[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2024203501A1 - Optical element, lens unit, and camera module - Google Patents

Optical element, lens unit, and camera module Download PDF

Info

Publication number
WO2024203501A1
WO2024203501A1 PCT/JP2024/010433 JP2024010433W WO2024203501A1 WO 2024203501 A1 WO2024203501 A1 WO 2024203501A1 JP 2024010433 W JP2024010433 W JP 2024010433W WO 2024203501 A1 WO2024203501 A1 WO 2024203501A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
hard coat
coat layer
optical element
less
Prior art date
Application number
PCT/JP2024/010433
Other languages
French (fr)
Japanese (ja)
Inventor
建 杉本
貴則 加本
昌之 西川
小百合 中川
ティ ジェニファー トレス ダマスコ
明典 山本
政孝 川上
Original Assignee
ニデック株式会社
ニデックインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニデック株式会社, ニデックインスツルメンツ株式会社 filed Critical ニデック株式会社
Publication of WO2024203501A1 publication Critical patent/WO2024203501A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses

Definitions

  • the present invention relates to an optical element, a lens unit, and a camera module.
  • Patent Document 1 describes the use of a plastic lens having an antireflection layer on a hard coat layer covering a plastic lens substrate as a spectacle lens.
  • the antireflection layer is a multilayer film in which a low refractive index film made of silicon dioxide ( SiO2 ) and a high refractive index film made of trisilicon tetranitride ( Si3N4 ) are alternately laminated, and the low refractive index film and the high refractive index film of the antireflection layer are set to specific film thicknesses to improve the durability of the plastic lens.
  • the present invention was made in consideration of the above problems, and its purpose is to provide an optical element, lens unit, and camera module that can improve durability and suppress deterioration of optical characteristics.
  • An exemplary optical element of the present invention is an optical element having an optical axis, and includes a plastic lens, an anti-reflection film disposed on at least one surface side of the plastic lens, and a hard coat layer located between the plastic lens and the anti-reflection film.
  • the thickness of the hard coat layer on the optical axis is 2 ⁇ m or more and 20 ⁇ m or less.
  • An exemplary lens unit of the present invention includes a plurality of lenses and a housing member that houses the plurality of lenses.
  • the plurality of lenses are arranged in order from the opening of the housing member, and the outermost lens of the plurality of lenses that is located on the opening side of the housing member is the optical element described above.
  • An exemplary camera module of the present invention includes the lens unit described above and an image sensor.
  • the exemplary present invention can provide an optical element, lens unit, and camera module that can improve durability and suppress deterioration of optical characteristics.
  • FIG. 1A is a schematic diagram of an example of an optical element according to this embodiment.
  • FIG. 1B is an enlarged view of a portion of FIG. 1A.
  • FIG. 2A is a schematic diagram of a camera module according to the present embodiment.
  • FIG. 2B is an enlarged view of a portion of FIG. 2A.
  • FIG. 3A is a schematic diagram of a camera module according to the present embodiment.
  • FIG. 3B is an enlarged view of a portion of FIG. 3A.
  • FIG. 4A is an exploded view of the camera module according to the present embodiment.
  • FIG. 4B is a schematic diagram of a manufacturing process of the camera module according to this embodiment.
  • FIG. 4C is a schematic diagram showing the camera module according to the present embodiment.
  • the optical element, lens unit, and camera module according to the embodiments of the present invention will be described below with reference to the drawings as appropriate. Note that in the drawings, the same or corresponding parts are given the same reference symbols and the description will not be repeated.
  • the dimensions, shapes, and dimensional relationships between components in the drawings are not necessarily the same as the actual dimensions, shapes, and dimensional relationships between components.
  • the thicknesses of the anti-reflection film, hard coat layer, and plastic lens in the drawings may differ significantly from the actual thicknesses of the anti-reflection film, hard coat layer, and plastic lens.
  • the "thickness" of each part of the optical element refers to the length parallel to the optical axis direction of the optical element.
  • Fig. 1A is a schematic diagram of the optical element 10 according to this embodiment.
  • Fig. 1B is a partially enlarged view of Fig. 1A.
  • the optical element 10 has a curved shape.
  • the optical element 10 has a spherical shape.
  • the optical element 10 has a spherical shape centered on a central axis.
  • the optical element 10 has an optical axis Lx.
  • the optical axis Lx passes through the center of the curved shape of the optical element 10.
  • the optical element 10 has a symmetric structure centered on the optical axis Lx.
  • the optical element 10 has a rotationally symmetric structure centered on the optical axis Lx. Light is incident on the optical element 10 from a direction along the optical axis Lx.
  • the optical element 10 comprises a plastic lens 11, a hard coat layer 12, and an anti-reflection film 13.
  • the plastic lens 11, the hard coat layer 12, and the anti-reflection film 13 are laminated in this order.
  • the plastic lens 11, the hard coat layer 12, and the anti-reflection film 13 are arranged in close contact with each other in this order.
  • the plastic lens 11 transmits light.
  • the plastic lens 11 is transparent.
  • the plastic lens 11 may also be translucent or have light-transmitting properties.
  • the plastic lens 11 is made of resin.
  • the plastic lens 11 may be composed of a single member.
  • the plastic lens 11 includes a resin having a cyclic imide structure as a ring structure.
  • examples of such resins include AZP manufactured by Asahi Kasei Corporation, and RM-104, RM-250, and RM-100-Z manufactured by Nippon Shokubai Co., Ltd.
  • the plastic lens 11 has a curved shape. Typically, the plastic lens 11 has a spherical shape. At least one surface of the plastic lens 11 may be a convex or concave surface. When the plastic lens 11 has a convex or concave surface, the plastic lens 11 functions as a lens (specifically, for example, a biconvex lens, a plano-convex lens, a convex meniscus lens, and a concave meniscus lens).
  • the plastic lens 11 may have a convex surface.
  • the radius of curvature of the plastic lens 11 is 9 mm or more and 16 mm or less.
  • the thermal expansion coefficient of the plastic lens 11 is preferably 60 ppm/K or more and 150 ppm/K or less. This makes it possible to suppress the effects of thermal stress between the plastic lens 11 and the anti-reflection coating 13.
  • the hard coat layer 12 covers the plastic lens 11.
  • the hard coat layer 12 covers one surface of the plastic lens 11 located on the object side in the extension direction of the optical axis Lx.
  • the hard coat layer 12 has a higher hardness than the plastic lens 11.
  • the hard coat layer 12 imparts scratch resistance to the plastic lens 11 and improves adhesion between the plastic lens 11 and the antireflection film 13.
  • the hard coat layer 12 transmits light.
  • the hard coat layer 12 is transparent.
  • the hard coat layer 12 may also be semi-transparent or have light-transmitting properties.
  • the hard coat layer 12 may have a base layer.
  • the base layer includes an organic material layer or an organosilicon compound layer.
  • metal oxide fine particles may be dispersed in the base layer.
  • the elastic modulus of the hard coat layer 12 is preferably 5 GPa or more and 12 GPa or less.
  • the elastic modulus of the hard coat layer 12 is 5 GPa or more, damage to the plastic lens 11 can be suppressed.
  • the elastic modulus of the hard coat layer 12 is 12 GPa or less, the occurrence of cracks in the hard coat layer 12 due to temperature changes can be suppressed.
  • the hard coat layer 12 can be formed by drying the component liquid attached to the surface of the plastic lens 11, and then curing the film of the component liquid with electromagnetic waves such as ultraviolet rays or an electron beam.
  • the component liquid may be heated when drying.
  • the hard coat layer 12 may be formed by a spin coating method.
  • the component liquid of the hard coat layer 12 is discharged onto the plastic lens 11 rotating at a predetermined rotation speed, and the component liquid of the hard coat layer 12 is cured by applying electromagnetic waves such as ultraviolet rays or an electron beam to the component liquid.
  • the hard coat layer 12 may be formed by a dipping method.
  • the plastic lens 11 is immersed in the component liquid of the hard coat layer 12, and then the component liquid of the hard coat layer 12 on the plastic lens 11 rotating at a predetermined rotation speed is cured by applying electromagnetic waves such as ultraviolet rays or an electron beam.
  • the thickness of the hard coat layer 12 varies depending on the distance from the optical axis Lx. Typically, the thickness of the hard coat layer 12 decreases as the distance from the optical axis Lx increases.
  • the anti-reflection film 13 covers the hard coat layer 12.
  • the anti-reflection film 13 covers the air side of the hard coat layer 12.
  • the anti-reflection film 13 suppresses reflection of light incident on the anti-reflection film 13.
  • the anti-reflection film 13 suppresses at least a part of light traveling in a direction incident on the plastic lens 11 from being reflected on the surface side of the plastic lens 11.
  • the anti-reflection film 13 suppresses visible light traveling in a direction incident on the plastic lens 11 from being reflected on the surface side of the plastic lens 11.
  • the anti-reflective film 13 transmits light.
  • the anti-reflective film 13 is transparent.
  • the anti-reflective film 13 may also be semi-transparent or have light-transmitting properties.
  • the thickness of the anti-reflection film 13 is 100 nm or more and 1000 nm or less.
  • the thickness of the anti-reflection film 13 may be 200 nm or more and 900 nm or less, or may be 300 nm or more and 800 nm or less.
  • the thermal expansion coefficient of the anti-reflection coating 13 is preferably 1 ppm/K or more and 10 ppm/K or less. This makes it possible to suppress the effects of thermal stress between the plastic lens 11 and the anti-reflection coating 13.
  • the anti-reflection film 13 may have a laminated film structure. For example, layers with different compositions are laminated in the anti-reflection film 13.
  • the anti-reflection film 13 is made of an inorganic oxide.
  • inorganic oxides in the anti-reflection film 13 include metal oxides such as silicon oxide, titanium oxide, lanthanum titanate, tantalum oxide, and niobium oxide.
  • layers of multiple types of metal oxides are stacked in the anti-reflection film 13.
  • the anti-reflection film 13 has a high refractive index film and a low refractive index film.
  • the anti-reflection film 13 is configured so that the high refractive index film and the low refractive index film are alternately overlapped.
  • the refractive index of a high refractive index film is higher than that of a low refractive index film.
  • the refractive index of a high refractive index film is higher than that of a low refractive index film.
  • the high refractive index film contains trisilicon tetranitride ( Si3N4 ).
  • the low refractive index film contains silicon dioxide ( SiO2 ). In this way, the high refractive index film contains trisilicon tetranitride ( Si3N4 ) and the low refractive index film contains silicon dioxide ( SiO2 ) , thereby improving thermal shock resistance.
  • the high refractive index film is 1.9 or more. In one example, the high refractive index film is 1.9 or more and 2.3 or less.
  • the refractive index of the low refractive index film is 1.5 or more and 1.8 or less. In one example, the refractive index of the low refractive index film is 1.6 or more and 1.75 or less.
  • the thickness of the high refractive index film and the low refractive index film is 5 nm or more and 200 nm or less. This allows the high refractive index film and the low refractive index film to be formed uniformly, and allows multiple high refractive index films and low refractive index films to be arranged in the anti-reflection film 13.
  • the thickness of the high refractive index film and the low refractive index film may be 10 nm or more and 180 nm or less, or may be 20 nm or more and 170 nm or less.
  • the anti-reflection film 13 preferably transmits light in the visible range while reflecting light in the ultraviolet range.
  • the average reflectance of visible light wavelengths is lower than the average reflectance of ultraviolet wavelengths.
  • the difference between the thermal expansion coefficient of the plastic lens 11 and the thermal expansion coefficient of the anti-reflection coating 13 is relatively small.
  • the thermal expansion coefficient of the plastic lens 11 is 60 ppm/K or more and 100 ppm/K or less, and the thermal expansion coefficient of the anti-reflection coating 13 is 5 ppm/K or more and 10 ppm/K or less.
  • the plastic lens 11 has a curved shape.
  • one surface of the plastic lens 11 is curved, and the other surface is flat.
  • the thickness of the plastic lens 11 varies depending on the distance from the optical axis Lx.
  • the thickness of the hard coat layer 12 varies depending on the distance from the optical axis Lx. Typically, the thickness of the hard coat layer 12 is greatest at the center of the optical axis Lx. Also, typically, the thickness of the hard coat layer 12 is smallest at the outer edge.
  • the thickness Lx2 of the outer edge of the hard coat layer 12 is smaller than the thickness Lx1 of the hard coat layer 12 at the optical axis Lx.
  • the difference between the thickness Lx1 of the hard coat layer 12 at the optical axis Lx and the thickness Lx1 of the outer edge of the hard coat layer 12 is relatively small.
  • the difference between the thickness Lx1 of the hard coat layer 12 at the optical axis Lx and the thickness Lx2 of the outer edge of the hard coat layer 12 is preferably 15 ⁇ m or less, and more preferably 6 ⁇ m or less.
  • the anti-reflection film may peel off from the hard coat layer or the hard coat layer may be damaged, resulting in a decrease in the durability of the optical element.
  • the thickness of the hard coat layer on the optical axis Lx is large, optical distortion occurs in the optical element, and the optical characteristics of the optical element may deteriorate. Furthermore, if the thickness of the hard coat layer on the optical axis Lx becomes even larger, the film condition of the hard coat layer becomes non-uniform, and cracks may occur in the hard coat layer.
  • the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 ⁇ m or more, so that even if the optical element 10 is exposed to an outdoor environment, the anti-reflection film 13 can be prevented from peeling off from the hard coat layer 12 or the hard coat layer 12 can be prevented from being damaged and the durability of the optical element 10 can be prevented from decreasing on the optical axis Lx through which a high amount of light transmits.
  • the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 20 ⁇ m or less, so that the optical characteristics of the optical element 10 can be prevented from decreasing on the optical axis Lx through which a high amount of light transmits.
  • the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 ⁇ m or more and 20 ⁇ m or less. Since the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 ⁇ m or more, peeling of the anti-reflection film 13 from the hard coat layer 12 can be suppressed even when light is irradiated onto the optical element 10 on the optical axis Lx through which a high amount of light of the optical element 10 transmits. Furthermore, since the thickness of the hard coat layer 12 on the optical axis Lx is 20 ⁇ m or less, optical distortion can be suppressed and cracks can be suppressed from occurring in the hard coat layer 12.
  • the minimum thickness of the hard coat layer 12 is preferably 2 ⁇ m or more. This makes it possible to prevent the durability of the entire optical element 10 from decreasing.
  • the maximum thickness of the hard coat layer 12 is preferably 20 ⁇ m or less. This makes it possible to prevent the optical properties of the entire optical element 10 from deteriorating.
  • the optical element 10 of this embodiment has relatively little optical distortion and exhibits relatively high durability. For this reason, the optical element 10 is suitable for use in surveillance cameras or vehicle-mounted cameras. Even when the surveillance camera or vehicle-mounted camera is used in an outdoor environment for a long period of time, the optical element 10 can be used continuously.
  • the optical element 10 has an optical axis Lx.
  • the optical element 10 includes a plastic lens 11, a hard coat layer 12, and an anti-reflection film 13.
  • the hard coat layer 12 is located between the plastic lens 11 and the anti-reflection film 13.
  • the anti-reflection film 13 is disposed on at least one surface side of the plastic lens 11.
  • the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 ⁇ m or more and 20 ⁇ m or less.
  • the thickness Lx1 of the hard coat layer 12 on the optical axis Lx 2 ⁇ m or more peeling of the anti-reflection film 13 from the hard coat layer 12 can be suppressed even when ultraviolet light is irradiated on the optical element 10 on the optical axis Lx of the optical element 10.
  • the thickness Lx1 of the hard coat layer 12 on the optical axis Lx 20 ⁇ m or less optical distortion can be suppressed and cracks can be suppressed from occurring in the hard coat layer 12.
  • the minimum thickness of the hard coat layer 12 is 2 ⁇ m or more, and the maximum thickness of the hard coat layer 12 is 20 ⁇ m or less.
  • the minimum thickness of the hard coat layer 12 2 ⁇ m or more, peeling of the anti-reflection film 13 can be suppressed even when light is irradiated onto the optical element 10.
  • the maximum thickness of the hard coat layer 12 20 ⁇ m or less the occurrence of optical distortion can be suppressed, and the occurrence of cracks in the hard coat layer 12 can be suppressed.
  • the elastic modulus of the hard coat layer 12 is 5 GPa or more and 12 GPa or less.
  • the elastic modulus of the hard coat layer 12 is 5 GPa or more, damage to the plastic lens 11 can be suppressed.
  • the elastic modulus of the hard coat layer 12 is 12 GPa or less, cracks caused by thermal stress can be suppressed from occurring in the hard coat layer 12.
  • the thermal expansion coefficient of the plastic lens 11 is 60 ppm/K or more and 150 ppm/K or less. By having the thermal expansion coefficient of the plastic lens 11 be 60 ppm/K or more and 150 ppm/K or less, the effect of thermal stress between the plastic lens 11 and the anti-reflection coating 13 can be reduced.
  • the thermal expansion coefficient of the anti-reflection film 13 is 1 ppm/K or more and 10 ppm/K or less. By having the thermal expansion coefficient of the anti-reflection film 13 be 1 ppm/K or more and 10 ppm/K or less, the effect of thermal stress between the plastic lens 11 and the anti-reflection film 13 can be reduced.
  • the thermal expansion coefficient of the plastic lens 11 is 60 ppm/K or more and 100 ppm/K or less, and the thermal expansion coefficient of the anti-reflective coating 13 is 5 ppm/K or more and 10 ppm/K or less.
  • the thermal expansion coefficient of the plastic lens 11 be 60 ppm/K or more and 100 ppm/K or less, and the thermal expansion coefficient of the anti-reflective coating 13 be 5 ppm/K or more and 10 ppm/K or less, the effect of thermal stress between the plastic lens 11 and the anti-reflective coating 13 can be further reduced.
  • the difference between the thickness Lx1 of the hard coat layer 12 at the optical axis Lx and the thickness Lx2 of the outer edge is 15 ⁇ m or less.
  • the hard coat layer 12 and the anti-reflection film 13 are disposed on one side of the plastic lens 11, but this embodiment is not limited to this.
  • the hard coat layer 12 and the anti-reflection film 13 may be disposed on both sides of the plastic lens 11.
  • Figure 2A is a schematic diagram showing an example of the camera module 200 according to this embodiment
  • Figure 2B is an enlarged portion of Figure 2A.
  • the camera module 200 captures an image of the surroundings.
  • the camera module 200 includes a lens unit 100 and an image sensor 210.
  • the image sensor 210 receives light that passes through the lens unit 100 and captures an image of the surroundings.
  • the lens unit 100 includes a plurality of lenses 110. At least one of the plurality of lenses 110 is an optical element 10.
  • the lenses 110 include a first lens 110a, a second lens 110b, a third lens 110c, a fourth lens 110d, and a fifth lens 110e.
  • the first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are arranged in order from the object side to the image side.
  • the first lens 110a is the optical element 10 described above. That is, the first lens 110a includes the plastic lens 11 described above, the hard coat layer 12, and the anti-reflection film 13.
  • the lens unit 100 further includes a housing member 120, a fixing member 122, a filter 130, and a sealing member 140.
  • the housing member 120 is tubular. Typically, the housing member 120 is cylindrical. Note that the inner peripheral surface of the housing member 120 may be provided with irregularities.
  • the housing member 120 houses a plurality of lenses 110 and filters 130.
  • the housing member 120 is formed from a material that does not transmit light.
  • the housing member 120 is formed from a material that does not transmit visible light and ultraviolet light.
  • the fixing member 122 fixes at least one of the lenses 110 to the housing member 120.
  • the fixing member 122 penetrates the housing member 120 in a direction perpendicular to the optical axis Lx and fixes at least one of the lenses to the housing member 120.
  • the first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are placed in the housing member 120. At least one of the first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e may be arranged so that at least a portion of the lens is exposed from the housing member 120.
  • the first lens 110a is arranged so that at least a portion of the lens is exposed from the housing member 120, and the other second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are arranged within the housing member 120.
  • the diameter of the first lens 110a is larger than the diameters of the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e.
  • the diameter of the fifth lens 110e is larger than the diameters of the second lens 110b, the third lens 110c, and the fourth lens 110d.
  • the fixing member 122 fixes the first lens 110a to the housing member 120.
  • the fixing member 122 presses the edge surface of the first lens 110a to fix the first lens 110a to the housing member 120.
  • the filter 130 is disk-shaped.
  • the filter 130 selectively transmits incident light.
  • the filter 130 selectively transmits light of a specific wavelength from the incident light.
  • the filter 130 is disposed in the housing member 120.
  • the image sensor 210 is disposed outside the lens unit 100.
  • the filter 130 is disposed on the image side relative to the fifth lens 110e.
  • the filter 130 allows the wavelength of light reaching the image sensor 210 to be selected.
  • the image sensor 210 is a photoelectric conversion element that converts irradiated light into an electrical signal.
  • the image sensor 210 is, for example, a CMOS image sensor or a CCD image sensor. However, the image sensor 210 is not limited to these.
  • the image sensor 210 captures an image of a subject formed by the multiple lenses 110. Note that the image sensor 210 may be disposed on the image side relative to the filter 130 (lens unit 100).
  • the first lens 110a is a negative meniscus lens with a convex surface facing the object side.
  • the convex object side surface of the first lens 110a is spherical, and the concave image side surface is aspheric.
  • the second lens 110b, the third lens 110c, the fourth lens 110d and the fifth lens 110e may be made of resin (plastic lenses) or glass.
  • the second lens 110b, the third lens 110c, the fourth lens 110d and the fifth lens 110e may be a biconvex lens, a plano-convex lens, a convex meniscus lens or a concave meniscus lens.
  • the lens unit 100 includes multiple lenses 110, and at least one of the multiple lenses 110 is an optical element 10, thereby suppressing deterioration of the lenses 110 in the lens unit 100.
  • the first lens 110a which includes the above-mentioned plastic lens 11, hard coat layer 12, and anti-reflection film 13, is arranged exposed from the housing member 120, and the remaining lenses (second lens 110b, third lens 110c, fourth lens 110d, and fifth lens 110e) are arranged inside the housing member 120, thereby suppressing deterioration of lenses other than the highly durable first lens 110a.
  • the sealing member 140 deforms between the first lens 110a and the housing member 120 to seal the gap between the first lens 110a and the housing member 120.
  • the sealing member 140 is a ring-shaped elastic body.
  • the sealing member 140 is an O-ring.
  • the lens unit 100 is suitable for use as an on-board lens for capturing images of the surroundings of a vehicle.
  • the lens unit 100 is used as an on-board lens for capturing images of the rear or sides of a vehicle.
  • the lens unit 100 includes the sealing member 140, even if water is splashed onto the lens unit 100 from the outside, the water can be prevented from entering the inside of the lens unit 100 (i.e., the inside of the housing member 120).
  • the first lens 110a is provided with the above-mentioned plastic lens 11, hard coat layer 12, and anti-reflection film 13, so that ultraviolet rays entering the housing member 120 can be effectively suppressed. This makes it possible to suppress deterioration of the lens in the housing member 120.
  • the diameter Ld of the first lens 110a may be 1 mm or more and 100 mm or less, or 2 mm or more and 50 mm or less. In one example, the diameter Ld of the first lens 110a is 13.70 mm or more and 13.75 mm or less.
  • the lens unit 100 includes a plurality of lenses 110 and a housing member 120 that houses the plurality of lenses 110.
  • the plurality of lenses 110 are arranged in order from the opening of the housing member 120.
  • the outermost lens of the plurality of lenses 110 that is located on the opening side of the housing member 120 is the optical element 10 described above. This can improve the weather resistance of the lens unit 100.
  • the camera module 200 includes the lens unit 100 described above and an image sensor 210. This improves the weather resistance of the camera module 200.
  • Figure 3A is a schematic diagram showing an example of the camera module 200 according to this embodiment
  • Figure 3B is an enlarged portion of Figure 3A.
  • the camera module 200 in Figures 3A and 3B has a similar configuration to the camera module 200 described above with reference to Figures 2A and 2B, except that it further includes a light-shielding member 150 instead of the fixing member 122, and therefore duplicated descriptions will be omitted to avoid redundancy.
  • the camera module 200 includes a lens unit 100 and an image sensor 210.
  • the lens unit 100 includes a plurality of lenses 110. At least one of the plurality of lenses 110 is an optical element 10.
  • the lenses 110 include a first lens 110a, a second lens 110b, a third lens 110c, a fourth lens 110d, and a fifth lens 110e.
  • the first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are arranged in order from the object side to the image side.
  • the first lens 110a is the optical element 10 described above. That is, the first lens 110a includes the plastic lens 11 described above, the hard coat layer 12, and the anti-reflection film 13.
  • the lens unit 100 further includes a housing member 120, a filter 130, a sealing member 140, and a light blocking member 150.
  • the housing member 120 is tubular. Typically, the housing member 120 is cylindrical. Note that the inner peripheral surface of the housing member 120 may be provided with irregularities.
  • the housing member 120 houses a plurality of lenses 110 and filters 130.
  • the housing member 120 is formed from a material that does not transmit light.
  • the housing member 120 is formed from a material that does not transmit visible light and ultraviolet light.
  • the light blocking member 150 blocks the first lens 110a.
  • the light blocking member 150 blocks the periphery of the first lens 110a.
  • the light blocking member 150 extends in a direction perpendicular to the optical axis Lx relative to the housing member 120.
  • the light blocking member 150 extends along the periphery of the first lens 110a.
  • the light blocking member 150 prevents the first lens 110a from detaching from the housing member 120.
  • the light blocking member 150 may be a single member together with the housing member 120.
  • the light blocking member 150 covers the periphery of the first lens 110a with a length that is 0.5% to 10% of the diameter of the first lens 110a. Therefore, the effective diameter Ed of the first lens 110a is smaller than the diameter Ld of the first lens 110a.
  • the diameter Ld of the first lens 110a may be 1 mm or more and 100 mm or less, or 2 mm or more and 50 mm or less.
  • the length Sd of the light blocking member 150 along a direction perpendicular to the optical axis Lx may be 0.005 mm or more and 10 mm or less, or 0.01 mm or more and 5 mm or less.
  • the diameter Ld of the first lens 110a is 13.70 mm or more and 13.75 mm or less.
  • the light blocking member 150 covers the periphery of the first lens 110a over a length of 0.1 mm or more and 1.0 mm or less from the outer edge of the first lens 110a. Therefore, the length Sd of the light blocking member 150 along a direction perpendicular to the optical axis Lx is 0.1 mm or more and 1.0 mm or less. Therefore, the effective diameter Ed of the first lens 110a is 11.70 mm or more and 13.55 mm or less.
  • the lens unit 100 includes a light-shielding member 150, which prevents the first lens 110a from detaching from the housing member 120.
  • Figure 4A is an exploded view of the camera module 200 according to this embodiment.
  • Figure 4B is a schematic diagram of the manufacturing process of the camera module 200 according to this embodiment.
  • Figure 4C is a schematic diagram showing the camera module 200 according to this embodiment.
  • the housing member 120 can house a plurality of lenses 110. At least one of the plurality of lenses 110 is an optical element 10.
  • the storage member 120 has a tubular shape. Typically, the storage member 120 has a cylindrical shape.
  • the lenses 110 include a first lens 110a, a second lens 110b, a third lens 110c, a fourth lens 110d, and a fifth lens 110e.
  • the storage member 120 has storage portions capable of storing the first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e, respectively.
  • a protrusion 150a is provided on the outer edge of one side of the housing member 120.
  • the protrusion 150a is formed from the same material as the housing member 120.
  • the protrusion 150a is a single member with the housing member 120.
  • the protrusion 150a extends from the housing member 120 parallel to the optical axis Lx.
  • the multiple lenses 110, the filter 130, and the sealing member 140 are housed in the housing member 120.
  • the first lens 110a, the second lens 110b, the third lens 110c, and the sealing member 140 are inserted into the housing member 120 from one side to the other.
  • the fourth lens 110d, the fifth lens 110e, and the filter 130 are inserted into the housing member 120 from the other side to one side.
  • the filter 130 is located between the multiple lenses 110 and the image sensor 210.
  • the light shielding member 150 is formed by bending the protrusion 150a relative to the housing member 120 in a direction perpendicular to the optical axis Lx.
  • the protrusion 150a is pressed in a heated state, so that it is bent relative to the housing member 120 in a direction perpendicular to the optical axis Lx.
  • the light shielding member 150 shields the first lens 110a, which is the outermost lens.
  • the light shielding member 150 prevents light entering the lens unit 100 from entering the outer edge of the first lens 110a.
  • the light shielding member 150 also prevents the first lens 110a from detaching from the housing member 120.
  • the lens unit 100 further includes a light-shielding member 150 that shields the outer edge of the outermost lens, in addition to the multiple lenses 110, the housing member 120, the filter 130, and the sealing member 140.
  • a light-shielding member 150 that shields the outer edge of the outermost lens, in addition to the multiple lenses 110, the housing member 120, the filter 130, and the sealing member 140.
  • the light-shielding member 150 is a single member together with the housing member 120. This makes it possible to prevent an increase in the number of parts due to the light-shielding member 150, which shields the outer edge of the hard coat layer 12 from light.
  • Example 1 First, the optical element 10 of Example 1 was fabricated.
  • a plastic lens 11 was prepared using RM-104 manufactured by Nippon Shokubai Co., Ltd.
  • the plastic lens 11 was a meniscus lens with the convex surface facing the object side, and the outer diameter of the plastic lens 11 was approximately 14 mm.
  • the surface of the plastic lens 11 was coated with a hard coat layer 12.
  • the hard coat layer 12 was a photocurable resin material made of urethane or the like.
  • the hard coat layer 12 was formed by applying a component liquid of the hard coat layer 12 to the plastic lens 11 by spin coating, heating and drying the film of the component liquid, and then curing the film with electromagnetic waves such as ultraviolet rays or an electron beam.
  • the surface of the hard coat layer 12 was coated with an antireflection film 13.
  • the antireflection film 13 was formed by alternately forming a high refractive index film made of Si3N4 and a low refractive index film made of SiO2 by a sputtering method. In this manner, the optical element 10 of Example 1 was produced.
  • the thickness of the hard coat layer 12 was measured in the optical element 10 of Example 1.
  • the thickness Lx1 of the hard coat layer 12 on the optical axis Lx was 5.4 ⁇ m, while the thickness Lx2 of the outer edge of the hard coat layer 12 was 2.1 ⁇ m.
  • optical property test The optical element 10 of Example 1 was irradiated with fluorescent light from a fluorescent light source and visually inspected for optical distortion.
  • Table 1 shows the thickness of the hard coat layer 12 at the optical axis in the optical element 10 of Example 1, the thickness of the outer edge of the hard coat layer 12, and the results of the optical property test and weather resistance test of the optical element 10.
  • Table 1 shows the thickness of the hard coat layer 12 at the optical axis in the optical element 10 of Example 1, the thickness of the outer edge of the hard coat layer 12, and the results of the optical property test and weather resistance test of the optical element 10.
  • those that show no optical distortion are indicated with an "O” and those that show optical distortion are indicated with an "X”.
  • those that show no peeling of the anti-reflective film or damage to the hard coat layer in visual inspection after the weather resistance test are indicated with an "O”
  • those that show either peeling of the anti-reflective film or damage to the hard coat layer are indicated with an "X”.
  • optical elements 10 of Examples 2 to 3 were fabricated in the same manner as the optical element 10 of Example 1, and the optical elements 10 of Examples 2 to 3 were subjected to optical property tests and weather resistance tests in the same manner as the optical element 10 of Example 1.
  • the optical elements of Comparative Examples 1 to 3 were fabricated, and the optical property tests and weather resistance tests were also performed in the same manner as the optical element 10 of Example 1.
  • Table 1 shows the thickness of the hard coat layer at the optical axis, the thickness of the outer edge of the hard coat layer, and the results of the optical property tests and weather resistance tests for the optical elements of Examples 1 to 3 and Comparative Examples 1 to 3.
  • the thickness of the hard coat layer 12 on the optical axis and the thickness of the outer edge were 8.6 ⁇ m and 2.7 ⁇ m, respectively, and no distortion occurred in the light transmitted through the optical element 10. Furthermore, even after the weather resistance test, no peeling of the anti-reflection film 13 or damage to the hard coat layer 12 was confirmed.
  • the thickness of the hard coat layer 12 at the optical axis and the thickness of the outer edge were 15.8 ⁇ m and 5.2 ⁇ m, respectively, and no distortion occurred in the light transmitted through the optical element 10. Furthermore, even after the weather resistance test, no peeling of the anti-reflection film 13 or damage to the hard coat layer 12 was confirmed.
  • the thickness of the hard coat layer on the optical axis and the thickness of the outer edge were 1.4 ⁇ m and 0.3 ⁇ m, respectively, and no distortion occurred in the light transmitted through the optical element of Comparative Example 1.
  • the weather resistance test either peeling of the anti-reflection film or damage to the hard coat layer occurred.
  • the thickness of the hard coat layer on the optical axis and the thickness of the outer edge were 23.5 ⁇ m and 8.3 ⁇ m, respectively, and distortion occurred in the light transmitted through the optical element of Comparative Example 2.
  • the weather resistance test no peeling of the anti-reflection film or damage to the hard coat layer was confirmed.
  • the thickness of the hard coat layer on the optical axis and the thickness of the outer edge were 33.9 ⁇ m and 10.2 ⁇ m, respectively, and distortion occurred in the light transmitted through the optical element of Comparative Example 3. Furthermore, after the weather resistance test, either peeling of the anti-reflection film or damage to the hard coat layer occurred.
  • optical elements 10 of Examples 1 to 3 there was no optical distortion, and no peeling of the anti-reflection film 13 or damage to the hard coat layer 12 occurred.
  • Comparative Example 1 there was no optical distortion, but either peeling of the anti-reflection film or damage to the hard coat layer occurred.
  • Comparative Example 2 there was no peeling of the anti-reflection film or damage to the hard coat layer, but there was optical distortion.
  • Comparative Example 3 there was optical distortion, and either peeling of the anti-reflection film or damage to the hard coat layer occurred.
  • the present technology may have the following configuration.
  • An optical element having an optical axis, Plastic lenses and An anti-reflection film disposed on at least one surface side of the plastic lens; a hard coat layer located between the plastic lens and the anti-reflection film, The optical element, wherein the hard coat layer has a thickness of 2 ⁇ m or more and 20 ⁇ m or less on the optical axis.
  • the thermal expansion coefficient of the plastic lens is 60 ppm/K or more and 100 ppm/K or less
  • a plurality of lenses a housing member that houses the plurality of lenses, The plurality of lenses are arranged in order from the opening of the housing member, A lens unit, wherein an outermost lens of the plurality of lenses that is located on the opening side of the housing member is an optical element described in any one of (1) to (7).
  • the lens unit described in (8) further includes a light-shielding member that shields the outer edge of the outermost lens.
  • the camera module includes an imaging element.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

This optical element has an optical axis Lx. The optical element comprises a plastic lens, a hard coat layer, and an anti-reflection film. The hard coat layer is positioned between the plastic lens and the anti-reflection film. The anti-reflection film is disposed on at least one surface side of the plastic lens. The thickness of the hard coat layer on the optical axis is 2-20 μm. The minimum thickness of the hard coat layer is 2 μm or more, and the maximum thickness of the hard coat layer is 20 μm or less.

Description

光学素子、レンズユニットおよびカメラモジュールOptical element, lens unit and camera module
 本発明は、光学素子、レンズユニットおよびカメラモジュールに関する。 The present invention relates to an optical element, a lens unit, and a camera module.
 光を透過するプラスチックレンズ基材を保護するために、プラスチックレンズ基材よりも硬いハードコート層でプラスチックレンズ基材を被覆するとともに、ハードコート層の表面に光の反射を防止する反射防止層を設けることが知られている(例えば、特許文献1参照)。 In order to protect the light-transmitting plastic lens substrate, it is known to coat the plastic lens substrate with a hard coat layer that is harder than the plastic lens substrate, and to provide an anti-reflection layer on the surface of the hard coat layer to prevent light reflection (see, for example, Patent Document 1).
 特許文献1には、プラスチックレンズ基材を被覆するハードコート層の上に反射防止層を備えたプラスチックレンズを眼鏡レンズとして用いることが記載されている。特許文献1のプラスチックレンズでは、反射防止層が、二酸化珪素(SiO2)からなる低屈折率膜と、四窒化三珪素(Si34)からなる高屈折率膜とが交互に積層された多層膜であり、反射防止層の低屈折率膜および高屈折率膜を特定の膜厚に設定することにより、プラスチックレンズの耐久品質を向上させている。 Patent Document 1 describes the use of a plastic lens having an antireflection layer on a hard coat layer covering a plastic lens substrate as a spectacle lens. In the plastic lens of Patent Document 1, the antireflection layer is a multilayer film in which a low refractive index film made of silicon dioxide ( SiO2 ) and a high refractive index film made of trisilicon tetranitride ( Si3N4 ) are alternately laminated, and the low refractive index film and the high refractive index film of the antireflection layer are set to specific film thicknesses to improve the durability of the plastic lens.
日本国公開公報:特開2008-76598号公報Japanese Patent Publication: JP 2008-76598 A
 しかしながら、特許文献1のプラスチックレンズでも、周囲環境に起因して反射防止層が剥離したりハードコート層が損傷したりして、光学素子の耐久性が低下するおそれがある。一方で、プラスチックレンズにおいて、ハードコート層が厚くなると、耐久性の低下は抑制できるが、光学的な歪みが生じて光学特性が低下するおそれがある。 However, even with the plastic lens of Patent Document 1, there is a risk that the durability of the optical element will decrease due to the anti-reflection layer peeling off or the hard coat layer being damaged due to the surrounding environment. On the other hand, in a plastic lens, if the hard coat layer becomes thicker, the decrease in durability can be suppressed, but there is a risk that optical distortion will occur and the optical properties will decrease.
 本発明は上記課題に鑑みてなされたものであり、その目的は、耐久性が向上するとともに光学特性の低下を抑制可能な光学素子、レンズユニットおよびカメラモジュールを提供することにある。 The present invention was made in consideration of the above problems, and its purpose is to provide an optical element, lens unit, and camera module that can improve durability and suppress deterioration of optical characteristics.
 本発明の例示的な光学素子は、光軸を有する光学素子であって、プラスチックレンズと、前記プラスチックレンズの少なくとも一方の面側に配置された反射防止膜と、前記プラスチックレンズと前記反射防止膜との間に位置するハードコート層とを備える。前記ハードコート層の前記光軸における厚さは、2μm以上20μm以下である。 An exemplary optical element of the present invention is an optical element having an optical axis, and includes a plastic lens, an anti-reflection film disposed on at least one surface side of the plastic lens, and a hard coat layer located between the plastic lens and the anti-reflection film. The thickness of the hard coat layer on the optical axis is 2 μm or more and 20 μm or less.
 本発明の例示的なレンズユニットは、複数のレンズと、前記複数のレンズを収容する収容部材とを備える。前記複数のレンズは、前記収容部材の開口から順番に配置され、前記複数のレンズのうち前記収容部材の開口側に位置する最外レンズは、上記に記載の光学素子である。 An exemplary lens unit of the present invention includes a plurality of lenses and a housing member that houses the plurality of lenses. The plurality of lenses are arranged in order from the opening of the housing member, and the outermost lens of the plurality of lenses that is located on the opening side of the housing member is the optical element described above.
 本発明の例示的なカメラモジュールは、上記に記載のレンズユニットと、撮像素子とを備える。 An exemplary camera module of the present invention includes the lens unit described above and an image sensor.
 例示的な本発明は、耐久性が向上するとともに光学特性の低下を抑制可能な光学素子、レンズユニットおよびカメラモジュールを提供できる。 The exemplary present invention can provide an optical element, lens unit, and camera module that can improve durability and suppress deterioration of optical characteristics.
図1Aは、本実施形態に係る光学素子の一例の模式図である。FIG. 1A is a schematic diagram of an example of an optical element according to this embodiment. 図1Bは、図1Aの一部拡大図である。FIG. 1B is an enlarged view of a portion of FIG. 1A. 図2Aは、本実施形態に係るカメラモジュールの模式図である。FIG. 2A is a schematic diagram of a camera module according to the present embodiment. 図2Bは、図2Aの一部拡大図である。FIG. 2B is an enlarged view of a portion of FIG. 2A. 図3Aは、本実施形態に係るカメラモジュールの模式図である。FIG. 3A is a schematic diagram of a camera module according to the present embodiment. 図3Bは、図3Aの一部拡大図である。FIG. 3B is an enlarged view of a portion of FIG. 3A. 図4Aは、本実施形態に係るカメラモジュールの分解図である。FIG. 4A is an exploded view of the camera module according to the present embodiment. 図4Bは、本実施形態に係るカメラモジュールの作製過程の模式図である。FIG. 4B is a schematic diagram of a manufacturing process of the camera module according to this embodiment. 図4Cは、本実施形態に係るカメラモジュールを示す模式図である。FIG. 4C is a schematic diagram showing the camera module according to the present embodiment.
 以下、図面を適宜参照しながら本発明の実施形態の光学素子、レンズユニットおよびカメラモジュールを説明する。なお、図中、同一または相当部分には同一の参照符号を付して説明を繰り返さない。図中の寸法、形状および構成要素間の大小関係は、実際の寸法、形状および構成要素間の大小関係とは必ずしも同一ではない。特に、図中の反射防止膜、ハードコート層およびプラスチックレンズの厚さは、実際の反射防止膜、ハードコート層およびプラスチックレンズの厚さと大きく異なることがある。なお、本明細書において、光学素子の各部位の「厚さ」は、光学素子の光軸方向に平行な長さを示す。 The optical element, lens unit, and camera module according to the embodiments of the present invention will be described below with reference to the drawings as appropriate. Note that in the drawings, the same or corresponding parts are given the same reference symbols and the description will not be repeated. The dimensions, shapes, and dimensional relationships between components in the drawings are not necessarily the same as the actual dimensions, shapes, and dimensional relationships between components. In particular, the thicknesses of the anti-reflection film, hard coat layer, and plastic lens in the drawings may differ significantly from the actual thicknesses of the anti-reflection film, hard coat layer, and plastic lens. Note that in this specification, the "thickness" of each part of the optical element refers to the length parallel to the optical axis direction of the optical element.
 以下、図1Aおよび図1Bを参照して、本実施形態に係る光学素子10を説明する。図1Aは、本実施形態に係る光学素子10の模式図である。図1Bは、図1Aの一部拡大図である。 Below, the optical element 10 according to this embodiment will be described with reference to Figs. 1A and 1B. Fig. 1A is a schematic diagram of the optical element 10 according to this embodiment. Fig. 1B is a partially enlarged view of Fig. 1A.
 図1Aおよび図1Bに示すように、光学素子10は、曲面形状を有する。典型的には、光学素子10は、球面形状を有する。光学素子10は、中心軸を中心とした球面形状を有する。 As shown in Figures 1A and 1B, the optical element 10 has a curved shape. Typically, the optical element 10 has a spherical shape. The optical element 10 has a spherical shape centered on a central axis.
 光学素子10は、光軸Lxを有する。光軸Lxは、光学素子10の曲面形状の中心を通過する。光学素子10は、光軸Lxを中心とした対称構造を有する。典型的には、光学素子10は、光軸Lxを中心とした回転対称構造を有する。光学素子10には、光軸Lxに沿った方向から光が入射する。 The optical element 10 has an optical axis Lx. The optical axis Lx passes through the center of the curved shape of the optical element 10. The optical element 10 has a symmetric structure centered on the optical axis Lx. Typically, the optical element 10 has a rotationally symmetric structure centered on the optical axis Lx. Light is incident on the optical element 10 from a direction along the optical axis Lx.
 光学素子10は、プラスチックレンズ11と、ハードコート層12と、反射防止膜13とを備える。プラスチックレンズ11、ハードコート層12および反射防止膜13は、この順番に積層される。典型的には、プラスチックレンズ11、ハードコート層12および反射防止膜13は、この順番に密着して配置される。 The optical element 10 comprises a plastic lens 11, a hard coat layer 12, and an anti-reflection film 13. The plastic lens 11, the hard coat layer 12, and the anti-reflection film 13 are laminated in this order. Typically, the plastic lens 11, the hard coat layer 12, and the anti-reflection film 13 are arranged in close contact with each other in this order.
[プラスチックレンズ11]
 プラスチックレンズ11は、光を透過する。例えば、プラスチックレンズ11は、透明である。また、プラスチックレンズ11は、半透明であってもよく、透光性を有してもよい。
[Plastic Lens 11]
The plastic lens 11 transmits light. For example, the plastic lens 11 is transparent. The plastic lens 11 may also be translucent or have light-transmitting properties.
 典型的には、プラスチックレンズ11は、樹脂製である。プラスチックレンズ11は、単一部材から構成されてもよい。例えば、プラスチックレンズ11は、環構造として環状イミド構造を有する樹脂を含む。このような樹脂の一例として、旭化成株式会社製のAZP、株式会社日本触媒製のRM-104、RM-250、RM-100-Zなどが挙げられる。 Typically, the plastic lens 11 is made of resin. The plastic lens 11 may be composed of a single member. For example, the plastic lens 11 includes a resin having a cyclic imide structure as a ring structure. Examples of such resins include AZP manufactured by Asahi Kasei Corporation, and RM-104, RM-250, and RM-100-Z manufactured by Nippon Shokubai Co., Ltd.
 プラスチックレンズ11は、曲面形状を有する。典型的には、プラスチックレンズ11は、球面形状を有する。なお、プラスチックレンズ11の少なくとも一方の面は、凸面または凹面であってもよい。プラスチックレンズ11が凸面、または凹面を有する場合、プラスチックレンズ11は、レンズ(具体的には、例えば、両凸レンズ、平凸レンズ、凸メニスカスレンズおよび凹メニスカスレンズ)として機能する。 The plastic lens 11 has a curved shape. Typically, the plastic lens 11 has a spherical shape. At least one surface of the plastic lens 11 may be a convex or concave surface. When the plastic lens 11 has a convex or concave surface, the plastic lens 11 functions as a lens (specifically, for example, a biconvex lens, a plano-convex lens, a convex meniscus lens, and a concave meniscus lens).
 プラスチックレンズ11は、凸面を有してもよい。例えば、プラスチックレンズ11の曲率半径は、9mm以上16mm以下である。 The plastic lens 11 may have a convex surface. For example, the radius of curvature of the plastic lens 11 is 9 mm or more and 16 mm or less.
 プラスチックレンズ11の熱膨張係数は、60ppm/K以上150ppm/K以下であることが好ましい。これにより、プラスチックレンズ11と反射防止膜13との間の熱応力の影響を抑制できる。 The thermal expansion coefficient of the plastic lens 11 is preferably 60 ppm/K or more and 150 ppm/K or less. This makes it possible to suppress the effects of thermal stress between the plastic lens 11 and the anti-reflection coating 13.
[ハードコート層12]
 ハードコート層12は、プラスチックレンズ11を被覆する。例えば、ハードコート層12は、プラスチックレンズ11の光軸Lxの延びる方向において物体側に位置する一方側の面を被覆する。ハードコート層12は、プラスチックレンズ11よりも高い硬度を有する。ハードコート層12は、プラスチックレンズ11に耐擦傷性を付与するとともに、プラスチックレンズ11と反射防止膜13との密着性を向上させる。
[Hard coat layer 12]
The hard coat layer 12 covers the plastic lens 11. For example, the hard coat layer 12 covers one surface of the plastic lens 11 located on the object side in the extension direction of the optical axis Lx. The hard coat layer 12 has a higher hardness than the plastic lens 11. The hard coat layer 12 imparts scratch resistance to the plastic lens 11 and improves adhesion between the plastic lens 11 and the antireflection film 13.
 ハードコート層12は、光を透過する。例えば、ハードコート層12は、透明である。また、ハードコート層12は、半透明であってもよく、透光性を有してもよい。 The hard coat layer 12 transmits light. For example, the hard coat layer 12 is transparent. The hard coat layer 12 may also be semi-transparent or have light-transmitting properties.
 ハードコート層12は、ベース層を有してもよい。典型的には、ベース層は、有機材料層または有機ケイ素化合物層を含む。また、ハードコート層12において、ベース層には、金属酸化物微粒子が分散されてもよい。 The hard coat layer 12 may have a base layer. Typically, the base layer includes an organic material layer or an organosilicon compound layer. In addition, in the hard coat layer 12, metal oxide fine particles may be dispersed in the base layer.
 ハードコート層12の弾性率は、5GPa以上12GPa以下であることが好ましい。ハードコート層12の弾性率が5GPa以上であることにより、プラスチックレンズ11が損傷することを抑制できる。また、ハードコート層12の弾性率が12GPa以下であることにより、温度変化に起因してハードコート層12にクラックが発生することを抑制できる。 The elastic modulus of the hard coat layer 12 is preferably 5 GPa or more and 12 GPa or less. When the elastic modulus of the hard coat layer 12 is 5 GPa or more, damage to the plastic lens 11 can be suppressed. Furthermore, when the elastic modulus of the hard coat layer 12 is 12 GPa or less, the occurrence of cracks in the hard coat layer 12 due to temperature changes can be suppressed.
 典型的には、ハードコート層12は、プラスチックレンズ11の表面に付着した成分液を乾燥させた後、紫外線等の電磁波または電子ビームで成分液の膜を硬化させることによって形成できる。なお、成分液を乾燥させる際に、成分液を加熱してもよい。 Typically, the hard coat layer 12 can be formed by drying the component liquid attached to the surface of the plastic lens 11, and then curing the film of the component liquid with electromagnetic waves such as ultraviolet rays or an electron beam. The component liquid may be heated when drying.
 一例では、ハードコート層12は、スピンコート法によって形成してもよい。この場合、所定の回転速度で回転するプラスチックレンズ11上に、ハードコート層12の成分液を吐出し、ハードコート層12の成分液に対して、紫外線等の電磁波または電子ビームで成分液を硬化させて形成する。 In one example, the hard coat layer 12 may be formed by a spin coating method. In this case, the component liquid of the hard coat layer 12 is discharged onto the plastic lens 11 rotating at a predetermined rotation speed, and the component liquid of the hard coat layer 12 is cured by applying electromagnetic waves such as ultraviolet rays or an electron beam to the component liquid.
 あるいは、ハードコート層12は、ディッピング法によって形成してもよい。この場合、プラスチックレンズ11をハードコート層12の成分液に浸漬させた後、所定の回転速度で回転するプラスチックレンズ11上のハードコート層12の成分液に対して、紫外線等の電磁波または電子ビームで成分液を硬化させて形成する。 Alternatively, the hard coat layer 12 may be formed by a dipping method. In this case, the plastic lens 11 is immersed in the component liquid of the hard coat layer 12, and then the component liquid of the hard coat layer 12 on the plastic lens 11 rotating at a predetermined rotation speed is cured by applying electromagnetic waves such as ultraviolet rays or an electron beam.
 なお、プラスチックレンズ11を回転させながらプラスチックレンズ11の表面にハードコート層12を形成する場合、ハードコート層12の厚さは、光軸Lxからの距離に応じて異なる。典型的には、ハードコート層12の厚さは、光軸Lxからの距離が大きくなるにつれて小さくなる。 When the hard coat layer 12 is formed on the surface of the plastic lens 11 while rotating the plastic lens 11, the thickness of the hard coat layer 12 varies depending on the distance from the optical axis Lx. Typically, the thickness of the hard coat layer 12 decreases as the distance from the optical axis Lx increases.
[反射防止膜13]
 反射防止膜13は、ハードコート層12を被覆する。例えば、反射防止膜13は、ハードコート層12の空気側を被覆する。反射防止膜13は、反射防止膜13に入射する光が反射することを抑制する。反射防止膜13により、プラスチックレンズ11に入射する方向に進行する光の少なくとも一部がプラスチックレンズ11の表面側で反射することが抑制される。例えば、反射防止膜13により、プラスチックレンズ11に入射する方向に進行する可視光がプラスチックレンズ11の表面側で反射することが抑制される。
[Anti-reflection film 13]
The anti-reflection film 13 covers the hard coat layer 12. For example, the anti-reflection film 13 covers the air side of the hard coat layer 12. The anti-reflection film 13 suppresses reflection of light incident on the anti-reflection film 13. The anti-reflection film 13 suppresses at least a part of light traveling in a direction incident on the plastic lens 11 from being reflected on the surface side of the plastic lens 11. For example, the anti-reflection film 13 suppresses visible light traveling in a direction incident on the plastic lens 11 from being reflected on the surface side of the plastic lens 11.
 反射防止膜13は、光を透過する。例えば、反射防止膜13は、透明である。また、反射防止膜13は、半透明であってもよく、透光性を有してもよい。 The anti-reflective film 13 transmits light. For example, the anti-reflective film 13 is transparent. The anti-reflective film 13 may also be semi-transparent or have light-transmitting properties.
 反射防止膜13の厚さは、100nm以上1000nm以下である。反射防止膜13の厚さは、200nm以上900nm以下であってもよく、300nm以上800nm以下であってもよい。 The thickness of the anti-reflection film 13 is 100 nm or more and 1000 nm or less. The thickness of the anti-reflection film 13 may be 200 nm or more and 900 nm or less, or may be 300 nm or more and 800 nm or less.
 反射防止膜13の熱膨張係数は、1ppm/K以上10ppm/K以下であることが好ましい。これにより、プラスチックレンズ11と反射防止膜13との間の熱応力の影響を抑制できる。 The thermal expansion coefficient of the anti-reflection coating 13 is preferably 1 ppm/K or more and 10 ppm/K or less. This makes it possible to suppress the effects of thermal stress between the plastic lens 11 and the anti-reflection coating 13.
 反射防止膜13は、積膜構造を有してもよい。例えば、反射防止膜13において、組成の異なる層が積層される。 The anti-reflection film 13 may have a laminated film structure. For example, layers with different compositions are laminated in the anti-reflection film 13.
 例えば、反射防止膜13は、無機酸化物からなる。反射防止膜13において、無機酸化物として、例えば、酸化ケイ素、酸化チタン、チタン酸ランタン、酸化タンタル、酸化ニオブ等の金属酸化物等が挙げられる。例えば、反射防止膜13において、複数種類の金属酸化物の層が積層される。 For example, the anti-reflection film 13 is made of an inorganic oxide. Examples of inorganic oxides in the anti-reflection film 13 include metal oxides such as silicon oxide, titanium oxide, lanthanum titanate, tantalum oxide, and niobium oxide. For example, layers of multiple types of metal oxides are stacked in the anti-reflection film 13.
 例えば、反射防止膜13は、高屈折率膜と、低屈折率膜とを有する。反射防止膜13は、高屈折率膜と低屈折率膜とが交互に重なるように構成される。 For example, the anti-reflection film 13 has a high refractive index film and a low refractive index film. The anti-reflection film 13 is configured so that the high refractive index film and the low refractive index film are alternately overlapped.
 高屈折率膜の屈折率は、低屈折率膜の屈折率よりも高い。典型的には、可視域において、高屈折率膜の屈折率は、低屈折率膜の屈折率よりも高い。 The refractive index of a high refractive index film is higher than that of a low refractive index film. Typically, in the visible range, the refractive index of a high refractive index film is higher than that of a low refractive index film.
 高屈折率膜は、四窒化三珪素(Si34)を含む。低屈折率膜は、二酸化珪素(SiO2)を含む。このように、高屈折率膜が四窒化三珪素(Si34)を含み、低屈折率膜が二酸化珪素(SiO2)を含むことにより、耐熱衝撃性を向上できる。 The high refractive index film contains trisilicon tetranitride ( Si3N4 ). The low refractive index film contains silicon dioxide ( SiO2 ). In this way, the high refractive index film contains trisilicon tetranitride ( Si3N4 ) and the low refractive index film contains silicon dioxide ( SiO2 ) , thereby improving thermal shock resistance.
 例えば、高屈折率膜は、1.9以上である。一例では、高屈折率膜は、1.9以上2.3以下である。 For example, the high refractive index film is 1.9 or more. In one example, the high refractive index film is 1.9 or more and 2.3 or less.
 例えば、低屈折率膜の屈折率は、1.5以上1.8以下である。一例では、低屈折率膜の屈折率は、1.6以上1.75以下である。 For example, the refractive index of the low refractive index film is 1.5 or more and 1.8 or less. In one example, the refractive index of the low refractive index film is 1.6 or more and 1.75 or less.
 高屈折率膜および低屈折率膜の厚さは、5nm以上200nm以下である。これにより、高屈折率膜および低屈折率膜を均一に形成できるとともに、反射防止膜13において複数の高屈折率膜および低屈折率膜を配置できる。高屈折率膜および低屈折率膜の厚さは、10nm以上180nm以下であってもよく、20nm以上170nm以下であってもよい。 The thickness of the high refractive index film and the low refractive index film is 5 nm or more and 200 nm or less. This allows the high refractive index film and the low refractive index film to be formed uniformly, and allows multiple high refractive index films and low refractive index films to be arranged in the anti-reflection film 13. The thickness of the high refractive index film and the low refractive index film may be 10 nm or more and 180 nm or less, or may be 20 nm or more and 170 nm or less.
 反射防止膜13は、可視域の光を透過する一方で、紫外域の光を反射することが好ましい。反射防止膜13において、可視光波長の平均反射率は、紫外線波長の平均反射率よりも低いことが好ましい。 The anti-reflection film 13 preferably transmits light in the visible range while reflecting light in the ultraviolet range. In the anti-reflection film 13, it is preferable that the average reflectance of visible light wavelengths is lower than the average reflectance of ultraviolet wavelengths.
 なお、プラスチックレンズ11と反射防止膜13との間の熱応力の影響をさらに抑制する観点から、プラスチックレンズ11の熱膨張係数と反射防止膜13の熱膨張係数との差は比較的小さいことが好ましい。例えば、プラスチックレンズ11の熱膨張係数が60ppm/K以上100ppm/K以下であり、反射防止膜13の熱膨張係数が5ppm/K以上10ppm/K以下であることが好ましい。 In addition, from the viewpoint of further suppressing the effect of thermal stress between the plastic lens 11 and the anti-reflection coating 13, it is preferable that the difference between the thermal expansion coefficient of the plastic lens 11 and the thermal expansion coefficient of the anti-reflection coating 13 is relatively small. For example, it is preferable that the thermal expansion coefficient of the plastic lens 11 is 60 ppm/K or more and 100 ppm/K or less, and the thermal expansion coefficient of the anti-reflection coating 13 is 5 ppm/K or more and 10 ppm/K or less.
 図1Bに示すように、プラスチックレンズ11は、曲面形状を有する。ここでは、プラスチックレンズ11の一方側の面は曲面であり、他方側の面は平面である。プラスチックレンズ11の厚さは、光軸Lxからの距離に応じて異なる。 As shown in FIG. 1B, the plastic lens 11 has a curved shape. Here, one surface of the plastic lens 11 is curved, and the other surface is flat. The thickness of the plastic lens 11 varies depending on the distance from the optical axis Lx.
 ハードコート層12の厚さは、光軸Lxからの距離に応じて異なる。典型的には、ハードコート層12の厚さは、中心となる光軸Lxにおいて最も大きい。また、典型的には、ハードコート層12の厚さは、外縁において最も小さい。 The thickness of the hard coat layer 12 varies depending on the distance from the optical axis Lx. Typically, the thickness of the hard coat layer 12 is greatest at the center of the optical axis Lx. Also, typically, the thickness of the hard coat layer 12 is smallest at the outer edge.
 典型的には、ハードコート層12の外縁の厚さLx2は、ハードコート層12の光軸Lxにおける厚さLx1よりも小さい。ただし、ハードコート層12の光軸Lxにおける厚さLx1とハードコート層12の外縁の厚さLx1との差は、比較的小さいことが好ましい。例えば、ハードコート層12の光軸Lxにおける厚さLx1とハードコート層12の外縁の厚さLx2との差は、15μm以下であることが好ましく、6μm以下であることが好ましい。 Typically, the thickness Lx2 of the outer edge of the hard coat layer 12 is smaller than the thickness Lx1 of the hard coat layer 12 at the optical axis Lx. However, it is preferable that the difference between the thickness Lx1 of the hard coat layer 12 at the optical axis Lx and the thickness Lx1 of the outer edge of the hard coat layer 12 is relatively small. For example, the difference between the thickness Lx1 of the hard coat layer 12 at the optical axis Lx and the thickness Lx2 of the outer edge of the hard coat layer 12 is preferably 15 μm or less, and more preferably 6 μm or less.
 ハードコート層の光軸Lxにおける厚さが小さいと、光学素子を屋外環境下に曝し、ハードコート層と反射防止膜との界面の密着性が低下した場合、反射防止膜がハードコート層から剥離したりハードコート層が損傷して光学素子の耐久性が低下することがある。 If the thickness of the hard coat layer on the optical axis Lx is small, when the optical element is exposed to an outdoor environment and the adhesion at the interface between the hard coat layer and the anti-reflection film decreases, the anti-reflection film may peel off from the hard coat layer or the hard coat layer may be damaged, resulting in a decrease in the durability of the optical element.
 一方で、ハードコート層の光軸Lxにおける厚さが大きいと、光学素子において光学的な歪みが生じ、光学素子の光学特性が低下することがある。また、ハードコート層の光軸Lxにおける厚さがさらに大きくなると、ハードコート層の膜状態が不均一となり、ハードコート層にクラックが発生することがある。 On the other hand, if the thickness of the hard coat layer on the optical axis Lx is large, optical distortion occurs in the optical element, and the optical characteristics of the optical element may deteriorate. Furthermore, if the thickness of the hard coat layer on the optical axis Lx becomes even larger, the film condition of the hard coat layer becomes non-uniform, and cracks may occur in the hard coat layer.
 本実施形態の光学素子10において、ハードコート層12の光軸Lxにおける厚さLx1が2μm以上であることにより、光学素子10を屋外環境下に曝しても、高光量の光が透過する光軸Lxにおいて反射防止膜13がハードコート層12から剥離したりハードコート層12が損傷して光学素子10の耐久性が低下することを抑制できる。また、本実施形態の光学素子10において、ハードコート層12の光軸Lxにおける厚さLx1が20μm以下であることにより、高光量の光が透過する光軸Lxにおいて光学素子10の光学特性が低下することを抑制できる。 In the optical element 10 of this embodiment, the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 μm or more, so that even if the optical element 10 is exposed to an outdoor environment, the anti-reflection film 13 can be prevented from peeling off from the hard coat layer 12 or the hard coat layer 12 can be prevented from being damaged and the durability of the optical element 10 can be prevented from decreasing on the optical axis Lx through which a high amount of light transmits. In addition, in the optical element 10 of this embodiment, the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 20 μm or less, so that the optical characteristics of the optical element 10 can be prevented from decreasing on the optical axis Lx through which a high amount of light transmits.
 本実施形態の光学素子10は、ハードコート層12の光軸Lxにおける厚さLx1は、2μm以上20μm以下である。ハードコート層12おいて光軸Lxにおける厚さLx1が2μm以上であることにより、光学素子10の高光量の光が透過する光軸Lxにおいて、光学素子10に光が照射されてもハードコート層12から反射防止膜13が剥離することを抑制できる。また、ハードコート層12の光軸Lxにおける厚さが20μm以下であることにより、光学的な歪みの発生を抑制できるとともに、ハードコート層12にクラックが発生することを抑制できる。 In the optical element 10 of this embodiment, the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 μm or more and 20 μm or less. Since the thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 μm or more, peeling of the anti-reflection film 13 from the hard coat layer 12 can be suppressed even when light is irradiated onto the optical element 10 on the optical axis Lx through which a high amount of light of the optical element 10 transmits. Furthermore, since the thickness of the hard coat layer 12 on the optical axis Lx is 20 μm or less, optical distortion can be suppressed and cracks can be suppressed from occurring in the hard coat layer 12.
 なお、ハードコート層12の最小厚さは、2μm以上であることが好ましい。これにより、光学素子10全体の耐久性が低下することを抑制できる。 The minimum thickness of the hard coat layer 12 is preferably 2 μm or more. This makes it possible to prevent the durability of the entire optical element 10 from decreasing.
 また、ハードコート層12の最大厚さは、20μm以下であることが好ましい。これにより、光学素子10全体の光学特性が低下することを抑制できる。 The maximum thickness of the hard coat layer 12 is preferably 20 μm or less. This makes it possible to prevent the optical properties of the entire optical element 10 from deteriorating.
 本実施形態の光学素子10は、光学的な歪みが比較的少なく、比較的高い耐久性を示す。このため、光学素子10は、監視カメラまたは車載カメラに好適に用いられる。監視カメラまたは車載カメラが屋外環境下で長時間にわたって用いられる場合でも、光学素子10を継続して使用できる。 The optical element 10 of this embodiment has relatively little optical distortion and exhibits relatively high durability. For this reason, the optical element 10 is suitable for use in surveillance cameras or vehicle-mounted cameras. Even when the surveillance camera or vehicle-mounted camera is used in an outdoor environment for a long period of time, the optical element 10 can be used continuously.
 本実施形態において、光学素子10は、光軸Lxを有する。光学素子10は、プラスチックレンズ11と、ハードコート層12と、反射防止膜13とを備える。ハードコート層12は、プラスチックレンズ11と反射防止膜13との間に位置する。反射防止膜13は、プラスチックレンズ11の少なくとも一方の面側に配置される。ハードコート層12の光軸Lxにおける厚さLx1は、2μm以上20μm以下である。 In this embodiment, the optical element 10 has an optical axis Lx. The optical element 10 includes a plastic lens 11, a hard coat layer 12, and an anti-reflection film 13. The hard coat layer 12 is located between the plastic lens 11 and the anti-reflection film 13. The anti-reflection film 13 is disposed on at least one surface side of the plastic lens 11. The thickness Lx1 of the hard coat layer 12 on the optical axis Lx is 2 μm or more and 20 μm or less.
 ハードコート層12の光軸Lxにおける厚さLx1が2μm以上であることにより、光学素子10の光軸Lxにおいて、光学素子10に紫外線が照射されてもハードコート層12から反射防止膜13が剥離することを抑制できる。また、ハードコート層12の光軸Lxにおける厚さLx1が20μm以下であることにより、光学的な歪みの発生を抑制できるとともに、ハードコート層12にクラックが発生することを抑制できる。 By making the thickness Lx1 of the hard coat layer 12 on the optical axis Lx 2 μm or more, peeling of the anti-reflection film 13 from the hard coat layer 12 can be suppressed even when ultraviolet light is irradiated on the optical element 10 on the optical axis Lx of the optical element 10. In addition, by making the thickness Lx1 of the hard coat layer 12 on the optical axis Lx 20 μm or less, optical distortion can be suppressed and cracks can be suppressed from occurring in the hard coat layer 12.
 一般に、光学素子を屋外環境下において紫外線が照射されると、ハードコート層の表面において劣化が起こりハードコート層と反射防止膜との界面の密着性が低下することがある。これに対して、ハードコート層12の光軸Lxにおける厚さLx1が2μm以上であることにより、光学素子10に光が照射されてもハードコート層12から反射防止膜13の剥離およびハードコート層12の損失を抑制できる。これにより、耐候性が優れ、かつ、光学特性の低下が抑制された光学素子10を提供できる。 Generally, when an optical element is exposed to ultraviolet light in an outdoor environment, degradation occurs on the surface of the hard coat layer, and adhesion at the interface between the hard coat layer and the anti-reflection film can decrease. In contrast, by making the thickness Lx1 of the hard coat layer 12 on the optical axis Lx 2 μm or more, peeling of the anti-reflection film 13 from the hard coat layer 12 and loss of the hard coat layer 12 can be suppressed even when the optical element 10 is irradiated with light. This makes it possible to provide an optical element 10 that has excellent weather resistance and suppresses deterioration of optical properties.
 ハードコート層12の最小厚さは、2μm以上であり、ハードコート層12の最大厚さは、20μm以下である。ハードコート層12の最小厚さが2μm以上であることにより、光学素子10に光が照射されても反射防止膜13が剥離することを抑制できる。また、ハードコート層12の最大厚さが20μm以下であることにより、光学的な歪みの発生を抑制できるとともに、ハードコート層12にクラックが発生することを抑制できる。 The minimum thickness of the hard coat layer 12 is 2 μm or more, and the maximum thickness of the hard coat layer 12 is 20 μm or less. By making the minimum thickness of the hard coat layer 12 2 μm or more, peeling of the anti-reflection film 13 can be suppressed even when light is irradiated onto the optical element 10. Furthermore, by making the maximum thickness of the hard coat layer 12 20 μm or less, the occurrence of optical distortion can be suppressed, and the occurrence of cracks in the hard coat layer 12 can be suppressed.
 ハードコート層12の弾性率は、5GPa以上12GPa以下である。ハードコート層12の弾性率が5GPa以上であることにより、プラスチックレンズ11が傷つくことを抑制できる。また、ハードコート層12の弾性率が12GPa以下であることにより、熱応力に起因してハードコート層12にクラックが発生することを抑制できる。 The elastic modulus of the hard coat layer 12 is 5 GPa or more and 12 GPa or less. When the elastic modulus of the hard coat layer 12 is 5 GPa or more, damage to the plastic lens 11 can be suppressed. Furthermore, when the elastic modulus of the hard coat layer 12 is 12 GPa or less, cracks caused by thermal stress can be suppressed from occurring in the hard coat layer 12.
 プラスチックレンズ11の熱膨張係数は、60ppm/K以上150ppm/K以下である。プラスチックレンズ11の熱膨張係数が60ppm/K以上150ppm/Kであることにより、プラスチックレンズ11と反射防止膜13との間の熱応力の影響を低減できる。 The thermal expansion coefficient of the plastic lens 11 is 60 ppm/K or more and 150 ppm/K or less. By having the thermal expansion coefficient of the plastic lens 11 be 60 ppm/K or more and 150 ppm/K or less, the effect of thermal stress between the plastic lens 11 and the anti-reflection coating 13 can be reduced.
 反射防止膜13の熱膨張係数は、1ppm/K以上10ppm/K以下である。反射防止膜13の熱膨張係数が1ppm/K以上10ppm/K以下であることにより、プラスチックレンズ11と反射防止膜13との間の熱応力の影響を低減できる。 The thermal expansion coefficient of the anti-reflection film 13 is 1 ppm/K or more and 10 ppm/K or less. By having the thermal expansion coefficient of the anti-reflection film 13 be 1 ppm/K or more and 10 ppm/K or less, the effect of thermal stress between the plastic lens 11 and the anti-reflection film 13 can be reduced.
 プラスチックレンズ11の熱膨張係数は、60ppm/K以上100ppm/K以下であり、反射防止膜13の熱膨張係数は、5ppm/K以上10ppm/K以下である。プラスチックレンズ11の熱膨張係数は、60ppm/K以上100ppm/K以下であり、反射防止膜13の熱膨張係数が5ppm/K以上10ppm/K以下であることにより、プラスチックレンズ11と反射防止膜13との間の熱応力の影響をさらに低減できる。 The thermal expansion coefficient of the plastic lens 11 is 60 ppm/K or more and 100 ppm/K or less, and the thermal expansion coefficient of the anti-reflective coating 13 is 5 ppm/K or more and 10 ppm/K or less. By having the thermal expansion coefficient of the plastic lens 11 be 60 ppm/K or more and 100 ppm/K or less, and the thermal expansion coefficient of the anti-reflective coating 13 be 5 ppm/K or more and 10 ppm/K or less, the effect of thermal stress between the plastic lens 11 and the anti-reflective coating 13 can be further reduced.
 ハードコート層12の光軸Lxにおける厚さLx1と外縁の厚さLx2との差は、15μm以下である。ハードコート層12の光軸Lxにおける厚さLx1と外縁の厚さLx2との差が15μm以下であることにより、プラスチックレンズ11の表面にハードコート層12の成分液を所定の速度で回転させながら比較的薄いハードコート層12を好適に形成できる。 The difference between the thickness Lx1 of the hard coat layer 12 at the optical axis Lx and the thickness Lx2 of the outer edge is 15 μm or less. By making the difference between the thickness Lx1 of the hard coat layer 12 at the optical axis Lx and the thickness Lx2 of the outer edge 15 μm or less, a relatively thin hard coat layer 12 can be suitably formed on the surface of the plastic lens 11 while rotating the component liquid of the hard coat layer 12 at a predetermined speed.
 なお、図1Aおよび図1Bに示した光学素子10では、プラスチックレンズ11の一方の面側に、ハードコート層12および反射防止膜13が配置されたが、本実施形態はこれに限定されない。プラスチックレンズ11の両面側に、ハードコート層12および反射防止膜13が配置されてもよい。 In the optical element 10 shown in Figures 1A and 1B, the hard coat layer 12 and the anti-reflection film 13 are disposed on one side of the plastic lens 11, but this embodiment is not limited to this. The hard coat layer 12 and the anti-reflection film 13 may be disposed on both sides of the plastic lens 11.
 次に、図1A、図1B、図2Aおよび図2Bを参照して本実施形態に係るカメラモジュール200を説明する。図2Aは、本実施形態に係るカメラモジュール200の一例を示す模式図であり、図2Bは、図2Aの一部拡大部である。カメラモジュール200は、周囲を撮像する。 Next, the camera module 200 according to this embodiment will be described with reference to Figures 1A, 1B, 2A, and 2B. Figure 2A is a schematic diagram showing an example of the camera module 200 according to this embodiment, and Figure 2B is an enlarged portion of Figure 2A. The camera module 200 captures an image of the surroundings.
 図2Aに示すように、カメラモジュール200は、レンズユニット100と、撮像素子210とを備える。撮像素子210は、レンズユニット100を透過する光を受光して周囲を撮像する。 As shown in FIG. 2A, the camera module 200 includes a lens unit 100 and an image sensor 210. The image sensor 210 receives light that passes through the lens unit 100 and captures an image of the surroundings.
 レンズユニット100は、複数のレンズ110を備える。複数のレンズ110のうちの少なくとも1つのレンズは、光学素子10である。 The lens unit 100 includes a plurality of lenses 110. At least one of the plurality of lenses 110 is an optical element 10.
 複数のレンズ110は、第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eを含む。第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eは、物体側から像側に向かって順に配置されている。 The lenses 110 include a first lens 110a, a second lens 110b, a third lens 110c, a fourth lens 110d, and a fifth lens 110e. The first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are arranged in order from the object side to the image side.
 例えば、第1レンズ110aは、上述した光学素子10である。すなわち、第1レンズ110aは、上述したプラスチックレンズ11と、ハードコート層12と、反射防止膜13とを備える。 For example, the first lens 110a is the optical element 10 described above. That is, the first lens 110a includes the plastic lens 11 described above, the hard coat layer 12, and the anti-reflection film 13.
 レンズユニット100は、収容部材120と、固定部材122と、フィルタ130と、封止部材140とをさらに備える。収容部材120は、筒状である。典型的には、収容部材120は、円筒状である。なお、収容部材120の内周面には凹凸が設けられてもよい。 The lens unit 100 further includes a housing member 120, a fixing member 122, a filter 130, and a sealing member 140. The housing member 120 is tubular. Typically, the housing member 120 is cylindrical. Note that the inner peripheral surface of the housing member 120 may be provided with irregularities.
 収容部材120は、複数のレンズ110およびフィルタ130を収容する。収容部材120は、光を透過しない部材から形成される。例えば、収容部材120は、可視光および紫外線を透過しない部材から形成される。 The housing member 120 houses a plurality of lenses 110 and filters 130. The housing member 120 is formed from a material that does not transmit light. For example, the housing member 120 is formed from a material that does not transmit visible light and ultraviolet light.
 固定部材122は、複数のレンズ110のうちの少なくとも1つのレンズを収容部材120に固定する。固定部材122は、光軸Lxに対して直交する方向に収容部材120を貫通して少なくとも1つのレンズを収容部材120に固定する。 The fixing member 122 fixes at least one of the lenses 110 to the housing member 120. The fixing member 122 penetrates the housing member 120 in a direction perpendicular to the optical axis Lx and fixes at least one of the lenses to the housing member 120.
 第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eは、収容部材120に設置される。第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eの少なくとも1つのレンズの少なくとも一部が収容部材120から露出して配置されてもよい。例えば、第1レンズ110aは、少なくとも一部が収容部材120から露出して配置され、他の第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eは、収容部材120内に配置される。 The first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are placed in the housing member 120. At least one of the first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e may be arranged so that at least a portion of the lens is exposed from the housing member 120. For example, the first lens 110a is arranged so that at least a portion of the lens is exposed from the housing member 120, and the other second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are arranged within the housing member 120.
 ここでは、第1レンズ110aの直径は、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eのそれぞれの直径よりも大きい。また、第5レンズ110eの直径は、第2レンズ110b、第3レンズ110cおよび第4レンズ110dのそれぞれの直径よりも大きい。 Here, the diameter of the first lens 110a is larger than the diameters of the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e. Also, the diameter of the fifth lens 110e is larger than the diameters of the second lens 110b, the third lens 110c, and the fourth lens 110d.
 固定部材122は、第1レンズ110aを収容部材120に固定する。固定部材122は、第1レンズ110aのコバ面を押圧して第1レンズ110aを収容部材120に固定する。 The fixing member 122 fixes the first lens 110a to the housing member 120. The fixing member 122 presses the edge surface of the first lens 110a to fix the first lens 110a to the housing member 120.
 フィルタ130は、円盤状である。フィルタ130は、入射する光を選択的に透過する。例えば、フィルタ130は、入射する光のうちの特定の波長の光を選択的に透過する。ここでは、フィルタ130は、収容部材120に配置される。例えば、図2Aに示すように、撮像素子210は、レンズユニット100の外に配置される。 The filter 130 is disk-shaped. The filter 130 selectively transmits incident light. For example, the filter 130 selectively transmits light of a specific wavelength from the incident light. Here, the filter 130 is disposed in the housing member 120. For example, as shown in FIG. 2A, the image sensor 210 is disposed outside the lens unit 100.
 フィルタ130は、第5レンズ110eに対して像側に配置される。フィルタ130により、撮像素子210に到達する光の波長を選択できる。撮像素子210は、照射された光を電気信号に変換する光電変換素子である。撮像素子210は、例えばCMOSイメージセンサやCCDイメージセンサである。ただし、撮像素子210は、これらに限定されるものではない。撮像素子210は、複数のレンズ110によって結像された被写体の像を撮像する。なお、撮像素子210は、フィルタ130(レンズユニット100)に対して像側に配置されてもよい。 The filter 130 is disposed on the image side relative to the fifth lens 110e. The filter 130 allows the wavelength of light reaching the image sensor 210 to be selected. The image sensor 210 is a photoelectric conversion element that converts irradiated light into an electrical signal. The image sensor 210 is, for example, a CMOS image sensor or a CCD image sensor. However, the image sensor 210 is not limited to these. The image sensor 210 captures an image of a subject formed by the multiple lenses 110. Note that the image sensor 210 may be disposed on the image side relative to the filter 130 (lens unit 100).
 第1レンズ110aは、物体側に凸面を向けた負メニスカスレンズである。本実施形態において、第1レンズ110aの凸面からなる物体側の面は球面であり、凹面からなる像側の面は非球面である。 The first lens 110a is a negative meniscus lens with a convex surface facing the object side. In this embodiment, the convex object side surface of the first lens 110a is spherical, and the concave image side surface is aspheric.
 第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eは、樹脂(プラスチックレンズ)であってもよく、ガラスであってもよい。 The second lens 110b, the third lens 110c, the fourth lens 110d and the fifth lens 110e may be made of resin (plastic lenses) or glass.
 第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eは、両凸レンズ、平凸レンズ、凸メニスカスレンズおよび凹メニスカスレンズのいずれであってもよい。 The second lens 110b, the third lens 110c, the fourth lens 110d and the fifth lens 110e may be a biconvex lens, a plano-convex lens, a convex meniscus lens or a concave meniscus lens.
 上述したように、レンズユニット100が複数のレンズ110を備え、複数のレンズ110の少なくとも1つのレンズが光学素子10であることにより、レンズユニット100内のレンズ110の劣化を抑制できる。 As described above, the lens unit 100 includes multiple lenses 110, and at least one of the multiple lenses 110 is an optical element 10, thereby suppressing deterioration of the lenses 110 in the lens unit 100.
 また、上述したプラスチックレンズ11、ハードコート層12および反射防止膜13を備える第1レンズ110aが収容部材120から露出して配置され、残りのレンズ(第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110e)が収容部材120内に配置されることにより、耐久性の高い第1レンズ110a以外のレンズの劣化を抑制できる。 In addition, the first lens 110a, which includes the above-mentioned plastic lens 11, hard coat layer 12, and anti-reflection film 13, is arranged exposed from the housing member 120, and the remaining lenses (second lens 110b, third lens 110c, fourth lens 110d, and fifth lens 110e) are arranged inside the housing member 120, thereby suppressing deterioration of lenses other than the highly durable first lens 110a.
 封止部材140は、第1レンズ110aと収容部材120との間で変形して第1レンズ110aと収容部材120との間を封止する。例えば、封止部材140は、環状の弾性体である。一例では、封止部材140は、Oリングである。 The sealing member 140 deforms between the first lens 110a and the housing member 120 to seal the gap between the first lens 110a and the housing member 120. For example, the sealing member 140 is a ring-shaped elastic body. In one example, the sealing member 140 is an O-ring.
 レンズユニット100は、車の周囲を撮影するための車載レンズに好適に用いられる。例えば、レンズユニット100は、車の後方または側方を撮影するための車載レンズに用いられる。 The lens unit 100 is suitable for use as an on-board lens for capturing images of the surroundings of a vehicle. For example, the lens unit 100 is used as an on-board lens for capturing images of the rear or sides of a vehicle.
 レンズユニット100が封止部材140を備えるため、外部からレンズユニット100に水がかかっても、レンズユニット100の内部(すなわち、収容部材120の内部)に水が浸入することを抑制できる。 Because the lens unit 100 includes the sealing member 140, even if water is splashed onto the lens unit 100 from the outside, the water can be prevented from entering the inside of the lens unit 100 (i.e., the inside of the housing member 120).
 第1レンズ110aが、上述したプラスチックレンズ11と、ハードコート層12と、反射防止膜13とを備えることにより、収容部材120内に入射する紫外線を好適に抑制できる。このため、収容部材120内のレンズの劣化を抑制できる。 The first lens 110a is provided with the above-mentioned plastic lens 11, hard coat layer 12, and anti-reflection film 13, so that ultraviolet rays entering the housing member 120 can be effectively suppressed. This makes it possible to suppress deterioration of the lens in the housing member 120.
 例えば、第1レンズ110aの直径Ldは、1mm以上100mm以下であり、2mm以上50mm以下であってもよい。一例では、第1レンズ110aの直径Ldは、13.70mm以上13.75mm以下である。 For example, the diameter Ld of the first lens 110a may be 1 mm or more and 100 mm or less, or 2 mm or more and 50 mm or less. In one example, the diameter Ld of the first lens 110a is 13.70 mm or more and 13.75 mm or less.
 本実施形態によれば、レンズユニット100は、複数のレンズ110と、複数のレンズ110を収容する収容部材120とを備える。複数のレンズ110は、収容部材120の開口から順番に配置される。複数のレンズ110のうち収容部材120の開口側に位置する最外レンズは、上記の光学素子10である。これにより、レンズユニット100の耐候性を向上できる。 According to this embodiment, the lens unit 100 includes a plurality of lenses 110 and a housing member 120 that houses the plurality of lenses 110. The plurality of lenses 110 are arranged in order from the opening of the housing member 120. The outermost lens of the plurality of lenses 110 that is located on the opening side of the housing member 120 is the optical element 10 described above. This can improve the weather resistance of the lens unit 100.
 カメラモジュール200は、上記に記載のレンズユニット100と、撮像素子210とを備える。これにより、カメラモジュール200の耐候性を向上できる。 The camera module 200 includes the lens unit 100 described above and an image sensor 210. This improves the weather resistance of the camera module 200.
 次に、図1~図3Bを参照して本実施形態に係るカメラモジュール200を説明する。図3Aは、本実施形態に係るカメラモジュール200の一例を示す模式図であり、図3Bは、図3Aの一部拡大部である。図3Aおよび図3Bのカメラモジュール200は、固定部材122に代えて遮光部材150をさらに備える点を除いて図2Aおよび図2Bを参照して上述したカメラモジュール200と同様の構成を有しており、冗長を避ける目的で重複する説明を省略する。 Next, the camera module 200 according to this embodiment will be described with reference to Figures 1 to 3B. Figure 3A is a schematic diagram showing an example of the camera module 200 according to this embodiment, and Figure 3B is an enlarged portion of Figure 3A. The camera module 200 in Figures 3A and 3B has a similar configuration to the camera module 200 described above with reference to Figures 2A and 2B, except that it further includes a light-shielding member 150 instead of the fixing member 122, and therefore duplicated descriptions will be omitted to avoid redundancy.
 図3Aに示すように、カメラモジュール200は、レンズユニット100と、撮像素子210とを備える。レンズユニット100は、複数のレンズ110を備える。複数のレンズ110のうちの少なくとも1つのレンズは、光学素子10である。 As shown in FIG. 3A, the camera module 200 includes a lens unit 100 and an image sensor 210. The lens unit 100 includes a plurality of lenses 110. At least one of the plurality of lenses 110 is an optical element 10.
 複数のレンズ110は、第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eを含む。第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eは、物体側から像側に向かって順に配置されている。 The lenses 110 include a first lens 110a, a second lens 110b, a third lens 110c, a fourth lens 110d, and a fifth lens 110e. The first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e are arranged in order from the object side to the image side.
 例えば、第1レンズ110aは、上述した光学素子10である。すなわち、第1レンズ110aは、上述したプラスチックレンズ11と、ハードコート層12と、反射防止膜13とを備える。 For example, the first lens 110a is the optical element 10 described above. That is, the first lens 110a includes the plastic lens 11 described above, the hard coat layer 12, and the anti-reflection film 13.
 レンズユニット100は、収容部材120と、フィルタ130と、封止部材140と、遮光部材150とをさらに備える。収容部材120は、筒状である。典型的には、収容部材120は、円筒状である。なお、収容部材120の内周面には凹凸が設けられてもよい。 The lens unit 100 further includes a housing member 120, a filter 130, a sealing member 140, and a light blocking member 150. The housing member 120 is tubular. Typically, the housing member 120 is cylindrical. Note that the inner peripheral surface of the housing member 120 may be provided with irregularities.
 収容部材120は、複数のレンズ110およびフィルタ130を収容する。収容部材120は、光を透過しない部材から形成される。収容部材120は、可視光および紫外線を透過しない部材から形成される。 The housing member 120 houses a plurality of lenses 110 and filters 130. The housing member 120 is formed from a material that does not transmit light. The housing member 120 is formed from a material that does not transmit visible light and ultraviolet light.
 遮光部材150は、第1レンズ110aを遮光する。遮光部材150は、第1レンズ110aの周縁を遮光する。遮光部材150は、収容部材120に対して光軸Lxに対して直交する方向に延びる。遮光部材150は、第1レンズ110aの周縁に沿って延びる。遮光部材150は、第1レンズ110aが収容部材120から脱離することを抑制する。遮光部材150は、収容部材120と単一の部材であってもよい。 The light blocking member 150 blocks the first lens 110a. The light blocking member 150 blocks the periphery of the first lens 110a. The light blocking member 150 extends in a direction perpendicular to the optical axis Lx relative to the housing member 120. The light blocking member 150 extends along the periphery of the first lens 110a. The light blocking member 150 prevents the first lens 110a from detaching from the housing member 120. The light blocking member 150 may be a single member together with the housing member 120.
 遮光部材150は、第1レンズ110aの直径に対して0.5%以上10%以下の長さの周縁を覆う。このため、第1レンズ110aの有効径Edは、第1レンズ110aの直径Ldよりも小さい。 The light blocking member 150 covers the periphery of the first lens 110a with a length that is 0.5% to 10% of the diameter of the first lens 110a. Therefore, the effective diameter Ed of the first lens 110a is smaller than the diameter Ld of the first lens 110a.
 例えば、第1レンズ110aの直径Ldは、1mm以上100mm以下であり、2mm以上50mm以下であってもよい。光軸Lxに対して直交する方向に沿った遮光部材150の長さSdは、0.005mm以上10mm以下であり、0.01mm以上5mm以下であってもよい。 For example, the diameter Ld of the first lens 110a may be 1 mm or more and 100 mm or less, or 2 mm or more and 50 mm or less. The length Sd of the light blocking member 150 along a direction perpendicular to the optical axis Lx may be 0.005 mm or more and 10 mm or less, or 0.01 mm or more and 5 mm or less.
 例えば、第1レンズ110aの直径Ldは、13.70mm以上13.75mm以下である。一例では、遮光部材150は、第1レンズ110aの外縁から0.1mm以上1.0mm以下の長さにわたって第1レンズ110aの周縁を覆う。このため、光軸Lxに対して直交する方向に沿った遮光部材150の長さSdは、0.1mm以上1.0mm以下である。したがって、第1レンズ110aの有効径Edは、11.70mm以上13.55mm以下である。 For example, the diameter Ld of the first lens 110a is 13.70 mm or more and 13.75 mm or less. In one example, the light blocking member 150 covers the periphery of the first lens 110a over a length of 0.1 mm or more and 1.0 mm or less from the outer edge of the first lens 110a. Therefore, the length Sd of the light blocking member 150 along a direction perpendicular to the optical axis Lx is 0.1 mm or more and 1.0 mm or less. Therefore, the effective diameter Ed of the first lens 110a is 11.70 mm or more and 13.55 mm or less.
 本実施形態では、レンズユニット100が、遮光部材150を備えるため、第1レンズ110aが収容部材120から脱離することを抑制できる。 In this embodiment, the lens unit 100 includes a light-shielding member 150, which prevents the first lens 110a from detaching from the housing member 120.
 次に、図1~図4Cを参照して本実施形態に係るカメラモジュール200を説明する。図4Aは、本実施形態に係るカメラモジュール200の分解図である。図4Bは、本実施形態に係るカメラモジュール200の作製過程の模式図である。図4Cは、本実施形態に係るカメラモジュール200を示す模式図である。 Next, the camera module 200 according to this embodiment will be described with reference to Figures 1 to 4C. Figure 4A is an exploded view of the camera module 200 according to this embodiment. Figure 4B is a schematic diagram of the manufacturing process of the camera module 200 according to this embodiment. Figure 4C is a schematic diagram showing the camera module 200 according to this embodiment.
 図4Aに示すように、収容部材120は、複数のレンズ110を収容可能である。複数のレンズ110のうちの少なくとも1つのレンズは、光学素子10である。 As shown in FIG. 4A, the housing member 120 can house a plurality of lenses 110. At least one of the plurality of lenses 110 is an optical element 10.
 収容部材120は、筒形状である。典型的には、収容部材120は、円筒形状である。 The storage member 120 has a tubular shape. Typically, the storage member 120 has a cylindrical shape.
 複数のレンズ110は、第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eを含む。収容部材120は、第1レンズ110a、第2レンズ110b、第3レンズ110c、第4レンズ110dおよび第5レンズ110eをそれぞれ収容可能な収容部を有する。 The lenses 110 include a first lens 110a, a second lens 110b, a third lens 110c, a fourth lens 110d, and a fifth lens 110e. The storage member 120 has storage portions capable of storing the first lens 110a, the second lens 110b, the third lens 110c, the fourth lens 110d, and the fifth lens 110e, respectively.
 なお、ここでは、収容部材120の一方側の外縁には突起部150aが設けられる。典型的には、突起部150aは、収容部材120と同じ材料から形成される。突起部150aは、収容部材120と単一の部材である。突起部150aは、光軸Lxと平行に収容部材120から延びる。 Note that here, a protrusion 150a is provided on the outer edge of one side of the housing member 120. Typically, the protrusion 150a is formed from the same material as the housing member 120. The protrusion 150a is a single member with the housing member 120. The protrusion 150a extends from the housing member 120 parallel to the optical axis Lx.
 図4Bに示すように、収容部材120に、複数のレンズ110、フィルタ130および封止部材140が収容される。ここでは、第1レンズ110a、第2レンズ110b、第3レンズ110cおよび封止部材140は、収容部材120に対して一方側から他方側に挿入される。第4レンズ110d、第5レンズ110eおよびフィルタ130は、収容部材120に対して他方側から一方側に挿入される。フィルタ130は、複数のレンズ110と撮像素子210との間に位置する。 As shown in FIG. 4B, the multiple lenses 110, the filter 130, and the sealing member 140 are housed in the housing member 120. Here, the first lens 110a, the second lens 110b, the third lens 110c, and the sealing member 140 are inserted into the housing member 120 from one side to the other. The fourth lens 110d, the fifth lens 110e, and the filter 130 are inserted into the housing member 120 from the other side to one side. The filter 130 is located between the multiple lenses 110 and the image sensor 210.
 図4Cに示すように、収容部材120に対して突起部150aを光軸Lxに対して直交する方向に折り曲げることにより、遮光部材150を形成する。突起部150aが、加熱された状態で押圧されることにより、光軸Lxに対して直交する方向に収容部材120に対して折れ曲がる。遮光部材150は、最外レンズである第1レンズ110aを遮光する。遮光部材150は、レンズユニット100に入射する光が第1レンズ110aの外縁に入射することを抑制する。また、遮光部材150は、第1レンズ110aが収容部材120から脱離することを抑制する。 As shown in FIG. 4C, the light shielding member 150 is formed by bending the protrusion 150a relative to the housing member 120 in a direction perpendicular to the optical axis Lx. The protrusion 150a is pressed in a heated state, so that it is bent relative to the housing member 120 in a direction perpendicular to the optical axis Lx. The light shielding member 150 shields the first lens 110a, which is the outermost lens. The light shielding member 150 prevents light entering the lens unit 100 from entering the outer edge of the first lens 110a. The light shielding member 150 also prevents the first lens 110a from detaching from the housing member 120.
 本実施形態によれば、レンズユニット100は、複数のレンズ110、収容部材120、フィルタ130および封止部材140に加えて、最外レンズの外縁を遮光する遮光部材150をさらに備える。これにより、最外レンズにおいてハードコート層12の外縁の厚さが薄くても、遮光部材150が遮光することにより、反射防止膜13とハードコート層12との界面の密着性の低下を抑制できるとともに、ハードコート層12の劣化を抑制できる。 According to this embodiment, the lens unit 100 further includes a light-shielding member 150 that shields the outer edge of the outermost lens, in addition to the multiple lenses 110, the housing member 120, the filter 130, and the sealing member 140. As a result, even if the outer edge of the hard coat layer 12 of the outermost lens is thin, the light-shielding member 150 can block light, thereby preventing a decrease in adhesion at the interface between the anti-reflection film 13 and the hard coat layer 12, and preventing deterioration of the hard coat layer 12.
 遮光部材150は、収容部材120と単一の部材である。これにより、ハードコート層12の外縁を遮光する遮光部材150のために部品点数が増加することを抑制できる。 The light-shielding member 150 is a single member together with the housing member 120. This makes it possible to prevent an increase in the number of parts due to the light-shielding member 150, which shields the outer edge of the hard coat layer 12 from light.
 以下、本発明の実施例について説明する。ただし、本発明は、以下の実施例の範囲に何ら限定されるものではない。 The following describes examples of the present invention. However, the present invention is not limited to the scope of the following examples.
 [実施例1]
 まず、実施例1の光学素子10を作製した。
[Example 1]
First, the optical element 10 of Example 1 was fabricated.
 株式会社日本触媒製のRM-104を材料とするプラスチックレンズ11を用意した。プラスチックレンズ11は、物体側に凸面を向けたメニスカスレンズであり、プラスチックレンズ11のレンズ外径は約14mmであった。 A plastic lens 11 was prepared using RM-104 manufactured by Nippon Shokubai Co., Ltd. The plastic lens 11 was a meniscus lens with the convex surface facing the object side, and the outer diameter of the plastic lens 11 was approximately 14 mm.
 プラスチックレンズ11の表面にハードコート層12を被覆した。ハードコート層12は、ウレタン等からなる光硬化性樹脂材料であった。ハードコート層12は、スピンコート法によってプラスチックレンズ11にハードコート層12の成分液を塗布した後、成分液の膜を加熱して乾燥させ、その後、紫外線等の電磁波または電子ビームで膜を硬化させて形成した。 The surface of the plastic lens 11 was coated with a hard coat layer 12. The hard coat layer 12 was a photocurable resin material made of urethane or the like. The hard coat layer 12 was formed by applying a component liquid of the hard coat layer 12 to the plastic lens 11 by spin coating, heating and drying the film of the component liquid, and then curing the film with electromagnetic waves such as ultraviolet rays or an electron beam.
 ハードコート層12の表面に反射防止膜13を被覆した。反射防止膜13は、Si34からなる高屈折率膜と、SiO2からなる低屈折率膜とをスパッタリング法で交互に形成した。以上のようにして実施例1の光学素子10を作製した。 The surface of the hard coat layer 12 was coated with an antireflection film 13. The antireflection film 13 was formed by alternately forming a high refractive index film made of Si3N4 and a low refractive index film made of SiO2 by a sputtering method. In this manner, the optical element 10 of Example 1 was produced.
 実施例1の光学素子10においてハードコート層12の厚さを測定した。ハードコート層12の光軸Lxにおける厚さLx1は5.4μmであったのに対して、ハードコート層12の外縁の厚さLx2は2.1μmであった。 The thickness of the hard coat layer 12 was measured in the optical element 10 of Example 1. The thickness Lx1 of the hard coat layer 12 on the optical axis Lx was 5.4 μm, while the thickness Lx2 of the outer edge of the hard coat layer 12 was 2.1 μm.
 次に、実施例1の光学素子10に対して、以下の条件で光学特性試験および耐候性試験を行った。 Next, the optical property test and weather resistance test were performed on the optical element 10 of Example 1 under the following conditions.
[光学特性試験]
 実施例1の光学素子10に蛍光性光源から蛍光を照射して光学的な歪みを目視で検査した。
[Optical property test]
The optical element 10 of Example 1 was irradiated with fluorescent light from a fluorescent light source and visually inspected for optical distortion.
[耐候性試験]
 高促進耐候性試験機7.5kWスーパーキセノンウェザーメーターを用いて耐候性試験を行った。耐候性試験では、放射照度180W/m2で、照射+降雨18分間の後に、照射のみ102分間行うことを1サイクルとし、500サイクル繰り返した。耐候性試験中および耐候性試験後に、反射防止膜13が剥離していないか、および、ハードコート層12に損傷がないかチェックした。
[Weather resistance test]
A weathering test was carried out using a highly accelerated weathering tester, a 7.5 kW super xenon weather meter. In the weathering test, 500 cycles were repeated, with an irradiance of 180 W/ m2 , consisting of 18 minutes of irradiation and rainfall, followed by 102 minutes of irradiation alone. During and after the weathering test, it was checked whether the anti-reflection film 13 had peeled off and whether the hard coat layer 12 had been damaged.
 表1に、実施例1の光学素子10におけるハードコート層12の光軸における厚さ、ハードコート層12の外縁の厚さ、光学素子10の光学特性試験および耐候性試験の結果を示す。本明細書において、蛍光性光源下での目視検査において、光学的な歪みがないものを「〇」、光学的な歪みがあるのを「×」と示す。また、本明細書において、耐候性試験後に、目視検査において反射防止膜の剥離およびハードコート層の損傷がないものを「〇」、反射防止膜の剥離およびハードコート層の損傷のいずれかがあるものを「×」で示す。 Table 1 shows the thickness of the hard coat layer 12 at the optical axis in the optical element 10 of Example 1, the thickness of the outer edge of the hard coat layer 12, and the results of the optical property test and weather resistance test of the optical element 10. In this specification, in visual inspection under a fluorescent light source, those that show no optical distortion are indicated with an "O" and those that show optical distortion are indicated with an "X". Also in this specification, those that show no peeling of the anti-reflective film or damage to the hard coat layer in visual inspection after the weather resistance test are indicated with an "O", and those that show either peeling of the anti-reflective film or damage to the hard coat layer are indicated with an "X".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1の光学素子10では、光学素子10を透過する光に歪みが生じなかった。また、実施例1の光学素子10において、耐候性試験の後でも、反射防止膜13の剥離およびハードコート層12の損傷を確認できなかった。 As shown in Table 1, in the optical element 10 of Example 1, no distortion occurred in the light transmitted through the optical element 10. Furthermore, in the optical element 10 of Example 1, peeling of the anti-reflection film 13 and damage to the hard coat layer 12 were not observed even after the weather resistance test.
 実施例1の光学素子10と同様に、実施例2~3の光学素子10を作製し、実施例2~3の光学素子10についても実施例1の光学素子10と同様に光学特性試験および耐候性試験を行った。また、比較例1~3の光学素子を作製し、比較例1~3の光学素子についても実施例1の光学素子10と同様に光学特性試験および耐候性試験を行った。表1に、実施例1~3および比較例1~3の光学素子におけるハードコート層の光軸における厚さ、ハードコート層の外縁の厚さ、光学特性試験および耐候性試験の結果を示す。 The optical elements 10 of Examples 2 to 3 were fabricated in the same manner as the optical element 10 of Example 1, and the optical elements 10 of Examples 2 to 3 were subjected to optical property tests and weather resistance tests in the same manner as the optical element 10 of Example 1. In addition, the optical elements of Comparative Examples 1 to 3 were fabricated, and the optical property tests and weather resistance tests were also performed in the same manner as the optical element 10 of Example 1. Table 1 shows the thickness of the hard coat layer at the optical axis, the thickness of the outer edge of the hard coat layer, and the results of the optical property tests and weather resistance tests for the optical elements of Examples 1 to 3 and Comparative Examples 1 to 3.
 実施例2の光学素子10では、ハードコート層12の光軸における厚さおよび外縁の厚さはそれぞれ8.6μm、2.7μmであり、光学素子10を透過する光に歪みが生じなかった。また、耐候性試験の後でも、反射防止膜13の剥離およびハードコート層12の損傷を確認できなかった。 In the optical element 10 of Example 2, the thickness of the hard coat layer 12 on the optical axis and the thickness of the outer edge were 8.6 μm and 2.7 μm, respectively, and no distortion occurred in the light transmitted through the optical element 10. Furthermore, even after the weather resistance test, no peeling of the anti-reflection film 13 or damage to the hard coat layer 12 was confirmed.
 実施例3の光学素子10では、ハードコート層12の光軸における厚さおよび外縁の厚さはそれぞれ15.8μm、5.2μmであり、光学素子10を透過する光に歪みが生じなかった。また、耐候性試験の後でも、反射防止膜13の剥離およびハードコート層12の損傷を確認できなかった。 In the optical element 10 of Example 3, the thickness of the hard coat layer 12 at the optical axis and the thickness of the outer edge were 15.8 μm and 5.2 μm, respectively, and no distortion occurred in the light transmitted through the optical element 10. Furthermore, even after the weather resistance test, no peeling of the anti-reflection film 13 or damage to the hard coat layer 12 was confirmed.
 比較例1の光学素子では、ハードコート層の光軸における厚さおよび外縁の厚さはそれぞれ1.4μm、0.3μmであり、比較例1の光学素子を透過する光に歪みが生じなかった。一方で、耐候性試験の後、反射防止膜の剥離およびハードコート層の損傷のいずれかが生じた。 In the optical element of Comparative Example 1, the thickness of the hard coat layer on the optical axis and the thickness of the outer edge were 1.4 μm and 0.3 μm, respectively, and no distortion occurred in the light transmitted through the optical element of Comparative Example 1. However, after the weather resistance test, either peeling of the anti-reflection film or damage to the hard coat layer occurred.
 比較例2の光学素子では、ハードコート層の光軸における厚さおよび外縁の厚さはそれぞれ23.5μm、8.3μmであり、比較例2の光学素子を透過する光に歪みが生じた。一方で、耐候性試験の後でも、反射防止膜の剥離およびハードコート層の損傷を確認できなかった。 In the optical element of Comparative Example 2, the thickness of the hard coat layer on the optical axis and the thickness of the outer edge were 23.5 μm and 8.3 μm, respectively, and distortion occurred in the light transmitted through the optical element of Comparative Example 2. On the other hand, even after the weather resistance test, no peeling of the anti-reflection film or damage to the hard coat layer was confirmed.
 比較例3の光学素子では、ハードコート層の光軸における厚さおよび外縁の厚さはそれぞれ33.9μm、10.2μmであり、比較例3の光学素子を透過する光に歪みが生じた。さらに、耐候性試験の後、反射防止膜の剥離およびハードコート層の損傷のいずれかが生じた。 In the optical element of Comparative Example 3, the thickness of the hard coat layer on the optical axis and the thickness of the outer edge were 33.9 μm and 10.2 μm, respectively, and distortion occurred in the light transmitted through the optical element of Comparative Example 3. Furthermore, after the weather resistance test, either peeling of the anti-reflection film or damage to the hard coat layer occurred.
 実施例1~3の光学素子10では、光学的な歪みはなく、反射防止膜13の剥離およびハードコート層12の損傷は生じなかった。一方で、比較例1の光学素子では、光学的な歪みはなかったが、反射防止膜の剥離およびハードコート層の損傷のいずれかが生じた。比較例2の光学素子では、反射防止膜の剥離およびハードコート層の損傷は生じなかったが、光学的な歪みが生じた。比較例3の光学素子では、光学的な歪みが生じるとともに、反射防止膜の剥離およびハードコート層の損傷のいずれかが生じた。 In the optical elements 10 of Examples 1 to 3, there was no optical distortion, and no peeling of the anti-reflection film 13 or damage to the hard coat layer 12 occurred. On the other hand, in the optical element of Comparative Example 1, there was no optical distortion, but either peeling of the anti-reflection film or damage to the hard coat layer occurred. In the optical element of Comparative Example 2, there was no peeling of the anti-reflection film or damage to the hard coat layer, but there was optical distortion. In the optical element of Comparative Example 3, there was optical distortion, and either peeling of the anti-reflection film or damage to the hard coat layer occurred.
 なお、本技術は、以下のような構成を取り得る。
(1)光軸を有する光学素子であって、
 プラスチックレンズと、
 前記プラスチックレンズの少なくとも一方の面側に配置された反射防止膜と、
 前記プラスチックレンズと前記反射防止膜との間に位置するハードコート層とを備え、
 前記ハードコート層の前記光軸における厚さは、2μm以上20μm以下である、光学素子。
The present technology may have the following configuration.
(1) An optical element having an optical axis,
Plastic lenses and
An anti-reflection film disposed on at least one surface side of the plastic lens;
a hard coat layer located between the plastic lens and the anti-reflection film,
The optical element, wherein the hard coat layer has a thickness of 2 μm or more and 20 μm or less on the optical axis.
(2)前記ハードコート層の最小厚さは、2μm以上であり
 前記ハードコート層の最大厚さは、20μm以下である、(1)に記載の光学素子。
(2) The optical element according to (1), wherein the hard coat layer has a minimum thickness of 2 μm or more and a maximum thickness of 20 μm or less.
(3)前記ハードコート層の弾性率は、5GPa以上12GPa以下である、(1)または(2)に記載の光学素子。 (3) The optical element described in (1) or (2), in which the elastic modulus of the hard coat layer is 5 GPa or more and 12 GPa or less.
(4)前記プラスチックレンズの熱膨張係数は、60ppm/K以上150ppm/K以下である、(1)から(3)のいずれかに記載の光学素子。 (4) An optical element described in any one of (1) to (3), in which the thermal expansion coefficient of the plastic lens is 60 ppm/K or more and 150 ppm/K or less.
(5)前記反射防止膜の熱膨張係数は、1ppm/K以上10ppm/K以下である、(1)から(4)のいずれかに記載の光学素子。 (5) An optical element described in any one of (1) to (4), in which the thermal expansion coefficient of the antireflection film is 1 ppm/K or more and 10 ppm/K or less.
(6)前記プラスチックレンズの熱膨張係数は、60ppm/K以上100ppm/K以下であり、
 前記反射防止膜の熱膨張係数は、5ppm/K以上10ppm/K以下である、(1)から(5)のいずれかに記載の光学素子。
(6) The thermal expansion coefficient of the plastic lens is 60 ppm/K or more and 100 ppm/K or less,
The optical element according to any one of (1) to (5), wherein the antireflection film has a thermal expansion coefficient of 5 ppm/K or more and 10 ppm/K or less.
(7)前記ハードコート層の前記光軸における厚さと外縁の厚さとの差は、15μm以下である、(1)から(6)のいずれかに記載の光学素子。 (7) An optical element described in any one of (1) to (6), in which the difference between the thickness of the hard coat layer at the optical axis and the thickness of the outer edge is 15 μm or less.
(8)複数のレンズと、
 前記複数のレンズを収容する収容部材とを備える、レンズユニットであって、
 前記複数のレンズは、前記収容部材の開口から順番に配置され、
 前記複数のレンズのうち前記収容部材の開口側に位置する最外レンズは、(1)から(7)のいずれかに記載の光学素子である、レンズユニット。
(8) a plurality of lenses;
a housing member that houses the plurality of lenses,
The plurality of lenses are arranged in order from the opening of the housing member,
A lens unit, wherein an outermost lens of the plurality of lenses that is located on the opening side of the housing member is an optical element described in any one of (1) to (7).
(9)前記最外レンズの外縁を遮光する遮光部材をさらに備える、(8)に記載のレンズユニット。 (9) The lens unit described in (8) further includes a light-shielding member that shields the outer edge of the outermost lens.
(10)前記遮光部材は、前記収容部材と単一の部材である、(9)に記載のレンズユニット。 (10) The lens unit described in (9), in which the light blocking member is a single member together with the housing member.
(11)(8)から(10)のいずれかに記載のレンズユニットと、
 撮像素子とを備える、カメラモジュール。
(11) A lens unit according to any one of (8) to (10),
The camera module includes an imaging element.
  10  光学素子
  11  プラスチックレンズ
  12  ハードコート層
  13  反射防止膜

 
10 Optical element 11 Plastic lens 12 Hard coat layer 13 Anti-reflection film

Claims (11)

  1.  光軸を有する光学素子であって、
     プラスチックレンズと、
     前記プラスチックレンズの少なくとも一方の面側に配置された反射防止膜と、
     前記プラスチックレンズと前記反射防止膜との間に位置するハードコート層とを備え、
     前記ハードコート層の前記光軸における厚さは、2μm以上20μm以下である、光学素子。
    An optical element having an optical axis,
    Plastic lenses and
    An anti-reflection film disposed on at least one surface side of the plastic lens;
    a hard coat layer located between the plastic lens and the anti-reflection film,
    The optical element, wherein the hard coat layer has a thickness of 2 μm or more and 20 μm or less on the optical axis.
  2.  前記ハードコート層の最小厚さは、2μm以上であり
     前記ハードコート層の最大厚さは、20μm以下である、請求項1に記載の光学素子。
    The optical element according to claim 1 , wherein the hard coat layer has a minimum thickness of 2 μm or more and a maximum thickness of 20 μm or less.
  3.  前記ハードコート層の弾性率は、5GPa以上12GPa以下である、請求項1または2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the elastic modulus of the hard coat layer is 5 GPa or more and 12 GPa or less.
  4.  前記プラスチックレンズの熱膨張係数は、60ppm/K以上150ppm/K以下である、請求項1または2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the thermal expansion coefficient of the plastic lens is 60 ppm/K or more and 150 ppm/K or less.
  5.  前記反射防止膜の熱膨張係数は、1ppm/K以上10ppm/K以下である、請求項1または2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the thermal expansion coefficient of the anti-reflection film is 1 ppm/K or more and 10 ppm/K or less.
  6.  前記プラスチックレンズの熱膨張係数は、60ppm/K以上100ppm/K以下であり、
     前記反射防止膜の熱膨張係数は、5ppm/K以上10ppm/K以下である、請求項1または2に記載の光学素子。
    The thermal expansion coefficient of the plastic lens is 60 ppm/K or more and 100 ppm/K or less,
    3. The optical element according to claim 1, wherein the anti-reflection film has a thermal expansion coefficient of 5 ppm/K or more and 10 ppm/K or less.
  7.  前記ハードコート層の前記光軸における厚さと外縁の厚さとの差は、15μm以下である、請求項1または2に記載の光学素子。 The optical element according to claim 1 or 2, wherein the difference between the thickness of the hard coat layer at the optical axis and the thickness of the outer edge is 15 μm or less.
  8.  複数のレンズと、
     前記複数のレンズを収容する収容部材とを備える、レンズユニットであって、
     前記複数のレンズは、前記収容部材の開口から順番に配置され、
     前記複数のレンズのうち前記収容部材の開口側に位置する最外レンズは、請求項1または2に記載の光学素子である、レンズユニット。
    Multiple lenses and
    a housing member that houses the plurality of lenses,
    The plurality of lenses are arranged in order from the opening of the housing member,
    A lens unit, wherein an outermost lens of the plurality of lenses that is positioned on an opening side of the housing member is the optical element according to claim 1 .
  9.  前記最外レンズの外縁を遮光する遮光部材をさらに備える、請求項8に記載のレンズユニット。 The lens unit of claim 8, further comprising a light-shielding member that shields the outer edge of the outermost lens.
  10.  前記遮光部材は、前記収容部材と単一の部材である、請求項9に記載のレンズユニット。 The lens unit according to claim 9, wherein the light blocking member is a single member together with the housing member.
  11.  請求項8に記載のレンズユニットと、
     撮像素子とを備える、カメラモジュール。

     
    A lens unit according to claim 8;
    The camera module includes an imaging element.

PCT/JP2024/010433 2023-03-31 2024-03-18 Optical element, lens unit, and camera module WO2024203501A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023059440A JP2024146496A (en) 2023-03-31 2023-03-31 Optical element, lens unit and camera module
JP2023-059440 2023-03-31

Publications (1)

Publication Number Publication Date
WO2024203501A1 true WO2024203501A1 (en) 2024-10-03

Family

ID=92905983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/010433 WO2024203501A1 (en) 2023-03-31 2024-03-18 Optical element, lens unit, and camera module

Country Status (2)

Country Link
JP (1) JP2024146496A (en)
WO (1) WO2024203501A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026881A1 (en) * 2001-09-25 2003-04-03 Fuji Photo Film Co., Ltd. Hard coat film, base on which hard coat film is formed, image display having them
JP2006138898A (en) * 2004-11-10 2006-06-01 Kuraray Co Ltd Infrared transmission member, infrared camera using the same and method for producing infrared transmission member
JP2006146131A (en) * 2004-03-15 2006-06-08 Seiko Epson Corp Plastic lens and method for manufacturing plastic lens
JP2007156342A (en) * 2005-12-08 2007-06-21 Seiko Epson Corp Optical product and its manufacturing method
WO2010016242A1 (en) * 2008-08-04 2010-02-11 株式会社ニコン・エシロール Optical component and optical component manufacturing method
JP2011099074A (en) * 2009-11-09 2011-05-19 Jgc Catalysts & Chemicals Ltd Coating material composition for forming primer layer film, and plastic lens
JP2012088700A (en) * 2010-10-01 2012-05-10 Carl Zeiss Vision Gmbh Optical lens with scratch-resistant antireflection layer
JP2014195988A (en) * 2013-03-08 2014-10-16 昭和電工株式会社 Norbornene compound polymer film
JP2015064607A (en) * 2008-10-17 2015-04-09 日立化成株式会社 Low refractive index film, low refractive index film manufacturing method, antireflection film and antireflection film manufacturing method, low refractive index film coating liquid set, base material with fine particle laminate thin film and method of manufacturing base material with fine particle laminate thin film, and optical member
JP2019502169A (en) * 2016-10-21 2019-01-24 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Coated spectacle lens, method of manufacturing spectacle lens, computer-implemented method for designing spectacle lens, and experimental method for designing spectacle lens
JP2019053103A (en) * 2017-09-12 2019-04-04 株式会社ダイセル Plastic lens
WO2021112253A1 (en) * 2019-12-05 2021-06-10 富士フイルム株式会社 Optical laminate body, polarization plate, image display device, resistive touch panel and capacitive touch panel

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003026881A1 (en) * 2001-09-25 2003-04-03 Fuji Photo Film Co., Ltd. Hard coat film, base on which hard coat film is formed, image display having them
JP2006146131A (en) * 2004-03-15 2006-06-08 Seiko Epson Corp Plastic lens and method for manufacturing plastic lens
JP2006138898A (en) * 2004-11-10 2006-06-01 Kuraray Co Ltd Infrared transmission member, infrared camera using the same and method for producing infrared transmission member
JP2007156342A (en) * 2005-12-08 2007-06-21 Seiko Epson Corp Optical product and its manufacturing method
WO2010016242A1 (en) * 2008-08-04 2010-02-11 株式会社ニコン・エシロール Optical component and optical component manufacturing method
JP2015064607A (en) * 2008-10-17 2015-04-09 日立化成株式会社 Low refractive index film, low refractive index film manufacturing method, antireflection film and antireflection film manufacturing method, low refractive index film coating liquid set, base material with fine particle laminate thin film and method of manufacturing base material with fine particle laminate thin film, and optical member
JP2011099074A (en) * 2009-11-09 2011-05-19 Jgc Catalysts & Chemicals Ltd Coating material composition for forming primer layer film, and plastic lens
JP2012088700A (en) * 2010-10-01 2012-05-10 Carl Zeiss Vision Gmbh Optical lens with scratch-resistant antireflection layer
JP2014195988A (en) * 2013-03-08 2014-10-16 昭和電工株式会社 Norbornene compound polymer film
JP2019502169A (en) * 2016-10-21 2019-01-24 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Coated spectacle lens, method of manufacturing spectacle lens, computer-implemented method for designing spectacle lens, and experimental method for designing spectacle lens
JP2019053103A (en) * 2017-09-12 2019-04-04 株式会社ダイセル Plastic lens
WO2021112253A1 (en) * 2019-12-05 2021-06-10 富士フイルム株式会社 Optical laminate body, polarization plate, image display device, resistive touch panel and capacitive touch panel

Also Published As

Publication number Publication date
JP2024146496A (en) 2024-10-15

Similar Documents

Publication Publication Date Title
KR102104081B1 (en) Camera structure, information and communication equipment
JP6790831B2 (en) Optical filter and imaging device
JP6786248B2 (en) Optical element and its manufacturing method
JP2010269957A (en) Optical element and optical system having the same
EP3223042B1 (en) Optical member and method of manufacturing the same
JP2002286909A (en) Antireflection coating for uv ray
JP2006220873A (en) Optical filter and imaging device
US7626772B2 (en) Optical system and optical apparatus having the same
WO2024203501A1 (en) Optical element, lens unit, and camera module
WO2024203502A1 (en) Lens unit and camera module
US7031070B2 (en) Plastic optical components
WO2024203503A1 (en) Lens unit and camera module
JP2023163128A (en) Optical member and lens unit
JP5213424B2 (en) Optical system and optical apparatus having the same
JP2013114103A (en) Optical system and optical equipment
JPWO2016060003A1 (en) Optical element and optical element manufacturing method
US7239451B2 (en) Plastic optical components and an optical unit using the same
JP7281956B2 (en) Lens unit and camera module
JP2021096283A (en) Lens system
JP2010048896A (en) Optical system
WO2023210687A1 (en) Optical member and lens unit
JP5305799B2 (en) Lens barrel and optical apparatus having the same
JP2013097288A (en) Optical element, optical system using the same and optical device
US12147063B2 (en) Cemented lens, optical system including the same, optical device, and method of manufacturing cemented lens
JP7564928B2 (en) Lens manufacturing method