Ti 3 O 5 , SiO 2 and Al 2 O 3 , respectively. The thickness of each sub-layer may be 20 to 2,000 nm. A plurality of sub-coating layers may be formed in various orders or in various thicknesses, and are not limited to the presented embodiments. When a coating layer composed of 9 to 12 sub-layers is formed in the same way (P15), the coated lens may be cured (P16). Curing may proceed for 1 to 5 hours at a temperature of 120 to 200 °C, for example. When this curing process is completed (P16), the coated lens may be post-treated (P17). The post-treatment process may include, for example, a process such as surface treatment or drying of the coated lens. Also, depending on the type of lens, it may be a black lacquer process for the coated lens.
아래에서 이와 같은 공정에 대하여 설명된다.Below, such a process is described.
도 2는 본 발명에 따른 코팅 렌즈의 제조 방법의 다른 실시 예를 도시한 것이다.Figure 2 shows another embodiment of the manufacturing method of the coated lens according to the present invention.
도 2를 참조하면, 코팅 층이 형성된 이후 렌즈 용도에 따라 추가 공정이 진행될 수 있다. 코팅 층이 형성되면(P15), 예를 들어 이소프로필알코올과 같은 세척 용액으로 세척되어(P21) 건조가 될 수 있다. 그리고 분광 검사 및 초기 접촉각 검사가 될 수 있고, 접촉각 검사에 의하여 발수 특성이 확인될 수 있다. 이후 50 내지 100 시간 동안 방치하여 코팅 렌즈의 안정화 공정이 진행될 수 있다. 그리고 복합 렌즈의 경우 접합 공정이 진행될 수 있다(P22). 그리고 단일 코팅 렌즈 또는 접합 코팅 렌즈에 대한 흑칠 공정이 진행될 수 있다(P23). 흑칠 공정은 색수차, 구면 수차 또는 비점 수차로 인한 렌즈의 난반사를 방지할 수 있는 다양한 막을 형성하기 위하여 에포라 페인트 또는 GT7과 같은 소재로 진행될 수 있다. 흑칠 소재는 화학성 내구성을 가지면서 전 파장 영역에 투과율이 0이 되는 다양한 소재로 진행될 수 있고 제시된 실시 예에 제한되지 않는다. 흑칠 공정이 완료되면(P23), 치수 검사, 이중 띠 검사, 백점 검사 또는 스크래치 검사가 될 수 있고, 이후 위에서 설명된 것처럼 코팅 렌즈가 경화될 수 있다(P16). 그리고 경화된 코팅 렌즈에 대하여 외경, 편심, 코팅 면 반사 검사와 같은 다양한 검사가 진행된 이후 코팅 공정이 완료될 수 있다. 다양한 후처리 공정을 통하여 코팅 렌즈의 제조 공정이 완료될 수 있고, 제시된 실시 예에 제한되지 않는다. Referring to FIG. 2 , after the coating layer is formed, an additional process may be performed according to the purpose of the lens. When the coating layer is formed (P15), it may be washed with a cleaning solution such as isopropyl alcohol (P21) and dried. In addition, a spectroscopic test and an initial contact angle test may be performed, and water repellency may be confirmed by the contact angle test. Thereafter, the stabilization process of the coated lens may proceed by leaving it for 50 to 100 hours. In the case of a composite lens, a bonding process may be performed (P22). In addition, a black lacquer process may be performed on the single coated lens or the bonded coated lens (P23). The black lacquer process may be performed with a material such as Epora paint or GT7 to form various films capable of preventing diffuse reflection of the lens due to chromatic aberration, spherical aberration, or astigmatism. The black lacquer material can be made of various materials that have chemical durability and transmittance of 0 in all wavelength regions, and are not limited to the presented examples. When the black lacquer process is completed (P23), dimensional inspection, double band inspection, white spot inspection, or scratch inspection may be performed, and then the coated lens may be cured as described above (P16). In addition, the coating process may be completed after various inspections such as outer diameter, eccentricity, and coating surface reflection inspection are performed on the cured coated lens. The manufacturing process of the coated lens may be completed through various post-processing processes, and is not limited to the presented embodiment.
도 3은 본 발명에 따른 제조 방법에 의하여 형성된 코팅 층의 실시 예를 도시한 것이다.Figure 3 shows an embodiment of the coating layer formed by the manufacturing method according to the present invention.
도 3을 참조하면, 본 발명에 따른 코팅 렌즈의 제조 방법에 의하여 렌즈 기재(LB)에 다수 개의 서브 코팅 층(CL_1 내지 CL_N)이 형성될 수 있다. 예를 들어 서브 코팅 층(CL_1 내지 CL_N)은 STSTSTSTATS와 같은 순서로 형성될 수 있고, T, S 및 A는 각각 Ti3O5, SiO2 및 Al2O3를 나타낸다. 각각의 서브 코팅 층(CL_1 내지 CL_N)은 예를 들어 200 내지 300(S), 70 내지 120(T), 500 내지 700(S), 15 내지 50(T), 1,200 내지 1,500(S), 120 내9지 180(T), 270 내지 320(S), 620 내지 700(T), 70 내지 100(A), 250 내지 350(T), 900 내지 980(S)의 코팅 두께를 가질 수 있고, 단위는 ㎚가 된다. 전체 코팅 두께(L)는 2 내지 10㎛, 바람직하게 3 내지 6 ㎛, 가장 바람직하게 4 내지 5 ㎛가 될 수 있지만 이에 제한되지 않는다. 코팅 렌즈는 다양한 방법으로 만들어질 수 있고 아래에서 이와 같이 본 발명에 따른 제조 방법에 의하여 제조된 코팅 렌즈에 대한 시험 결과에 대하여 설명된다. Referring to FIG. 3 , a plurality of sub-coating layers CL_1 to CL_N may be formed on the lens substrate LB by the manufacturing method of the coated lens according to the present invention. For example, the sub-coating layers CL_1 to CL_N may be formed in the same order as in STSTSTSTATS, and T, S, and A represent Ti 3 O 5 , SiO 2 and Al 2 O 3 , respectively. Each sub-coating layer (CL_1 to CL_N) has, for example, 200 to 300 (S), 70 to 120 (T), 500 to 700 (S), 15 to 50 (T), 1,200 to 1,500 (S), 120 It may have a coating thickness of from 9 to 180 (T), 270 to 320 (S), 620 to 700 (T), 70 to 100 (A), 250 to 350 (T), 900 to 980 (S), The unit is nm. The total coating thickness (L) may be 2 to 10 μm, preferably 3 to 6 μm, and most preferably 4 to 5 μm, but is not limited thereto. The coated lens can be made by various methods, and test results for the coated lens manufactured by the manufacturing method according to the present invention will be described below.
도 4a 및 도 4e는 본 발명에 따른 제조 방법에 의하여 제조된 코팅 렌즈에 대한 특성 시험의 결과를 도시한 것이다. Figures 4a and 4e show the results of the characteristic test for the coated lens manufactured by the manufacturing method according to the present invention.
도 4a의 특성 시험에서 코팅 층의 구조는 아래와 같고, 두께 단위는 ㎚가 되고, S, T 및 A는 각각 SiO2, Ti3O5 및 Al2O3를 나타내고, 3b 내지 3e의 실시 예에서 동일하다.In the characteristic test of FIG. 4a, the structure of the coating layer is as follows, the thickness unit is nm, S, T and A represent SiO 2 , Ti 3 O 5 and Al 2 O 3 respectively, and in the examples of 3b to 3e same.
(i) 렌즈 기재: LaF3 유리 소재(i) Lens substrate: LaF 3 glass material
(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) sub-coating layer: STSTSTSTATS (11 layers)
(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70-90; STSTSTST: 3,300 to 3,500; TS: 1,100 to 1,400
(iv) 열 충격 시험: 110 ℃/2시간 방치 (iv) Thermal shock test: 110 ° C / 2 hours left
(v) 내산성 시험: 황산원액/2시간 방치(v) Acid resistance test: sulfuric acid undiluted solution / left for 2 hours
(vi) 투과력이 ㈜카바스 측정 장비에 의하여 시험되었고, 코팅 면을 커터로 긁어 흠집 시험이 되었고, 코팅 면에 흑칠을 한 얼룩 시험이 됨. (vi) The penetrating power was tested by Kavas measuring equipment, and the scratch test was performed by scratching the coated surface with a cutter, and the stain test was performed by applying black lacquer on the coated surface.
도 4a의 (가)를 참조하면, 좌측의 열 충격 및 내산성 시험 결과에서 나타난 것과 같이 본 발명에 따른 코팅 렌즈는 열 충격에 강하면서 높은 내산성을 가진다는 것을 알 수 있다. 또한 커터로 긁는 경우 흠집이 발생되지 않았고, 얼룩이 남지 않는 것으로 확인되었다. 또한 도 4a의 (나)를 참조하면, X축은 파장(wavelength:㎚), Y축은 반사율(Reflectance:%)를 각각 나타낸 것으로, AOI(Automatic Optical Inspection) = 0도(400 내지 700 ㎚: blue) 및 45도(400 내지 700 ㎚)에서 Ravg ≤ 0.8 %, Rabs ≤1.0 %; 및 Ravg ≤ 1.5 %, Rabs ≤2.5%가 된다는 것을 알 수 있다. Referring to (a) of FIG. 4A , as shown in the thermal shock and acid resistance test results on the left, it can be seen that the coated lens according to the present invention has high acid resistance while being resistant to thermal shock. In addition, it was confirmed that scratches did not occur when scratched with a cutter, and no stains were left. Also, referring to (b) of FIG. 4A, the X axis represents the wavelength (nm) and the Y axis represents the reflectance (Reflectance:%), respectively, Automatic Optical Inspection (AOI) = 0 degrees (400 to 700 nm: blue) and Ravg < 0.8%, Rabs < 1.0% at 45 degrees (400-700 nm); And it can be seen that Ravg ≤ 1.5% and Rabs ≤ 2.5%.
도 4b 내지 도 4e의 특성 시험 조건은 각각 아래와 같고, 시험은 도 4a와 동일한 방법으로 이루어졌다. Characteristic test conditions of FIGS. 4B to 4E are as follows, and the test was performed in the same manner as in FIG. 4A.
도 4b: Figure 4b:
(i) 렌즈 기재: Hoya 사의 FC5 렌즈(i) Lens substrate: Hoya's FC5 lens
(ii) 서브 코팅 층: SA1TA2TA3TS(8층)(ii) Sub-coating layer: SA1TA2TA3TS (8 layers)
(iii) 두께(㎚): A3:90~120; A2: 250 내지 280; A1 450 내지 500; TS: 850 내지 1,200; T: 80 내지 100; S: 1,500 내지 2,000(iii) Thickness (nm): A3: 90-120; A2: 250 to 280; A1 450 to 500; TS: 850 to 1,200; T: 80 to 100; S: 1,500 to 2,000
도 4c: Figure 4c:
(i) 렌즈 기재: Hoya 사의 TAFD25 렌즈(i) Lens substrate: Hoya's TAFD25 lens
(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) sub-coating layer: STSTSTSTATS (11 layers)
(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70-90; STSTSTST: 3,300 to 3,500; TS: 1,100 to 1,400
도 4d: Figure 4d:
(i) 렌즈 기재: Hoya 사의 TAC8 렌즈 (i) Lens substrate: Hoya's TAC8 lens
(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) sub-coating layer: STSTSTSTATS (11 layers)
(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70-90; STSTSTST: 3,300 to 3,500; TS: 1,100 to 1,400
도 4e: Figure 4e:
(i) 렌즈 기재: Hoya 사의 FDS18W 렌즈 (i) Lens substrate: Hoya's FDS18W lens
(ii) 서브 코팅 층: STSTSTSTATS(11층)(ii) sub-coating layer: STSTSTSTATS (11 layers)
(iii) 두께(㎚): A: 70~90; STSTSTST: 3,300~3,500; TS: 1,100 내지 1,400(iii) Thickness (nm): A: 70-90; STSTSTST: 3,300 to 3,500; TS: 1,100 to 1,400
도 4b 내지 도 4e를 참조하면, 좌측의 열 충격 및 내산성 시험 결과에서 나타난 것과 같이 본 발명에 따른 코팅 렌즈는 열 충격에 강하면서 높은 내산성을 가진다는 것을 알 수 있다. 또한 커터로 긁는 경우 흠집이 발생되지 않았고, 얼룩이 남지 않는 것으로 확인되었다. 우측의 그래프에서 X축은 파장(wavelength:㎚), Y축은 반사율(Reflectance:%)를 각각 나타낸 것으로, AOI(Automatic Optical Inspection) = 0도(400 내지 700 ㎚: blue) 및 45도(400 내지 700 ㎚)에서 Ravg ≤ 0.8 %, Rabs ≤1.0 %; 및 Ravg ≤ 1.5 %, Rabs ≤2.5%가 된다는 것을 알 수 있다.Referring to Figures 4b to 4e, as shown in the thermal shock and acid resistance test results on the left, it can be seen that the coated lens according to the present invention has high acid resistance while being resistant to thermal shock. In addition, it was confirmed that scratches did not occur when scratched with a cutter, and no stains were left. In the graph on the right, the X axis represents the wavelength (nm) and the Y axis represents the reflectance (Reflectance:%), respectively, AOI (Automatic Optical Inspection) = 0 degree (400 to 700 nm: blue) and 45 degrees (400 to 700 nm) Ravg ≤ 0.8%, Rabs ≤1.0%; And it can be seen that Ravg ≤ 1.5% and Rabs ≤ 2.5%.
각각의 시험에서 서브 코팅 층을 형성하는 SiO2와 Ti3O5의 두께가 조절되었고, SiO2와 서브 코팅 층이 Ti3O5 서브 코팅 층의 두께는 사용 환경에 따라 적절하게 조절될 수 있다. 두께 비율로 SiO2: Ti3O5 =1,000: 50 내지 1,200이 되도록 각각의 서브 코팅 층의 두께가 조절되었다. 시험 결과로부터 알 수 있는 것처럼, 본 발명에 따른 방법에 의하여 제조된 코팅 렌즈는 열 충격, 내산성, 긁힘 또는 얼룩에 대한 저항성이 크고 이로 인하여 가혹한 실외 환경 조건에서 사용될 수 있다는 것을 알 수 있다. 예를 들어 본 발명에 따른 방법에 의하여 제조된 코팅 렌즈는 자동차용 렌즈로 사용될 수 있고, 자율 자동차에 적용되는 감시 카메라용 렌즈로 사용될 수 있지만 이에 제한되지 않는다.In each test, the thickness of SiO 2 and Ti 3 O 5 forming the sub-coating layer was adjusted, and the thickness of the SiO 2 and Ti 3 O 5 sub-coating layer may be appropriately adjusted according to the use environment. . The thickness of each sub-coating layer was adjusted so that the thickness ratio of SiO 2 : Ti 3 O 5 = 1,000: 50 to 1,200. As can be seen from the test results, it can be seen that the coated lens prepared by the method according to the present invention has high resistance to thermal shock, acid resistance, scratches or stains, and therefore can be used in harsh outdoor environmental conditions. For example, the coated lens manufactured by the method according to the present invention can be used as a lens for automobiles and a lens for surveillance cameras applied to autonomous vehicles, but is not limited thereto.
위에서 본 발명은 제시된 실시 예를 참조하여 상세하게 설명이 되었지만 이 분야에서 통상의 지식을 가진 자는 제시된 실시 예를 참조하여 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명은 이와 같은 변형 및 수정 발명에 의하여 제한되지 않으며 다만 아래에 첨부된 청구범위에 의하여 제한된다.Although the present invention has been described in detail with reference to the presented embodiments above, those skilled in the art will be able to make various modifications and variations without departing from the technical spirit of the present invention with reference to the presented embodiments. . The present invention is not limited by these variations and modifications, but is limited only by the claims appended below.
P11: 렌즈 기재 준비
P12: 세척 및 센터링 검사
P13: 표면 닦기
P14: 세척
P15: 코팅 층 형성
P16: 경화
P17: 후처리P11: Preparing the lens substrate P12: Cleaning and centering inspection
P13: Wiping the surface P14: Cleaning
P15: coating layer formation P16: curing
P17: post-processing
Claims (1)
렌즈 기재가 세척이 되는 단계;
세척이 된 렌즈 기재의 표면을 닦는 단계;
진공 증착 방식에 의하여 코팅 층이 형성되는 단계; 및
코팅 층이 경화가 되는 단계를 포함하고,
표면을 닦는 단계는, 아세탈 지그에 형성된 렌즈 기재의 표면 형상에 대응되는 적어도 하나의 문지름(scrubbing) 홈에 준비된 패드 형상 또는 판 형상의 융, 면섬유, 부직포, 천연 섬유 또는 인조 섬유로 만들어진 문지름 소재에 렌즈 표면이 접촉되어 진행되고,
진공 증착 방식에 의하여 형성되는 코팅 층은 Ti3O5, SiO2, MgF2, Al2O3 및 SiO2/Al2O3로 구성된 그룹으로부터 선택된 소재로 형성되는 9 내지 12개의 다수 층으로 이루어지는 것을 특징으로 하는 코팅 렌즈의 제조 방법.preparing a lens substrate;
The step of cleaning the lens substrate;
Wiping the surface of the cleaned lens substrate;
Forming a coating layer by a vacuum deposition method; and
Including the step of curing the coating layer,
The step of wiping the surface is performed on a pad-shaped or plate-shaped scrubbing material made of fluff, cotton fiber, non-woven fabric, natural fiber or artificial fiber prepared in at least one scrubbing groove corresponding to the surface shape of the lens substrate formed in the acetal jig. The lens surface is contacted and progresses,
The coating layer formed by the vacuum deposition method consists of 9 to 12 multiple layers formed of a material selected from the group consisting of Ti 3 O 5 , SiO 2 , MgF 2 , Al 2 O 3 and SiO 2 /Al 2 O 3 Method for manufacturing a coated lens, characterized in that.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230012683A KR20230023682A (en) | 2020-12-10 | 2023-01-31 | A Method for Producing a Coating Lens |
KR1020230159876A KR102719055B1 (en) | 2020-12-10 | 2023-11-17 | A Method for Producing a Coating Lens |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200172186A KR20220082976A (en) | 2020-12-10 | 2020-12-10 | A Method for Producing a Coating Lens |
KR1020230012683A KR20230023682A (en) | 2020-12-10 | 2023-01-31 | A Method for Producing a Coating Lens |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200172186A Division KR20220082976A (en) | 2020-12-10 | 2020-12-10 | A Method for Producing a Coating Lens |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230159876A Division KR102719055B1 (en) | 2020-12-10 | 2023-11-17 | A Method for Producing a Coating Lens |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230023682A true KR20230023682A (en) | 2023-02-17 |
Family
ID=82257892
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200172186A KR20220082976A (en) | 2020-12-10 | 2020-12-10 | A Method for Producing a Coating Lens |
KR1020230012683A KR20230023682A (en) | 2020-12-10 | 2023-01-31 | A Method for Producing a Coating Lens |
KR1020230159876A KR102719055B1 (en) | 2020-12-10 | 2023-11-17 | A Method for Producing a Coating Lens |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200172186A KR20220082976A (en) | 2020-12-10 | 2020-12-10 | A Method for Producing a Coating Lens |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230159876A KR102719055B1 (en) | 2020-12-10 | 2023-11-17 | A Method for Producing a Coating Lens |
Country Status (1)
Country | Link |
---|---|
KR (3) | KR20220082976A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190010221A (en) | 2017-07-21 | 2019-01-30 | 한국광기술원 | Infrared optical lens equipped with ta-C and yttrium oxide thin film |
KR20190020406A (en) | 2017-08-21 | 2019-03-04 | 유흥상 | Sunglasses lens coating Method by vacuum deposition |
KR20190053865A (en) | 2016-09-29 | 2019-05-20 | 에씰로 앙터나시오날 | An optical lens comprising an antireflective coating with polygonal efficiency |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100504246B1 (en) * | 2002-12-13 | 2005-07-28 | 정연철 | Coating method of crystal lens |
KR100564290B1 (en) * | 2003-09-24 | 2006-03-27 | 엠아이엠 세라믹스(주) | Portable container for containing lens coating composition |
KR101104831B1 (en) * | 2010-02-04 | 2012-01-16 | 에코페라 주식회사 | A Optical Coating Method |
KR20130063746A (en) * | 2011-12-07 | 2013-06-17 | 에코페라 주식회사 | Anti-reflection optical coating method |
CN110691995B (en) * | 2017-04-14 | 2021-11-26 | Hoya株式会社 | Optical element and optical film |
-
2020
- 2020-12-10 KR KR1020200172186A patent/KR20220082976A/en not_active Application Discontinuation
-
2023
- 2023-01-31 KR KR1020230012683A patent/KR20230023682A/en not_active Application Discontinuation
- 2023-11-17 KR KR1020230159876A patent/KR102719055B1/en active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190053865A (en) | 2016-09-29 | 2019-05-20 | 에씰로 앙터나시오날 | An optical lens comprising an antireflective coating with polygonal efficiency |
KR20190010221A (en) | 2017-07-21 | 2019-01-30 | 한국광기술원 | Infrared optical lens equipped with ta-C and yttrium oxide thin film |
KR20190020406A (en) | 2017-08-21 | 2019-03-04 | 유흥상 | Sunglasses lens coating Method by vacuum deposition |
Also Published As
Publication number | Publication date |
---|---|
KR20220082976A (en) | 2022-06-20 |
KR20230163965A (en) | 2023-12-01 |
KR102719055B1 (en) | 2024-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Samson | Ophthalmic lens coatings | |
KR101446408B1 (en) | Light polarizing products and method of making same | |
CN111090134B (en) | Chalcogenide glass substrate laser, medium-wave infrared and long-wave infrared composite antireflection film | |
US11553120B2 (en) | Optical element, optical system, and image pickup apparatus | |
US20080217797A1 (en) | Simple micro concave mirror | |
EP3232237B1 (en) | Optical component and method of manufacturing the same | |
KR102104089B1 (en) | Process for manufacturing a polarized optical article and polarized optical article | |
US20110091692A1 (en) | Polarizing coating having improved quality | |
CA1115142A (en) | Process for preparing a lens of synthetic polymer with an antireflective coating | |
US10288772B2 (en) | Optical member and method of manufacturing the same | |
US6645608B2 (en) | Reflection reducing coating | |
KR20230023682A (en) | A Method for Producing a Coating Lens | |
KR102444567B1 (en) | A Coating Lens Having an Enhancing Coating Lens and a Depositing Method for the Same | |
US10371868B2 (en) | Process for the manufacturing of an optical article and optical article | |
CA1320656C (en) | Tintable coatings for glass ophthalmic lenses | |
US20190377104A1 (en) | Lens and lens manufacturing method | |
CN112501557A (en) | Sapphire substrate 1-5 mu m ultra-wideband antireflection film and preparation method thereof | |
CN111562631B (en) | Low-stress high-temperature-resistant resin lens and preparation method thereof | |
CN114249546A (en) | Infrared chalcogenide glass lens coated with carbon-like film and preparation method and application thereof | |
KR102584462B1 (en) | A Method for Producing a Anti Fingerprinting Coating Lens | |
CN219758534U (en) | Anti-reflection anti-fog lens for vehicle lens | |
WO2024225162A1 (en) | Hydrophilic film and optical member | |
WO2024203501A1 (en) | Optical element, lens unit, and camera module | |
ES2354351A1 (en) | Ophthalmic and/or solar lens and corresponding manufacturing procedure. (Machine-translation by Google Translate, not legally binding) | |
JP2024158887A (en) | Hydrophilic film and optical member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |