KR20220039575A - Compound for ultra-thin reinforced coating agent and reinforced coating agent comprising the same - Google Patents
Compound for ultra-thin reinforced coating agent and reinforced coating agent comprising the same Download PDFInfo
- Publication number
- KR20220039575A KR20220039575A KR1020210112875A KR20210112875A KR20220039575A KR 20220039575 A KR20220039575 A KR 20220039575A KR 1020210112875 A KR1020210112875 A KR 1020210112875A KR 20210112875 A KR20210112875 A KR 20210112875A KR 20220039575 A KR20220039575 A KR 20220039575A
- Authority
- KR
- South Korea
- Prior art keywords
- coating
- roc
- coating agent
- strength
- oroc
- Prior art date
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 110
- 150000001875 compounds Chemical class 0.000 title claims abstract description 55
- 238000000576 coating method Methods 0.000 claims abstract description 58
- 239000011521 glass Substances 0.000 claims abstract description 48
- 238000000034 method Methods 0.000 claims abstract description 19
- 239000005341 toughened glass Substances 0.000 claims abstract description 18
- 230000003014 reinforcing effect Effects 0.000 claims abstract description 14
- 230000002787 reinforcement Effects 0.000 claims abstract 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 81
- 239000002904 solvent Substances 0.000 claims description 31
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 21
- 125000004432 carbon atom Chemical group C* 0.000 claims description 17
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 15
- 125000001931 aliphatic group Chemical group 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 125000002947 alkylene group Chemical group 0.000 claims description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 9
- 238000001771 vacuum deposition Methods 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 claims description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 6
- HCFAJYNVAYBARA-UHFFFAOYSA-N 4-heptanone Chemical compound CCCC(=O)CCC HCFAJYNVAYBARA-UHFFFAOYSA-N 0.000 claims description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 claims description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 4
- 125000005647 linker group Chemical group 0.000 claims description 4
- FDPIMTJIUBPUKL-UHFFFAOYSA-N pentan-3-one Chemical compound CCC(=O)CC FDPIMTJIUBPUKL-UHFFFAOYSA-N 0.000 claims description 4
- 125000005373 siloxane group Chemical group [SiH2](O*)* 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 claims description 2
- QQZOPKMRPOGIEB-UHFFFAOYSA-N 2-Oxohexane Chemical compound CCCCC(C)=O QQZOPKMRPOGIEB-UHFFFAOYSA-N 0.000 claims description 2
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 claims description 2
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 claims description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 claims description 2
- 238000009500 colour coating Methods 0.000 claims description 2
- 238000007646 gravure printing Methods 0.000 claims description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 2
- 238000007764 slot die coating Methods 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 239000008096 xylene Substances 0.000 claims description 2
- 238000003756 stirring Methods 0.000 description 56
- 239000000243 solution Substances 0.000 description 54
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 42
- 230000015572 biosynthetic process Effects 0.000 description 40
- 238000003786 synthesis reaction Methods 0.000 description 40
- 239000003054 catalyst Substances 0.000 description 28
- 239000012535 impurity Substances 0.000 description 27
- 239000012299 nitrogen atmosphere Substances 0.000 description 21
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 21
- 239000012948 isocyanate Substances 0.000 description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 16
- 239000007788 liquid Substances 0.000 description 15
- 238000000746 purification Methods 0.000 description 15
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 12
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 11
- 239000012975 dibutyltin dilaurate Substances 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 150000002513 isocyanates Chemical class 0.000 description 10
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000002156 mixing Methods 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- QQQSFSZALRVCSZ-UHFFFAOYSA-N triethoxysilane Chemical compound CCO[SiH](OCC)OCC QQQSFSZALRVCSZ-UHFFFAOYSA-N 0.000 description 9
- 238000000151 deposition Methods 0.000 description 8
- 230000008021 deposition Effects 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- WZFUQSJFWNHZHM-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 WZFUQSJFWNHZHM-UHFFFAOYSA-N 0.000 description 7
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 239000005400 gorilla glass Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 125000006832 (C1-C10) alkylene group Chemical group 0.000 description 2
- OHVLMTFVQDZYHP-UHFFFAOYSA-N 1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-2-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound N1N=NC=2CN(CCC=21)C(CN1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)=O OHVLMTFVQDZYHP-UHFFFAOYSA-N 0.000 description 2
- LDXJRKWFNNFDSA-UHFFFAOYSA-N 2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]ethanone Chemical compound C1CN(CC2=NNN=C21)CC(=O)N3CCN(CC3)C4=CN=C(N=C4)NCC5=CC(=CC=C5)OC(F)(F)F LDXJRKWFNNFDSA-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 2
- YUODINZCYNYGRR-UHFFFAOYSA-N 3-trimethoxysilylpropanoic acid Chemical compound CO[Si](OC)(OC)CCC(O)=O YUODINZCYNYGRR-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 2
- 238000009530 blood pressure measurement Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000005357 flat glass Substances 0.000 description 2
- 229960001545 hydrotalcite Drugs 0.000 description 2
- 229910001701 hydrotalcite Inorganic materials 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000008213 purified water Substances 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- -1 tempered glass Chemical class 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NBXZNTLFQLUFES-UHFFFAOYSA-N triethoxy(propyl)silane Chemical compound CCC[Si](OCC)(OCC)OCC NBXZNTLFQLUFES-UHFFFAOYSA-N 0.000 description 2
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 1
- GVNVAWHJIKLAGL-UHFFFAOYSA-N 2-(cyclohexen-1-yl)cyclohexan-1-one Chemical compound O=C1CCCCC1C1=CCCCC1 GVNVAWHJIKLAGL-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- YLZOPXRUQYQQID-UHFFFAOYSA-N 3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)-1-[4-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidin-5-yl]piperazin-1-yl]propan-1-one Chemical compound N1N=NC=2CN(CCC=21)CCC(=O)N1CCN(CC1)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F YLZOPXRUQYQQID-UHFFFAOYSA-N 0.000 description 1
- GDDNTTHUKVNJRA-UHFFFAOYSA-N 3-bromo-3,3-difluoroprop-1-ene Chemical compound FC(F)(Br)C=C GDDNTTHUKVNJRA-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 1
- HBNHKGZJEBJLJU-UHFFFAOYSA-N CCOC(N(CCC[Si](OC)(OC)OC)OC(C=C1)=CC(OC(C=C(C=C2)ON(CCC[Si](OC)(OC)OC)C(OCC)=O)=C2C(O)=O)=C1C(O)=O)=O Chemical compound CCOC(N(CCC[Si](OC)(OC)OC)OC(C=C1)=CC(OC(C=C(C=C2)ON(CCC[Si](OC)(OC)OC)C(OCC)=O)=C2C(O)=O)=C1C(O)=O)=O HBNHKGZJEBJLJU-UHFFFAOYSA-N 0.000 description 1
- 101150065749 Churc1 gene Proteins 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 108010084311 Novozyme 435 Proteins 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N Propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 1
- 102100038239 Protein Churchill Human genes 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- MPYXTIHPALVENR-UHFFFAOYSA-N benzene-1,3,5-triol;dihydrate Chemical compound O.O.OC1=CC(O)=CC(O)=C1 MPYXTIHPALVENR-UHFFFAOYSA-N 0.000 description 1
- FQQGKCCEPLNZQK-UHFFFAOYSA-N bis(3-trimethoxysilylpropyl) carbonate Chemical compound CO[Si](OC)(OC)CCCOC(=O)OCCC[Si](OC)(OC)OC FQQGKCCEPLNZQK-UHFFFAOYSA-N 0.000 description 1
- JKJWYKGYGWOAHT-UHFFFAOYSA-N bis(prop-2-enyl) carbonate Chemical compound C=CCOC(=O)OCC=C JKJWYKGYGWOAHT-UHFFFAOYSA-N 0.000 description 1
- HQABUPZFAYXKJW-UHFFFAOYSA-N butan-1-amine Chemical compound CCCCN HQABUPZFAYXKJW-UHFFFAOYSA-N 0.000 description 1
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- QFWPJPIVLCBXFJ-UHFFFAOYSA-N glymidine Chemical compound N1=CC(OCCOC)=CN=C1NS(=O)(=O)C1=CC=CC=C1 QFWPJPIVLCBXFJ-UHFFFAOYSA-N 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- JRNGUTKWMSBIBF-UHFFFAOYSA-N naphthalene-2,3-diol Chemical compound C1=CC=C2C=C(O)C(O)=CC2=C1 JRNGUTKWMSBIBF-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- IZRJPHXTEXTLHY-UHFFFAOYSA-N triethoxy(2-triethoxysilylethyl)silane Chemical compound CCO[Si](OCC)(OCC)CC[Si](OCC)(OCC)OCC IZRJPHXTEXTLHY-UHFFFAOYSA-N 0.000 description 1
- CUGOJICFLLRFJS-UHFFFAOYSA-N trimethoxy-[5,5,5-triethoxy-4-(1,1,1-triethoxy-5-trimethoxysilylpentan-2-yl)sulfanylpentyl]silane Chemical compound CCOC(C(CCC[Si](OC)(OC)OC)SC(CCC[Si](OC)(OC)OC)C(OCC)(OCC)OCC)(OCC)OCC CUGOJICFLLRFJS-UHFFFAOYSA-N 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/06—Polysiloxanes containing silicon bound to oxygen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/20—Diluents or solvents
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
Abstract
Description
본 발명은 초박형 강도보강 코팅제용 화합물 및 이를 포함하는 강도보강 코팅제에 관한 것으로서, 보다 상세하게는 건식 또는 습식방법을 통하여 초박형(1마이크로미터 이하 두께)으로 코팅하여 강화유리 및 초박형유리가 쉽게 깨지는 특성을 보강하여 충격 및 압력에 의한 깨짐방지 기능을 부여할 수 있는 유용한 강도보강 코팅제용 화합물 및 이를 포함하는 강도보강 코팅제에 관한 것이다.The present invention relates to a compound for an ultra-thin strength reinforcing coating agent and a strength reinforcing coating agent comprising the same, and more particularly, by coating it in an ultra-thin (thickness of 1 micrometer or less) through a dry or wet method to easily break tempered glass and ultra-thin glass It relates to a compound for a useful strength-reinforcing coating agent capable of providing an anti-breaking function due to impact and pressure by reinforcing it, and a strength-reinforcing coating agent comprising the same.
최근 IT기반의 스마트폰 등 터치형 디스플레이의 급격한 발전으로 소비자의 품질에 대한 눈높이가 점점 높아지고 있고 스마트폰 등 IT기기의 디자인이 점점 수려해지고 디스플레이의 품질이 점점 높아짐에 따라 전면디스플레이유리, 카메라렌즈 커버글라스 등에 사용되는 강화유리가 점점 얇아지고 있다. 이에 반사방지 또는 컬러감 등의 광학적인 특성을 부여하기 위하여 고굴절과 저굴절 물질인 금속산화물(SiO2, TiO2 등)을 이용한 적층 코팅이 요구됨으로써 강화유리로 이루어진 디스플레이나 커버글라스가 외부의 충격 및 압력에 의하여 쉽게 깨지는 경향이 많아지고 있어 이에 대한 강도보강 코팅으로 인한 깨짐 방지에 대한 요구가 절실히 요청되고 있는 실정이다. Recently, with the rapid development of touch-type displays such as IT-based smart phones, consumers' expectations for quality are getting higher and higher. Tempered glass used for glass is getting thinner and thinner. In order to provide optical properties such as anti-reflection or color sense, laminated coating using metal oxide (SiO 2 , TiO 2 , etc.), which is a high refractive and low refractive material, is required. There is an increasing tendency to break easily by pressure, so there is an urgent need for prevention of cracking due to the strength-reinforcing coating.
또한, 이에 더하여 다양하게 휘거나 접는 디스플레이 등의 등장으로 유연하게 휠 수 있는 특성을 부여하기 위하여 더욱 얇은 필름형태의 초박형 유리(100마이크로미터 이하)가 사용되기 시작되었다. 이러한 유연한 소재에 대응하기 위해서는 강도보강용 코팅제도 초박막으로 코팅이 가능하여야 하고 깨짐방지 기능 또한 우수해야 하는 등의 어려움을 극복해야 하는 코팅소재의 개발이 필수적이다.In addition, with the advent of variously curved or foldable displays, ultra-thin glass (100 micrometers or less) in the form of a thinner film has begun to be used in order to impart flexible bending properties. In order to cope with such flexible materials, it is essential to develop a coating material that overcomes difficulties such as the ability to coat the strength reinforcing coating as an ultra-thin film, and the excellent anti-break function.
그러나 실리콘수지를 기타 첨가제와 배합하여 사용(한국등록특허 제10-1836802호)하거나 유리기판에 직접 점착하여 사용하는(한국공개특허 제10-2004-0017552호) 등 코팅 두께 자체가 수 마이크로미터에서 수십 마이크로미터 단위로 두껍거나 아크릴레이트와 실란 구조를 혼합하여 폴리머 필름에 도포하여 사용하는(한국공개특허 제10-2016-0013402호, 제10-2018-0074544호) 하드코팅용 조성물에 한정되어있어 상기 초박막 강도보강 코팅제로는 응용하는데 적합하지 않은 단점이 있다.However, the coating thickness itself is several micrometers, such as using silicone resin in combination with other additives (Korean Patent No. 10-1836802) or using it directly on a glass substrate (Korean Patent Publication No. 10-2004-0017552). It is limited to a composition for hard coating that is thick in the order of several tens of micrometers or is applied to a polymer film by mixing an acrylate and a silane structure (Korean Patent Publication Nos. 10-2016-0013402, 10-2018-0074544). The ultra-thin film strength-reinforcing coating agent has a disadvantage in that it is not suitable for application.
따라서 1마이크로미터 이하의 초박막으로 코팅을 하여 광학적인 특성을 유지하면서도 0.5mm 두께 이하의 얇은 강화유리 및 초박형유리(UTG; Ultra Thin Glass, 0.1mm이하 두께)에서 요구하는 유연성을 가지면서도 깨짐방지 기능을 갖는 강도보강 코팅제의 개발이 절실히 필요한 시점이다.Therefore, it is coated with an ultra-thin film of 1 micrometer or less to maintain optical properties, while having the flexibility required for thin tempered glass and ultra-thin glass (UTG; Ultra Thin Glass, 0.1 mm or less) with a thickness of less than 0.5 mm and preventing breakage The development of a strength-reinforcing coating agent with
이러한 문제점을 해결하고자 본 발명에서 건식 또는 습식방법을 통하여 초박형(1 마이크로미터 이하 두께)으로 코팅하여 강화유리 및 초박형 유리가 쉽게 깨지는 특성을 보강하여 외부의 충격 및 압력에 의한 깨짐방지 기능을 부여할 수 있는데 유용한 강도보강 코팅제 화합물 및 이를 포함하는 강도보강 코팅제를 제공하는 것을 목적으로 한다.In order to solve this problem, in the present invention, it is coated with an ultra-thin (thickness of 1 micrometer or less) through a dry or wet method to reinforce the properties of tempered glass and ultra-thin glass that are easily broken to provide a function to prevent breakage due to external impact and pressure. An object of the present invention is to provide a useful strength-reinforcing coating compound and a strength-reinforcing coating agent comprising the same.
본 발명의 제1측면에 따르면, 하기 화학식 1 또는 2로 표시되는 구조를 포함하는, 강도보강 코팅제용 화합물이 제공된다:According to the first aspect of the present invention, there is provided a compound for a strength-reinforcing coating agent comprising a structure represented by the following Chemical Formula 1 or 2:
[화학식 1][Formula 1]
A-[B-R1-Si(OR2)3-n]m A-[BR 1 -Si(OR 2 ) 3-n ] m
[화학식 2][Formula 2]
(E)k-[B-R1-Si(OR2)3-n]m (E) k -[BR 1 -Si(OR 2 ) 3-n ] m
상기 화학식 1 및 2에서 R1은 직접 결합이거나, 치환 또는 비치환된 탄소수 1 내지 10개(보다 구체적으로, 1 내지 9개, 2 내지 10개 또는 2 내지 9개)의 지방족 기이고;In
R2는 치환 또는 비치환된 탄소수 1 내지 5개의 지방족 기이고;R 2 is a substituted or unsubstituted aliphatic group having 1 to 5 carbon atoms;
B는 각각 독립적으로 말단 관능기인 실록산 기를 주쇄에 연결하는 링커이며;each B is independently a linker connecting the siloxane group, which is a terminal functional group, to the main chain;
A는 치환 또는 비치환된 탄소수 1 내지 40개의 직쇄 및 분지쇄 지방족 또는 방향족 기이고;A is a substituted or unsubstituted straight-chain and branched aliphatic or aromatic group having 1 to 40 carbon atoms;
E는 C1~3알킬렌옥시C1~3알킬렌이되, 단, 말단의 E는 C1~3알킬옥시C1~3알킬렌이고;E is C 1-3 alkyleneoxyC 1-3 alkylene, provided that the terminal E is C 1-3 alkyloxyC 1-3 alkylene;
n은 0 내지 2의 정수이고;n is an integer from 0 to 2;
m은 1 내지 6의 정수이고;m is an integer from 1 to 6;
k는 1 내지 20의 정수이다.k is an integer from 1 to 20;
일 구체예에서, 상기 B는 -NH-, -O-, -C(=O)O-, -CH2O-, -CH2SRO-, -CH2SROC(=O)-, -CH2SRC(=O)O-, -CH2SRNHC(=O)-, -CH2SROC(=O)(CH2)2OC(=O)-, -CH2SRC(=O)-, -CH2SO2RO-, -CH2SO2ROC(=O)-, -CH2SO2RC(=O)O-, -CH2SO2RNHC(=O)-, -CH2SO2ROC(=O)(CH2)2OC(=O)-, -CH2SO2RC(=O)-, CH2O(CH2)3S(CH2)2NH-, -OC(=O)RO-, -OC(=O)ROC(=O)-, -OC(=O)RC(=O)O-, -OC(=O)RNHC(=O)-, -OC(=O)ROC(=O)(CH2)2OC(=O)-, -OC(=O)RC(=O)-, -C(=O)ORO-, -C(=O)OROC(=O)-, -C(=O)ORC(=O)O-, -C(=O)ORNHC(=O)-, -C(=O)OROC(=O)(CH2)2OC(=O)-, -C(=O)ORC(=O)-, -ORO-, -OROC(=O)-, -ORC(=O)O-, -ORNHC(=O)-, -OROC(=O)(CH2)2OC(=O)-, -ORC(=O)-, -NHRO-, -NHC(=O)O-, -NHROC(=O)-, -NHRC(=O)O-, -NHRNHC(=O)-, -NHROC(=O)(CH2)2OC(=O)-, -NHRC(=O)-, -CH2RO-, -CH2ROC(=O)-, -CH2RC(=O)O-, -CH2RNHC(=O)-, -OCH2CHOHCH2-, -OCH2CHOHCH2O-, -CH2ROC(=O)(CH2)2OC(=O)-, -OC6H4RO-, -OC6H4ROC(=O)-, -OC6H4RC(=O)O-, -OC6H4RNHC(=O)-, -OC6H4ROC(=O)(CH2)2OC(=O)-, -OC6H4RC(=O)-, -OC6H4C(=O)OROC(=O)-, -OC6H4C(=O)ORC(=O)O-, -OC6H4C(=O)ORO-, -OC6H4C(=O)ORNHC(=O)-, -OC6H4C(=O)OROC(=O)(CH2)2OC(=O)-, -OC6H4C(=O)ORC(=O)-, -OC6H4C(=O)NHROC(=O)-, -OC6H4C(=O)NHRC(=O)O-, -OC6H4C(=O)NHRO-, -OC6H4C(=O)NHRNHC(=O)-, -OC6H4C(=O)NHROC(=O)(CH2)2OC(=O)- 및 -OC6H4C(=O)NHRC(=O)-로 이루어진 그룹으로부터 선택되는 지방족 또는 방향족 기이며, 여기에서 R은 수소 또는 치환 또는 비치환된 탄소 수 1 내지 10의 알킬렌기이다. In one embodiment, B is -NH-, -O-, -C(=O)O-, -CH 2 O-, -CH 2 SRO-, -CH 2 SROC(=O)-, -CH 2 SRC(=O)O-, -CH 2 SRNHC(=O)-, -CH 2 SROC(=O)(CH 2 ) 2 OC(=O)-, -CH 2 SRC(=O)-, -CH 2 SO 2 RO-, -CH 2 SO 2 ROC(=O)-, -CH 2 SO 2 RC(=O)O-, -CH 2 SO 2 RNHC(=O)-, -CH 2 SO 2 ROC( =O)(CH 2 ) 2 OC(=O)-, -CH 2 SO 2 RC(=O)-, CH 2 O(CH 2 ) 3 S(CH 2 ) 2 NH-, -OC(=O) RO-, -OC(=O)ROC(=O)-, -OC(=O)RC(=O)O-, -OC(=O)RNHC(=O)-, -OC(=O)ROC (=O)(CH 2 ) 2 OC(=O)-, -OC(=O)RC(=O)-, -C(=O)ORO-, -C(=O)OROC(=O)- , -C(=O)ORC(=O)O-, -C(=O)ORNHC(=O)-, -C(=O)OROC(=O)(CH 2 ) 2 OC(=O)- , -C(=O)ORC(=O)-, -ORO-, -OROC(=O)-, -ORC(=O)O-, -ORNHC(=O)-, -OROC(=O)( CH 2 ) 2 OC(=O)-, -ORC(=O)-, -NHRO-, -NHC(=O)O-, -NHROC(=O)-, -NHRC(=O)O-, - NHRNHC(=O)-, -NHROC(=O)(CH 2 ) 2 OC(=O)-, -NHRC(=O)-, -CH 2 RO-, -CH 2 ROC(=O)-, - CH 2 RC(=O)O-, -CH 2 RNHC(=O)-, -OCH 2 CHOHCH 2 -, -OCH 2 CHOHCH 2 O-, -CH 2 ROC(=O)(CH 2 ) 2 OC( =O)-, -OC 6 H 4 RO-, -OC 6 H 4 ROC(=O)-, -OC 6 H 4 RC(=O)O-, -OC 6 H 4 RNHC(=O)-, -OC 6 H 4 ROC(=O)(CH 2 ) 2 OC(=O)-, -OC 6 H 4 RC(=O)-, -OC 6 H 4 C(=O)OROC(=O)-, -OC 6 H 4 C(=O)ORC(=O)O-, -OC 6 H 4 C(=O)ORO-, -OC 6 H 4 C(=O)ORNHC(=O)-, -OC 6 H 4 C(=O)OROC(=O)(CH 2 ) 2 OC(=O)-, -OC 6 H 4 C(= O)ORC(=O)-, -OC 6 H 4 C(=O)NHROC(=O)-, -OC 6 H 4 C(=O)NHRC(=O)O-, -OC 6 H 4 C (=O)NHRO-, -OC 6 H 4 C(=O)NHRNHC(=O)-, -OC 6 H 4 C(=O)NHROC(=O)(CH 2 ) 2 OC(=O)- and -OC 6 H 4 C(=O)NHRC(=O)-, wherein R is hydrogen or a substituted or
본 발명의 제 2측면에 따르면, 하기 화학식 3 또는 4로 표시되는 구조를 포함하는, 강도보강 코팅제용 화합물이 제공된다:According to a second aspect of the present invention, there is provided a compound for a strength-reinforcing coating agent comprising a structure represented by the following Chemical Formula 3 or 4:
[화학식 3][Formula 3]
X-{A-[B-R1-Si(OR2)3-n]m}l X-{A-[BR 1 -Si(OR 2 ) 3-n ] m } l
[화학식 4][Formula 4]
X-{(E)k-[B-R1-Si(OR2)3-n]m}l X-{(E) k -[BR 1 -Si(OR 2 ) 3-n ] m } l
상기 화학식 3과 4에서, R1, R2, B, A, E, n, m 및 k는 상기 화학식 1 및 2에서 정의된 바와 같고, In Formulas 3 and 4, R 1 , R 2 , B, A, E, n, m and k are as defined in
X는 O, S, N, C 및 P 중 하나이며; X is one of O, S, N, C and P;
l은 X의 결합가수(valency)로서, 2 내지 6으로부터 선택되는 정수이다.l is a valency of X, and is an integer selected from 2 to 6.
일 구체예에서, 본 발명에 따른 상기 화학식 1 내지 4 중 어느 하나의 구조를 포함하는 강도보강 코팅제용 화합물의 전체 분자량은 200 내지 4,000g/mol이다.In one embodiment, the total molecular weight of the compound for a strength-reinforcing coating agent comprising any one of the structures of
본 발명의 제 3 측면에 따르면, 하나 이상의 본 발명의 강도보강 코팅제용 화합물; 및 용매;를 포함하는, 강도보강 코팅제가 제공된다.According to a third aspect of the present invention, at least one compound for a strength-reinforcing coating agent of the present invention; and a solvent; including, a strength-reinforcing coating agent is provided.
본 발명의 제 4 측면에 따르면, 본 발명의 강도보강 코팅제를 사용하여 유리 기재를 습식으로 코팅하는 것을 포함하는, 강화유리의 제조방법이 제공된다.According to a fourth aspect of the present invention, there is provided a method for manufacturing tempered glass, comprising wet coating a glass substrate using the strength reinforcing coating agent of the present invention.
본 발명의 제 5 측면에 따르면, 본 발명의 강도보강 코팅제를 사용하여 유리 기재를 건식으로 코팅하는 것을 포함하는, 강화유리의 제조방법이 제공된다.According to a fifth aspect of the present invention, there is provided a method for manufacturing tempered glass, comprising dry coating a glass substrate using the strength reinforcing coating agent of the present invention.
본 발명은 1 마이크로미터 이하의 초박막으로 코팅을 하여 유리가 충격이나 압력에 의한 깨짐방지 기능을 갖는 강도보강 코팅제에 사용되는 강도보강 코팅제용 화합물의 제공이 가능하다.The present invention is possible to provide a compound for a strength-reinforcing coating agent used in a strength-reinforcing coating agent having a function of preventing the glass from breaking due to impact or pressure by coating with an ultra-thin film of 1 micrometer or less.
또한, 초박형 유리 등의 유연한 플렉시블 디스플레이의 특성에 맞추어 유연성이 우수한 초박형 강도보강 코팅제의 제공이 가능하다.In addition, it is possible to provide an ultra-thin strength-reinforcing coating agent having excellent flexibility in accordance with the characteristics of a flexible flexible display such as ultra-thin glass.
본 발명은 얇은 강화유리에 광학적인 특성을 부여하기 위하여 금속산화물을 이용한 증착에 의한 면압(표면강도)이 우수한 초박형 강도보강 코팅제의 제공이 가능하다.The present invention can provide an ultra-thin strength-reinforcing coating agent having excellent surface pressure (surface strength) by deposition using a metal oxide in order to impart optical properties to thin tempered glass.
본 발명은 초박막으로 강화유리 등의 금속산화물에 부착력이 우수하여 세라믹 반도체의 충격에 의한 깨짐방지 코팅제로 적용이 가능하다.The present invention is an ultra-thin film and has excellent adhesion to metal oxides such as tempered glass, so that it can be applied as a coating agent to prevent breakage due to impact of ceramic semiconductors.
도 1은 비교예 1-1과 대비하여 본 발명의 실시예 2-1과 실시예 2-2의 파장에 따른 투과율 측정결과이다.
도 2는 비교예 1-1과 대비하여 본 발명의 실시예 2-1과 실시예 2-2의 파장에 따른 반사율 측정 결과이다.
도 3은 시편유리의 충격강도를 측정하는 GIT(Glass Impact Test) 장치의 측정모습을 설명하는 그림이다.
도 4는 비교예 1-1과 대비하여 본 발명의 실시예 2-1과 2-2의 충격강도 측정(GIT) 결과이다.
도 5는 시편유리의 면압을 측정하는 ROR(Ring on Ring) 장치의 측정모습을 설명하는 그림이다.
도 6은 비교예 1-1과 대비하여 본 발명의 실시예 2-1과 실시예 2-2의 면압측정(ROR) 결과이다.
도 7은 비교예 1-2와 대비하여 실시예 4-1, 실시예 4-2, 실시예 4-3, 실시예 4-4의 면압측정(ROR) 결과이다.1 is a graph showing transmittance measurement results according to wavelengths of Examples 2-1 and 2-2 of the present invention compared to Comparative Example 1-1.
2 is a graph showing reflectance measurement results according to wavelengths of Examples 2-1 and 2-2 of the present invention compared to Comparative Example 1-1.
3 is a diagram illustrating a measurement state of a GIT (Glass Impact Test) device for measuring the impact strength of specimen glass.
4 is an impact strength measurement (GIT) result of Examples 2-1 and 2-2 of the present invention compared to Comparative Example 1-1.
5 is a diagram for explaining the measurement state of the ROR (Ring on Ring) device for measuring the surface pressure of the glass specimen.
6 is a surface pressure measurement (ROR) result of Examples 2-1 and 2-2 of the present invention compared to Comparative Example 1-1.
7 is a surface pressure measurement (ROR) result of Example 4-1, Example 4-2, Example 4-3, and Example 4-4 in comparison with Comparative Example 1-2.
이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명의 제1측면에 따르면, 하기 화학식 1 또는 2로 표시되는 구조를 포함하는, 강도보강 코팅제용 화합물이 제공된다:According to the first aspect of the present invention, there is provided a compound for a strength-reinforcing coating agent comprising a structure represented by the following Chemical Formula 1 or 2:
[화학식 1][Formula 1]
A-[B-R1-Si(OR2)3-n]m A-[BR 1 -Si(OR 2 ) 3-n ] m
[화학식 2][Formula 2]
(E)k-[B-R1-Si(OR2)3-n]m (E) k -[BR 1 -Si(OR 2 ) 3-n ] m
상기 화학식 1 및 2에서 R1은 직접 결합이거나, 치환 또는 비치환된 탄소수 1 내지 10개(보다 구체적으로, 1 내지 9개, 2 내지 10개 또는 2 내지 9개)의 지방족 기이고;In
R2는 치환 또는 비치환된 탄소수 1 내지 5개의 지방족 기이고;R 2 is a substituted or unsubstituted aliphatic group having 1 to 5 carbon atoms;
B는 각각 독립적으로 말단 관능기인 실록산 기를 주쇄에 연결하는 링커이며;each B is independently a linker connecting the siloxane group, which is a terminal functional group, to the main chain;
A는 치환 또는 비치환된 탄소수 1 내지 40개의 직쇄 및 분지쇄 지방족 또는 방향족 기이고;A is a substituted or unsubstituted straight-chain and branched aliphatic or aromatic group having 1 to 40 carbon atoms;
E는 C1~3알킬렌옥시C1~3알킬렌이되, 단, 말단의 E는 C1~3알킬옥시C1~3알킬렌이고;E is C 1-3 alkyleneoxyC 1-3 alkylene, provided that the terminal E is C 1-3 alkyloxyC 1-3 alkylene;
n은 0 내지 2의 정수이고;n is an integer from 0 to 2;
m은 1 내지 6의 정수이고;m is an integer from 1 to 6;
k는 1 내지 20의 정수이다.k is an integer from 1 to 20;
본 명세서에 기재된 화학식에서 X-Yn의 구조는 n개의 Y가 각각 독립적으로 X에 결합되어 있는 상태를 의미한다.In the formula described herein, the structure of XY n means a state in which n Ys are each independently bonded to X.
본 명세서에 기재된 화학식들에서 용어 “치환 또는 비치환된”이란 해당 기가 비치환된 것이거나, 또는 하나 이상의 치환기(예컨대, 히드록시기, 할로겐기, 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 또는 탄소수 6 내지 10의 아릴기로 이루어진 군으로부터 선택된 하나 이상)에 의하여 치환된 것을 의미한다.In the formulas described herein, the term “substituted or unsubstituted” means that the group is unsubstituted, or one or more substituents (eg, a hydroxy group, a halogen group, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms) , or at least one selected from the group consisting of an aryl group having 6 to 10 carbon atoms).
일 구체예에서, 상기 B는 -NH-, -O-, -C(=O)O-, -CH2O-, -CH2SRO-, -CH2SROC(=O)-, -CH2SRC(=O)O-, -CH2SRNHC(=O)-, -CH2SROC(=O)(CH2)2OC(=O)-, -CH2SRC(=O)-, -CH2SO2RO-, -CH2SO2ROC(=O)-, -CH2SO2RC(=O)O-, -CH2SO2RNHC(=O)-, -CH2SO2ROC(=O)(CH2)2OC(=O)-, -CH2SO2RC(=O)-, CH2O(CH2)3S(CH2)2NH-, -OC(=O)RO-, -OC(=O)ROC(=O)-, -OC(=O)RC(=O)O-, -OC(=O)RNHC(=O)-, -OC(=O)ROC(=O)(CH2)2OC(=O)-, -OC(=O)RC(=O)-, -C(=O)ORO-, -C(=O)OROC(=O)-, -C(=O)ORC(=O)O-, -C(=O)ORNHC(=O)-, -C(=O)OROC(=O)(CH2)2OC(=O)-, -C(=O)ORC(=O)-, -ORO-, -OROC(=O)-, -ORC(=O)O-, -ORNHC(=O)-, -OROC(=O)(CH2)2OC(=O)-, -ORC(=O)-, -NHRO-, -NHC(=O)O-, -NHROC(=O)-, -NHRC(=O)O-, -NHRNHC(=O)-, -NHROC(=O)(CH2)2OC(=O)-, -NHRC(=O)-, -CH2RO-, -CH2ROC(=O)-, -CH2RC(=O)O-, -CH2RNHC(=O)-, -OCH2CHOHCH2-, -OCH2CHOHCH2O-, -CH2ROC(=O)(CH2)2OC(=O)-, -OC6H4RO-, -OC6H4ROC(=O)-, -OC6H4RC(=O)O-, -OC6H4RNHC(=O)-, -OC6H4ROC(=O)(CH2)2OC(=O)-, -OC6H4RC(=O)-, -OC6H4C(=O)OROC(=O)-, -OC6H4C(=O)ORC(=O)O-, -OC6H4C(=O)ORO-, -OC6H4C(=O)ORNHC(=O)-, -OC6H4C(=O)OROC(=O)(CH2)2OC(=O)-, -OC6H4C(=O)ORC(=O)-, -OC6H4C(=O)NHROC(=O)-, -OC6H4C(=O)NHRC(=O)O-, -OC6H4C(=O)NHRO-, -OC6H4C(=O)NHRNHC(=O)-, -OC6H4C(=O)NHROC(=O)(CH2)2OC(=O)- 및 -OC6H4C(=O)NHRC(=O)-로 이루어진 그룹으로부터 선택되는 지방족 또는 방향족 기이며, 여기에서 R은 수소 또는 치환 또는 비치환된 탄소 수 1 내지 10의 알킬렌기이다. In one embodiment, B is -NH-, -O-, -C(=O)O-, -CH 2 O-, -CH 2 SRO-, -CH 2 SROC(=O)-, -CH 2 SRC(=O)O-, -CH 2 SRNHC(=O)-, -CH 2 SROC(=O)(CH 2 ) 2 OC(=O)-, -CH 2 SRC(=O)-, -CH 2 SO 2 RO-, -CH 2 SO 2 ROC(=O)-, -CH 2 SO 2 RC(=O)O-, -CH 2 SO 2 RNHC(=O)-, -CH 2 SO 2 ROC( =O)(CH 2 ) 2 OC(=O)-, -CH 2 SO 2 RC(=O)-, CH 2 O(CH 2 ) 3 S(CH 2 ) 2 NH-, -OC(=O) RO-, -OC(=O)ROC(=O)-, -OC(=O)RC(=O)O-, -OC(=O)RNHC(=O)-, -OC(=O)ROC (=O)(CH 2 ) 2 OC(=O)-, -OC(=O)RC(=O)-, -C(=O)ORO-, -C(=O)OROC(=O)- , -C(=O)ORC(=O)O-, -C(=O)ORNHC(=O)-, -C(=O)OROC(=O)(CH 2 ) 2 OC(=O)- , -C(=O)ORC(=O)-, -ORO-, -OROC(=O)-, -ORC(=O)O-, -ORNHC(=O)-, -OROC(=O)( CH 2 ) 2 OC(=O)-, -ORC(=O)-, -NHRO-, -NHC(=O)O-, -NHROC(=O)-, -NHRC(=O)O-, - NHRNHC(=O)-, -NHROC(=O)(CH 2 ) 2 OC(=O)-, -NHRC(=O)-, -CH 2 RO-, -CH 2 ROC(=O)-, - CH 2 RC(=O)O-, -CH 2 RNHC(=O)-, -OCH 2 CHOHCH 2 -, -OCH 2 CHOHCH 2 O-, -CH 2 ROC(=O)(CH 2 ) 2 OC( =O)-, -OC 6 H 4 RO-, -OC 6 H 4 ROC(=O)-, -OC 6 H 4 RC(=O)O-, -OC 6 H 4 RNHC(=O)-, -OC 6 H 4 ROC(=O)(CH 2 ) 2 OC(=O)-, -OC 6 H 4 RC(=O)-, -OC 6 H 4 C(=O)OROC(=O)-, -OC 6 H 4 C(=O)ORC(=O)O-, -OC 6 H 4 C(=O)ORO-, -OC 6 H 4 C(=O)ORNHC(=O)-, -OC 6 H 4 C(=O)OROC(=O)(CH 2 ) 2 OC(=O)-, -OC 6 H 4 C(= O)ORC(=O)-, -OC 6 H 4 C(=O)NHROC(=O)-, -OC 6 H 4 C(=O)NHRC(=O)O-, -OC 6 H 4 C (=O)NHRO-, -OC 6 H 4 C(=O)NHRNHC(=O)-, -OC 6 H 4 C(=O)NHROC(=O)(CH 2 ) 2 OC(=O)- and -OC 6 H 4 C(=O)NHRC(=O)-, wherein R is hydrogen or a substituted or unsubstituted C 1 to C 10 alkylene group.
본 발명의 제 2측면에 따르면, 하기 화학식 3 또는 4로 표시되는 구조를 포함하는, 초박형 코팅이 가능하면서 외부에서 가해지는 충격이나 압력에 의한 깨짐방지 기능을 갖는 강도보강 코팅제용 화합물이 제공된다:According to the second aspect of the present invention, a compound for a strength-reinforcing coating agent having a function of preventing breakage due to external impact or pressure while capable of ultra-thin coating, including a structure represented by the following Chemical Formula 3 or 4, is provided:
[화학식 3][Formula 3]
X-{A-[B-R1-Si(OR2)3-n]m}l X-{A-[BR 1 -Si(OR 2 ) 3-n ] m } l
[화학식 4][Formula 4]
X-{(E)k-[B-R1-Si(OR2)3-n]m}l X-{(E) k -[BR 1 -Si(OR 2 ) 3-n ] m } l
상기 화학식 3과 4에서, R1, R2, B, A, E, n, m 및 k는 상기 화학식 1 및 2에서 정의된 바와 같고, In Formulas 3 and 4, R 1 , R 2 , B, A, E, n, m and k are as defined in
X는 O, S, N, C 및 P 중 하나이며; X is one of O, S, N, C and P;
l은 X의 결합가수(valency)로서, 2 내지 6으로부터 선택되는 정수이다.l is a valency of X, and is an integer selected from 2 to 6.
일 구체예에서, 본 발명에 따른 상기 화학식 1 내지 4 중 어느 하나의 구조를 포함하는 강도보강 코팅제용 화합물의 전체 분자량은 200 내지 4,000g/mol일 수 있다.In one embodiment, the total molecular weight of the compound for a strength-reinforcing coating agent including the structure of any one of
본 발명의 제 3 측면에 따르면, 하나 이상의 본 발명의 강도보강 코팅제용 화합물; 및 용매;를 포함하는, 강도보강 코팅제가 제공된다.According to a third aspect of the present invention, at least one compound for a strength-reinforcing coating agent of the present invention; and a solvent; including, a strength-reinforcing coating agent is provided.
본 발명에 따른 강도보강 코팅제에 포함 가능한 용매는 특별히 한정되지 않고 당 분야에 공지된 용제를 사용할 수 있으며, 예를 들면 알코올계(메탄올, 에탄올, 이소프로판올, 부탄올, 메틸셀로솔브, 등), 케톤계(메틸에틸케톤, 메틸부틸케톤, 메틸이소부틸케톤, 디에틸케톤, 디프로필케톤, 시클로헥사논 등), 헥산계(헥산, 헵탄, 옥탄 등), 벤젠계(벤젠, 톨루엔, 자일렌계 등) 등이 사용될 수 있다. 이는 단독 또는 2종 이상 혼합하여 사용할 수 있다.The solvent that can be included in the strength reinforcing coating agent according to the present invention is not particularly limited, and a solvent known in the art can be used, for example, alcohol-based (methanol, ethanol, isopropanol, butanol, methyl cellosolve, etc.), ketone (methyl ethyl ketone, methyl butyl ketone, methyl isobutyl ketone, diethyl ketone, dipropyl ketone, cyclohexanone, etc.), hexane (hexane, heptane, octane, etc.), benzene (benzene, toluene, xylene, etc.) ) may be used. These may be used alone or in combination of two or more.
일 구체예에서, 본 발명의 강도보강 코팅제는 실록산의 가수분해를 촉진하기 위하여 촉매를 더 포함할 수 있다. 사용 가능한 촉매로는 예를 들어 염산, 아세트산, 불화수소, 질산, 황산, 클로로술폰산, 요오드산, 피로인산 등의 산촉매; 암모니아, 수산화칼륨, 수산화나트륨, 수산화바륨, 이미다졸, n-부틸아민, 디-n-부틸아민, 트리-n-부틸아민, 과염소산암모늄, 테트라메틸-하이드록사이드 등의 염기 촉매; 및 Amberite IRA-400, IRA-67 등의 이온교환수지가 있으며, 또한 이들의 조합으로 이루어진 군에서 선택되어 사용될 수 있다.In one embodiment, the strength-reinforcing coating agent of the present invention may further include a catalyst to promote hydrolysis of siloxane. Examples of the usable catalyst include acid catalysts such as hydrochloric acid, acetic acid, hydrogen fluoride, nitric acid, sulfuric acid, chlorosulfonic acid, iodic acid, and pyrophosphoric acid; base catalysts such as ammonia, potassium hydroxide, sodium hydroxide, barium hydroxide, imidazole, n-butylamine, di-n-butylamine, tri-n-butylamine, ammonium perchlorate, and tetramethyl-hydroxide; and ion exchange resins such as Amberite IRA-400 and IRA-67, and may be selected from the group consisting of combinations thereof.
촉매의 양은 특별히 제한되진 않으나, 산 촉매 및 염기 촉매의 경우 강도보강 코팅제용 화합물 100 중량부에 대하여 약 0.0001 내지 0.01 중량부를 첨가할 수 있으며, 이온교환 수지의 경우 강도보강 코팅제용 화합물100 중량부에 대해 1 내지 10 중량부를 첨가할 수 있으나, 이에 제한되지 않는다.The amount of the catalyst is not particularly limited, but in the case of an acid catalyst and a base catalyst, about 0.0001 to 0.01 parts by weight may be added based on 100 parts by weight of the compound for the strength reinforcing coating agent, and in the case of an ion exchange resin, 100 parts by weight of the compound for the strength reinforcing
본 발명의 제 4 측면에 따르면, 본 발명의 강도보강 코팅제를 사용하여 유리 기재를 습식으로 코팅하는 것을 포함하는, 강화유리의 제조방법이 제공된다.According to a fourth aspect of the present invention, there is provided a method for manufacturing tempered glass, comprising wet coating a glass substrate using the strength reinforcing coating agent of the present invention.
상기 습식 코팅을 위한 방법에는 특별한 제한이 없으며, 예를 들어, 스핀 코팅, 스프레이코팅, 스핀들코팅, 바코팅, 플로우코팅, 슬롯다이코팅, 그라비아 인쇄 등을 수행할 수 있다.The method for the wet coating is not particularly limited, and for example, spin coating, spray coating, spindle coating, bar coating, flow coating, slot die coating, gravure printing, etc. may be performed.
본 발명의 제 5 측면에 따르면, 본 발명의 강도보강 코팅제를 사용하여 유리 기재를 건식으로 코팅하는 것을 포함하는, 강화유리의 제조방법이 제공된다.According to a fifth aspect of the present invention, there is provided a method for manufacturing tempered glass, comprising dry coating a glass substrate using the strength reinforcing coating agent of the present invention.
상기 건식 코팅을 위한 방법에는 특별한 제한이 없으며, 예를 들어, 1x10-3torr 이상의 진공도 이상에서 e-빔 또는 저항가열식으로 가열하여 진공증착 방식으로 코팅을 수행할 수 있다.The method for the dry coating is not particularly limited, and for example, the coating may be performed by a vacuum deposition method by heating with an e-beam or resistance heating method at a vacuum degree of 1x10 -3 torr or more.
건식 코팅에 의하여 강화유리를 제조하는 방법에서는, 추가적으로 반사방지 코팅 또는 컬러 코팅을 수행할 수 있으며, 이러한 추가의 코팅은 e-빔 또는 저항가열식 가열 또는 스퍼터링 방식의 진공증착에 의하여 수행될 수 있다. In the method for manufacturing tempered glass by dry coating, an anti-reflection coating or color coating may be additionally performed, and this additional coating may be performed by e-beam or resistance heating heating or vacuum deposition of sputtering.
이하, 합성예 및 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나, 본 발명의 범위가 이들로 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through synthesis examples and examples. However, the scope of the present invention is not limited thereto.
[실시예][Example]
1. 합성예 11. Synthesis Example 1
에틸비스(우레타노프로필트리에톡시실란)을 하기와 같이 제조하였다.Ethylbis(uretanopropyltriethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리에톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 에틸렌글리콜 2.76g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltriethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. Into this solution, 2.76 g of ethylene glycol was added, and the temperature was gradually raised to 75° C. while vigorously stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of dibutyltin dilaurate catalyst was added and vigorously stirred. When it is confirmed that the isocyanate peak (2270-2290 cm -1 ) disappears from the FTIR spectrum, it is cooled and the solvent and impurities are primarily removed using a rotary evaporator, and a
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: -(CH2)2-; m: 2인 경우][In
2. 합성예 22. Synthesis Example 2
에틸비스(우레타노프로필트리메톡시실란)을 하기와 같이 제조하였다.Ethylbis(uretanopropyltrimethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 에틸렌글리콜 2.29g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. Into this solution, 2.29 g of ethylene glycol was added, and the temperature was gradually raised to 75° C. while strongly stirring under a nitrogen atmosphere with a dehydrator attached, and a drop of dibutyltin dilaurate catalyst was added thereto and vigorously stirred. When it is confirmed that the isocyanate peak (2270-2290 cm -1 ) disappears from the FTIR spectrum, it is cooled and the solvent and impurities are primarily removed using a rotary evaporator, and a
[화학식 1에서, R2: -CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: -(CH2)2-; m: 2인 경우][In
3. 합성예 33. Synthesis Example 3
1,1,1-트리스(우레타노프로필트리에톡시실릴메틸)프로판을 하기와 같이 제조하였다.1,1,1-tris(uretanopropyltriethoxysilylmethyl)propane was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 1,1,1-트리스(하이드록시메틸)프로판 5.06g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 고형분의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 5.06 g of 1,1,1-tris (hydroxymethyl) propane was added to this solution, and the temperature was gradually raised to 75° C. while vigorously stirring under a nitrogen atmosphere with a dehydrator attached. A drop of dibutyltin dilaurate catalyst was added and vigorously stirred. . When it was confirmed that the isocyanate peak (2270-2290 cm -1 ) disappeared from the FTIR spectrum, the solvent and impurities were primarily removed using a rotary evaporator, and second purification was performed in a vacuum oven at 1 torr, 50 ° C. to obtain a solid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: CH3CH2C(CH2)3-; m: 2인 경우][In
4. 합성예 44. Synthesis Example 4
2,2'-옥시비스(메틸렌)비스[2-에틸-1,3-비스(우레타노프로필트리에톡시실란)]을 하기와 같이 제조하였다.2,2'-oxybis(methylene)bis[2-ethyl-1,3-bis(uretanopropyltriethoxysilane)] was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 디(트리메틸올프로판) 2.76g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 고형분의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. To this solution, 2.76 g of di(trimethylolpropane) was added, and the temperature was gradually raised to 75° C. under strong stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of dibutyltindilaurate catalyst was added and vigorously stirred. When it was confirmed that the isocyanate peak (2270-2290 cm -1 ) disappeared from the FTIR spectrum, the solvent and impurities were primarily removed using a rotary evaporator, and second purification was performed in a vacuum oven at 1 torr, 50 ° C. to obtain a solid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 3에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: CH3CH2C(CH2)3-; m: 2; l: 2; X: O인 경우][In Formula 3, R 2 : -CH 2 CH 3 ; n: 0; R 1 : -(CH 2 ) 3 -; B: -NHC(=O)O-; A: CH 3 CH 2 C(CH 2 ) 3 -; m: 2; l: 2; If X: O]
5. 합성예 55. Synthesis Example 5
2,2',2”니트릴로트리에틸우레타노프로필트리에톡시실란을 하기와 같이 제조하였다.2,2',2" nitrilotriethyluretanopropyltriethoxysilane was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에탄올아민 4.02g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 점도가 높은 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. To this solution, 4.02 g of triethanolamine was added, and the temperature was gradually raised to 75° C. while vigorously stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of dibutyltin dilaurate catalyst was added and vigorously stirred. When it is confirmed that the isocyanate peak (2270~2290cm -1 ) disappears from the FTIR spectrum, it is cooled, the solvent and impurities are primarily removed using a rotary evaporator, and the liquid compound with high viscosity is purified secondarily at 1torr in a vacuum oven, 50℃ got The NMR and FTIR spectra were consistent with the following structures.
[화학식 3에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: -(CH2)2-; m: 1; l: 3; X: N 인 경우][In Formula 3, R 2 : -CH 2 CH 3 ; n: 0; R 1 : -(CH 2 ) 3 -; B: -NHC(=O)O-; A: -(CH 2 ) 2 -; m: 1; l: 3; If X: N]
6. 합성예 66. Synthesis Example 6
1,2,6-헥산트리(우레타노프로필트리에톡시실란)을 하기와 같이 제조하였다.1,2,6-hexanetri(uretanopropyltriethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 헥산트리올 3.61g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 점도가 높은 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. In this solution, 3.61 g of hexanetriol was added, and the temperature was gradually raised to 75° C. while vigorously stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of dibutyltin dilaurate catalyst was added thereto and vigorously stirred. When it is confirmed that the isocyanate peak (2270~2290cm -1 ) disappears from the FTIR spectrum, it is cooled, the solvent and impurities are primarily removed using a rotary evaporator, and the liquid compound with high viscosity is purified secondarily at 1torr in a vacuum oven, 50℃ got The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: -(CH2)4CHCH2-; m: 3인 경우][In
7. 합성예 77. Synthesis Example 7
1,2-벤젠비스(우레타노프로필트리에톡시실란)을 하기와 같이 제조하였다.1,2-Benzenebis(uretanopropyltriethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 피로카테콜 4.45g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 점성이 높은 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. Into this solution, 4.45 g of pyrocatechol was added, and the temperature was gradually raised to 75° C. under strong stirring under a nitrogen atmosphere equipped with a dehydration device, and a drop of dibutyltin dilaurate catalyst was added thereto, followed by vigorous stirring. When it is confirmed that the isocyanate peak (2270~2290cm -1 ) disappears from the FTIR spectrum, it is cooled, the solvent and impurities are primarily removed using a rotary evaporator, and the viscous liquid compound is secondarily purified at 1torr in a vacuum oven, 50℃. got The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: 페닐; m: 2인 경우][In
8. 합성예 88. Synthesis Example 8
1,3-벤젠비스(우레타노프로필트리에톡시실란)을 하기와 같이 제조하였다.1,3-Benzenebis(uretanopropyltriethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 레조르시놀 4.45g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 점도가 높은 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 4.45 g of resorcinol was added to this solution, and the temperature was gradually raised to 75° C. while vigorously stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of dibutyltin dilaurate catalyst was added and vigorously stirred. When it is confirmed that the isocyanate peak (2270~2290cm -1 ) disappears from the FTIR spectrum, it is cooled, the solvent and impurities are primarily removed using a rotary evaporator, and the liquid compound with high viscosity is purified secondarily at 1torr in a vacuum oven, 50℃ got The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: 페닐; m: 2인 경우][In
9. 합성예 99. Synthesis Example 9
1,4-벤젠비스(우레타노프로필트리에톡시실란)을 하기와 같이 제조하였다.1,4-Benzenebis(uretanopropyltriethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 하이드로퀴논 4.45g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 고형분의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 4.45 g of hydroquinone was added to this solution, and the temperature was gradually raised to 75° C. under strong stirring under a nitrogen atmosphere equipped with a dehydration device, and a drop of dibutyltin dilaurate catalyst was added and vigorously stirred. When it was confirmed that the isocyanate peak (2270-2290 cm -1 ) disappeared from the FTIR spectrum, the solvent and impurities were primarily removed using a rotary evaporator, and second purification was performed in a vacuum oven at 1 torr, 50 ° C. to obtain a solid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NHC(=O)O-; A: 페닐; m: 2인 경우][In
10. 합성예 10 10. Synthesis Example 10
1,3,3'-아미노하이드록실에톡시비스(프로필트리에톡시실란)을 하기와 같이 제조하였다.1,3,3'-Aminohydroxylethoxybis(propyltriethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-글리시독시프로필트리에톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 아미노프로필트리에톡시실란 15.9g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 노보자임 435 촉매 0.01g을 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 하이드록시 피크(3640~3610cm-1)가 생성되는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-glycidoxypropyltriethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 15.9 g of aminopropyltriethoxysilane was added to this solution, and the temperature was gradually raised to 75° C. under strong stirring under a nitrogen atmosphere with a dehydrator attached, and 0.01 g of Novozyme 435 catalyst was added and stirred vigorously. When it is confirmed that the hydroxy peak (3640-3610 cm -1 ) is generated in the FTIR spectrum, it is cooled, the solvent and impurities are primarily removed using a rotary evaporator, and the transparent liquid compound is obtained by secondary purification at 1 torr in a vacuum oven and 50 ° C. got it The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -NH-, -O-; A: -CH2COHCH2-; m: 2인 경우][In
11. 합성예 1111. Synthesis Example 11
비스[3-(트리에톡시실릴프로폭시)-2-하이드로프로폭시에톡시]에탄을 하기와 같이 제조하였다.Bis[3-(triethoxysilylpropoxy)-2-hydropropoxyethoxy]ethane was prepared as follows.
100mL의 둥근바닥 플라스크에 3-글리시독시프로필트리에톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 에틸렌글리콜 4.45g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 하이드록시 피크(3640~3610cm-1)가 생성되었는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-glycidoxypropyltriethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. Into this solution, 4.45 g of ethylene glycol was added, and the temperature was gradually raised to 75° C. under strong stirring under a nitrogen atmosphere with a dehydrator attached, and a drop of dibutyltin dilaurate catalyst was added thereto and vigorously stirred. When it is confirmed that the hydroxy peak (3640-3610 cm -1 ) is generated in the FTIR spectrum, it is cooled, the solvent and impurities are primarily removed using a rotary evaporator, and the transparent liquid compound is obtained by secondary purification at 1 torr in a vacuum oven, 50 ° C. got it The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: -(CH2)3-; B: -OCH2CHOHCH2O-; A: -(CH2)2-; m: 2인 경우][In
12. 합성예 1212. Synthesis Example 12
옥시비스(에탄-2,1-다이일)비스(2메틸-1,3-(트리에톡시실릴)프로파노에이트를 하기와 같이 제조하였다.Oxybis(ethane-2,1-diyl)bis(2methyl-1,3-(triethoxysilyl)propanoate was prepared as follows.
100mL의 둥근바닥 플라스크에 다이에틸렌글리콜다이메타크릴레이트 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 30g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 45℃로 승온하고 백금촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of diethylene glycol dimethacrylate and 20 g of toluene in a 100 mL round-bottom flask and stir at room temperature for 30 minutes. 30 g of triethoxysilane was added to this solution, and the temperature was gradually raised to 45° C. under strong stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 2에서, R2: -CH2CH3; n: 0; R1: -CH(CH3)CH2-; B: -C(=O)O-; E: -CH2CH2OCH2CH2-; k: 1; m: 2인 경우][In Formula 2, R 2 : -CH 2 CH 3 ; n: 0; R 1 : —CH(CH 3 )CH 2 —; B: -C(=O)O-; E: —CH 2 CH 2 OCH 2 CH 2 —; k: 1; If m: 2]
13. 합성예 1313. Synthesis Example 13
비스(3-(트리메톡시실릴)프로필)카보네이트를 하기와 같이 제조하였다.Bis(3-(trimethoxysilyl)propyl)carbonate was prepared as follows.
100mL의 둥근바닥 플라스크에 다이알릴카보네이트 10g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 30g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 60℃로 승온하고 백금촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 10 g of diallyl carbonate and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 30 g of triethoxysilane was added to this solution, and the temperature was gradually raised to 60° C. under strong stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH3; n: 0; R1: -CH2CH2CH2-; B: -O-; A: -C(=O)-; m: 2인 경우][In
14. 합성예 1414. Synthesis Example 14
나프탈렌-2,3-다이일비스(3-(트리메톡시실릴)프로파노에이트를 하기와 같이 제조하였다.Naphthalene-2,3-diylbis(3-(trimethoxysilyl)propanoate was prepared as follows.
100mL의 둥근바닥 플라스크에 2,3-다이하이드록시-나프탈렌 12.5g과 톨루엔 30g을 넣고 상온에서 30분간 교반한다. 이 용액에 아크릴산 15g을 넣고 강하게 교반하면서 서서히 80℃로 승온하고 황산 0.1ml를 넣고 20시간동안 격렬히 교반하였다. 온도를 상온으로 냉각 후 250ml 분액깔대기에 옮긴 후 정제수를 이용하여 촉매로 사용된 황산이 제거될 때까지 수 차례 반복하여 수세하였다. 수세하여 취득한 용액은 멤브레인 필터를 이용하여 여과하면서 맑은 용액을 얻었다. 이 맑은 용액을 회전증발기를 이용하여 용매 및 불순물을 제거하였다. 정제된 시럽상태의 중간물질을 100ml의 둥근바닥플라스크에 옮기고 톨루엔 30g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 30g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 60℃로 승온하고 백금촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 12.5 g of 2,3-dihydroxy-naphthalene and 30 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 15 g of acrylic acid was added to this solution, and the temperature was gradually raised to 80° C. with strong stirring, 0.1 ml of sulfuric acid was added, and the mixture was vigorously stirred for 20 hours. After cooling to room temperature, it was transferred to a 250 ml separatory funnel, and washed with purified water several times until the sulfuric acid used as a catalyst was removed. The solution obtained by washing with water was filtered using a membrane filter to obtain a clear solution. The solvent and impurities were removed from this clear solution using a rotary evaporator. Transfer the purified syrupy intermediate to a 100ml round bottom flask, add 30g of toluene, and stir at room temperature for 30 minutes. 30 g of triethoxysilane was added to this solution, and the temperature was gradually raised to 60° C. under strong stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH3; n: 0; R1: -CH2CH2-; B: -C(=O)O-; A: 나프틸; m: 2인 경우][In
15. 합성예 1515. Synthesis Example 15
1,2-페닐렌비스(3-(트리메톡시실릴)프로파노에이트를 하기와 같이 제조하였다.1,2-phenylenebis(3-(trimethoxysilyl)propanoate was prepared as follows.
100mL의 둥근바닥 플라스크에 1,2-벤젠다이올 10g과 톨루엔 30g을 넣고 상온에서 30분간 교반한다. 이 용액에 아크릴산 15g을 넣고 강하게 교반하면서 서서히 80℃로 승온하고 황산 0.1ml를 넣고 20시간동안 격렬히 교반하였다. 온도를 상온으로 냉각 후 250ml 분액깔대기에 옮긴 후 정제수를 이용하여 촉매로 사용된 황산이 제거될 때까지 수 차례 반복하여 수세하였다. 수세하여 취득한 용액은 멤브레인 필터를 이용하여 여과하면서 맑은 용액을 얻었다. 이 맑은 용액을 회전증발기를 이용하여 용매 및 불순물을 제거하였다. 정제된 시럽상태의 중간물질을 100ml의 둥근바닥플라스크에 옮기고 톨루엔 30g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 15g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 60℃로 승온하고 백금촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 10 g of 1,2-benzenediol and 30 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 15 g of acrylic acid was added to this solution, and the temperature was gradually raised to 80° C. with strong stirring, 0.1 ml of sulfuric acid was added, and the mixture was vigorously stirred for 20 hours. After cooling to room temperature, it was transferred to a 250 ml separatory funnel, and washed with purified water several times until the sulfuric acid used as a catalyst was removed. The solution obtained by washing with water was filtered using a membrane filter to obtain a clear solution. The solvent and impurities were removed from this clear solution using a rotary evaporator. Transfer the purified syrupy intermediate to a 100ml round bottom flask, add 30g of toluene, and stir at room temperature for 30 minutes. 15 g of triethoxysilane was added to this solution, and the temperature was gradually raised to 60° C. under strong stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH3; n: 0; R1: -CH2CH2-; B: -C(=O)O-; A: 페닐; m: 2인 경우][In
16. 합성예 1616. Synthesis Example 16
1,2-비스(3-트리메톡시실릴)프로폭시)벤젠을 하기와 같이 제조하였다.1,2-bis(3-trimethoxysilyl)propoxy)benzene was prepared as follows.
100mL의 둥근바닥 플라스크에 1,2-벤젠다이올 10g과 톨루엔 30g을 넣고 상온에서 30분간 교반하였다. 이 용액에 소듐하이드록사이드 10g을 넣고 강하게 교반하면서 서서히 65℃로 승온하고 4시간동안 격렬히 교반하였다. 이용액에 알릴브로마이드 20g을 넣고 강하게 교반하면서 서서히 60℃로 승온하고 14시간동안 격렬히 교반하였다. 상온으로 냉각 후 250ml 분액깔대기에 옮긴 후 3노르말농도의 염산을 이용하여 불순물이 제거되어 맑아질 때까지 차례 반복하여 수세하였다. 수세하여 취득한 용액에 하이드로탈사이트 2g을 투입하여 산을 제거하고 멤브레인 필터를 이용하여 여과하면서 맑은 용액을 얻었다. 이 맑은 용액을 회전증발기를 이용하여 용매 및 불순물을 제거하였다. 정제된 시럽상태의 중간물질을 100ml의 둥근바닥플라스크에 옮기고 톨루엔 30g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 15g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 60℃로 승온하고 백금촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.10 g of 1,2-benzenediol and 30 g of toluene were added to a 100 mL round-bottom flask, and the mixture was stirred at room temperature for 30 minutes. 10 g of sodium hydroxide was added to this solution, and the temperature was gradually raised to 65° C. with strong stirring, followed by vigorous stirring for 4 hours. 20 g of allyl bromide was added to the solution, and the temperature was gradually raised to 60° C. with strong stirring, followed by vigorous stirring for 14 hours. After cooling to room temperature, it was transferred to a 250 ml separatory funnel and washed with water repeatedly until the impurities were removed and clear using hydrochloric acid of 3 normal concentration. 2 g of hydrotalcite was added to the solution obtained by washing with water to remove acid, and a clear solution was obtained while filtration using a membrane filter. The solvent and impurities were removed from this clear solution using a rotary evaporator. Transfer the purified syrupy intermediate to a 100ml round bottom flask, add 30g of toluene, and stir at room temperature for 30 minutes. 15 g of triethoxysilane was added to this solution, and the temperature was gradually raised to 60° C. under strong stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH3; n: 0; R1: -CH2CH2CH2-; B: -O-; A: 페닐; m: 2인 경우][In
17. 합성예 1717. Synthesis Example 17
1,3,5-트리스(트리메톡시실릴)프로폭시)벤젠을 하기와 같이 제조하였다.1,3,5-tris(trimethoxysilyl)propoxy)benzene was prepared as follows.
250mL의 둥근바닥 플라스크에 1,3,5-트리하이드록시벤젠다이하이드레이트 10g과 톨루엔 60g을 넣고 상온에서 30분간 교반하였다. 이 용액에 소듐하이드록사이드 15g을 넣고 강하게 교반하면서 서서히 65℃로 승온하고 4시간동안 격렬히 교반하였다. 이용액에 알릴브로마이드 26g을 넣고 강하게 교반하면서 서서히 60℃로 승온하고 14시간동안 격렬히 교반하였다. 상온으로 냉각 후 500ml 분액깔대기에 옮긴 후 3노르말농도의 염산을 이용하여 불순물이 제거되어 맑아질 때까지 차례 반복하여 수세하였다. 수세하여 취득한 용액에 하이드로탈사이트 2g을 투입하여 산을 제거하고 멤브레인 필터를 이용하여 여과하면서 맑은 용액을 얻었다. 이 맑은 용액을 회전증발기를 이용하여 용매 및 불순물을 제거하였다. 정제된 시럽상태의 중간물질을 100ml의 둥근바닥플라스크에 옮기고 톨루엔 30g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 20g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 60℃로 승온하고 백금촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.10 g of 1,3,5-trihydroxybenzene dihydrate and 60 g of toluene were added to a 250 mL round-bottom flask, and the mixture was stirred at room temperature for 30 minutes. 15 g of sodium hydroxide was added to this solution, and the temperature was gradually raised to 65° C. with strong stirring, followed by vigorous stirring for 4 hours. 26 g of allyl bromide was added to the solution, and the temperature was gradually raised to 60° C. with strong stirring, followed by vigorous stirring for 14 hours. After cooling to room temperature, it was transferred to a 500 ml separatory funnel, and washed with water repeatedly until the impurities were removed and clear using hydrochloric acid of 3 normal concentration. 2 g of hydrotalcite was added to the solution obtained by washing with water to remove acid, and a clear solution was obtained while filtration using a membrane filter. The solvent and impurities were removed from this clear solution using a rotary evaporator. Transfer the purified syrupy intermediate to a 100ml round bottom flask, add 30g of toluene, and stir at room temperature for 30 minutes. 20 g of triethoxysilane was added to this solution, and the temperature was gradually raised to 60° C. under strong stirring under a nitrogen atmosphere equipped with a dehydration device, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH3; n: 0; R1: -CH2CH2CH2-; B: -O-; A: 페닐; m: 3인 경우][In
18. 합성예 1818. Synthesis Example 18
4,4'-비스(3-(트리메톡시실릴)프로필우레타녹시)옥시다이벤조에이트를 하기와 같이 제조하였다.4,4'-bis(3-(trimethoxysilyl)propylurethanoxy)oxydibenzoate was prepared as follows.
100mL의 둥근바닥 플라스크에 3-이소시아네이트프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 4,4'-옥시비스(벤조산)12g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 디부틸틴디라우레이트 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 이소시아네이트 피크(2270~2290cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 고형분의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-isocyanate propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 12 g of 4,4'-oxybis(benzoic acid) was added to this solution, and the temperature was gradually raised to 75° C. under strong stirring under a nitrogen atmosphere with a dehydrator attached, and a drop of dibutyltin dilaurate catalyst was added and stirred vigorously. When it was confirmed that the isocyanate peak (2270-2290 cm -1 ) disappeared from the FTIR spectrum, the solvent and impurities were primarily removed using a rotary evaporator, and second purification was performed in a vacuum oven at 1 torr, 50 ° C. to obtain a solid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 3에서, R2: -CH3; n: 0; R1: -CH2CH2CH2-; B: -NHC(=O)O-; A: -C(=O)-페닐-; m: 1; l: 2; X: O인 경우][In Formula 3, R 2 : -CH 3 ; n: 0; R 1 : -CH 2 CH 2 CH 2 -; B: -NHC(=O)O-; A: -C(=O)-phenyl-; m: 1; l: 2; If X: O]
19. 합성예 1919. Synthesis Example 19
트리메톡시실릴프로필트리에톡시에틸설파이드를 하기와 같이 제조하였다.Trimethoxysilylpropyltriethoxyethylsulfide was prepared as follows.
100mL의 둥근바닥 플라스크에 3-머캅토프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 비닐트리에톡시실란 19.39g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 백금촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-mercaptopropyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 19.39 g of vinyltriethoxysilane was added to this solution, and the temperature was gradually increased to 75° C. while vigorously stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 3에서, R2: -CH3; n: 0; R1: -CH2-; B: -CH2-; A: -CH2-; m: 1; l: 2; X: S인 경우][In Formula 3, R 2 : -CH 3 ; n: 0; R 1 : -CH 2 -; B: -CH 2 -; A: -CH 2 -; m: 1; l: 2; X: If S]
20. 합성예 2020. Synthesis Example 20
1,2-비스(트리에톡시실릴)에탄을 하기와 같이 제조하였다.1,2-bis(triethoxysilyl)ethane was prepared as follows.
100mL의 둥근바닥 플라스크에 비닐트리에톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 12.84g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 70℃로 승온하고 백금 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of vinyltriethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. 12.84 g of triethoxysilane was added to this solution, and the temperature was gradually raised to 70° C. under strong stirring under a nitrogen atmosphere with a dehydrator attached, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: 직접 결합; B: -CH2-; A: -CH2CH2-; m: 2인 경우][In
21. 합성예 2121. Synthesis Example 21
1,3-메타크릴로메틸프로필-비스(트리에톡시실란)을 하기와 같이 제조하였다.1,3-Methacrylomethylpropyl-bis(triethoxysilane) was prepared as follows.
100mL의 둥근바닥 플라스크에 3-메타크릴릭프로필트리메톡시실란 20g과 톨루엔 20g을 넣고 상온에서 30분간 교반한다. 이 용액에 트리에톡시실란 9.83g을 넣고 탈수장치를 부착한 질소분위기 하에서 강하게 교반하면서 서서히 75℃로 승온하고 백금 촉매를 한 방울 넣고 격렬히 교반하였다. FTIR 스펙트럼에서 탄소이중결합(-C=C) 피크(1680~1640cm-1)가 사라졌는지 확인되면 냉각하고 회전증발기를 이용하여 용매 및 불순물을 일차적으로 제거하고, 진공오븐 1torr, 50℃에서 2차로 정제하여 투명한 액상의 합성물을 얻었다. NMR 및 FTIR 스펙트럼은 하기 구조와 일치하였다.Put 20 g of 3-methacrylic propyltrimethoxysilane and 20 g of toluene in a 100 mL round-bottom flask, and stir at room temperature for 30 minutes. To this solution, 9.83 g of triethoxysilane was added, and the temperature was gradually raised to 75° C. under strong stirring under a nitrogen atmosphere equipped with a dehydrator, and a drop of platinum catalyst was added and vigorously stirred. When it is confirmed that the carbon double bond (-C=C) peak (1680~1640cm -1 ) disappears from the FTIR spectrum, the solvent and impurities are primarily removed using a rotary evaporator, and the second is performed in a vacuum oven at 1torr, 50℃. Purification was performed to obtain a transparent liquid compound. The NMR and FTIR spectra were consistent with the following structures.
[화학식 1에서, R2: -CH2CH3; n: 0; R1: 직접 결합; B: -CH2-; A: -CH2CH2OC(=O)CH(CH3)-; m: 2인 경우][In
실시예 1: 습식 코팅용액의 제조Example 1: Preparation of wet coating solution
실시예 1-1: 상기 합성예 중 합성예 1로 제조된 합성물을 이용하여 코팅용액을 제조하였다. Example 1-1 : A coating solution was prepared using the compound prepared in Synthesis Example 1 among the above Synthesis Examples.
합성된 에틸비스(우레타노프로필트리에톡시실란) 2g에 에탄올 98g으로 희석하고 암모니아수 0.01g을 넣고 충분히 교반하여 용액을 준비하였다.2 g of synthesized ethylbis (uretanopropyltriethoxysilane) was diluted with 98 g of ethanol, 0.01 g of aqueous ammonia was added thereto, and the solution was sufficiently stirred to prepare a solution.
실시예 1-2: 상기 합성예 중 합성예 1로 제조된 합성물과 합성예 11로 제조된 합성물을 7대 3 비율로 혼합하여 코팅용액을 제조하였다. Example 1-2 : A coating solution was prepared by mixing the compound prepared in Synthesis Example 1 and the compound prepared in Synthesis Example 11 in a ratio of 7 to 3 among the above Synthesis Examples.
합성된 에틸비스(우레타노프로필트리에톡시실란) 1.5g과 비스[3-(트리에톡시실릴프로폭시)-2-하이드오프로폭시에톡시]에탄 0.5g을 혼합 후 에탄올 98g으로 희석하고 암모니아수 0.01g을 넣고 충분히 교반하여 용액을 준비하였다.After mixing 1.5 g of synthesized ethylbis (uretanopropyltriethoxysilane) and 0.5 g of bis[3-(triethoxysilylpropoxy)-2-hydropropoxyethoxy]ethane, diluted with 98 g of ethanol A solution was prepared by adding 0.01 g of aqueous ammonia and sufficiently stirring.
실시예 1-3: 상기 합성예 1에서 합성예 21까지 제조된 합성물을 이용하여 습식코팅액을 각각 제조하였다. Example 1-3 : A wet coating solution was prepared using the compounds prepared in Synthesis Example 1 to Synthesis Example 21, respectively.
각각 합성된 합성물 2g에 에탄올 98g으로 희석하고 암모니아수 0.01g을 넣고 충분히 교반하여 용액을 각각 준비하였다.2 g of each synthesized compound was diluted with 98 g of ethanol, 0.01 g of aqueous ammonia was added thereto, and the solution was sufficiently stirred to prepare a solution.
실시예 2: 습식코팅Example 2: Wet Coating
실시예 2-1: 상기 실시예 1-1에서 준비된 용액을 마이크로피펫을 이용하여 0.25mL를 코닝사의 '고릴라 글라스 5(GG5)'에 주입하고 4번(#4) 바를 이용하여 바코터에서 균일하게 도포하였다. 도포된 글라스를 150도 오븐에서 30분동안 경화하고 특성을 분석하였다. 엘립소미터를 이용하여 측정된 도포 두께는 100nm였다. Example 2-1 : 0.25 mL of the solution prepared in Example 1-1 was injected into Corning's 'Gorilla Glass 5 (GG5)' using a micropipette, and uniformly in a bar coater using the No. 4 (#4) bar. applied generously. The coated glass was cured in an oven at 150°C for 30 minutes and the properties were analyzed. The coating thickness measured using an ellipsometer was 100 nm.
실시예 2-2: 상기 실시예 1-2에서 준비된 용액을 마이크로피펫을 이용하여 0.250mL를 코닝사의 '고릴라 글라스 3(GG3)'에 주입하고 4번(#4) 바를 이용하여 바코터에서 균일하게 도포하였다. 도포된 글라스를 150도 오븐에서 30분동안 경화하고 특성을 분석하였다. 엘립소미터를 이용하여 측정된 도포 두께는 100nm였다. Example 2-2 : 0.250 mL of the solution prepared in Example 1-2 was injected into Corning's 'Gorilla Glass 3 (GG3)' using a micropipette, and uniformly in a bar coater using the No. 4 (#4) bar. applied generously. The coated glass was cured in an oven at 150°C for 30 minutes and the properties were analyzed. The coating thickness measured using an ellipsometer was 100 nm.
실시예 2-3: 상기 실시예 1-3에서 준비된 용액을 마이크로피펫을 이용하여 0.25mL를 LK Lab사의 'Micro Cover Glass(보로실리케이트 3.3글라스, 0.13~0.16mm)'에 주입하고 4번(#4) 바를 이용하여 바코터에서 균일하게 각각 5장씩 도포하였다. 도포된 글라스를 150도 오븐에서 30분동안 경화하고 각각 5장씩 준비하고 실시예 2-3-1에서 실시예 2-3-21까지로 표기하고 특성을 분석하였다. 엘립소미터를 이용하여 측정된 도포 두께는 100nm였다. Example 2-3 : Using a micropipette, 0.25 mL of the solution prepared in Example 1-3 was injected into LK Lab's 'Micro Cover Glass (borosilicate 3.3 glass, 0.13 to 0.16 mm)', and 4 times (# 4) Using a bar, uniformly applied 5 sheets each in a bar coater. The coated glass was cured in an oven at 150° C. for 30 minutes, prepared 5 sheets each, and labeled as Examples 2-3-1 to 2-3-21, and characteristics were analyzed. The coating thickness measured using an ellipsometer was 100 nm.
실시예 3: 건식 코팅제의 제조Example 3: Preparation of dry coatings
실시예 3-1: 상기 합성예 중 합성예 1로 제조된 합성물을 이용하여 건식 코팅제(진공증착)를 제조하였다. Example 3-1 : A dry coating agent (vacuum deposition) was prepared using the compound prepared in Synthesis Example 1 among the above Synthesis Examples.
합성된 에틸비스(우레타노프로필트리에톡시실란) 8g에 에탄올 2g으로 희석하고 0.85g을 취하여 진공증착용 용기(한국등록특허 제10-1025005호)에 주입하여 건식코팅제를 준비였다.A dry coating agent was prepared by diluting 8 g of synthesized ethylbis (uretanopropyltriethoxysilane) with 2 g of ethanol, taking 0.85 g, and injecting it into a vacuum deposition vessel (Korean Patent No. 10-1025005).
실시예 3-2: 상기 합성예 중 합성예 1로 제조된 합성물과 합성예 4로 제조된 합성물을 3대 1 비율로 혼합하여 코팅용액을 제조하였다. Example 3-2 : A coating solution was prepared by mixing the compound prepared in Synthesis Example 1 and the compound prepared in Synthesis Example 4 in a ratio of 3 to 1 among the above synthesis examples.
합성된 에틸비스(우레타노프로필트리에톡시실란) 6g과 2,2'-옥시비스(메틸렌)비스[2-에틸-1,3-비스(우레타노프로필트리에톡시실란)] 2g을 혼합 후 에탄올 2g으로 희석하고 0.85g을 취하여 진공증착용 용기(한국등록특허 제10-1025005호)에 주입하여 건식코팅제를 준비였다.6 g of synthesized ethylbis (uretanopropyltriethoxysilane) and 2 g of 2,2'-oxybis(methylene)bis[2-ethyl-1,3-bis(uretanopropyltriethoxysilane)] After mixing, dilute with 2 g of ethanol, take 0.85 g, and inject into a vacuum deposition container (Korean Patent No. 10-1025005) to prepare a dry coating agent.
실시예 3-3: 상기 합성예 중 합성예 1로 제조된 합성물과 합성예 8로 제조된 합성물을 3대 1 비율로 혼합하여 코팅용액을 제조하였다. Example 3-3 : A coating solution was prepared by mixing the compound prepared in Synthesis Example 1 and the compound prepared in Synthesis Example 8 in a ratio of 3 to 1 among the above Synthesis Examples.
합성된 에틸비스(우레타노프로필트리에톡시실란) 6g과 1,3-벤젠비스(우레타노프로필트리에톡시실란) 2g을 혼합 후 에탄올 2g으로 희석하고 0.85g을 취하여 진공증착용 용기(한국등록특허 제10-1025005호)에 주입하여 건식코팅제를 준비였다.After mixing 6g of synthesized ethylbis(uretanopropyltriethoxysilane) and 2g of 1,3-benzenebis(uretanopropyltriethoxysilane), dilute with 2g of ethanol, take 0.85g, and A dry coating agent was prepared by injecting it into Korean Patent No. 10-1025005).
실시예 3-4: 상기 합성예 중 합성예 1로 제조된 합성물과 합성예 11로 제조된 합성물을 7대 3 비율로 혼합하여 코팅용액을 제조하였다. Example 3-4 : A coating solution was prepared by mixing the compound prepared in Synthesis Example 1 and the compound prepared in Synthesis Example 11 in a ratio of 7 to 3 among the above Synthesis Examples.
합성된 에틸비스(우레타노프로필트리에톡시실란) 6g과 비스[3-(트리에톡시실릴프로폭시)-2-하이드오프로폭시에톡시]에탄 2g을 혼합 후 에탄올 2g으로 희석하고 0.85g을 취하여 진공증착용 용기(한국등록특허 제10-1025005호)에 주입하여 건식코팅제를 준비였다.After mixing 6 g of synthesized ethylbis (uretanopropyltriethoxysilane) and 2 g of bis[3-(triethoxysilylpropoxy)-2-hydropropoxyethoxy]ethane, diluted with 2g of ethanol and 0.85g The dry coating agent was prepared by taking the , and injecting it into a container for vacuum deposition (Korean Patent No. 10-1025005).
실시예 4: 건식 코팅(진공증착)Example 4: Dry coating (vacuum deposition)
실시예 4-1: 진공증착기(유니벡 Φ2050)내에 핸드폰카메라 윈도우글라스 용도인 쇼트사의 강화유리(0.21T)를 장착하고 이빔포트에 상기 실시예 3-1에서 준비된 증착용 코팅제를 넣고 진공도 5x10-5torr에 도달하였을 때 장착된 강화유리의 표면활성화를 위하여 진공증착기에 장착된 이온건을 이용하여 아르곤 에칭(유량 20sccm, 120v)을 5분간 실시하였다. 이어서 상기 실시예 3-1에서 준비된 코팅제를 이빔파워 3.8%로 인가하여 50nm두께로 2분간 코팅을 2회 실시하여 100nm를 맞추었다. 이어서 반사방지코팅을 SiO2(40nm), Ti3O5(18.7nm), SiO2(38.2nm), Ti3O5(33.4nm), SiO2(100.9nm)의 순서로 코팅하고 배기하여 코팅시료를 준비하였다. Example 4-1 : In a vacuum vaporizer (Univec Φ2050), a tempered glass (0.21T) of SCHOTT, which is used for window glass for a cell phone camera, is mounted, and the coating agent for deposition prepared in Example 3-1 is put into the E-beam port, and the vacuum degree is 5x10 - When reaching 5 torr, argon etching (flow rate 20 sccm, 120v) was performed for 5 minutes using an ion gun mounted on a vacuum evaporator to activate the surface of the mounted tempered glass. Then, the coating agent prepared in Example 3-1 was applied at an e-beam power of 3.8%, and the coating was performed twice for 2 minutes to a thickness of 50 nm to achieve 100 nm. Then, the anti-reflection coating is coated in the order of SiO 2 (40 nm), Ti 3 O 5 (18.7 nm), SiO 2 (38.2 nm), Ti 3 O 5 (33.4 nm), SiO 2 (100.9 nm) and exhausted. Samples were prepared.
실시예 4-2: 실시예 3-1에서 준비된 증착용 코팅제 대신 실시예 3-2에서 준비된 증착용 코팅제를 사용한 것을 제외하고는 실시예 4-1과 동일한 방식으로 코팅시료를 준비하였다. Example 4-2 : A coating sample was prepared in the same manner as in Example 4-1, except that the coating agent for deposition prepared in Example 3-2 was used instead of the coating agent for deposition prepared in Example 3-1.
실시예 4-3: 실시예 3-1에서 준비된 증착용 코팅제 대신 실시예 3-3에서 준비된 증착용 코팅제를 사용한 것을 제외하고는 실시예 4-1과 동일한 방식으로 코팅시료를 준비하였다. Example 4-3 : A coating sample was prepared in the same manner as in Example 4-1, except that the coating agent for deposition prepared in Example 3-3 was used instead of the coating agent for deposition prepared in Example 3-1.
실시예 4-4: 실시예 3-1에서 준비된 증착용 코팅제 대신 실시예 3-4에서 준비된 증착용 코팅제를 사용한 것을 제외하고는 실시예 4-1과 동일한 방식으로 코팅시료를 준비하였다. Example 4-4 : A coating sample was prepared in the same manner as in Example 4-1, except that the coating agent for deposition prepared in Example 3-4 was used instead of the coating agent for deposition prepared in Example 3-1.
비교예 1: 베어글라스 Comparative Example 1: Bare Glass
비교예 1-1: 코닝사의 '고릴라 글라스 5(GG5)'를 베어글라스로 사용하였다. Comparative Example 1-1 : Corning's 'Gorilla Glass 5 (GG5)' was used as bare glass.
비교예 1-2: 핸드폰카메라 윈도우글라스 용도인 쇼트사의 강화유리(0.21T)를 사용하여 실시예 4-1과 동일하게 실시하되, 실시예 3-1, 3-2, 3-3 또는 3-4의 코팅제를 사용하지 않았다. Comparative Example 1-2 : Using the tempered glass (0.21T) of SCHOTT, which is used as a window glass for a mobile phone camera, the same procedure as in Example 4-1 was performed, but Examples 3-1, 3-2, 3-3 or 3- No coating agent of 4 was used.
비교예 1-3: LK Lab사의 'Micro Cover Glass(보로실리케이트 3.3글라스, 0.13~0.16mm)'를 베어글라스로 사용하였다. Comparative Example 1-3 : LK Lab's 'Micro Cover Glass (borosilicate 3.3 glass, 0.13-0.16 mm)' was used as a bare glass.
이하에서는 본 발명에서 준비된 유리시편의 특성 시험을 개시한다.Hereinafter, a characteristic test of the glass specimen prepared in the present invention is disclosed.
<광학적 특성><Optical properties>
UV-VIS 스펙트로미터(HITACH, U-4100)를 이용하여 240~1,000nm파장에서의 투과율 및 반사율을 측정하였다.Transmittance and reflectance at a wavelength of 240 to 1,000 nm were measured using a UV-VIS spectrometer (HITACH, U-4100).
실시예 2-1과 실시예 2-2에서 준비된 코팅시료를 비교예 1-1을 대상으로 스펙트로미터를 이용하여 광학적인 특성 중 투과율을 측정하여 도 1에 비교하여 나타내고, 반사율을 측정하여 도 2에 나타내었다. 베어유리에 비하여 본 발명에 의하여 코팅을 한 유리의 광학적인 투과율은 거의 유사하였고, 반사율은 베어유리에 비해 0.5에서 1%정도 더 낮게 나타나는 것으로 보아 코팅 후 광학적인 특성이 우수하여 디스플레이 또는 카메라 등의 광학적인 특성을 요구하는 분야로의 응용이 가능한 것으로 나타났다. For the coating samples prepared in Examples 2-1 and 2-2, the transmittance of the optical properties of Comparative Example 1-1 was measured using a spectrometer and compared to FIG. 1, and the reflectance was measured and shown in FIG. 2 shown in The optical transmittance of the glass coated according to the present invention was almost similar to that of the bare glass, and the reflectance was 0.5 to 1% lower than that of the bare glass. It was found that application to fields requiring optical properties is possible.
<충격강도 특성(GIT ; Glass Impact Test)><Impact strength characteristics (GIT ; Glass Impact Test)>
낙추에 의하여 파괴된 유리의 비산을 방지하기 위하여 폴리에틸렌 백(두께 0.6mm 이하)에 준비된 시편유리를 Impact Tester(CKSI, Lab-Q E602SS)의 하부지그(링 외경 50.8mm, 내경 25.4mm)위에 장착하고 유리 상부에 스틸볼(지름 12mm)을 레일부 하단과 일치하게 장착 후 무게 60g의 알루미늄 해머를 5cm 단위로 올려가며 파괴되기 전 단계의 높이(cm)를 기록하였다. 도 3에 측정하고 있는 GIT장비의 사진을 개시하였다.To prevent scattering of glass destroyed by falling weight, the specimen glass prepared in a polyethylene bag (thickness less than 0.6mm) is mounted on the lower jig (ring outer diameter 50.8mm, inner diameter 25.4mm) of the Impact Tester (CKSI, Lab-Q E602SS) After mounting a steel ball (diameter 12mm) on the upper part of the glass to match the lower part of the rail, an aluminum hammer weighing 60 g was raised in 5 cm increments to record the height (cm) of the stage before destruction. A photograph of the GIT equipment being measured is disclosed in FIG. 3 .
실시예 2-1과 실시예 2-2에서 준비된 코팅시료를 비교예 1-1과 비교하여 내충격 높이를 측정하고 그 결과를 도 4에 개시하였다. 각각의 시료 수는 3개씩을 측정하고 그 평균값을 붉은 삼각형으로 표시하였다. 비교예 1-1의 베어유리에 비하여 본 발명에 의하여 준비된 실시예의 2-1 및 2-2의 파괴 높이가 두 배 가까이 높게 나타남으로써 충격에 의한 깨짐방지 특성이 우수한 것을 확인하였다.The coating samples prepared in Examples 2-1 and 2-2 were compared with Comparative Example 1-1 to measure the impact resistance height, and the results are shown in FIG. 4 . Three samples were measured for each sample, and the average value was indicated by a red triangle. As compared with the bare glass of Comparative Example 1-1, the fracture heights of Examples 2-1 and 2-2 prepared according to the present invention were nearly doubled, confirming that the breakage prevention properties due to impact were excellent.
<면압 특성(ROR ; Ring on Ring)><Surface pressure characteristics (ROR ; Ring on Ring)>
UTM(Universal Testing Machine; 태신정밀기계, TSU-500)의 하부층에 바깥쪽 링(지름: 30mm)과 안쪽 링(지름: 15mm)사이에 준비된 유리시편의 양면에 보호필름을 붙인 상태로 장착하여 압축속도 100mm/min으로 압력을 가하여 파괴될 때까지의 최고강도를 측정하였으며 사용된 로드셀은 5KN이었다. 상기 측정 방법은 ASTM C1499 Standard에 준하여 측정하였으며 장착된 모습을 도 5에 개시하였다. In the lower layer of UTM (Universal Testing Machine; Taeshin Precision Machinery, TSU-500), between the outer ring (diameter: 30mm) and the inner ring (diameter: 15mm), the prepared glass specimen is attached to both sides of the glass specimen with protective films attached and compressed. The maximum strength until failure was measured by applying pressure at a speed of 100 mm/min, and the load cell used was 5KN. The measurement method was measured according to ASTM C1499 Standard, and the mounted state is shown in FIG. 5 .
실시예 2-1과 실시예 2-2에서 준비된 코팅시료를 비교예 1-1과 비교하여 면압특성을 측정하고 그 결과를 도 6에 개시하였다. 각각의 시료 수는 3개씩을 측정하고 그 평균값을 붉은 삼각형으로 표시하였다. 비교예 1-1의 베어유리에 비하여 본 발명에 의하여 준비된 실시예의 2-1 및 2-2의 강도가 두 배 이상 높게 나타남으로써 깨짐방지 특성이 우수한 것을 확인 하였다.The surface pressure characteristics were measured by comparing the coating samples prepared in Examples 2-1 and 2-2 with Comparative Example 1-1, and the results are shown in FIG. 6 . Three samples were measured for each sample, and the average value was indicated by a red triangle. Compared to the bare glass of Comparative Example 1-1, the strength of Examples 2-1 and 2-2 prepared according to the present invention was twice or more, confirming that the anti-break properties were excellent.
카메라 렌즈 또는 카메라 렌즈 커버 유리의 경우 미려하게 보이기 위하여 또는 광학적인 특성(투과율, 반사율 조절 등)을 부여하기 위하여 금속산화물을 이용하여 거울상 코팅, 반사방지 코팅 등을 진공증착기 내에서 건식코팅을 수행한다. 유리(강화유리 포함)에 SiO2나 TiO2와 같은 금속산화물(세라믹) 코팅하는 경우 유리에 비하여 경질의 금속산화물이 적층하여 코팅을 하게 되면 코팅하지 않은 유리에 비하여 충격이나 압력에 의하여 쉽게 깨지는 단점을 갖게 된다. 이를 도 7에 비교예 1-2에 개시하였다. 반면 본 발명의 실시예 4-1에서 실시예 4-4에 의하여 준비된 시료유리의 경우 아무것도 처리하지 않은 베어유리 수준 이상으로 면압강도(ROR)가 회복되는 것을 확인하였다. In the case of camera lens or camera lens cover glass, in order to look beautiful or to give optical properties (transmittance, reflectance control, etc.) . When a metal oxide (ceramic) such as SiO 2 or TiO 2 is coated on glass (including tempered glass), it is easily broken by impact or pressure compared to uncoated glass when a metal oxide that is harder than glass is laminated and coated. will have This was disclosed in Comparative Example 1-2 in FIG. On the other hand, in the case of the sample glass prepared according to Example 4-4 in Example 4-1 of the present invention, it was confirmed that the surface pressure strength (ROR) was recovered above the level of bare glass that was not treated with anything.
<펜드랍 특성(Pen Drop)><Pen Drop Attributes>
상기 실시예 2-3의 방법으로 준비된 실시예 2-3-1에서 실시예 2-3-21까지 준비된 유리를 금속(SUS)판 위에 장착하고 'BIC사'의 볼펜(노란색 일반 볼펜, 뚜껑포함 5.7g)을 뚜껑을 뒤에 꽂은 채로 볼펜의 뾰족한 끝이 장착된 유리 면을 향하도록 하여 높이 1cm 간격으로 올리면서 유리 시편이 깨질 때까지 떨어뜨린 후 깨지기 직전 높이를 기록하여 깨짐방지 특성을 확인하였다. 깨진 유리의 비산을 방지하기 위하여 PET 보호필름(0.25t)을 실시예 2-3-1에서 실시예 2-3-21에서 준비된 유리시편의 양면에 라미하고 코팅면이 위로 향하도록 하고 각각 5개씩 실시하여 깨지기 직전 값을 기록하고 각각의 평균값과 5개 중 최대값과 최소값을 제외한 중간평균을 환산하여 기록하고, 하기 표 1에 개시하였다.The glass prepared in Examples 2-3-1 to 2-3-21 prepared by the method of Example 2-3 above was mounted on a metal (SUS) plate, and a ballpoint pen of 'BIC' (a yellow general ballpoint pen, including a cap) 5.7 g) with the cap on the back, with the pointed end of the ball-point pen facing the mounted glass surface, raised at an interval of 1 cm in height, dropped until the glass specimen broke, and then recorded the height just before breaking to check the anti-break properties. In order to prevent scattering of broken glass, a PET protective film (0.25t) was laminated on both sides of the glass specimens prepared in Examples 2-3-1 to 2-3-21, with the coated side facing up, 5 each. The value immediately before breaking was recorded, and the average value of each and the median average excluding the maximum and minimum values among the five were converted and recorded, and it is shown in Table 1 below.
아무것도 처리하지 않은 비교예 1-3에 비하여 실시예 2-3-1에서 실시예 2-3-21까지 모두 깨짐방지 특성이 현저히 우수하였다.Compared to Comparative Example 1-3 in which nothing was treated, all of Examples 2-3-1 to 2-3-21 had excellent anti-break properties.
Claims (13)
[화학식 1]
A-[B-R1-Si(OR2)3-n]m
[화학식 2]
(E)k-[B-R1-Si(OR2)3-n]m
상기 화학식 1 및 2에서,
R1은 직접 결합이거나, 치환 또는 비치환된 탄소수 1 내지 10개의 지방족 기이고;
R2는 치환 또는 비치환된 탄소수 1 내지 5개의 지방족 기이고;
B는 각각 독립적으로 말단 관능기인 실록산 기를 주쇄에 연결하는 링커이며;
A는 치환 또는 비치환된 탄소수 1 내지 40개의 직쇄 및 분지쇄 지방족 또는 방향족 기이고;
E는 C1~3알킬렌옥시C1~3알킬렌이되, 단, 말단의 E는 C1~3알킬옥시C1~3알킬렌이고;
n은 0 내지 2의 정수이고;
m은 1 내지 6의 정수이고;
k는 1 내지 20의 정수이다.A compound for a strength-reinforcing coating agent comprising a structure represented by the following Chemical Formula 1 or 2:
[Formula 1]
A-[BR 1 -Si(OR 2 ) 3-n ] m
[Formula 2]
(E) k -[BR 1 -Si(OR 2 ) 3-n ] m
In Formulas 1 and 2,
R 1 is a direct bond or a substituted or unsubstituted aliphatic group having 1 to 10 carbon atoms;
R 2 is a substituted or unsubstituted aliphatic group having 1 to 5 carbon atoms;
each B is independently a linker connecting the siloxane group, which is a terminal functional group, to the main chain;
A is a substituted or unsubstituted straight-chain and branched aliphatic or aromatic group having 1 to 40 carbon atoms;
E is C 1-3 alkyleneoxyC 1-3 alkylene, provided that the terminal E is C 1-3 alkyloxyC 1-3 alkylene;
n is an integer from 0 to 2;
m is an integer from 1 to 6;
k is an integer from 1 to 20;
[화학식 3]
X-{A-[B-R1-Si(OR2)3-n]m}l
[화학식 4]
X-{(E)k-[B-R1-Si(OR2)3-n]m}l
상기 화학식 3과 4에서,
R1은 직접 결합이거나, 치환 또는 비치환된 탄소수 1 내지 10개의 지방족 기이고;
R2는 치환 또는 비치환된 탄소수 1 내지 5개의 지방족 기이고;
B는 각각 독립적으로 말단 관능기인 실록산 기를 주쇄에 연결하는 링커이며;
A는 치환 또는 비치환된 탄소수 1 내지 40개의 직쇄 및 분지쇄 지방족 또는 방향족 기이고;
E는 C1~3알킬렌옥시C1~3알킬렌이되, 단, 말단의 E는 C1~3알킬옥시C1~3알킬렌이고;
n은 0 내지 2의 정수이고;
m은 1 내지 6의 정수이고;
k는 1 내지 20의 정수이고;
X는 O, S, N, C 및 P 중 하나이며;
l은 X의 결합가수(valency)로서, 2 내지 6으로부터 선택되는 정수이다.A compound for a strength-reinforcing coating agent comprising a structure represented by the following Chemical Formula 3 or 4:
[Formula 3]
X-{A-[BR 1 -Si(OR 2 ) 3-n ] m } l
[Formula 4]
X-{(E) k -[BR 1 -Si(OR 2 ) 3-n ] m } l
In Formulas 3 and 4,
R 1 is a direct bond or a substituted or unsubstituted aliphatic group having 1 to 10 carbon atoms;
R 2 is a substituted or unsubstituted aliphatic group having 1 to 5 carbon atoms;
each B is independently a linker connecting the siloxane group, which is a terminal functional group, to the main chain;
A is a substituted or unsubstituted straight-chain and branched aliphatic or aromatic group having 1 to 40 carbon atoms;
E is C 1-3 alkyleneoxyC 1-3 alkylene, provided that the terminal E is C 1-3 alkyloxyC 1-3 alkylene;
n is an integer from 0 to 2;
m is an integer from 1 to 6;
k is an integer from 1 to 20;
X is one of O, S, N, C and P;
l is a valency of X, and is an integer selected from 2 to 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200121687 | 2020-09-21 | ||
KR1020200121687 | 2020-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20220039575A true KR20220039575A (en) | 2022-03-29 |
Family
ID=80776216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210112875A KR20220039575A (en) | 2020-09-21 | 2021-08-26 | Compound for ultra-thin reinforced coating agent and reinforced coating agent comprising the same |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20220039575A (en) |
CN (1) | CN116472319A (en) |
WO (1) | WO2022059961A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115746602B (en) * | 2022-11-12 | 2023-12-01 | 烟台德邦科技股份有限公司 | High-reliability UV protective coating and preparation method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1101743A (en) * | 1974-05-24 | 1981-05-26 | Kevin M. Foley | Organo silane coupling agents |
US5266715A (en) * | 1991-03-06 | 1993-11-30 | Ciba-Geigy Corporation | Glass coating with improved adhesion and weather resistance |
SK75694A3 (en) * | 1993-06-21 | 1995-07-11 | Atochem North America Elf | Hardening method of fragile oxide substrate, composition on silane base and fragile oxide substrate with polymerizating cross-linked siloxane cover |
JP2003089723A (en) * | 2001-09-18 | 2003-03-28 | Kansai Paint Co Ltd | Curable composition and method for forming coated film thereof |
JP4111990B2 (en) * | 2006-09-29 | 2008-07-02 | 横浜ゴム株式会社 | Composite of glass and hot melt composition and method for producing the same |
WO2014013986A1 (en) * | 2012-07-19 | 2014-01-23 | 東レ株式会社 | Polysiloxane composition, electrical device, and optical device |
JP6578946B2 (en) * | 2013-10-18 | 2019-09-25 | 日産化学株式会社 | Glass substrate with protective film |
TWI644942B (en) * | 2015-06-12 | 2018-12-21 | 日商大金工業股份有限公司 | Surface treatment agent |
KR102374305B1 (en) * | 2017-08-28 | 2022-03-16 | (주)솔잎기술 | Composition for window film, flexible window film prepared using the same and flexible display apparatus comprising the same |
CN110452742B8 (en) * | 2019-09-04 | 2020-08-04 | 江苏峰业科技环保集团股份有限公司 | High-efficiency desulfurization method |
-
2021
- 2021-08-26 CN CN202180078283.XA patent/CN116472319A/en active Pending
- 2021-08-26 WO PCT/KR2021/011447 patent/WO2022059961A1/en active Application Filing
- 2021-08-26 KR KR1020210112875A patent/KR20220039575A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
WO2022059961A1 (en) | 2022-03-24 |
CN116472319A (en) | 2023-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2070967B1 (en) | Per-fluoro polyether compound, antifouling coating composition and film containing same | |
US6613441B2 (en) | Boron- and/or aluminum-containing mixtures, hybrid materials, and coatings | |
US6727337B2 (en) | Low loss optical material | |
EP1669389B1 (en) | Crosslinkable fluoroaromatic prepolymer and use thereof | |
EP3502200B1 (en) | Composition for forming water repellent film, water repellent film, substrate with water repellent film, and article | |
US20150274889A1 (en) | Fluoropolyether-containing polymer-modified silane, surface treating agent, and article | |
KR20220039575A (en) | Compound for ultra-thin reinforced coating agent and reinforced coating agent comprising the same | |
TW201936707A (en) | Fluoropolyether-group-containing polymer, surface treatment agent, and article | |
EP2177545A1 (en) | Polymer for forming insulating film, composition for forming insulating film, insulating film, and electronic device having insulating film | |
WO2017159815A1 (en) | Nonlinear optically active copolymer into which alicyclic group is introduced | |
EP2532669B1 (en) | Novel fluorinated compound, a composition comprising the same, and a production method for a film using the same | |
EP4209345A1 (en) | Curable composition | |
JP2014130196A (en) | Nonlinear optical active copolymer | |
EP4026694A1 (en) | Fluorine-containing copolymer | |
CN117222689A (en) | Fluoropolyether group-containing polymer, surface treatment agent and article | |
JPWO2019026460A1 (en) | Resin composition for forming hard coat layer | |
KR102045664B1 (en) | Surface treatment | |
KR102146668B1 (en) | Composition For Coating and Coating Film Including Cured Product Of The Same As The Coating Layer | |
US20200331932A1 (en) | Nitrogenous compound and color conversion film comprising same | |
JP7384209B2 (en) | Coating agent composition, surface treatment method and article | |
JP7083921B2 (en) | Surface treatment agent | |
KR102731264B1 (en) | Fluoropolyether-containing polymers, surface treatment agents and articles | |
KR102577765B1 (en) | Curable resin composition, cured film prepared therefrom and electronic device comprising the cured film | |
KR102358521B1 (en) | The Perfluoropolyether Silane compound and Manufacturing Method Thereof | |
KR102554769B1 (en) | Method for analyzing copolycarbonate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |