KR20210074366A - 자율주행 차량 계획 및 예측 - Google Patents
자율주행 차량 계획 및 예측 Download PDFInfo
- Publication number
- KR20210074366A KR20210074366A KR1020217014710A KR20217014710A KR20210074366A KR 20210074366 A KR20210074366 A KR 20210074366A KR 1020217014710 A KR1020217014710 A KR 1020217014710A KR 20217014710 A KR20217014710 A KR 20217014710A KR 20210074366 A KR20210074366 A KR 20210074366A
- Authority
- KR
- South Korea
- Prior art keywords
- trajectory
- target
- predicted
- model
- vehicle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 claims abstract description 110
- 230000033001 locomotion Effects 0.000 claims description 243
- 238000009826 distribution Methods 0.000 claims description 47
- 230000036961 partial effect Effects 0.000 claims description 24
- 238000009499 grossing Methods 0.000 claims description 21
- 238000005070 sampling Methods 0.000 claims description 11
- 230000007246 mechanism Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 4
- 230000002829 reductive effect Effects 0.000 claims description 3
- 238000004590 computer program Methods 0.000 claims description 2
- 230000006399 behavior Effects 0.000 description 41
- 230000009471 action Effects 0.000 description 23
- 230000006870 function Effects 0.000 description 22
- 238000001514 detection method Methods 0.000 description 21
- 230000008569 process Effects 0.000 description 15
- 230000008859 change Effects 0.000 description 14
- 238000012545 processing Methods 0.000 description 11
- 230000001133 acceleration Effects 0.000 description 7
- 230000004807 localization Effects 0.000 description 7
- 238000010801 machine learning Methods 0.000 description 7
- 238000013528 artificial neural network Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 230000003068 static effect Effects 0.000 description 4
- 238000013473 artificial intelligence Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 241000282412 Homo Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0116—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from roadside infrastructure, e.g. beacons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/04—Traffic conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0011—Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0013—Planning or execution of driving tasks specially adapted for occupant comfort
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0088—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots characterized by the autonomous decision making process, e.g. artificial intelligence, predefined behaviours
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/29—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/29—Graphical models, e.g. Bayesian networks
- G06F18/295—Markov models or related models, e.g. semi-Markov models; Markov random fields; Networks embedding Markov models
-
- G06K9/00791—
-
- G06K9/6269—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
- G06N5/045—Explanation of inference; Explainable artificial intelligence [XAI]; Interpretable artificial intelligence
-
- G06N7/005—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
- G06N7/01—Probabilistic graphical models, e.g. probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/84—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using probabilistic graphical models from image or video features, e.g. Markov models or Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/54—Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0125—Traffic data processing
- G08G1/0129—Traffic data processing for creating historical data or processing based on historical data
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/164—Centralised systems, e.g. external to vehicles
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/12—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load
- H02J3/14—Circuit arrangements for AC mains or AC distribution networks for adjusting voltage in AC networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0002—Automatic control, details of type of controller or control system architecture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0019—Control system elements or transfer functions
- B60W2050/0028—Mathematical models, e.g. for simulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W2050/0001—Details of the control system
- B60W2050/0043—Signal treatments, identification of variables or parameters, parameter estimation or state estimation
- B60W2050/005—Sampling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/30—Driving style
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/404—Characteristics
- B60W2554/4046—Behavior, e.g. aggressive or erratic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2400/00—Special features of vehicle units
- B60Y2400/30—Sensors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30236—Traffic on road, railway or crossing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30241—Trajectory
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/12—The local stationary network supplying a household or a building
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/30—Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
- Y02B70/3225—Demand response systems, e.g. load shedding, peak shaving
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
- Y04S20/20—End-user application control systems
- Y04S20/222—Demand response systems, e.g. load shedding, peak shaving
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Software Systems (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Probability & Statistics with Applications (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Databases & Information Systems (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Algebra (AREA)
- Power Engineering (AREA)
- Signal Processing (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
도 1은 자율주행 차량 컴퓨터 시스템 내에 구현된 기능적 컴포넌트들을 보여주는 개략적인 기능적 블록도를 보여주고;
도 2는 자율주행 차량 움직임 계획(autonomous vehicle manoeuvre planning)을 위해 사용될 수 있는 예시적인 게임 트리(game tree)를 보여주고;
도 3A 내지 도 3C는 예시적인 역 계획(inverse planning)의 특정 원리들을 예시하고;
도 4는 예시적인 역 계획 방법에 대한 흐름도를 보여주고; 그리고
도 5는 CCTV 데이터로부터 학습된 궤적 모델의 예를 보여준다.
Claims (29)
- 외부 행위체 궤적(external actor trajectory)을 예측하는, 컴퓨터로 구현되는 방법(computer-implemented method)으로서, 상기 방법은,
외부 행위체를 검출 및 추적하기 위한 센서 입력(sensor input)들을 컴퓨터에서 수신하는 것과;
상기 외부 행위체를 추적하여 임의의 시구간(time interval) 동안 상기 외부 행위체의 관찰된 자취(observed trace)를 결정하기 위해 상기 센서 입력들에 객체 추적(object tracking)을 적용하는 것과;
상기 외부 행위체에 대한 이용가능한 목표(available goal)들의 세트(set)를 결정하는 것과;
상기 이용가능한 목표들 각각에 대해, 예상된 궤적 모델(expected trajectory model)을 결정하는 것과; 그리고
상기 외부 행위체의 상기 관찰된 자취를 상기 이용가능한 목표들 각각에 대한 상기 예상된 궤적 모델과 비교하여 상기 목표의 가능성(likelihood)을 결정하는 것을 포함하는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제1항에 있어서,
상기 방법은 자율주행 주체 차량(autonomous ego vehicle)에서 구현되고,
상기 자율주행 차량의 계획기(planner)는 상기 이용가능한 목표들 중 적어도 하나의 목표의 상기 가능성에 따라 자율 주행 결정을 수행하고,
상기 센서 입력들은 상기 자율주행 차량의 센서 시스템을 사용하여 획득되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제1항 또는 제2항에 있어서,
상기 예상된 궤적 모델은, 상기 목표와 관련된 단일의 예측된 궤적이거나, 또는 상기 목표와 관련된 예측된 궤적들의 분포(distribution)인 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제3항에 있어서,
상기 예상된 궤적 모델은 예측된 궤적들의 세트 내의 각각의 예측된 궤적(Τ)에 대한 조건부 확률(conditional probability)(p(Τ|Gi))을 포함하는 분포이고,
상기 목표의 상기 가능성(p(Gi|τ))은 상기 관찰된 자취(τ)가 주어지는 경우 적어도 하나의 예측된 궤적 확률(predicted trajectory probability)(p(Τ|τ))을 추정하기 위해 사용되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 임의의 앞선 항에 있어서,
상기 예상된 궤적 모델은 각각의 목표에 대해 상기 목표의 원하는 목표 위치에 근거하여 결정되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 임의의 앞선 항에 있어서,
상기 예상된 궤적 모델은 각각의 목표에 대한 생성 모델(generative model)을 실행함으로써 결정되고,
상기 생성 행태 모델(generative behaviour model)은 실세계 주행 행태(real-world driving behaviour)의 사례(example)들에 근거하여 궤적들을 생성하도록 훈련된 것인 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제6항에 있어서,
상기 모델들은 상기 방법이 적용되는 관련된 주행 영역(driving area)에 특정되어 있는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 임의의 앞선 항에 있어서,
상기 예상된 궤적 모델은, 각각의 목표에 대해 상기 목표의 하나 이상의 파라미터(parameter)들 및 상기 외부 행위주(external agent)의 하나 이상의 파라미터들에 근거하여 정의된, 예측된 궤적들의 공간을 샘플링(sampling)하기 위해 샘플링 알고리즘(sampling algorithm)을 적용함으로써 결정되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 임의의 앞선 항에 있어서,
이용가능한 목표들의 상기 세트는 상기 외부 행위주와 관련된 지도 데이터(map data)에 근거하여 결정되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 임의의 앞선 항에 있어서,
상기 예상된 궤적 모델은, 주체 차량 행태(ego vehicle behaviour)에 대한 다른 행위체의 반응을 모델링(modeling)하기 위해 하나 이상의 주체 차량 파라미터(ego vehicle parameter)들에 근거하여 결정되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 임의의 앞선 항에 있어서,
상기 관찰된 자취는 상기 목표에 대한 최상의 이용가능한 궤적 모델(best-available trajectory model)을 예측하기 위해 사용되고,
상기 비교하는 것은 상기 최상의 이용가능한 궤적 모델을 상기 예상된 궤적 모델과 비교하는 것을 포함하는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제11항에 있어서,
상기 관찰된 자취는 상기 외부 행위체의 현재 움직임(current maneuver) 및/또는 미래 움직임(future maneuver)을 예측하기 위해 사용되고,
상기 예측된 현재 혹은 미래 움직임은 상기 최상의 이용가능한 궤적 모델을 결정하기 위해 사용되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제12항에 있어서,
적어도 하나의 목표에 대한 일련의 복수의 움직임들이 결정되고,
상기 최상의 이용가능한 궤적 모델은 상기 복수의 움직임들과 각각 관련된 부분적 궤적 모델(partial trajectory model)들에 근거하여 상기 목표에 대해 결정되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제13항에 있어서,
각각의 부분적 궤적 모델은 하나 이상의 타겟 모션 값(target motion value)들을 포함하고,
상기 최상의 이용가능한 궤적 모델의 미래 부분의 하나 이상의 모션 값들은 모션 평활화(motion smoothing)를 상기 타겟 모션 값들에 적용함으로써 결정되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제11항 내지 제14항 중 임의의 항에 있어서,
각각의 목표에 대한 상기 예상된 궤적 모델은 상기 목표에 대한 단일의 예상된 궤적이고,
각각의 목표에 대한 상기 최상의 이용가능한 궤적 모델은 단일의 최상의 이용가능한 궤적인 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제13항에 종속될 때의 제15항에 있어서,
각각의 움직임에 대한 상기 부분적 궤적 모델은 상기 움직임에 대한 가장 가능성 높은 부분적 궤적인 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제11항 내지 제16항 중 임의의 항에 있어서,
정의된 비용 함수(cost function)가 각각의 목표에 대한 상기 최상의 이용가능한 궤적 모델 및 상기 예상된 궤적 모델에 모두 적용되어 상기 궤적 모델들의 각각의 비용들이 결정되고,
상기 비교하는 것은 상기 비용들을 비교하는 것을 포함하는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제17항에 있어서,
상기 비용 함수는 불안전한 궤적들에는 페널티(penalty)를 주지만 감소된 주행 시간에는 보상(reward)을 주는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제18항에 있어서,
상기 비용 함수는 또한 편안함(comfort)의 부족에 페널티를 주는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 외부 행위체 궤적을 예측하는, 컴퓨터로 구현되는 방법으로서, 상기 방법은,
외부 행위체를 검출 및 추적하기 위한 센서 입력들을 컴퓨터에서 수신하는 것과;
상기 외부 행위체를 추적하여 임의의 시구간 동안 상기 외부 행위체의 관찰된 자취를 결정하기 위해 상기 센서 입력들에 객체 추적을 적용하는 것과;
상기 외부 행위체에 대한 가능한 움직임들의 세트를 결정하는 것과;
상기 가능한 움직임들 각각에 대해, 예상된 궤적 모델을 결정하는 것과; 그리고
상기 외부 행위체의 상기 관찰된 자취를 상기 이용가능한 움직임들 각각에 대한 상기 예상된 궤적 모델과 비교하여 상기 움직임의 가능성을 결정하는 것을 포함하는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제20항에 있어서,
상기 방법은 자율주행 차량에서 구현되고,
상기 자율주행 차량의 계획기는 상기 이용가능한 움직임들 중 적어도 하나의 움직임의 상기 가능성에 따라 자율 주행 결정을 수행하는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제20항 또는 제21항에 있어서,
상기 예상된 궤적 모델은, 상기 움직임과 관련된 단일의 예측된 궤적이거나, 또는 상기 움직임과 관련된 예측된 궤적들의 분포인 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 제22항에 있어서,
상기 관찰된 자취는 예측된 궤적들의 상기 분포 중 가장 가능성 높은 궤적과 비교되는 것을 특징으로 하는 외부 행위체 궤적을 예측하는 방법. - 임의의 앞선 항의 방법을 실행하도록 되어 있는 실행 하드웨어(execution hardware)를 포함하는 컴퓨터 시스템.
- 실행될 때 청구항 제1항 내지 제23항 중 임의의 항의 방법 중 임의의 방법을 구현하도록 되어 있는 실행가능 명령들을 포함하는 컴퓨터 프로그램.
- 자율주행 차량 컴퓨터 시스템으로서, 상기 자율주행 차량 컴퓨터 시스템은,
청구항 제1항 내지 제23항 중 임의의 항의 방법을 구현하도록 되어 있는 예측 컴포넌트(prediction component)와; 그리고
상기 예측 컴포넌트들의 출력들을 사용하여 자율 주행 결정들을 수행하도록 되어 있는 계획기를 포함하는 것을 특징으로 하는 자율주행 차량 컴퓨터 시스템. - 제26항에 있어서,
상기 예측 컴포넌트는,
외부 행위주에 대한 목표 예측을 제공하기 위해 청구항 제1항 내지 제19항 중 임의의 항의 방법을 구현하도록 되어 있고, 그리고
상기 외부 행위주에 대한 움직임 예측을 제공하기 위해 청구항 제20항 내지 제23항 중 임의의 항의 방법을 구현하도록 되어 있는 것을 특징으로 하는 자율주행 차량 컴퓨터 시스템. - 제27항에 있어서,
상기 움직임 예측은 상기 목표 예측을 수행하기 위해 사용되는 것을 특징으로 하는 자율주행 차량 컴퓨터 시스템. - 청구항 제26항 또는 제27항 또는 제28항의 자율주행 차량 컴퓨터 시스템과, 그리고 상기 계획기에 결합되어 상기 계획기에 의해 발생된 제어 신호들에 응답하는 구동 기구(drive mechanism)를 포함하는 자율주행 차량.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1816850.0 | 2018-10-16 | ||
GBGB1816853.4A GB201816853D0 (en) | 2018-10-16 | 2018-10-16 | Autonomous vehicle planning |
GBGB1816852.6A GB201816852D0 (en) | 2018-10-16 | 2018-10-16 | Autonomous vehicle manoeuvres |
GB1816853.4 | 2018-10-16 | ||
GBGB1816850.0A GB201816850D0 (en) | 2018-10-16 | 2018-10-16 | Autonomous vehicle planning and prediction |
GB1816852.6 | 2018-10-16 | ||
PCT/EP2019/078062 WO2020079066A1 (en) | 2018-10-16 | 2019-10-16 | Autonomous vehicle planning and prediction |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20210074366A true KR20210074366A (ko) | 2021-06-21 |
Family
ID=68468652
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217014711A Pending KR20210061461A (ko) | 2018-10-16 | 2019-10-16 | 자율 차량 계획 |
KR1020217014710A Pending KR20210074366A (ko) | 2018-10-16 | 2019-10-16 | 자율주행 차량 계획 및 예측 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217014711A Pending KR20210061461A (ko) | 2018-10-16 | 2019-10-16 | 자율 차량 계획 |
Country Status (7)
Country | Link |
---|---|
US (5) | US12046131B2 (ko) |
EP (3) | EP3864574A1 (ko) |
JP (3) | JP2022516383A (ko) |
KR (2) | KR20210061461A (ko) |
CN (3) | CN112840350B (ko) |
IL (2) | IL282278B2 (ko) |
WO (3) | WO2020079074A2 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023048943A1 (en) * | 2021-09-24 | 2023-03-30 | Zoox, Inc. | Optimization based planning system |
KR20240000401A (ko) * | 2022-06-23 | 2024-01-02 | 모셔널 에이디 엘엘씨 | 플래너에서 보정된 미래 기동 파라미터 생성 |
Families Citing this family (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3850548A1 (en) * | 2018-09-11 | 2021-07-21 | NVIDIA Corporation | Future object trajectory predictions for autonomous machine applications |
WO2020079074A2 (en) * | 2018-10-16 | 2020-04-23 | Five AI Limited | Autonomous vehicle planning |
DE102018130759A1 (de) * | 2018-12-04 | 2020-06-04 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Reproduktion eines im Fahrbetrieb eines Fahrzeugs auftreten-den Fehlers |
JP7506876B2 (ja) * | 2018-12-11 | 2024-06-27 | セーフ エーアイ,インコーポレイテッド | 自律車両における運動挙動推定および動的挙動推定のための技術 |
CN110532846B (zh) * | 2019-05-21 | 2022-09-16 | 华为技术有限公司 | 自动换道方法、装置及存储介质 |
US11663514B1 (en) * | 2019-08-30 | 2023-05-30 | Apple Inc. | Multimodal input processing system |
US11893468B2 (en) * | 2019-09-13 | 2024-02-06 | Nvidia Corporation | Imitation learning system |
WO2021074914A1 (en) * | 2019-10-16 | 2021-04-22 | Abb Schweiz Ag | A method for configuring an intelligent electronic device |
JP7279623B2 (ja) * | 2019-11-26 | 2023-05-23 | トヨタ自動車株式会社 | 情報処理装置、情報処理システム、およびプログラム |
US11299169B2 (en) * | 2020-01-24 | 2022-04-12 | Ford Global Technologies, Llc | Vehicle neural network training |
DE102020200911B3 (de) * | 2020-01-27 | 2020-10-29 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Erkennen von Objekten in einer Umgebung eines Fahrzeugs |
US11981349B2 (en) * | 2020-02-19 | 2024-05-14 | Nvidia Corporation | Behavior planning for autonomous vehicles |
US12103554B2 (en) * | 2020-03-05 | 2024-10-01 | Aurora Operations, Inc. | Systems and methods for autonomous vehicle systems simulation |
US20250181079A1 (en) * | 2020-03-19 | 2025-06-05 | ANDRO Computational Solutions, LLC | Machine learning framework for control of autonomous agent operating in dynamic environment |
GB202008353D0 (en) * | 2020-06-03 | 2020-07-15 | Five Ai Ltd | Simulation in autonomous driving |
EP3920103B1 (en) * | 2020-06-05 | 2024-08-07 | Robert Bosch GmbH | Device and method for planning an operation of a technical system |
CN111666714B (zh) * | 2020-06-05 | 2023-07-28 | 北京百度网讯科技有限公司 | 自动驾驶仿真场景识别的方法及装置 |
US11550325B2 (en) * | 2020-06-10 | 2023-01-10 | Nvidia Corp. | Adversarial scenarios for safety testing of autonomous vehicles |
CN111841012B (zh) * | 2020-06-23 | 2024-05-17 | 北京航空航天大学 | 一种自动驾驶模拟仿真系统及其测试资源库建设方法 |
US12228939B2 (en) * | 2020-06-26 | 2025-02-18 | Intel Corporation | Occupancy verification device and method |
CN111679679B (zh) * | 2020-07-06 | 2023-03-21 | 哈尔滨工业大学 | 基于蒙特卡洛树搜索算法的机器人状态规划方法 |
CN113968242B (zh) * | 2020-07-22 | 2023-10-20 | 华为技术有限公司 | 自动驾驶场景生成方法、装置及系统 |
DE102020209352A1 (de) * | 2020-07-24 | 2022-01-27 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zur Prädiktion eines Fahrmanövers in einem Fahrerassistenzsystem |
US11987265B1 (en) * | 2020-07-28 | 2024-05-21 | Waymo Llc | Agent trajectory prediction using target locations |
DE102020120546A1 (de) * | 2020-08-04 | 2022-02-10 | Gestigon Gmbh | Verfahren und vorrichtung zum identifizieren eines objekts, das für eine bestimmte person von interesse ist, auf der basis des erfassbaren verhaltens dieser person |
EP4513379A1 (en) * | 2020-08-04 | 2025-02-26 | Aptiv Technologies AG | Method and system of collecting training data suitable for training an autonomous driving system of a vehicle |
US20220048503A1 (en) | 2020-08-12 | 2022-02-17 | Argo AI, LLC | Path-conditioned motion forecasting for vehicle motion planning |
DE102020210376A1 (de) * | 2020-08-14 | 2022-02-17 | Robert Bosch Gesellschaft mit beschränkter Haftung | Vorrichtung und Verfahren zum Steuern eines Hardware-Agenten in einer Steuersituation mit mehreren Hardware-Agenten |
US11814075B2 (en) * | 2020-08-26 | 2023-11-14 | Motional Ad Llc | Conditional motion predictions |
CN112036297B (zh) * | 2020-08-28 | 2024-08-23 | 眸迪智慧科技有限公司 | 基于网联车辆驾驶数据的典型与极限场景划分与提取方法 |
US11945472B2 (en) | 2020-08-28 | 2024-04-02 | Motional Ad Llc | Trajectory planning of vehicles using route information |
GB2598758B (en) * | 2020-09-10 | 2023-03-29 | Toshiba Kk | Task performing agent systems and methods |
CN112329815B (zh) * | 2020-09-30 | 2022-07-22 | 华南师范大学 | 模型训练方法、行驶轨迹异常性检测方法、装置和介质 |
CN112308136B (zh) * | 2020-10-29 | 2024-06-11 | 江苏大学 | 一种基于SVM-Adaboost的驾驶分心检测方法 |
CN116134292A (zh) * | 2020-10-30 | 2023-05-16 | 法弗人工智能有限公司 | 用于性能测试和/或训练自动驾驶车辆规划器的工具 |
CN112373485A (zh) * | 2020-11-03 | 2021-02-19 | 南京航空航天大学 | 一种考虑交互博弈的自动驾驶车辆决策规划方法 |
US11775706B2 (en) * | 2020-11-16 | 2023-10-03 | Toyota Research Institute, Inc. | Deterministic agents for simulation |
US11554794B2 (en) * | 2020-11-25 | 2023-01-17 | Argo AI, LLC | Method and system for determining a mover model for motion forecasting in autonomous vehicle control |
DE102020215302A1 (de) * | 2020-12-03 | 2022-06-09 | Robert Bosch Gesellschaft mit beschränkter Haftung | Dynamikabhängige Verhaltensplanung für zumindest teilweise automatisiert fahrende Fahrzeuge |
EP4024366A1 (en) * | 2020-12-30 | 2022-07-06 | Argo AI GmbH | Method for controlling a driving behavior of an autonomously driving vehicle, processing device for performing the method, data storage medium and vehicle |
DE102021100395A1 (de) * | 2021-01-12 | 2022-07-14 | Dspace Gmbh | Computerimplementiertes Verfahren zur Bestimmung von Ähnlichkeitswerten von Verkehrsszenarien |
US12337868B2 (en) | 2021-01-20 | 2025-06-24 | Ford Global Technologies, Llc | Systems and methods for scenario dependent trajectory scoring |
US20220234622A1 (en) * | 2021-01-28 | 2022-07-28 | Drisk, Inc. | Systems and Methods for Autonomous Vehicle Control |
US11760388B2 (en) | 2021-02-19 | 2023-09-19 | Argo AI, LLC | Assessing present intentions of an actor perceived by an autonomous vehicle |
GB202102789D0 (en) * | 2021-02-26 | 2021-04-14 | Five Ai Ltd | Prediction and planning for mobile robots |
CN113010967B (zh) * | 2021-04-22 | 2022-07-01 | 吉林大学 | 一种基于混合交通流模型的智能汽车在环仿真测试方法 |
CN112859883B (zh) * | 2021-04-25 | 2021-09-07 | 北京三快在线科技有限公司 | 一种无人驾驶设备的控制方法及控制装置 |
EP4083871B1 (en) | 2021-04-29 | 2023-11-15 | Zenseact AB | Method for automated development of a path planning module for an automated driving system |
US11975742B2 (en) * | 2021-05-25 | 2024-05-07 | Ford Global Technologies, Llc | Trajectory consistency measurement for autonomous vehicle operation |
US12046013B2 (en) | 2021-05-26 | 2024-07-23 | Ford Global Technologies Llc | Using relevance of objects to assess performance of an autonomous vehicle perception system |
US20220382284A1 (en) * | 2021-05-26 | 2022-12-01 | Argo AI, LLC | Perception system for assessing relevance of objects in an environment of an autonomous vehicle |
KR102631402B1 (ko) * | 2021-06-14 | 2024-01-31 | 숭실대학교 산학협력단 | 자율주행차량을 위한 심층강화학습 기반 차선 변경 방법, 이를 수행하기 위한 기록 매체 및 장치 |
US20220402521A1 (en) * | 2021-06-16 | 2022-12-22 | Waymo Llc | Autonomous path generation with path optimization |
US20220402522A1 (en) * | 2021-06-21 | 2022-12-22 | Qualcomm Incorporated | Tree based behavior predictor |
US12168461B2 (en) * | 2021-06-29 | 2024-12-17 | Toyota Research Institute, Inc. | Systems and methods for predicting the trajectory of a moving object |
US20230009173A1 (en) * | 2021-07-12 | 2023-01-12 | GM Global Technology Operations LLC | Lane change negotiation methods and systems |
CN113593228B (zh) * | 2021-07-26 | 2022-06-03 | 广东工业大学 | 一种高速公路瓶颈区域自动驾驶协同控制方法 |
US11960292B2 (en) | 2021-07-28 | 2024-04-16 | Argo AI, LLC | Method and system for developing autonomous vehicle training simulations |
US11904906B2 (en) | 2021-08-05 | 2024-02-20 | Argo AI, LLC | Systems and methods for prediction of a jaywalker trajectory through an intersection |
US12128929B2 (en) | 2021-08-05 | 2024-10-29 | Argo AI, LLC | Methods and system for predicting trajectories of actors with respect to a drivable area |
CN113501008B (zh) * | 2021-08-12 | 2023-05-19 | 东风悦享科技有限公司 | 一种基于强化学习算法的自动驾驶行为决策方法 |
CN113753077A (zh) * | 2021-08-17 | 2021-12-07 | 北京百度网讯科技有限公司 | 预测障碍物的运动轨迹的方法、装置及自动驾驶车辆 |
CN113836111A (zh) * | 2021-08-23 | 2021-12-24 | 武汉光庭信息技术股份有限公司 | 一种自动驾驶经验数据库的构建方法及系统 |
DE102021210545A1 (de) * | 2021-09-22 | 2023-03-23 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verbesserte Vorhersage für Fahrmanöver von Fremdfahrzeugen |
CN113650618B (zh) * | 2021-09-23 | 2022-09-30 | 东软睿驰汽车技术(上海)有限公司 | 一种车辆轨迹确定方法和相关装置 |
US12037024B1 (en) | 2021-10-20 | 2024-07-16 | Waymo Llc | Trajectory planning with other road user reactions for autonomous vehicles |
US12112624B2 (en) * | 2021-10-21 | 2024-10-08 | Toyota Motor Engineering & Manufacturing North America, Inc. | Systems and methods for traffic-flow regulation via centralized lateral flow control |
CN114061596B (zh) * | 2021-11-19 | 2024-03-22 | 北京国家新能源汽车技术创新中心有限公司 | 自动驾驶定位方法、系统、测试方法、设备及存储介质 |
KR20230082777A (ko) * | 2021-12-02 | 2023-06-09 | 한국전자기술연구원 | 주행 시나리오 추천 방법 및 장치 |
CN113868778B (zh) * | 2021-12-02 | 2022-03-11 | 中智行科技有限公司 | 仿真场景管理方法和装置 |
US11983238B2 (en) * | 2021-12-03 | 2024-05-14 | International Business Machines Corporation | Generating task-specific training data |
US20230174084A1 (en) * | 2021-12-06 | 2023-06-08 | The Regents Of The University Of Michigan | Monte Carlo Policy Tree Decision Making |
US12251631B2 (en) * | 2021-12-10 | 2025-03-18 | Honda Motor Co., Ltd. | Game theoretic decision making |
CN113997955B (zh) * | 2021-12-13 | 2024-06-14 | 中国第一汽车股份有限公司 | 轨迹预测方法、装置、电子设备以及存储介质 |
CN114148349B (zh) * | 2021-12-21 | 2023-10-03 | 西南大学 | 一种基于生成对抗模仿学习的车辆个性化跟驰控制方法 |
US20230195970A1 (en) * | 2021-12-22 | 2023-06-22 | Gm Cruise Holdings Llc | Estimating object kinematics using correlated data pairs |
US20230192130A1 (en) * | 2021-12-22 | 2023-06-22 | Gm Cruise Holdings Llc | System and method of using a machine learning model to aid a planning stack to choose a route |
WO2023123172A1 (zh) * | 2021-12-30 | 2023-07-06 | 华为技术有限公司 | 一种驾驶辅助的方法以及相关设备 |
CN114179835B (zh) * | 2021-12-30 | 2024-01-05 | 清华大学苏州汽车研究院(吴江) | 基于真实场景下强化学习的自动驾驶车辆决策训练方法 |
WO2022226434A1 (en) * | 2022-01-05 | 2022-10-27 | Futurewei Technologies, Inc. | Self-driving vehicle evaluation using real-world data |
CN114397115A (zh) * | 2022-01-10 | 2022-04-26 | 招商局检测车辆技术研究院有限公司 | 港口自动驾驶车辆的定位性能测试方法及系统 |
US20230222268A1 (en) * | 2022-01-11 | 2023-07-13 | Argo AI, LLC | Automated Generation and Refinement of Variation Parameters for Simulation Scenarios |
US20230222267A1 (en) * | 2022-01-11 | 2023-07-13 | Argo AI, LLC | Uncertainty Based Scenario Simulation Prioritization and Selection |
WO2023137274A1 (en) * | 2022-01-11 | 2023-07-20 | Argo AI, LLC | Systems and methods for automated generation and selection of simulation scenarios |
WO2023135271A1 (en) | 2022-01-13 | 2023-07-20 | Five AI Limited | Motion prediction and trajectory generation for mobile agents |
US20250145178A1 (en) | 2022-02-03 | 2025-05-08 | Five AI Limited | Trajectory generation for mobile agents |
WO2023154568A1 (en) * | 2022-02-14 | 2023-08-17 | May Mobility, Inc. | Method and system for conditional operation of an autonomous agent |
EP4436851A4 (en) * | 2022-03-15 | 2025-03-12 | Huawei Tech Co Ltd | SYSTEM AND METHOD FOR OPTIMIZING AN AUTONOMOUS VEHICLE MOTION PLANNER |
US20230303123A1 (en) * | 2022-03-22 | 2023-09-28 | Qualcomm Incorporated | Model hyperparameter adjustment using vehicle driving context classification |
US20230311934A1 (en) * | 2022-03-31 | 2023-10-05 | Wipro Limited | Method and system for dynamically controlling navigation of an autonomous vehicle |
CN114860800A (zh) * | 2022-04-21 | 2022-08-05 | 深圳裹动科技有限公司 | 有价值数据的挖掘方法与服务器 |
EP4270997A1 (en) | 2022-04-26 | 2023-11-01 | Continental Automotive Technologies GmbH | Method for predicting traffic participant behavior, driving system and vehicle |
CN114998534B (zh) * | 2022-04-29 | 2025-02-18 | 中国科学技术大学 | 基于随机生成和调整策略相结合的自动驾驶场景生成方法 |
CN115311814A (zh) * | 2022-04-29 | 2022-11-08 | 中煤西北能源有限公司 | 一种基于机器视觉的危险区域人员识别预警系统及方法 |
US20230367309A1 (en) * | 2022-05-12 | 2023-11-16 | Tusimple, Inc. | System and method for predicting non-operational design domain (odd) scenarios |
CN115257800A (zh) * | 2022-05-18 | 2022-11-01 | 上海仙途智能科技有限公司 | 车辆状态规划方法及装置、服务器、计算机可读存储介质 |
US11634158B1 (en) * | 2022-06-08 | 2023-04-25 | Motional Ad Llc | Control parameter based search space for vehicle motion planning |
CN114995442B (zh) * | 2022-06-15 | 2023-07-21 | 杭州电子科技大学 | 基于最佳观测点序列的移动机器人运动规划方法及装置 |
US12258040B2 (en) * | 2022-06-30 | 2025-03-25 | Zoox, Inc. | System for generating scene context data using a reference graph |
CN115285143B (zh) * | 2022-08-03 | 2024-07-16 | 东北大学 | 一种基于场景分类的自动驾驶车辆导航方法 |
CN115240171B (zh) * | 2022-08-17 | 2023-08-04 | 阿波罗智联(北京)科技有限公司 | 道路结构感知方法及装置 |
US12077174B2 (en) | 2022-08-24 | 2024-09-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Compensating mismatch in abnormal driving behavior detection |
US12187324B2 (en) | 2022-08-31 | 2025-01-07 | Zoox, Inc. | Trajectory prediction based on a decision tree |
US20240092357A1 (en) * | 2022-08-31 | 2024-03-21 | Zoox, Inc. | Trajectory optimization in multi-agent environments |
CN115285147A (zh) * | 2022-08-31 | 2022-11-04 | 北京百度网讯科技有限公司 | 无人车的驾驶决策方法、装置及无人车 |
DE102022210934A1 (de) | 2022-10-17 | 2024-04-18 | Continental Autonomous Mobility Germany GmbH | Planung einer Trajektorie |
CN115576327B (zh) * | 2022-11-09 | 2024-12-24 | 复旦大学 | 基于自动驾驶智能小车边缘计算与推理的自主学习方法 |
US11697435B1 (en) * | 2022-12-09 | 2023-07-11 | Plusai, Inc. | Hierarchical vehicle action prediction |
WO2024145144A1 (en) * | 2022-12-28 | 2024-07-04 | Aurora Operations, Inc. | Goal-based motion forecasting |
WO2024144984A1 (en) * | 2022-12-29 | 2024-07-04 | Qualcomm Incorporated | Forward simulation for decision-making for device operation |
US20240217549A1 (en) * | 2022-12-29 | 2024-07-04 | Qualcomm Incorporated | Forward simulation for decision-making for device operation |
JP2024104670A (ja) * | 2023-01-24 | 2024-08-05 | オムロン株式会社 | 経路計画装置、方法、プログラム、及びマルチエージェント制御システム |
CN116010854B (zh) * | 2023-02-03 | 2023-10-17 | 小米汽车科技有限公司 | 异常原因的确定方法、装置、电子设备及存储介质 |
DE102023103473A1 (de) * | 2023-02-14 | 2024-08-14 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren und Vorrichtung zur Ermittlung eines vorausliegenden Zustands eines Fahrzeugs |
CN116248993B (zh) * | 2023-03-23 | 2025-04-25 | 浙江大华技术股份有限公司 | 摄像头点位的数据处理方法和装置、存储介质及电子装置 |
WO2024215340A1 (en) * | 2023-04-14 | 2024-10-17 | Motional Ad Llc | Trajectory planning utilizing a stateful planner and a stateless planner |
US20250002041A1 (en) * | 2023-06-30 | 2025-01-02 | Zoox, Inc. | Hierarchical multi-objective optimization in vehicle path planning tree search |
CN116519005B (zh) * | 2023-07-04 | 2023-10-03 | 上海云骥跃动智能科技发展有限公司 | 一种路径规划方法及装置 |
EP4501730A1 (de) * | 2023-08-01 | 2025-02-05 | dSPACE GmbH | Computerimplementiertes verfahren und system zum bereitstellen eines algorithmus des maschinellen lernens |
GB202313287D0 (en) | 2023-08-31 | 2023-10-18 | Five Ai Ltd | Motion planning |
CN117208012A (zh) * | 2023-09-20 | 2023-12-12 | 安徽蔚来智驾科技有限公司 | 车辆轨迹预测方法、控制装置、可读存储介质及车辆 |
CN117591989B (zh) * | 2024-01-19 | 2024-03-19 | 贵州省畜牧兽医研究所 | 一种针对畜禽活动的数据监控方法和系统 |
CN117975736B (zh) * | 2024-03-29 | 2024-06-07 | 北京市计量检测科学研究院 | 一种无人驾驶车辆车路协同应用场景测试方法及系统 |
CN118372612B (zh) * | 2024-06-25 | 2024-10-22 | 江苏众联祥博新能源科技有限公司 | 基于车外温度监测的车内空调优化控制方法及系统 |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4400316B2 (ja) | 2004-06-02 | 2010-01-20 | 日産自動車株式会社 | 運転意図推定装置、車両用運転操作補助装置および車両用運転操作補助装置を備えた車両 |
JP2008210051A (ja) | 2007-02-23 | 2008-09-11 | Mazda Motor Corp | 車両用運転支援システム |
TWI430212B (zh) * | 2010-06-08 | 2014-03-11 | Gorilla Technology Inc | 利用多特徵自動集群法之異常行為偵測系統與方法 |
CN102358287A (zh) * | 2011-09-05 | 2012-02-22 | 北京航空航天大学 | 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法 |
WO2013108412A1 (ja) | 2012-01-17 | 2013-07-25 | Nishioka Toshihisa | 海洋発電システムおよび海洋発電方法 |
US9122932B2 (en) * | 2012-04-30 | 2015-09-01 | Xerox Corporation | Method and system for automatically detecting multi-object anomalies utilizing joint sparse reconstruction model |
US9633564B2 (en) * | 2012-09-27 | 2017-04-25 | Google Inc. | Determining changes in a driving environment based on vehicle behavior |
US8793062B2 (en) | 2012-11-06 | 2014-07-29 | Apple Inc. | Routing based on detected stops |
CN103235933B (zh) * | 2013-04-15 | 2016-08-03 | 东南大学 | 一种基于隐马尔科夫模型的车辆异常行为检测方法 |
US20150104757A1 (en) * | 2013-10-15 | 2015-04-16 | Mbfarr, Llc | Driving assessment and training method and apparatus |
US9403482B2 (en) * | 2013-11-22 | 2016-08-02 | At&T Intellectual Property I, L.P. | Enhanced view for connected cars |
CN103699717A (zh) * | 2013-12-03 | 2014-04-02 | 重庆交通大学 | 基于前视断面选点的复杂道路汽车行驶轨迹预测方法 |
JP6119634B2 (ja) * | 2014-02-21 | 2017-04-26 | トヨタ自動車株式会社 | 車両の自動運転制御方法 |
CN103971521B (zh) * | 2014-05-19 | 2016-06-29 | 清华大学 | 道路交通异常事件实时检测方法及装置 |
EP2950294B1 (en) * | 2014-05-30 | 2019-05-08 | Honda Research Institute Europe GmbH | Method and vehicle with an advanced driver assistance system for risk-based traffic scene analysis |
JP6206337B2 (ja) | 2014-06-18 | 2017-10-04 | トヨタ自動車株式会社 | 情報提供装置および情報提供方法 |
US9187088B1 (en) | 2014-08-15 | 2015-11-17 | Google Inc. | Distribution decision trees |
EP2990290B1 (en) | 2014-09-01 | 2019-11-06 | Honda Research Institute Europe GmbH | Method and system for post-collision manoeuvre planning and vehicle equipped with such system |
CN104504897B (zh) * | 2014-09-28 | 2017-10-31 | 北京工业大学 | 一种基于轨迹数据的交叉口交通流特性分析及车辆运动预测方法 |
JP2016070805A (ja) | 2014-09-30 | 2016-05-09 | トヨタ自動車株式会社 | 車両用情報処理装置 |
US9248834B1 (en) | 2014-10-02 | 2016-02-02 | Google Inc. | Predicting trajectories of objects based on contextual information |
EP3885217A1 (en) * | 2015-02-10 | 2021-09-29 | Mobileye Vision Technologies Ltd. | Sparse map for autonomous vehicle navigation |
EP3109801A1 (en) * | 2015-06-26 | 2016-12-28 | National University of Ireland, Galway | Data analysis and event detection method and system |
US9784592B2 (en) * | 2015-07-17 | 2017-10-10 | Honda Motor Co., Ltd. | Turn predictions |
US9934688B2 (en) * | 2015-07-31 | 2018-04-03 | Ford Global Technologies, Llc | Vehicle trajectory determination |
US9809158B2 (en) * | 2015-09-29 | 2017-11-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | External indicators and notifications for vehicles with autonomous capabilities |
US9747506B2 (en) * | 2015-10-21 | 2017-08-29 | Ford Global Technologies, Llc | Perception-based speed limit estimation and learning |
US9568915B1 (en) | 2016-02-11 | 2017-02-14 | Mitsubishi Electric Research Laboratories, Inc. | System and method for controlling autonomous or semi-autonomous vehicle |
US11015948B2 (en) | 2016-02-17 | 2021-05-25 | Mitsubishi Electric Corporation | Information provision device, information provision server, and information provision method |
US10297148B2 (en) * | 2016-02-17 | 2019-05-21 | Uber Technologies, Inc. | Network computer system for analyzing driving actions of drivers on road segments of a geographic region |
US9645577B1 (en) * | 2016-03-23 | 2017-05-09 | nuTonomy Inc. | Facilitating vehicle driving and self-driving |
US10347122B2 (en) * | 2016-07-12 | 2019-07-09 | Denson Corporation | Road condition monitoring system |
JP2018024600A (ja) * | 2016-08-09 | 2018-02-15 | 旭硝子株式会社 | 含フッ素オレフィンの製造方法 |
US10712746B2 (en) * | 2016-08-29 | 2020-07-14 | Baidu Usa Llc | Method and system to construct surrounding environment for autonomous vehicles to make driving decisions |
WO2018057978A1 (en) | 2016-09-23 | 2018-03-29 | Apple Inc. | Decision making for autonomous vehicle motion control |
JP6731819B2 (ja) * | 2016-09-26 | 2020-07-29 | 日立オートモティブシステムズ株式会社 | 移動体軌道予測システム |
US10343685B2 (en) * | 2016-09-28 | 2019-07-09 | Baidu Usa Llc | Physical model and machine learning combined method to simulate autonomous vehicle movement |
EP3520094A2 (en) | 2016-09-29 | 2019-08-07 | Cubic Corporation | Systems and methods for using autonomous vehicles in traffic |
US10394245B2 (en) * | 2016-11-22 | 2019-08-27 | Baidu Usa Llc | Method and system to predict vehicle traffic behavior for autonomous vehicles to make driving decisions |
CN110291477B (zh) * | 2016-12-02 | 2022-08-16 | 嘉蒂克人工智能公司 | 车辆控制系统及使用方法 |
US10459441B2 (en) * | 2016-12-30 | 2019-10-29 | Baidu Usa Llc | Method and system for operating autonomous driving vehicles based on motion plans |
US9969386B1 (en) | 2017-01-10 | 2018-05-15 | Mitsubishi Electric Research Laboratories, Inc. | Vehicle automated parking system and method |
WO2018162521A1 (en) | 2017-03-07 | 2018-09-13 | Robert Bosch Gmbh | Action planning system and method for autonomous vehicles |
US10509409B2 (en) * | 2017-04-27 | 2019-12-17 | Aptiv Technologies Limited | Local traffic customs learning system for automated vehicle |
US10031526B1 (en) * | 2017-07-03 | 2018-07-24 | Baidu Usa Llc | Vision-based driving scenario generator for autonomous driving simulation |
DE102017220139A1 (de) * | 2017-11-13 | 2019-05-16 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Bereitstellen einer Position wenigstens eines Objekts |
US20190164007A1 (en) * | 2017-11-30 | 2019-05-30 | TuSimple | Human driving behavior modeling system using machine learning |
US11237554B2 (en) * | 2018-03-08 | 2022-02-01 | Steering Solutions Ip Holding Corporation | Driver readiness assessment system and method for vehicle |
US11625036B2 (en) | 2018-04-09 | 2023-04-11 | SafeAl, Inc. | User interface for presenting decisions |
US11467590B2 (en) * | 2018-04-09 | 2022-10-11 | SafeAI, Inc. | Techniques for considering uncertainty in use of artificial intelligence models |
US11112795B1 (en) | 2018-08-07 | 2021-09-07 | GM Global Technology Operations LLC | Maneuver-based interaction system for an autonomous vehicle |
WO2020079074A2 (en) * | 2018-10-16 | 2020-04-23 | Five AI Limited | Autonomous vehicle planning |
NZ796716A (en) * | 2020-07-06 | 2025-03-28 | Kalmar Finland Oy | Method and apparatus for relative positioning of a spreader |
US11250895B1 (en) | 2020-11-04 | 2022-02-15 | Qualcomm Incorporated | Systems and methods for driving wordlines using set-reset latches |
US11884304B2 (en) * | 2021-09-08 | 2024-01-30 | Ford Global Technologies, Llc | System, method, and computer program product for trajectory scoring during an autonomous driving operation implemented with constraint independent margins to actors in the roadway |
-
2019
- 2019-10-16 WO PCT/EP2019/078072 patent/WO2020079074A2/en unknown
- 2019-10-16 JP JP2021546462A patent/JP2022516383A/ja active Pending
- 2019-10-16 CN CN201980068032.6A patent/CN112840350B/zh active Active
- 2019-10-16 KR KR1020217014711A patent/KR20210061461A/ko active Pending
- 2019-10-16 WO PCT/EP2019/078067 patent/WO2020079069A2/en unknown
- 2019-10-16 US US17/285,294 patent/US12046131B2/en active Active
- 2019-10-16 IL IL282278A patent/IL282278B2/en unknown
- 2019-10-16 EP EP19801204.9A patent/EP3864574A1/en active Pending
- 2019-10-16 US US17/285,277 patent/US11900797B2/en active Active
- 2019-10-16 EP EP19812914.0A patent/EP3837633A2/en active Pending
- 2019-10-16 US US17/285,269 patent/US12039860B2/en active Active
- 2019-10-16 CN CN201980066844.7A patent/CN112868022B/zh active Active
- 2019-10-16 KR KR1020217014710A patent/KR20210074366A/ko active Pending
- 2019-10-16 JP JP2021546461A patent/JP7455851B2/ja active Active
- 2019-10-16 WO PCT/EP2019/078062 patent/WO2020079066A1/en unknown
- 2019-10-16 EP EP19798173.1A patent/EP3863904A2/en active Pending
- 2019-10-16 CN CN201980066757.1A patent/CN112888612B/zh active Active
-
2021
- 2021-04-12 IL IL282277A patent/IL282277A/en unknown
-
2023
- 2023-08-18 JP JP2023133680A patent/JP7532615B2/ja active Active
-
2024
- 2024-06-13 US US18/742,965 patent/US20240412624A1/en active Pending
- 2024-06-27 US US18/756,819 patent/US20240428682A1/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023048943A1 (en) * | 2021-09-24 | 2023-03-30 | Zoox, Inc. | Optimization based planning system |
KR20240000401A (ko) * | 2022-06-23 | 2024-01-02 | 모셔널 에이디 엘엘씨 | 플래너에서 보정된 미래 기동 파라미터 생성 |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240428682A1 (en) | Autonomous vehicle planning and prediction | |
US11726477B2 (en) | Methods and systems for trajectory forecasting with recurrent neural networks using inertial behavioral rollout | |
US10324469B2 (en) | System and method for controlling motion of vehicle in shared environment | |
JP2024530638A (ja) | ツリー検索を使用する車両軌道制御 | |
US20190250617A1 (en) | Fast trajectory planning via maneuver pattern selection | |
US20230042431A1 (en) | Prediction and planning for mobile robots | |
WO2019124001A1 (ja) | 移動体挙動予測装置および移動体挙動予測方法 | |
JP7098580B2 (ja) | 予測装置、予測方法、プログラムおよび車両制御システム | |
US10474149B2 (en) | Autonomous behavior control using policy triggering and execution | |
US20240174256A1 (en) | Vehicle trajectory tree search for off-route driving maneuvers | |
CN119968302A (zh) | 多智能体环境中的轨迹优化 | |
Kuutti | End-to-end deep learning control for autonomous vehicles | |
Trentin | MULTIMODAL INTERACTION-AWARE MOTION PREDICTION IN URBAN ENVIRONMENTS | |
Cai | Learning Autonomous Driving Policies for Dynamic Urban and Racing Environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0105 | International application |
Patent event date: 20210514 Patent event code: PA01051R01D Comment text: International Patent Application |
|
PG1501 | Laying open of application | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20221014 Comment text: Request for Examination of Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20240522 Patent event code: PE09021S01D |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20250228 Patent event code: PE09021S01D |