KR20210016086A - Autonomous travel route generating system - Google Patents
Autonomous travel route generating system Download PDFInfo
- Publication number
- KR20210016086A KR20210016086A KR1020217003434A KR20217003434A KR20210016086A KR 20210016086 A KR20210016086 A KR 20210016086A KR 1020217003434 A KR1020217003434 A KR 1020217003434A KR 20217003434 A KR20217003434 A KR 20217003434A KR 20210016086 A KR20210016086 A KR 20210016086A
- Authority
- KR
- South Korea
- Prior art keywords
- work
- path
- obstacle
- travel path
- tractor
- Prior art date
Links
- 238000000034 method Methods 0.000 claims description 43
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 238000005192 partition Methods 0.000 abstract description 7
- 238000004891 communication Methods 0.000 description 163
- 238000012937 correction Methods 0.000 description 146
- 238000010586 diagram Methods 0.000 description 66
- 238000004806 packaging method and process Methods 0.000 description 63
- 238000012545 processing Methods 0.000 description 42
- 238000004364 calculation method Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 25
- 230000008859 change Effects 0.000 description 23
- 238000007654 immersion Methods 0.000 description 16
- 230000005540 biological transmission Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 6
- 230000002452 interceptive effect Effects 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000009333 weeding Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0219—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0253—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means extracting relative motion information from a plurality of images taken successively, e.g. visual odometry, optical flow
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0212—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
- G05D1/0221—Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving a learning process
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0268—Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Human Computer Interaction (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Guiding Agricultural Machines (AREA)
Abstract
자율 주행 경로 생성 시스템은, 미리 정해진 작업 영역 (91) 에 대해 작업을 실시하기 위해서 트랙터를 자율 주행시키는 자율 주행 경로 (93) 를 생성한다. 자율 주행 경로 생성 시스템은, 작업 영역 분할부와, 자율 주행 경로 생성부를 구비한다. 작업 영역 분할부는, 작업 영역 (91) 을 복수의 구획 (S) 으로 분할한다. 자율 주행 경로 생성부는, 작업 영역 분할부에 의해 분할된 각 구획 (S) 의 각각에 배치된 복수의 작업 경로 (93A) 를 포함하도록 자율 주행 경로 (93) 를 생성한다. 작업 영역 분할부는, 각 구획 (S) 에 포함되는 작업 경로 (93A) 의 수가 서로 동일한 기본 단위 경로수 (스킵수가 1 인 경우, 5 개) 가 되도록 작업 영역 (91) 을 분할할 수 있다.The autonomous travel path generation system generates an autonomous travel path 93 for autonomously driving a tractor in order to perform work on a predetermined work area 91. The autonomous travel path generation system includes a work area division unit and an autonomous travel path generation unit. The work area dividing unit divides the work area 91 into a plurality of divisions S. The autonomous travel path generation unit generates the autonomous travel path 93 to include a plurality of work paths 93A arranged in each of the divisions S divided by the work area division unit. The work area dividing unit can divide the work area 91 so that the number of work paths 93A included in each partition S is the same basic unit path number (if the number of skips is 1, 5).
Description
본 발명은 작업 차량을 자율 주행시키기 위한 주행 경로를 생성하는 자율 주행 경로 생성 시스템에 관한 것이다.The present invention relates to an autonomous driving route generation system for generating a driving route for autonomously driving a work vehicle.
종래부터, 미리 생성된 주행 경로에 따라 작업 차량을 자율 주행시키는 자율 주행 시스템이 알려져 있다. 특허문헌 1 은, 이 종류의 자율 주행 시스템을 개시한다. 이 특허문헌 1 에 개시되는 농업용 작업 차량은, GPS 위성으로부터 송신되는 전파를 수신하여 이동 통신기에 있어서 설정 시간 간격으로 기체의 위치 정보를 구하고, 자이로 센서 및 방위 센서로부터 기체의 변위 정보 및 방위 정보를 구하고, 이들 위치 정보와 변위 정보와 방위 정보에 기초하여 기체가 미리 설정한 설정 경로를 따라 주행하도록, 조타 액추에이터, 변속 수단, 승강 액추에이터, PTO 온오프 수단, 엔진 컨트롤러 등을 제어하여 자동 주행하면서 자동으로 작업하기 위한 자동 주행 수단으로서의 제어 장치를 구비하고 있다.Conventionally, an autonomous driving system has been known for autonomously driving a working vehicle according to a previously generated driving route.
농업용 작업 차량이 포장에 있어서 자율 주행하면서 작업을 실시하는 경우, 특허문헌 1 에서도 개시되어 있지만, 등간격으로 나열된 복수의 직선상의 작업 경로를, 나열되는 방향의 일측의 단으로부터 타측의 단까지 1 개씩 차례로 주행하여 작업을 실시하는 것이 널리 실시되고 있다. 이 때, 농업용 작업 차량은, 어느 작업 경로에 대해 작업을 완료한 후, 포장의 가장자리부에서 리턴해 주행 방향을 반전시키고, 당해 작업 경로에 인접하는 작업 경로에 대해 작업을 실시한다.When the agricultural work vehicle performs work while autonomously traveling on the pavement, although it is also disclosed in
그러나, 이와 같은 주행 경로에서는, 상기 리턴할 때, 작업 차량의 최소 선회 반경 등의 사정에 의해, 전후의 방향 전환을 수반하는 선회가 필요하게 되어 효율을 저하시키는 경우가 있다. 그래서, 농업용 작업 차량이, 어느 작업 경로에 대해 작업을 완료한 후, 당해 작업 경로 옆의 작업 경로가 아니라 1 ∼ 2 개 정도 건너뛴 작업 경로에 대해 작업을 실시하도록 주행하는 것을 생각할 수 있다 (스킵 주행). 이 경우의 농업용 작업 차량의 주행 경로로는, 예를 들어, 복수 나열되는 작업 경로에 대해, 나열되는 방향의 일측의 단으로부터 당해 작업 경로를 1 개 건너뛰고 주행하여 타측의 단까지 도달하고, 그 후, 나머지 작업 경로를 (작업이 완료된 작업 경로를 건너뛰고) 주행하면서 당해 일측으로 리턴하도록 생성된다.However, in such a travel path, when the above returns, due to circumstances such as the minimum turning radius of the work vehicle, a turning accompanying the front and rear direction change is required, thereby reducing the efficiency in some cases. Therefore, it is conceivable that the agricultural work vehicle, after completing the work on a certain work path, runs so as to perform work on the work paths skipped by 1 or 2, not the work path next to the work path (skip Driving). In this case, as the travel path of the agricultural work vehicle, for example, for a plurality of work paths, the work path is skipped from one end of the ordered direction and travels to reach the other end. Then, it is generated to return to the one side while driving the rest of the work path (skipping the work path where the work has been completed).
그러나, 넓은 포장에서 스킵 주행을 하면서 작업을 실시하는 경우에 있어서, 어떠한 사정에 의해 작업을 도중에 중단하면, 작업이 완료된 지점과 미작업의 지점이 교대로 나타나는 부분이 광범위에 걸쳐 생기는 경우가 있었다. 이 경우, 포장에 있어서의 작업이 완료된 지점 및 미작업의 지점의 각각을 정리된 영역으로서 파악하는 것이 어려워져, 작업의 원활한 재개가 곤란해져 버린다. 또, 작업의 중단 전후에서 비 등에 의해 토양 환경이 변화했을 경우에, 작업 품질이 상이한 부분이 빗살상으로 생겨, 그 후의 작업 효율을 저하시키는 경우가 있었다.However, in the case of performing work while skip running on a wide pavement, if the work is stopped in the middle due to some circumstances, there are cases where the part where the work completed and the unworked point alternately appears over a wide range. In this case, it becomes difficult to grasp each of the point where the work has been completed and the point of the unwork in the pavement as an organized area, and smooth restart of the work becomes difficult. In addition, when the soil environment changes due to rain or the like before and after the interruption of the work, portions of different work quality are generated as a comb, and the work efficiency thereafter may be lowered.
그런데, 상기와 같이 농업용 작업 차량을 자율 주행시키는 구성은, 특히 포장이 광대하면, 생력화 등의 효과를 양호하게 발휘한다. 그러나, 예를 들어 1 일에 작업을 완료시킬 수 없을 정도로 넓은 포장에 있어서는, 상기와 같은 작업의 중단을 고려해야 하여, 개선의 여지가 남아 있었다.Incidentally, the configuration in which the agricultural work vehicle is autonomously driven as described above exhibits favorable effects such as viability, especially when the pavement is large. However, for a pavement that is so wide that the work cannot be completed in one day, for example, it is necessary to consider the interruption of the work as described above, and there remains room for improvement.
본 발명은 이상의 사정을 감안하여 이루어진 것으로, 그 잠재적인 목적은, 스킵 주행에 의한 작업을 실시할 때, 작업이 도중에 중단했을 경우에도, 작업이 완료된 지점과 미작업의 지점이 교대로 나타나는 부분이 광범위하게 생기는 것을 방지할 수 있는 자율 주행 경로 생성 시스템을 제공하는 것에 있다.The present invention has been made in view of the above circumstances, and the potential object thereof is that when a task by skip running is performed, even when the task is interrupted in the middle, the part where the task completed and the unworked point alternately appears. It is to provide an autonomous driving route generation system that can prevent widespread occurrence.
본 발명의 해결하고자 하는 과제는 이상과 같고, 다음으로 이 과제를 해결하기 위한 수단과 그 효과를 설명한다. The problem to be solved of the present invention is as described above, and next, a means for solving this problem and its effects will be described.
본 개시의 제 1 관점에 의하면, 이하의 구성의 자율 주행 경로 생성 시스템이 제공된다. 즉, 이 자율 주행 경로 생성 시스템은, 미리 정해진 작업 영역에 대해 작업을 실시하기 위해 작업 차량을 자율 주행시키는 주행 경로를 생성한다. 이 자율 주행 경로 생성 시스템은, 영역 분할부와, 경로 생성부를 구비한다. 상기 영역 분할부는, 상기 작업 영역을 복수의 구획으로 분할한다. 상기 경로 생성부는, 상기 영역 분할부에 의해 분할된 각 구획의 각각에 배치된 복수의 주행로를 포함하도록 상기 주행 경로를 생성한다. 상기 영역 분할부는, 상기 각 구획에 포함되는 상기 주행로의 수가 서로 동일한 소정값이 되도록 상기 작업 영역을 분할할 수 있다.According to the first aspect of the present disclosure, an autonomous travel route generation system having the following configuration is provided. That is, this autonomous travel path generation system generates a travel path for autonomously driving a work vehicle in order to perform work on a predetermined work area. This autonomous travel route generation system includes an area division unit and a route generation unit. The area dividing unit divides the work area into a plurality of divisions. The path generation unit generates the travel path to include a plurality of travel paths arranged in each of the divisions divided by the region dividing unit. The area dividing unit may divide the work area so that the number of the travel paths included in each of the divisions has the same predetermined value.
이로써, 스킵 주행에 의한 작업을 실시하는 경우에도, 분할된 작은 구획을 단위로 하여, 작업 영역의 단 (端) 으로부터 차례로 작업해 갈 수 있다. 따라서, 작업이 도중에 중단되었을 경우에도, 작업 영역에 있어서 작업이 완료된 지점과 미작업의 지점이 교대로 나타나는 부분을 구획 내의 작은 범위로 억제할 수 있다. 따라서, 작업이 완료된 지점이 명확하게 되기 쉽고, 원활하게 작업의 재개를 실시할 수 있다. 또, 작업의 중단 전후에서 비 등에 의해 토양 환경이 변화했을 경우에도, 작업 품질이 상이한 부분이 광범위에 걸쳐 빗살상으로 생기는 것을 방지할 수 있다.In this way, even in the case of performing the operation by skip running, it is possible to work sequentially from the end of the work area, using the divided small divisions as a unit. Accordingly, even when the work is interrupted in the middle, the portion in the work area where the work completed and unworked points alternately appear can be suppressed to a small range within the division. Therefore, the point where the work is completed is easy to become clear, and the work can be resumed smoothly. In addition, even when the soil environment changes due to rain or the like before and after the interruption of the work, it is possible to prevent the occurrence of comb teeth over a wide range of parts having different work quality.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 상기 경로 생성부는, 상기 복수의 주행로에 대해 기준값에 기초하여 작업 순서를 설정한다. 포함되는 상기 주행로의 수가 상기 소정값과 동일한 상기 구획이 복수 있는 경우에, 상기 경로 생성부는, 당해 구획 사이에서, 서로 대응하는 각각의 상기 주행로에 대해 동일한 작업 순서를 설정한다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, the route generation unit sets a work order for the plurality of travel routes based on reference values. When there are a plurality of the divisions having the same number of the travel routes as the predetermined value, the route generation unit sets the same work order for each of the corresponding travel routes between the divisions.
이로써, 구획을 단위로 하여 일정한 작업 순서를 주행로에 대해 설정할 수 있기 때문에, 규칙적인 스킵 주행을 실현할 수 있음과 함께, 주행 경로의 생성 처리를 간략화할 수 있다.Thereby, since a certain work order can be set for the travel path in units of divisions, it is possible to realize regular skip travel and to simplify the generation process of the travel path.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 상기 영역 분할부는, 상기 작업 영역에 포함되는 상기 주행로의 수가 상기 소정값의 정수배가 아닌 경우에, 제 1 구획과, 제 2 구획을 형성하도록 상기 작업 영역을 복수의 구획으로 분할한다. 상기 제 1 구획에 포함되는 상기 주행로의 수는 상기 소정값과 동일하다. 상기 제 2 구획에 포함되는 상기 주행로의 수는 상기 소정값보다 크다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, the area dividing unit divides the work area into a plurality of divisions to form a first division and a second division when the number of the travel paths included in the work area is not an integer multiple of the predetermined value. The number of the travel paths included in the first section is equal to the predetermined value. The number of the travel paths included in the second section is greater than the predetermined value.
이로써, 포함되는 주행로의 수가 소정값에 미치지 않는 구획이 생기지 않게 되므로, 스킵 주행을 수반하는 주행 경로를 용이하게 생성할 수 있다.As a result, since the number of included travel paths does not reach a predetermined value, it is possible to easily generate a travel path accompanying skip travel.
본 개시의 제 2 관점에 의하면, 이하의 구성의 자율 주행 경로 생성 시스템이 제공된다. 즉, 이 자율 주행 경로 생성 시스템은, 주행 방향 설정부와, 장애물 외주 설정부를 구비한다. 상기 주행 방향 설정부는, 상기 주행 영역 내에 있어서의 상기 작업 차량의 주행 방향을 설정한다. 상기 장애물 외주 설정부는, 상기 주행 영역 내의 장애물에 대해 장애물 외주 영역을 설정한다. 상기 경로 생성부는, 상기 주행 영역 내에 있어서 상기 주행 방향 설정부에 의해 설정된 상기 주행 방향을 따라 형성된 복수의 상기 주행로를 포함하는 상기 주행 경로를 생성 가능하다. 상기 경로 생성부는, 제 1 주행로와, 우회로와, 제 2 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능하다. 상기 제 1 주행로는, 상기 주행 방향을 따라 배치된다. 상기 우회로는, 상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물의 반대측으로 돌아, 당해 장애물을 관통하도록 상기 제 1 주행로를 연장한 가상 연장선 상의 위치에 이른다. 상기 제 2 주행로는, 상기 우회로의 종점을 시점으로 하여, 상기 가상 연장선 상에 배치된다.According to the second aspect of the present disclosure, an autonomous travel route generation system having the following configuration is provided. That is, this autonomous travel path generation system includes a travel direction setting unit and an obstacle outer periphery setting unit. The travel direction setting unit sets a travel direction of the work vehicle in the travel area. The obstacle outer circumference setting unit sets an obstacle outer circumference area for an obstacle in the travel area. The route generator may generate the traveling route including a plurality of the traveling routes formed along the traveling direction set by the traveling direction setting unit in the traveling area. The path generator may generate the travel path to include a first travel path, a bypass, and a second travel path. The first travel path is disposed along the driving direction. The bypass, while passing through the outer peripheral area of the obstacle, returns to the opposite side of the obstacle, with the end point of the first travel path as a starting point, and reaches a position on a virtual extension line extending the first travel path so as to penetrate the obstacle. The second travel path is disposed on the virtual extension line with the end point of the bypass as a starting point.
이로써, 제 1 주행로와, 우회로와, 제 2 주행로를 포함하는 주행 경로가 생성된다. 따라서, 이 주행 경로를 따라 작업 차량을 자율 주행시킴으로써, 장애물을 우회하도록 작업 차량을 주행시키는 것이 가능하다. 또한, 우회로는 사전에 설정된 장애물 외주 영역을 통과하도록 배치되므로, 주행 경로 전체와의 관계 등을 고려하여 우회로를 계획적으로 생성함으로써, 작업 차량에 의한 작업을 원활하게 할 수 있다. 또, 우회로 이외의 부분에서는, 주행 경로를 주행 방향을 따른 경로로 할 수 있어, 자율 주행 경로 생성의 알고리즘을 심플하게 할 수 있다.Accordingly, a travel path including the first travel path, the bypass, and the second travel path is created. Therefore, by autonomously traveling the work vehicle along this travel path, it is possible to drive the work vehicle to bypass the obstacle. In addition, since the bypass is arranged to pass through a pre-set outer peripheral area of the obstacle, the bypass is intentionally generated in consideration of the relationship with the entire driving path, so that the work by the working vehicle can be smoothly performed. In addition, in portions other than the detour, the traveling route can be a route along the traveling direction, and the algorithm for generating the autonomous traveling route can be simplified.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 상기 경로 생성부는, 상기 우회로의 경로 길이가 소정 거리 미만인 경우에, 상기 제 1 주행로, 상기 우회로 및 상기 제 2 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능하다. 한편, 상기 경로 생성부는, 상기 우회로의 경로 길이가 소정 거리 이상인 경우에, 상기 제 1 주행로, 리턴로 및 제 3 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능하다. 상기 리턴로는, 상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물 앞에서 리턴한다. 상기 제 3 주행로는, 상기 리턴로의 종점을 시점으로 하여, 상기 제 1 주행로와 평행하게 배치된다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, when the path length of the bypass is less than a predetermined distance, the path generation unit may generate the travel path to include the first travel path, the bypass and the second travel path. Meanwhile, when the path length of the bypass is greater than or equal to a predetermined distance, the path generator may generate the travel path to include the first travel path, the return path, and the third travel path. The return path returns in front of the obstacle while passing through the outer peripheral area of the obstacle, using the end point of the first travel path as a starting point. The third travel path is disposed in parallel with the first travel path with the end point of the return path as a starting point.
이로써, 우회로의 경로 길이가 소정 거리 이상이 되는 경우에는, 장애물을 우회하는 경로 대신에, 장애물 앞에서 리턴하는 경로를 주행 경로로서 생성할 수 있다. 따라서, 주행 경로 중 작업에 기여하지 않는 부분이 과잉으로 길어져 버리는 것을 방지할 수 있다.Thereby, when the path length of the bypass becomes more than a predetermined distance, instead of a path bypassing the obstacle, a path returning in front of the obstacle can be generated as a travel path. Accordingly, it is possible to prevent the portion of the traveling route that does not contribute to the work from becoming excessively long.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 상기 경로 생성부는, 상기 작업 차량이 상기 장애물을 회피하기 위해 상기 주행 방향과 수직인 방향으로 이동해야 하는 거리인 회피 거리가 소정 거리 미만인 경우에, 상기 제 1 주행로, 상기 우회로 및 상기 제 2 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능하다. 한편, 상기 경로 생성부는, 상기 회피 거리가 소정 거리 이상인 경우에, 상기 제 1 주행로, 리턴로 및 제 3 주행로를 포함하도록 주행 경로를 생성하는 것이 가능하다. 상기 리턴로는, 상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물 앞에서 리턴한다. 상기 제 3 주행로는, 상기 리턴로의 종점을 시점으로 하여, 상기 제 1 주행로와 평행하게 배치된다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, when the avoidance distance, which is a distance that the working vehicle must move in a direction perpendicular to the driving direction to avoid the obstacle, is less than a predetermined distance, the first driving path, the bypass, and the first It is possible to create the travel path to include two driving paths. Meanwhile, when the avoidance distance is greater than or equal to a predetermined distance, the route generation unit may generate a travel path to include the first travel path, the return path, and the third travel path. The return path returns in front of the obstacle while passing through the outer peripheral area of the obstacle, using the end point of the first travel path as a starting point. The third travel path is disposed in parallel with the first travel path with the end point of the return path as a starting point.
이로써, 장애물을 우회하기 위해 주행 방향과 수직인 방향으로 이동해야 하는 회피 거리가 소정 거리 이상이 되는 경우에는, 장애물을 우회하는 경로 대신에, 장애물 앞에서 리턴하는 경로를 주행 경로로서 생성할 수 있다. 따라서, 주행 경로 중 작업에 기여하지 않는 부분이 과잉으로 길어져 버리는 것을 방지할 수 있다.Accordingly, when the avoidance distance to be moved in a direction perpendicular to the driving direction in order to bypass the obstacle is greater than or equal to a predetermined distance, a path returning in front of the obstacle may be generated as a travel path instead of a path bypassing the obstacle. Accordingly, it is possible to prevent the portion of the traveling route that does not contribute to the work from becoming excessively long.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 상기 경로 생성부는, 상기 우회로에 있어서의 선회 횟수 또는 선회 각도가 소정 미만인 경우에, 상기 제 1 주행로, 상기 우회로 및 상기 제 2 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능하다. 한편, 상기 경로 생성부는, 상기 우회로에 있어서의 상기 선회 횟수 또는 상기 선회 각도가 소정 이상인 경우에, 상기 제 1 주행로, 리턴로 및 제 3 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능하다. 상기 리턴로는, 상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물 앞에서 리턴한다. 상기 제 3 주행로는, 상기 리턴로의 종점을 시점으로 하여, 상기 제 1 주행로와 평행하게 배치된다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, when the number of turns or the turning angle in the detour is less than a predetermined value, the route generator may generate the traveling route to include the first traveling route, the detour and the second traveling route. On the other hand, the route generation unit may generate the travel path to include the first travel path, the return path and the third travel path when the number of turns or the turning angle in the bypass is greater than or equal to a predetermined value. . The return path returns in front of the obstacle while passing through the outer peripheral area of the obstacle, using the end point of the first travel path as a starting point. The third travel path is disposed in parallel with the first travel path with the end point of the return path as a starting point.
이로써, 장애물을 우회하기 위해서 필요한 선회 횟수 또는 선회 각도가 소정 이상인 경우에는, 장애물을 우회하는 경로 대신에, 장애물 앞에서 리턴하는 경로를 주행 경로로서 생성할 수 있다. 따라서, 선회 횟수 또는 선회 각도가 많은 주행 경로를 생성해 버리는 것을 방지할 수 있으므로, 작업을 원활하게 실시할 수 있다.Accordingly, when the number of turns required to bypass the obstacle or the turning angle is more than a predetermined value, instead of the path bypassing the obstacle, a path returning in front of the obstacle can be created as a travel path. Accordingly, it is possible to prevent generation of a travel path having a large number of turns or turning angles, so that the operation can be performed smoothly.
상기의 자율 주행 경로 생성 시스템에 있어서는, 상기 경로 생성부는, 상기 주행 영역에 있어서 상기 장애물이 도상 (島狀) 으로 배치되어 있는 경우, 상기 우회로를, 상기 제 1 주행로에 이를 때까지의 상기 주행 경로에서 보았을 때 먼 쪽에서부터 상기 장애물의 반대측으로 돌도록 생성하는 것이 바람직하다.In the autonomous driving route generation system, the route generating unit, when the obstacle is arranged in a road shape in the driving area, performs the detour circuit until the first driving route is reached. It is preferable to generate it so as to turn from the far side to the opposite side of the obstacle when viewed from the path.
이로써, 작업 차량을 주행 경로를 따라 주행시켜도, 장애물을 우회할 때, 제 1 주행로에 이를 때까지 작업 차량이 주행해 온 영역에 다시 들어가는 일이 없다. 따라서, 작업 차량에 실시하게 한 작업에 영향을 미치지 않게, 장애물을 회피하여 작업 차량을 주행시킬 수 있다.Thus, even if the work vehicle is driven along the travel path, when bypassing the obstacle, the work vehicle does not reenter the area in which the work vehicle has traveled until it reaches the first travel path. Accordingly, the work vehicle can be driven by avoiding the obstacles so as not to affect the work performed on the work vehicle.
본 개시의 제 3 관점에 의하면, 이하의 구성의 자율 주행 경로 생성 시스템이 제공된다. 즉, 이 자율 주행 경로 생성 시스템은, 경로 생성부와, 기억부와, 외부 환경 정보 취득부와, 보정 정보 산출부와, 보정 경로 생성부를 구비한다. 상기 경로 생성부는, 상기 주행 경로를 생성한다. 상기 기억부는, 상기 경로 생성부가 생성한 상기 주행 경로를 기억한다. 상기 외부 환경 정보 취득부는, 상기 작업 차량에 형성되고, 상기 주행 영역 내에 있어서의 외부 환경 정보를 취득한다. 상기 보정 정보 산출부는, 상기 외부 환경 정보 취득부가 취득한 상기 외부 환경 정보에 기초하여, 상기 주행 경로를 보정하기 위한 보정 정보를 산출한다. 상기 보정 경로 생성부는, 상기 보정 정보 산출부가 산출한 상기 보정 정보에 기초하여 상기 주행 경로를 보정한 보정 경로를 생성하고, 상기 기억부에 기억한다.According to the third aspect of the present disclosure, an autonomous travel route generation system having the following configuration is provided. That is, this autonomous travel route generation system includes a route generation unit, a storage unit, an external environment information acquisition unit, a correction information calculation unit, and a correction route generation unit. The route generator generates the travel route. The storage unit stores the travel route generated by the route generation unit. The external environment information acquisition unit is formed in the work vehicle and acquires external environment information in the travel area. The correction information calculation unit calculates correction information for correcting the travel route based on the external environment information acquired by the external environment information acquisition unit. The correction route generation unit generates a correction route in which the travel route is corrected based on the correction information calculated by the correction information calculation unit, and stores the correction route in the storage unit.
이로써, 작업 차량에 형성된 외부 환경 정보 취득부에서 취득된 외부 환경 정보에 기초하여 주행 경로가 보정된다. 따라서, 미리 생성된 주행 경로를 현재의 환경 등에 기초하여 보정할 수 있다. 또, 보정 경로를 기억부에 기억함으로써, 다음번 이후에 주행 경로를 보정하는 수고를 없앨 수 있다.Thereby, the travel route is corrected based on the external environment information acquired by the external environment information acquisition unit formed in the work vehicle. Accordingly, the driving route generated in advance can be corrected based on the current environment or the like. Moreover, by storing the correction route in the storage unit, the trouble of correcting the travel route after the next time can be eliminated.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 이 자율 주행 경로 생성 시스템은, 상기 작업 차량의 절대 위치를 산출하는 위치 정보 산출부를 구비한다. 상기 보정 정보 산출부는, 상기 외부 환경 정보에 의해 특정되는 특정 대상이 상기 작업 차량에 의한 작업을 저해하는 경우에, 상기 위치 정보 산출부가 산출한 상기 작업 차량의 위치와, 상기 특정 대상의 위치에 기초하여 상기 보정 정보를 산출한다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, this autonomous travel route generation system includes a position information calculation unit that calculates the absolute position of the work vehicle. The correction information calculation unit is based on the location of the work vehicle calculated by the location information calculation unit and the location of the specific target when a specific target specified by the external environment information inhibits the work by the work vehicle. Thus, the correction information is calculated.
이로써, 특정 대상이 작업 차량의 작업을 저해하는 경우에, 당해 특정 대상의 유무 또는 위치 어긋남 등을 검출하고, 당해 어긋남 등을 보정한 보정 경로를 생성할 수 있다.Thereby, when a specific object interferes with the work of the work vehicle, the presence or absence of the specific object or a position shift, etc. can be detected, and a correction path in which the shift or the like is corrected can be generated.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 이 자율 주행 경로 생성 시스템은, 상기 작업 차량의 절대 위치를 산출하는 위치 정보 산출부를 구비한다. 상기 보정 정보 산출부는, 상기 외부 환경 정보에 의해 특정되는 특정 대상의 위치가 상기 기억부에 미리 등록된 위치와 임계값 이상 상이한, 또는 당해 특정 대상이 상기 기억부에 등록되어 있지 않은 경우에, 상기 위치 정보 산출부가 산출한 상기 작업 차량의 위치와, 상기 특정 대상의 위치에 기초하여 상기 보정 정보를 산출한다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, this autonomous travel route generation system includes a position information calculation unit that calculates the absolute position of the work vehicle. When the position of the specific object specified by the external environment information is different from the position registered in advance in the storage unit by a threshold value or more, or when the specific object is not registered in the storage unit, the The correction information is calculated based on the location of the work vehicle calculated by the location information calculation unit and the location of the specific target.
이로써, 특정 대상의 위치가 어긋나 있거나, 등록되어 있지 않은 특정 대상이 존재했을 경우에, 주행 경로를 보정할 수 있다.Thereby, when the position of a specific object is shifted or a specific object that is not registered exists, the traveling route can be corrected.
본 개시의 제 4 관점에 의하면, 이하의 구성의 자율 주행 경로 생성 시스템이 제공된다. 즉, 미리 정해진 주행 영역에 있어서, 차체부와 상기 차체부에 장착되는 작업기를 구비하는 작업 차량을 자율 주행시키기 위한 주행 경로를 생성한다. 이 자율 주행 경로 생성 시스템은, 오프셋 설정부와, 경로 생성부를 구비한다. 상기 오프셋 설정부는, 상기 차체부의 기준점에 대한 상기 작업기의 기준점의 오프셋 방향 및 오프셋 거리를 설정 가능하다. 상기 경로 생성부는, 상기 작업기의 기준점에 기초하여 상기 주행 영역 내에 있어서의 상기 주행 경로를 생성 가능하다.According to a fourth aspect of the present disclosure, an autonomous travel route generation system having the following configuration is provided. That is, in a predetermined driving area, a travel path for autonomously driving a work vehicle including a body part and a work machine mounted on the body part is generated. This autonomous travel route generation system includes an offset setting unit and a route generation unit. The offset setting unit may set an offset direction and an offset distance of the reference point of the work machine with respect to the reference point of the vehicle body. The path generation unit may generate the travel path in the travel area based on a reference point of the work machine.
이로써, 작업기의 기준점이 지나는 경로와 차체부의 기준점이 지나는 경로를 어긋나게 한 주행 경로를 생성할 수 있다. 그 결과, 작업 차량의 자율 주행을, 예를 들어 포장단을 제초하면서 주행하는 경우 등, 여러 가지 작업 형태에 적용할 수 있다.As a result, it is possible to generate a travel path in which a path passing through the reference point of the work machine and a path passing through the reference point of the vehicle body part are shifted. As a result, autonomous driving of the work vehicle can be applied to various types of work, for example, when driving while weeding the pavement.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 상기 주행 영역은, 상기 작업기에 의해 작업이 실시되는 제 1 영역과, 상기 제 1 영역의 주위에 설정되는 제 2 영역을 포함한다. 상기 경로 생성부는, 상기 작업기의 기준점에 기초하여 상기 제 1 영역 내에 있어서의 상기 주행 경로를 생성하고, 상기 차체부의 기준점에 기초하여 상기 제 2 영역 내에 있어서의 상기 주행 경로를 생성한다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, the travel area includes a first area in which a work is performed by the work machine and a second area set around the first area. The path generation unit generates the travel path in the first area based on a reference point of the work machine, and generates the travel path in the second area based on the reference point of the vehicle body part.
이와 같이, 자율 주행 경로를 생성할 때의 위치의 기준을 작업 영역과 비작업 영역 사이에서 상이하게 함으로써, 작업 영역에 있어서 작업기를 주행 기체에 대해 좌우 방향으로 오프셋시켜 작업하는 경우에도, 작업 영역 및 비작업 영역의 양방에 있어서, 자율 주행 경로의 생성 처리를 단순화할 수 있다.In this way, by making the reference of the position at the time of generating the autonomous driving route different between the working area and the non-working area, even when working by offsetting the work machine in the left-right direction with respect to the traveling body in the working area, the working area and In both the non-working areas, it is possible to simplify the process of generating an autonomous travel route.
상기의 자율 주행 경로 생성 시스템에 있어서는, 이하의 구성으로 하는 것이 바람직하다. 즉, 이 자율 주행 경로 생성 시스템은, 상기 주행 영역에 있어서의 상기 작업 차량에 의한 작업의 개시 위치 및 종료 위치를 설정하는 개시 종료 위치 설정부를 구비한다. 상기 개시 종료 위치 설정부에 의해 상기 개시 위치 및 상기 종료 위치의 양방이 상기 주행 영역의 단부에 설정되었을 경우, 상기 경로 생성부는, 상기 주행 경로로서, 상기 주행 영역의 가장자리부와 가장자리부 사이에서 리턴을 반복하면서 상기 개시 위치로부터 상기 종료 위치를 향하는 리턴 주행 경로를 생성한다. 상기 개시 종료 위치 설정부에 의해 상기 개시 위치 및 상기 종료 위치의 일방이 상기 주행 영역의 단부에 설정되고, 타방이 상기 주행 영역의 중앙부에 설정되었을 경우, 상기 경로 생성부는, 상기 주행 경로로서, 상기 개시 위치로부터 상기 종료 위치를 향하는 소용돌이상의 주회 주행 경로를 생성한다.In the above autonomous travel route generation system, it is preferable to have the following configuration. That is, this autonomous travel route generation system includes a start end position setting unit that sets the start position and end position of the work by the work vehicle in the travel area. When both the start position and the end position are set at the end of the travel area by the start end position setting unit, the path generation unit returns between the edge and the edge of the travel area as the travel path. While repeating, a return travel path from the start position to the end position is generated. When one of the start position and the end position is set at the end of the travel area by the start end position setting unit, and the other is set at the center of the travel area, the route generation unit may be configured as the travel route, A swirling circumferential travel path from the start position to the end position is created.
이로써, 2 종류의 자율 주행 경로로부터 작업 내용 등에 따라 적절히 선택하여 생성할 수 있기 때문에, 작업 효율을 향상시킬 수 있다.In this way, it is possible to appropriately select and generate from the two types of autonomous travel routes according to the work content or the like, thereby improving work efficiency.
도 1 은, 포장에 있어서 생성된 자율 주행 경로를 따라 로봇 트랙터가 자율 주행·자율 작업을 실시하는 모습을 나타내는 개념도.
도 2 는, 본 개시의 제 1 실시형태에 관련된 자율 주행 경로 생성 시스템이 생성한 자율 주행 경로를 따라 주행하는 로봇 트랙터의 전체적인 구성을 나타내는 측면도.
도 3 은, 로봇 트랙터의 평면도.
도 4 는, 자율 주행 경로 생성 시스템의 주요한 구성이 구비되는 무선 통신 단말을 나타내는 도면.
도 5 는, 제 1 실시형태에 관련된 로봇 트랙터 및 무선 통신 단말의 전기계의 주요한 구성을 나타내는 블록도.
도 6 은, 무선 통신 단말에 표시되는 작업 차량 정보 입력 화면의 표시예를 나타내는 도면.
도 7 은, 무선 통신 단말에 표시되는 포장 정보 입력 화면의 표시예를 나타내는 도면.
도 8 은, 무선 통신 단말에 표시되는 작업 정보 입력 화면의 표시예를 나타내는 도면.
도 9 는, 자율 주행 경로를 생성할 때에 자율 주행 경로 생성부에서 실시되는 처리를 나타내는 플로우 차트.
도 10 은, 스킵 주행을 실시하는 자율 주행 경로를 생성하기 위해, 작업 영역에 복수의 작업 경로가 배치되는 모습을 나타내는 도면.
도 11 은, 스킵 주행을 실시하는 경우에 작업의 단위가 되는, 특정한 수의 작업 경로로 이루어지는 그룹을 나타내는 도면.
도 12 는, 작업 영역이 분할되어 복수의 구획이 생성되는 모습을 나타내는 도면.
도 13 은, 작업 영역이 분할되어, 작업 경로의 수가 특정한 수보다 큰 예외의 구획을 포함하는 복수의 구획이 생성되는 모습을 나타내는 도면.
도 14 는, 작업 경로의 작업 순서가 결정된 모습을 나타내는 도면.
도 15 는, 도 14 에서 결정된 작업 순서에 기초하여 자율 주행 경로가 생성되는 모습을 나타내는 도면.
도 16 은, 비작업 영역에 있어서 트랙터가 복수회의 선회를 실시하는 예를 나타내는 도면.
도 17 은, 비작업 영역에 있어서 트랙터가 복수회의 선회 및 방향 전환을 실시하는 예를 나타내는 도면.
도 18 은, 제 2 실시형태에 관련된 로봇 트랙터 및 무선 통신 단말의 전기계의 주요한 구성을 나타내는 블록도.
도 19 는, 무선 통신 단말에 표시되는 로봇 트랙터가 주행하는 포장에 관한 정보를 입력하기 위한 화면의 일례를 나타내는 도면.
도 20 은, 주행 경로를 생성할 때에 경로 생성부에서 실시되는 처리를 나타내는 플로우 차트.
도 21 은, 도 20 의 처리의 계속을 나타내는 플로우 차트.
도 22 는, 복수의 잠정 주행로를 나열한 잠정 주행 경로를 생성한 예를 나타내는 도면.
도 23 은, 1 개의 잠정 주행로에 관해 제 1 주행로를 생성하고 있는 모습을 나타내는 도면.
도 24 는, 1 개의 잠정 주행로에 관해, 우회로 및 제 2 주행로를 생성하고 있는 모습을 나타내는 도면.
도 25 는, 장애물을 우회함으로써 장애물을 회피하는 주행 경로를 생성한 예를 나타내는 도면.
도 26 은, 1 개의 제 1 주행로에 관해, 리턴로 및 제 3 주행로를 생성하고 있는 모습을 나타내는 도면.
도 27 은, 장애물 앞에서 리턴함으로써 장애물을 회피하는 주행 경로를 생성한 예를 나타내는 도면.
도 28 은, 제 3 실시형태에 있어서, 주행 경로를 생성할 때에 경로 생성부에서 실시되는 처리를 나타내는 플로우 차트.
도 29 는, 제 4 실시형태에 있어서, 주행 경로를 생성할 때에 경로 생성부에서 실시되는 처리를 나타내는 플로우 차트.
도 30 은, 장애물을 회피함으로써 무인 트랙터가 유인 트랙터에 접근할 우려가 있는 경우에, 무선 통신 단말의 디스플레이에 표시되는 경고 화면의 표시예를 나타내는 도면.
도 31 은, 장애물이 포장의 단부로부터 중앙을 향하여 돌출되도록 배치되어 있는 예를 나타내는 도면.
도 32 는, 오목상의 부분이 포장의 윤곽에 형성되어 있는 예를 나타내는 도면.
도 33 은, 꺾은선상의 1 개의 잠정 주행로에 관해, 우회로를 생성하고 있는 모습을 나타내는 도면.
도 34 는, 제 5 실시형태에 있어서, 주행 경로를 생성할 때에 경로 생성부에서 실시되는 처리를 간이적으로 나타내는 플로우 차트.
도 35 는, 본 개시의 제 6 실시형태에 관련된 로봇 트랙터 및 무선 통신 단말의 전기계의 주요한 구성을 나타내는 블록도.
도 36 은, 이랑을 검출하여 보정 경로를 생성하는 처리를 나타내는 플로우 차트.
도 37 은, 미리 기억부에 기억된 주행 경로를 나타내는 도면.
도 38 은, 이랑의 위치가 폭 방향으로 어긋나 있는 모습을 나타내는 도면.
도 39 는, 폭 방향으로 오프셋한 보정 경로를 나타내는 도면.
도 40 은, 이랑이 형성되는 방향이 어긋나 있는 모습을 나타내는 도면.
도 41 은, 각도를 보정한 보정 경로를 나타내는 도면.
도 42 는, 장애물을 검출하여 보정 경로를 생성하는 처리를 나타내는 플로우 차트.
도 43 은, 미등록된 장애물이 존재하는 모습을 나타내는 도면.
도 44 는, 미등록된 장애물 앞에서 리턴하는 보정 경로를 나타내는 도면.
도 45 는, 본 개시의 제 7 실시형태에 관련된 자율 주행 경로 생성 시스템이 생성한 자율 주행 경로를 따라 주행하는 로봇 트랙터의 전체적인 구성을 나타내는 측면도.
도 46 은, 로봇 트랙터의 평면도.
도 47 은, 로봇 트랙터의 전기계의 주요한 구성을 나타내는 블록도.
도 48 은, 자율 주행 경로 생성 시스템을 구비한 무선 통신 단말의 전기계의 주요한 구성을 나타내는 블록도.
도 49 는, 작업기를 주행 기체의 좌우 일측에 오프셋시켰을 경우에 있어서, 작업기의 기준점과 주행 기체의 기준점의 위치 관계를 나타내는 모식도.
도 50 은, 무선 통신 단말의 디스플레이에 있어서의 작업 차량 정보 입력 화면의 표시예를 나타내는 도면.
도 51 은, 무선 통신 단말의 디스플레이에 있어서의 포장 정보 입력 화면의 다른 표시예를 나타내는 도면.
도 52 는, 무선 통신 단말의 디스플레이에 있어서의 작업 정보 입력 화면의 표시예를 나타내는 도면.
도 53 은, 자율 주행 경로를 생성하는 처리를 나타내는 플로우 차트.
도 54 는, 리턴 주행 경로를 생성하기 위해, 작업 영역에 있어서의 작업기의 경로가 생성되는 모습을 나타낸 도면.
도 55 는, 작업 영역에 있어서의 주행 기체의 경로가 생성되는 모습을 나타낸 도면.
도 56 은, 비작업 영역에 있어서의 주행 기체의 경로가 생성되어, 리턴 주행 경로가 완성되는 모습을 나타내는 도면.
도 57 은, 주회 주행 경로가 생성되는 모습을 나타낸 도면.Brief Description of the Drawings [Fig. 1] Fig. 1 is a conceptual diagram showing a state in which a robot tractor performs autonomous driving/autonomous work along an autonomous driving route generated on a pavement.
Fig. 2 is a side view showing an overall configuration of a robot tractor traveling along an autonomous travel path generated by the autonomous travel path generation system according to the first embodiment of the present disclosure.
3 is a plan view of a robot tractor.
Fig. 4 is a diagram showing a wireless communication terminal equipped with a main configuration of an autonomous driving route generation system.
Fig. 5 is a block diagram showing a main configuration of an electric system of the robot tractor and wireless communication terminal according to the first embodiment.
6 is a diagram showing a display example of a work vehicle information input screen displayed on a wireless communication terminal.
7 is a diagram showing a display example of a packaging information input screen displayed on a wireless communication terminal.
Fig. 8 is a diagram showing a display example of a job information input screen displayed on a wireless communication terminal.
Fig. 9 is a flow chart showing processing performed by an autonomous travel path generation unit when generating an autonomous travel path.
Fig. 10 is a diagram showing a state in which a plurality of work paths are arranged in a work area in order to generate an autonomous travel path for skip running.
Fig. 11 is a diagram showing a group consisting of a specific number of work paths that become a unit of work when skip running is performed.
Fig. 12 is a diagram showing a state in which a work area is divided and a plurality of divisions are generated.
Fig. 13 is a diagram showing a state in which a work area is divided, and a plurality of divisions including exception divisions in which the number of work paths is larger than a specific number are generated.
14 is a diagram showing a state in which a work order of a work path is determined.
15 is a diagram illustrating a state in which an autonomous driving route is generated based on the work order determined in FIG. 14.
Fig. 16 is a diagram showing an example in which a tractor turns a plurality of times in a non-work area.
Fig. 17 is a diagram showing an example in which a tractor turns and turns a plurality of times in a non-work area.
Fig. 18 is a block diagram showing a main configuration of an electric system of a robot tractor and a wireless communication terminal according to a second embodiment.
Fig. 19 is a diagram showing an example of a screen for inputting information about a pavement on which the robot tractor travels displayed on a wireless communication terminal.
Fig. 20 is a flow chart showing processing performed by a route generation unit when generating a travel route.
Fig. 21 is a flow chart showing the continuation of the processing in Fig. 20;
Fig. 22 is a diagram showing an example of generating a provisional travel route in which a plurality of provisional travel routes are arranged.
Fig. 23 is a diagram showing a state in which a first travel path is generated with respect to one provisional travel path.
Fig. 24 is a diagram showing a state in which a bypass and a second travel path are generated with respect to one provisional travel path.
Fig. 25 is a diagram showing an example in which a travel path for avoiding an obstacle is generated by bypassing the obstacle.
Fig. 26 is a diagram showing a state in which a return path and a third travel path are generated for one first travel path.
Fig. 27 is a diagram showing an example in which a travel path for avoiding an obstacle is generated by returning in front of the obstacle.
Fig. 28 is a flow chart showing processing performed by a route generation unit when generating a travel route in the third embodiment.
Fig. 29 is a flow chart showing processing performed by a route generation unit when generating a travel route in the fourth embodiment.
Fig. 30 is a diagram showing a display example of a warning screen displayed on a display of a wireless communication terminal when there is a possibility that the unmanned tractor approaches the manned tractor by avoiding an obstacle.
Fig. 31 is a diagram showing an example in which an obstacle is disposed so as to protrude from the end of the pavement toward the center.
Fig. 32 is a diagram showing an example in which a concave portion is formed in an outline of a package.
Fig. 33 is a diagram showing a state in which a detour is generated with respect to one provisional travel path on a broken line.
Fig. 34 is a flow chart that simply shows a process performed by a route generation unit when generating a travel route in the fifth embodiment.
Fig. 35 is a block diagram showing a main configuration of an electric system of a robot tractor and a wireless communication terminal according to a sixth embodiment of the present disclosure.
36 is a flow chart showing a process of detecting a gyrus and generating a correction path.
Fig. 37 is a diagram showing a travel route previously stored in a storage unit.
Fig. 38 is a diagram showing a state in which the position of the gyrus is shifted in the width direction.
39 is a diagram showing a correction path offset in the width direction.
Fig. 40 is a diagram showing a state in which a direction in which a ridge is formed is shifted.
Fig. 41 is a diagram showing a correction path obtained by correcting an angle.
42 is a flow chart showing a process of detecting an obstacle and generating a correction path.
43 is a diagram showing a state in which an unregistered obstacle exists.
Fig. 44 is a diagram showing a correction path returned in front of an unregistered obstacle.
Fig. 45 is a side view showing an overall configuration of a robot tractor traveling along an autonomous traveling route generated by an autonomous traveling route generating system according to a seventh embodiment of the present disclosure.
46 is a plan view of a robot tractor.
47 is a block diagram showing the main configuration of the electric system of the robot tractor.
Fig. 48 is a block diagram showing the main configuration of an electric system of a wireless communication terminal equipped with an autonomous travel route generation system.
Fig. 49 is a schematic diagram showing a positional relationship between a reference point of the work machine and a reference point of the traveling body when the work machine is offset to the left and right sides of the traveling body.
Fig. 50 is a diagram showing a display example of a work vehicle information input screen on a display of a wireless communication terminal.
Fig. 51 is a diagram showing another example of display of a packaging information input screen on a display of a wireless communication terminal.
Fig. 52 is a diagram showing a display example of a job information input screen on a display of a wireless communication terminal.
Fig. 53 is a flow chart showing processing for generating an autonomous travel route.
Fig. 54 is a diagram showing a state in which a path of a work machine in a work area is generated in order to generate a return travel path.
Fig. 55 is a diagram showing a state in which a path of a traveling body is generated in a work area.
Fig. 56 is a diagram showing a state in which a path of a traveling body in a non-work area is generated and a return traveling path is completed.
57 is a diagram showing a state in which a circumferential travel route is generated.
다음으로, 도면을 참조하여 본 개시의 실시형태를 설명한다. 이하에서는, 도면의 각 도에 있어서 동일한 부분에는 동일한 부호를 부여하고, 중복되는 설명을 생략하는 경우가 있다. 또, 동일한 부호에 대응하는 부재 등의 명칭이, 간략적으로 바꾸어 말해지거나, 상위 개념 또는 하위 개념의 명칭으로 바꾸어 말해지거나 하는 경우가 있다. Next, embodiments of the present disclosure will be described with reference to the drawings. Hereinafter, the same reference numerals are assigned to the same parts in each of the drawings in the drawings, and overlapping descriptions may be omitted. In addition, the names of members or the like corresponding to the same reference numerals may be briefly referred to, or may be referred to as a name of an upper concept or a lower concept.
본 개시는, 미리 정해진 포장 내에서 1 대 또는 복수대의 작업 차량을 주행시켜, 포장 내에 있어서의 농작업의 전부 또는 일부를 실행시킬 때, 작업 차량을 자율 주행시키기 위한 주행 경로를 생성하는 자율 주행 경로 생성 시스템에 관한 것이다. 본 실시형태에서는 작업 차량으로서 트랙터를 예로 설명하지만, 작업 차량으로는, 트랙터 외에, 벼 이앙기, 콤바인, 토목·건축 작업 장치, 제설차 등, 승용형 작업기에 더하여, 보행형 작업기도 포함된다. 본 명세서에 있어서 자율 주행이란, 트랙터가 구비하는 주행에 관한 구성이 트랙터의 제어부 (ECU) 에 의해 제어되어, 미리 정해진 경로를 따라 트랙터가 주행하는 것을 의미하고, 자율 작업이란, 트랙터가 구비하는 작업에 관한 구성이 상기 제어부에 의해 제어되어, 미리 정해진 경로를 따라 트랙터가 작업을 실시하는 것을 의미한다. 이에 대해, 수동 주행·수동 작업이란, 트랙터가 구비하는 각 구성이 오퍼레이터에 의해 조작되어, 주행·작업이 실시되는 것을 의미한다.The present disclosure is an autonomous driving route for generating a travel path for autonomously driving the working vehicle when running one or a plurality of work vehicles in a predetermined pavement and performing all or part of agricultural work in the pavement It relates to the generation system. In the present embodiment, a tractor is described as an example as a work vehicle, but as the work vehicle, in addition to a tractor, a rice transplanter, a combine, a civil engineering/building work device, a snow plow, etc., in addition to a passenger type work machine, a walking type work machine is also included. In the present specification, autonomous driving means that a configuration related to driving provided by the tractor is controlled by the control unit (ECU) of the tractor, and the tractor travels along a predetermined route, and the autonomous operation is a job provided by the tractor. It means that the configuration related to is controlled by the control unit, so that the tractor performs work along a predetermined path. On the other hand, the manual travel/manual operation means that each component of the tractor is operated by an operator, and the travel/work is performed.
이하의 설명에서는, 자율 주행·자율 작업되는 트랙터를 「무인 (의) 트랙터」 또는 「로봇 트랙터」 라고 칭하는 경우가 있고, 수동 주행·수동 작업되는 트랙터를 「유인 (의) 트랙터」 라고 칭하는 경우가 있다. 포장 내에 있어서 농작업의 일부가 무인 트랙터에 의해 실행되는 경우, 나머지 농작업은 유인 트랙터에 의해 실행된다. 단일 포장에 있어서의 농작업을 무인 트랙터 및 유인 트랙터로 실행하는 것을, 농작업의 협조 작업, 추종 작업, 수반 작업 등이라고 칭하는 경우가 있다. 무인 트랙터와 유인 트랙터는, 서로 상이한 구성으로 할 수도 있고, 공통의 구성으로 할 수도 있다. 무인 트랙터와 유인 트랙터의 구성이 공통인 경우, 무인 트랙터이어도 오퍼레이터가 탑승 (승차) 하여 조작하는 것이 가능하고 (즉, 유인 트랙터로서 사용할 수 있고), 혹은 유인 트랙터이어도 오퍼레이터가 하차하여 자율 주행·자율 작업시키는 것이 가능하다 (즉, 무인 트랙터로서 사용할 수 있다). 또한, 농작업의 협조 작업으로는, 「단일 포장에 있어서의 농작업을 무인 차량 및 유인 차량으로 실행하는 것」 에 더하여, 「인접하는 포장 등의 상이한 포장에 있어서의 농작업을 동시기에 무인 차량 및 유인 차량으로 실행하는 것」 이 포함되어도 된다.In the following description, a tractor that operates autonomously and operates autonomously is sometimes referred to as an ``unmanned (unmanned) tractor'' or a ``robot tractor,'' and a tractor operated manually and operated manually is sometimes referred to as a ``manned (manned) tractor''. have. If part of the agricultural work in the field is performed by an unmanned tractor, the remaining agricultural work is performed by an manned tractor. Execution of agricultural work in a single field by an unmanned tractor or a manned tractor is sometimes referred to as a cooperative work, a follow-up work, and an accompanying work of farm work. The unmanned tractor and the manned tractor may have a configuration different from each other or may have a common configuration. If the configuration of the unmanned tractor and the manned tractor is common, the operator can ride (ride) and operate even if it is an unmanned tractor (that is, it can be used as a manned tractor), or even if it is a manned tractor, the operator will get off and drive autonomously. It is possible to work (ie it can be used as an unmanned tractor). In addition, as cooperative work for agricultural work, in addition to ``performing agricultural work in a single pavement by an unmanned vehicle and a manned vehicle'', ``agricultural work in different pavements such as adjacent pavements is performed simultaneously by an unmanned vehicle. And what is carried out with a manned vehicle” may be included.
<제 1 실시형태><First embodiment>
맨 처음에, 본 개시의 제 1 실시형태에 관련된 자율 주행 경로 생성 시스템 (99) 에 대해, 도 1 내지 도 17 까지를 참조하여 설명한다.First, an autonomous travel
도 1 은, 포장 (90) 에 있어서 생성된 자율 주행 경로 (93) 를 따라 로봇 트랙터 (1) 가 자율 주행·자율 작업을 실시하는 모습을 나타내는 개념도이다. 도 2 는, 본 개시의 제 1 실시형태에 관련된 자율 주행 경로 생성 시스템 (99) 이 생성한 자율 주행 경로 (93) 를 따라 주행하는 로봇 트랙터 (1) 의 전체적인 구성을 나타내는 측면도이다. 도 3 은, 로봇 트랙터 (1) 의 평면도이다. 도 4 는, 자율 주행 경로 생성 시스템 (99) 의 주요한 구성이 구비되는 무선 통신 단말 (46) 을 나타내는 도면이다. 도 5 는, 로봇 트랙터 (1) 및 무선 통신 단말 (46) 의 전기계의 주요한 구성을 나타내는 블록도이다.1 is a conceptual diagram showing a state in which the
본 실시형태에 관련된 자율 주행 경로 생성 시스템 (99) 은, 도 1 에 나타내는 바와 같이 포장 (90) 에 있어서 로봇 트랙터 (1) 가 자율 주행·자율 작업을 하기 위한 자율 주행 경로 (93) 를 생성하는 것으로서, 도 2 및 도 4 등에 나타내는 무선 통신 단말 (46) 에 구비되어 있다. 로봇 트랙터 (1) 는, 도 5 에 나타내는 바와 같이, 당해 로봇 트랙터 (1) 의 주행 및 작업을 제어하는 제어부 (4) 를 구비하고 있고, 상기 무선 통신 단말 (46) 은, 당해 제어부 (4) 와 무선 통신함으로써, 로봇 트랙터 (1) 에 대해 자율 주행·자율 작업에 관한 소정의 신호를 출력할 수 있다. 무선 통신 단말 (46) 이 제어부 (4) 에 출력하는 신호로는, 자율 주행·자율 작업의 경로에 관한 신호나 자율 주행·자율 작업의 개시 신호, 정지 신호, 종료 신호 등이 생각되지만, 이들에 한정되지 않는다.As shown in FIG. 1, the autonomous travel
맨 처음에, 로봇 트랙터 (이하, 간단히 「트랙터」 라고 칭하는 경우가 있다) (1) 에 대해, 주로 도 2 및 도 3 을 참조하여 설명한다.First, a robot tractor (hereinafter, it may be simply referred to as a "tractor") (1) will be mainly described with reference to FIGS. 2 and 3.
트랙터 (1) 는, 포장 (90) 을 자율 주행하는 것이 가능한 주행 기체 (차체부) (2) 를 구비한다. 주행 기체 (2) 에는, 도 2 및 도 3 에 나타내는 작업기 (3) 가 착탈 가능하게 장착되어 있다. 이 작업기 (3) 로는, 예를 들어, 경운기 (관리기), 플라우, 시비기, 예초기, 파종기 등의 여러 가지 작업기가 있고, 이들 중에서 필요에 따라 원하는 작업기 (3) 를 선택하여 주행 기체 (2) 에 장착할 수 있다. 주행 기체 (2) 는, 장착된 작업기 (3) 의 높이 및 자세를 변경 가능하게 구성되어 있다.The
트랙터 (1) 의 구성에 대해, 도 2 및 도 3 을 참조하여 설명한다. 트랙터 (1) 의 주행 기체 (2) 는, 도 2 에 나타내는 바와 같이, 그 전부 (前部) 가 좌우 1 쌍의 전륜 (7, 7) 으로 지지되고, 그 후부 (後部) 가 좌우 1 쌍의 후륜 (8, 8) 으로 지지되어 있다.The configuration of the
주행 기체 (2) 의 전부에는 보닛 (9) 이 배치되어 있다. 이 보닛 (9) 내에는 트랙터 (1) 의 구동원인 엔진 (10) 이나 연료 탱크 (도시 생략) 등이 수용되어 있다. 이 엔진 (10) 은, 예를 들어 디젤 엔진에 의해 구성할 수 있지만, 이것에 한정되는 것은 아니며, 예를 들어 가솔린 엔진에 의해 구성해도 된다. 또, 구동원으로서 엔진 (10) 에 더하여, 또는 대신하여 전기 모터를 채용해도 된다.The
보닛 (9) 의 후방에는, 오퍼레이터가 탑승하기 위한 캐빈 (11) 이 배치되어 있다. 이 캐빈 (11) 의 내부에는, 오퍼레이터가 조향 조작하기 위한 스티어링 핸들 (12) 과, 오퍼레이터가 착좌 가능한 좌석 (13) 과, 각종 조작을 실시하기 위한 여러 가지 조작 장치가 주로 형성되어 있다. 단, 작업 차량은, 캐빈 (11) 이 부착된 것에 한정되는 것은 아니며, 캐빈 (11) 을 구비하지 않는 것이어도 된다.At the rear of the
상기의 조작 장치로는, 도 3 에 나타내는 모니터 장치 (14), 스로틀 레버 (15), 주변속 레버 (27), 복수의 유압 조작 레버 (16), PTO 스위치 (17), PTO 변속 레버 (18), 부변속 레버 (19), 및 작업기 승강 스위치 (28) 등을 예로서 들 수 있다. 이들 조작 장치는, 좌석 (13) 의 근방, 또는 스티어링 핸들 (12) 의 근방에 배치되어 있다.As the operation device described above, a
모니터 장치 (14) 는, 트랙터 (1) 의 여러 가지 정보를 표시 가능하게 구성되어 있다. 스로틀 레버 (15) 는, 엔진 (10) 의 출력 회전수를 설정하기 위한 조작구이다. 주변속 레버 (27) 는, 트랙터 (1) 의 주행 속도를 무단계로 변경하기 위한 조작구이다. 유압 조작 레버 (16) 는, 도시 생략된 유압 외부 취출 밸브를 전환 조작하기 위한 조작구이다. PTO 스위치 (17) 는, 트랜스미션 (22) 의 후단으로부터 돌출된 도시 생략된 PTO 축 (동력 취출축) 에의 동력의 전달/차단을 전환 조작하기 위한 조작구이다. 즉, PTO 스위치 (17) 가 ON 상태일 때 PTO 축에 동력이 전달되어 PTO 축이 회전하여, 작업기 (3) 가 구동되는 한편, PTO 스위치 (17) 가 OFF 상태일 때 PTO 축으로의 동력이 차단되어 PTO 축이 회전하지 않고, 작업기 (3) 가 정지된다. PTO 변속 레버 (18) 는, 작업기 (3) 에 입력되는 동력의 변경 조작을 실시하는 것이고, 구체적으로는 PTO 축의 회전 속도의 변속 조작을 실시하기 위한 조작구이다. 부변속 레버 (19) 는, 트랜스미션 (22) 내의 주행 부변속 기어 기구의 변속비를 전환하기 위한 조작구이다. 작업기 승강 스위치 (28) 는, 주행 기체 (2) 에 장착된 작업기 (3) 의 높이를 소정 범위 내에서 승강 조작하기 위한 조작구이다.The
도 2 에 나타내는 바와 같이, 주행 기체 (2) 의 하부에는, 트랙터 (1) 의 섀시 (20) 가 형성되어 있다. 당해 섀시 (20) 는, 기체 프레임 (21), 트랜스미션 (22), 프런트 액슬 (23), 및 리어 액슬 (24) 등으로 구성되어 있다.As shown in FIG. 2, the
기체 프레임 (21) 은, 트랙터 (1) 의 전부에 있어서의 지지 부재로서, 직접, 또는 방진 부재 등을 개재하여 엔진 (10) 을 지지하고 있다. 트랜스미션 (22) 은, 엔진 (10) 으로부터의 동력을 변화시켜 프런트 액슬 (23) 및 리어 액슬 (24) 에 전달한다. 프런트 액슬 (23) 은, 트랜스미션 (22) 으로부터 입력된 동력을 전륜 (7) 에 전달하도록 구성되어 있다. 리어 액슬 (24) 은, 트랜스미션 (22) 으로부터 입력된 동력을 후륜 (8) 에 전달하도록 구성되어 있다.The
도 5 에 나타내는 바와 같이, 트랙터 (1) 는, 주행 기체 (2) 의 동작 (전진, 후진, 정지 및 선회 등) 및 작업기 (3) 의 동작 (승강, 구동 및 정지 등) 을 제어하기 위한 제어부 (4) 를 구비한다. 제어부 (4) 는, 도시되지 않은 CPU, ROM, RAM, I/O 등을 구비하여 구성되어 있고, CPU 는, 각종 프로그램 등을 ROM 으로부터 판독 출력하여 실행할 수 있다. 제어부 (4) 에는, 트랙터 (1) 가 구비하는 각 구성 (예를 들어, 엔진 (10) 등) 을 제어하기 위한 컨트롤러, 및 다른 무선 통신 기기와 무선 통신 가능한 무선 통신부 (40) 등이 각각 전기적으로 접속되어 있다.As shown in FIG. 5, the
상기의 컨트롤러로서, 트랙터 (1) 는 적어도, 엔진 컨트롤러 (61), 차속 컨트롤러 (62), 조향 컨트롤러 (63), 및 승강 컨트롤러 (64) 를 구비한다. 각각의 컨트롤러는, 제어부 (4) 로부터의 전기 신호에 따라, 트랙터 (1) 의 각 구성을 제어할 수 있다.As the controller described above, the
엔진 컨트롤러 (61) 는, 엔진 (10) 의 회전수를 제어하는 것이다. 구체적으로는, 엔진 (10) 에는, 당해 엔진 (10) 의 회전수를 변경시키는 도시 생략된 액추에이터를 구비한 거버너 장치 (41) 가 형성되어 있다. 엔진 컨트롤러 (61) 는, 거버너 장치 (41) 를 제어함으로써, 엔진 (10) 의 회전수를 제어할 수 있다.The
차속 컨트롤러 (62) 는, 트랙터 (1) 의 차속을 제어하는 것이다. 구체적으로는, 트랜스미션 (22) 에는, 예를 들어 가동 사판식의 유압식 무단 변속 장치인 변속 장치 (42) 가 형성되어 있다. 차속 컨트롤러 (62) 는, 변속 장치 (42) 의 사판의 각도를 도시 생략된 액추에이터에 의해 변경함으로써, 트랜스미션 (22) 의 변속비를 변경하여, 원하는 차속을 실현할 수 있다.The
조향 컨트롤러 (63) 는, 스티어링 핸들 (12) 의 회동 (回動) 각도를 제어하는 것이다. 구체적으로는, 스티어링 핸들 (12) 의 회전축 (스티어링 샤프트) 의 중도부에는, 조향 액추에이터 (43) 가 형성되어 있다. 이 구성에서, 미리 정해진 경로를 트랙터 (1) 가 (무인 트랙터로서) 주행하는 경우, 제어부 (4) 는, 당해 경로를 따라 트랙터 (1) 가 주행하도록 스티어링 핸들 (12) 의 적절한 회동 각도를 계산하고, 얻어진 회동 각도가 되도록 조향 컨트롤러 (63) 에 제어 신호를 출력한다. 조향 컨트롤러 (63) 는, 제어부 (4) 로부터 입력된 제어 신호에 기초하여 조향 액추에이터 (43) 를 구동시켜, 스티어링 핸들 (12) 의 회동 각도를 제어한다.The steering
승강 컨트롤러 (64) 는, 작업기 (3) 의 승강을 제어하는 것이다. 구체적으로는, 트랙터 (1) 는, 작업기 (3) 를 주행 기체 (2) 에 연결하고 있는 3 점 링크 기구의 근방에, 유압 실린더 등으로 이루어지는 승강 액추에이터 (44) 를 구비하고 있다. 이 구성에서, 승강 컨트롤러 (64) 는, 제어부 (4) 로부터 입력된 제어 신호에 기초하여 승강 액추에이터 (44) 를 구동시켜 작업기 (3) 를 적절히 승강 동작시킴으로써, 원하는 높이에서 작업기 (3) 에 의해 농작업을 실시할 수 있다. 이 제어에 의해, 작업기 (3) 를, 퇴피 높이 (농작업을 실시하지 않는 높이) 및 작업 높이 (농작업을 실시하는 높이) 등의 원하는 높이에서 지지할 수 있다.The
또한, 상기 서술한 엔진 컨트롤러 (61) 등의 복수의 컨트롤러는, 제어부 (4) 로부터 입력되는 신호에 기초하여 엔진 (10) 등의 각 부를 제어하고 있다. 따라서, 제어부 (4) 가 실질적으로 각 부를 제어하고 있는 것으로 파악할 수 있다.Further, a plurality of controllers, such as the
상기 서술한 바와 같은 제어부 (4) 를 구비하는 트랙터 (1) 는, 오퍼레이터가 캐빈 (11) 내에 탑승하여 각종 조작을 함으로써, 당해 제어부 (4) 에 의해 트랙터 (1) 의 각 부 (주행 기체 (2), 작업기 (3) 등) 를 제어하여, 포장 (90) 내를 주행하면서 농작업을 실시할 수 있도록 구성되어 있다. 또한, 본 실시형태의 트랙터 (1) 는, 오퍼레이터가 트랙터 (1) 에 탑승하지 않아도, 무선 통신 단말 (46) 에 의해 출력되는 소정의 제어 신호에 기초하여 자율 주행 및 자율 작업시키는 것이 가능하게 되어 있다.In the
구체적으로는, 도 5 등에 나타내는 바와 같이, 트랙터 (1) 는, 자율 주행·자율 작업을 가능하게 하기 위한 각종 구성을 구비하고 있다. 예를 들어, 트랙터 (1) 는, 측위 시스템에 기초하여 자신 (주행 기체 (2)) 의 위치 정보를 취득하기 위해서 필요한 측위용 안테나 (6) 등의 구성을 구비하고 있다. 이와 같은 구성에 의해, 트랙터 (1) 는, 측위 시스템에 기초하여 자신의 위치 정보를 취득하여, 포장 (90) 을 자율 주행하는 것이 가능하게 되어 있다.Specifically, as shown in Fig. 5 and the like, the
다음으로, 자율 주행을 가능하게 하기 위해 트랙터 (1) 가 구비하는 구성에 대해 상세하게 설명한다. 구체적으로는, 본 실시형태의 트랙터 (1) 는, 도 2 및 도 5 에 나타내는 바와 같이, 측위용 안테나 (6), 무선 통신용 안테나 (48), 및 기억부 (55) 등을 구비한다. 또, 이들에 더하여, 트랙터 (1) 에는, 주행 기체 (2) 의 자세 (롤각, 피치각, 요각) 를 특정하는 것이 가능한 관성 계측 유닛 (IMU) 이 구비되어 있어도 된다.Next, the structure of the
측위용 안테나 (6) 는, 예를 들어 위성 측위 시스템 (GNSS) 등의 측위 시스템을 구성하는 측위 위성으로부터의 신호를 수신하는 것이다. 도 2 에 나타내는 바와 같이, 측위용 안테나 (6) 는, 트랙터 (1) 의 캐빈 (11) 의 루프 (29) 의 상면에 배치되어 있다. 측위용 안테나 (6) 에서 수신된 측위 신호는, 도 5 에 나타내는 위치 정보 산출부 (49) 에 입력된다. 위치 정보 산출부 (49) 는, 트랙터 (1) 의 주행 기체 (2) (엄밀하게는, 측위용 안테나 (6)) 의 위치 정보를, 예를 들어 위도·경도 정보로서 산출한다. 당해 위치 정보 산출부 (49) 에서 검출된 위치 정보는, 제어부 (4) 에 입력되어, 자율 주행에 이용된다.The
또한, 본 실시형태에서는 GNSS-RTK 법을 이용한 고정밀도의 위성 측위 시스템이 사용되고 있지만, 이것에 한정되는 것은 아니며, 고정밀도의 위치 좌표가 얻어지는 한 다른 측위 시스템을 사용해도 된다. 예를 들어, 상대 측위 방식 (DGPS), 또는 정지 위성형 위성 항법 보강 시스템 (SBAS) 을 사용하는 것을 생각할 수 있다.In addition, although the high-precision satellite positioning system using the GNSS-RTK method is used in this embodiment, it is not limited to this, and other positioning systems may be used as long as high-precision position coordinates are obtained. For example, it is conceivable to use a relative positioning scheme (DGPS), or a geostationary satellite navigation enhancement system (SBAS).
무선 통신용 안테나 (48) 는, 오퍼레이터가 조작하는 무선 통신 단말 (46) 로부터의 신호를 수신하거나, 무선 통신 단말 (46) 에의 신호를 송신하거나 하는 것이다. 도 1 에 나타내는 바와 같이, 무선 통신용 안테나 (48) 는, 트랙터 (1) 의 캐빈 (11) 이 구비하는 루프 (29) 의 상면에 배치되어 있다. 무선 통신용 안테나 (48) 에서 수신한 무선 통신 단말 (46) 로부터의 신호는, 도 5 에 나타내는 무선 통신부 (40) 에서 신호 처리된 후, 제어부 (4) 에 입력된다. 또, 제어부 (4) 등으로부터 무선 통신 단말 (46) 에 송신하는 신호는, 무선 통신부 (40) 에서 신호 처리된 후, 무선 통신용 안테나 (48) 로부터 송신되고 무선 통신 단말 (46) 에서 수신된다.The
기억부 (55) 는, 트랙터 (1) 를 자율 주행시키는 경로인 주행 경로 (패스) 를 기억하거나, 주행 중의 트랙터 (1) (엄밀하게는, 측위용 안테나 (6)) 의 위치의 추이 (주행 궤적) 를 기억하거나 할 수 있다. 그 외에도, 기억부 (55) 는, 트랙터 (1) 를 자율 주행·자율 작업시키기 위해서 필요한 여러 가지 정보를 기억하고 있다. 기억부 (55) 는, 예를 들어, 플래시 메모리 (플래시 디스크 및 메모리 카드 등), 하드 디스크, 또는 광 디스크 등의 불휘발성 메모리이다.The
무선 통신 단말 (46) 은, 도 2 및 도 4 에 나타내는 바와 같이, 태블릿형의 퍼스널 컴퓨터로서 구성되어 있다. 오퍼레이터는, 무선 통신 단말 (46) 의 디스플레이 (37) 에 표시된 정보를 참조하여 확인할 수 있다. 또, 오퍼레이터는, 디스플레이 (37) 의 근방에 배치된 하드웨어 키 (38), 및 디스플레이 (37) 를 덮도록 배치된 도시되지 않은 터치 패널 등을 조작하여, 트랙터 (1) 의 제어부 (4) 에, 트랙터 (1) 를 제어하기 위한 제어 신호 (예를 들어, 긴급 정지 신호 등) 를 송신할 수 있다. 또한, 무선 통신 단말 (46) 은 태블릿형의 퍼스널 컴퓨터에 한정되는 것은 아니며, 이것 대신에, 예를 들어 노트형의 퍼스널 컴퓨터로 구성하는 것도 가능하다. 혹은, 전술한 협조 작업을 실시하기 위해 유인의 트랙터를 무인의 트랙터 (1) 에 부수하여 주행시키는 경우, 유인측의 트랙터에 탑재되는 모니터 장치를 무선 통신 단말로 할 수도 있다.The
이와 같이 구성된 트랙터 (1) 는, 무선 통신 단말 (46) 을 사용하는 오퍼레이터의 지시에 기초하여, 포장 상의 경로를 따라 자율적으로 주행하면서, 작업기 (3) 에 의한 농작업을 실시할 수 있다.The
구체적으로는, 오퍼레이터는, 무선 통신 단말 (46) 을 사용하여 각종 설정을 실시함으로써, 도 1 등에 나타내는 자율 주행 경로 (93) 를 형성할 수 있다. 이 자율 주행 경로 (93) 는, 농작업을 실시하는 직선상 또는 꺾은선상의 작업 경로 (93A) 와, 당해 작업 경로 (93A) 의 단끼리를 연결하는 원호상의 비작업 경로 (93B) 를 교대로 연결한 일련의 경로로서 구성된다. 그리고, 무선 통신 단말 (46) 측에서 상기와 같이 생성된 자율 주행 경로 (93) 의 정보를, 트랙터 (1) 의 제어부 (4) 에 전기적으로 접속된 기억부 (55) 에 입력 (전송) 하여 소정의 조작을 함으로써, 당해 제어부 (4) 에 의해 트랙터 (1) 를 제어하여, 자율 주행 경로 (93) 를 따라 당해 트랙터 (1) 에 자율 주행·자율 작업을 실시하게 할 수 있다.Specifically, the operator can form the
이하에서는, 주로 도 5 를 참조하여, 자율 주행 경로 생성 시스템 (99) 을 구비하는 무선 통신 단말 (46) 의 구성에 대해 보다 상세하게 설명한다.In the following, the configuration of the
도 5 에 나타내는 바와 같이, 무선 통신 단말 (46) 은, 제어부 (71) 와, 디스플레이 (표시부) (37) 와, 통신부 (72) 와, 작업 차량 정보 설정부 (51) 와, 포장 정보 설정부 (52) 와, 작업 정보 설정부 (53) 와, 작업 영역 분할부 (영역 분할부) (54) 와, 자율 주행 경로 생성부 (경로 생성부) (47) 를 구비한다.As shown in FIG. 5, the
구체적으로는, 무선 통신 단말 (46) 의 제어부 (71) 는, 트랙터 (1) 의 제어부 (4) 와 동일하게, 도시되지 않은 CPU, ROM, RAM, I/O 등을 구비한 컴퓨터로서 구성되어 있고, CPU 는, 각종 프로그램 등을 ROM 으로부터 판독 출력하여 실행할 수 있다. 또, 상기 ROM 에는, 트랙터 (1) 에 자율 주행·자율 작업을 실시하게 하기 위한 적절한 프로그램이 기억되어 있다. 그리고, 상기한 소프트웨어와 하드웨어의 협동에 의해, 무선 통신 단말 (46) 을, 통신부 (72), 작업 차량 정보 설정부 (51), 포장 정보 설정부 (52), 작업 정보 설정부 (53), 작업 영역 분할부 (54), 및 자율 주행 경로 생성부 (47) 등으로서 동작시킬 수 있다.Specifically, the
통신부 (72) 는, 트랙터 (1) 측과의 사이에서 통신을 실시하기 위한 것이다. 무선 통신 단말 (46) 의 제어부 (71) 는, 통신부 (72) 에 의해 트랙터 (1) 의 제어부 (4) 와 통신함으로써, 자율 주행 경로 생성부 (47) 가 생성한 자율 주행 경로 (93) 의 정보를 트랙터 (1) 측에 송신할 수 있다. 또, 무선 통신 단말 (46) 의 제어부 (71) 는, 통신부 (72) 를 사용하여 제어 신호를 트랙터 (1) 측에 송신함으로써, 트랙터 (1) 에 대해 자율 주행의 개시 및 정지 등을 지시할 수 있다. 또, 트랙터 (1) 가 자율 주행하고 있는 경우, 무선 통신 단말 (46) 의 제어부 (71) 는, 당해 트랙터 (1) 의 상태 (위치, 주행 속도 등) 를 트랙터 (1) 측으로부터 수신하여 디스플레이 (37) 에 표시할 수 있다.The
작업 차량 정보 설정부 (51) 는, 트랙터 (1) 에 관한 정보 (이하, 작업 차량 정보라고 부르는 경우가 있다) 를 설정하기 위한 것이다. 작업 차량 정보 설정부 (51) 는, 트랙터 (1) 의 기종, 트랙터 (1) 의 크기, 트랙터 (1) 에 있어서 측위용 안테나 (6) 가 장착되어 있는 위치, 작업기 (3) 의 종류, 작업기 (3) 의 사이즈 및 형상, 작업기 (3) 의 위치 등에 대해, 오퍼레이터가 무선 통신 단말 (46) 을 적절히 조작함으로써 지정한 내용을 기억할 수 있다.The work vehicle
포장 정보 설정부 (52) 는, 포장 (90) 에 관한 정보 (이하, 포장 정보라고 부르는 경우가 있다) 를 설정하기 위한 것이다. 포장 정보 설정부 (52) 는, 포장 (90) 의 위치 및 형상, 자율 주행시키고자 하는 개시 위치 및 종료 위치, 작업 영역, 작업 방향 등에 대해, 오퍼레이터가 무선 통신 단말 (46) 을 조작함으로써 지정한 내용을 기억할 수 있다. 또한, 작업 방향이란, 도 1 에 나타내는 바와 같이, 포장 (90) 에서 (침지나 비경작지 등의) 비작업 영역 (92) 을 제외한 영역인 작업 영역 (91) 에 있어서, 작업기 (3) 로 작업을 실시하면서 트랙터 (1) 를 주행시키는 방향을 의미한다.The packaging
포장 (90) 의 위치 및 형상의 정보는, 예를 들어 오퍼레이터가 트랙터 (1) 에 탑승하여 포장의 외주를 따라 1 바퀴 주회하도록 운전하고, 그 때의 측위용 안테나 (6) 의 위치 정보의 추이를 기록함으로써, 자동적으로 취득할 수 있다. 단, 포장 (90) 의 위치 및 형상은, 디스플레이 (37) 에 지도를 표시시킨 상태에서 오퍼레이터가 무선 통신 단말 (46) 을 조작하여 당해 지도 상의 복수의 점을 지정함으로써 얻어진 다각형에 기초하여 취득할 수도 있다.Information on the position and shape of the
작업 정보 설정부 (53) 는, 작업을 구체적으로 어떻게 실시할지에 관한 정보 (이하, 작업 정보라고 부르는 경우가 있다) 를 설정하기 위한 것이다. 작업 정보 설정부 (53) 는, 작업 정보로서, 로봇 트랙터 (1) 와 유인의 트랙터의 협조 작업의 유무, 트랙터 (1) 가 침지에 있어서 선회하는 경우에 스킵하는 작업 경로 (93A) 의 수인 스킵수 (기준값), 침지의 폭, 및 비경작지의 폭 등을 설정 가능하게 구성되어 있다.The job
작업 영역 분할부 (54) 는, 스킵 주행을 수반하는 자율 주행 경로 (93) 가 자율 주행 경로 생성부 (47) 에 있어서 생성될 때, 도 12 등에 나타내는 바와 같이, 작업 영역 (91) 을 복수의 구획 (S) 으로 분할하기 위한 것이다. 이 분할에 의해 생성된 구획 (S) 이 스킵 주행을 실시하는 작업의 단위가 된다. 또한, 작업 영역 (91) 의 분할의 상세한 것에 대해서는 후술한다.When the
도 5 에 나타내는 자율 주행 경로 생성부 (47) 는, 트랙터 (1) 를 자율 주행시키는 경로인 자율 주행 경로 (93) 를 생성하기 위한 것이다. 자율 주행 경로 생성부 (47) 는, 작업 차량 정보 설정부 (51), 포장 정보 설정부 (52), 및 작업 정보 설정부 (53) 에서 설정된 정보에 기초하여, 트랙터 (1) 의 자율 주행 경로 (93) 를 생성하여 기억할 수 있다.The autonomous travel
자율 주행 경로 (93) 는, 도 1 에 나타내는 바와 같이, 작업 영역 (91) 에 배치되는 작업 경로 (93A) 와, 비작업 영역 (92) 에 배치되는 비작업 경로 (93B) 에 의해 구성된다. 자율 주행 경로 생성부 (47) 가 자율 주행 경로 (93) 를 생성하는 과정에서는, 작업기 (3) 의 작업폭, 작업 영역 (91) 에 있어서 서로 인접하는 작업 경로 (93A) 사이에서 작업기 (3) 의 작업폭끼리가 일부 중복되는 것의 가부 (가능한 경우에는, 중복폭의 상한값), 비작업 영역 (92) 의 크기 및 형상 (바꿔 말하면, 침지의 폭 및 비경작지의 폭), 트랙터 (1) 가 침지에서의 비작업 경로 (93B) 에 있어서 선회하는 경우에 스킵하는 작업 경로 (93A) 의 수 (스킵수) 등이 고려된다. 또, 무인 트랙터 (1) 와 유인 트랙터에서 협조 작업을 실시하는 경우에는, 자율 주행 경로 (93) 의 생성 과정에 있어서, 무인 트랙터 (1) 와 유인 트랙터의 위치 관계, 유인 트랙터의 작업기의 작업폭 등이 고려된다.As shown in FIG. 1, the
다음으로, 도 6 내지 도 8 까지를 참조하여, 자율 주행 경로 (93) 를 생성하기 위한 무선 통신 단말 (46) 에 있어서의 설정에 대해 설명한다. 도 6 은, 무선 통신 단말 (46) 에 표시되는 작업 차량 정보 입력 화면 (81) 의 표시예를 나타내는 도면이다. 도 7 은, 무선 통신 단말 (46) 에 표시되는 포장 정보 입력 화면 (82) 의 표시예를 나타내는 도면이다. 도 8 은, 무선 통신 단말 (46) 에 표시되는 작업 정보 입력 화면 (83) 의 표시예를 나타내는 도면이다.Next, with reference to Figs. 6 to 8, the setting in the
무선 통신 단말 (46) 에 있어서 오퍼레이터가 소정의 조작을 실시하면, 제어부 (71) 는, 도 6 에 나타내는 작업 차량 정보 입력 화면 (81) 을 디스플레이 (37) 에 표시하도록 제어한다.When the operator performs a predetermined operation in the
작업 차량 정보 입력 화면 (81) 에서는, 주행 기체 (2) 및 당해 주행 기체 (2) 에 장착되는 작업기 (3) 에 관한 정보 (상기 작업 차량 정보) 를 입력할 수 있다. 구체적으로는, 작업 차량 정보 입력 화면 (81) 에는, 트랙터 (1) 의 기종, 트랙터 (1) 의 크기, 측위용 안테나 (6) 의 주행 기체 (2) 에 대한 장착 위치, 작업기 (3) 의 종류, 작업기 (3) 의 작업폭 (W), 3 점 링크 기구의 후단 (로어 링크의 후단) 으로부터 작업기 (3) 의 후단까지의 거리 등을 입력하는 란이 각각 배치되어 있다.In the work vehicle
오퍼레이터는, 무선 통신 단말 (46) 을 조작하여, 작업 차량 정보 입력 화면 (81) 의 각 란에 배치되어 있는 텍스트 박스에 수치를 입력하거나 드롭 다운 박스의 일람에서 선택하거나 함으로써 설정을 실시한다. 이로써, 주행 기체 (2) 및 작업기 (3) 에 관한 각종 정보를 설정할 수 있다.The operator operates the
작업 차량 정보 입력 화면 (81) 에 있어서 오퍼레이터가 지정한 작업 차량 정보는, 작업 차량 정보 설정부 (51) 에 기억된다. 작업 차량 정보의 입력이 완료하면, 제어부 (71) 는, 도 7 에 나타내는 바와 같은 포장 정보 입력 화면 (82) 을 표시하도록 디스플레이 (37) 를 제어한다.The work vehicle information designated by the operator on the work vehicle
포장 정보 입력 화면 (82) 에서는, 주행 기체 (2) 가 주행하는 포장 (90) 에 관한 정보 (상기 포장 정보) 를 입력할 수 있다. 구체적으로는, 포장 정보 입력 화면 (82) 에는, 포장 (90) 의 위치 및 형상과, 자율 주행의 개시 위치 및 종료 위치를 도형으로 나타내는 평면 표시부 (88) 가 배치되어 있다. 또, 포장 정보 입력 화면 (82) 에는, 포장 (90) 의 외주, 자율 주행의 개시 위치, 자율 주행의 종료 위치, 및 작업 방향의 각각에 대해, 「지정」, 「리셋」 의 버튼이 배치되어 있다.In the pavement
또한, 포장 정보 입력 화면 (82) 등에 있어서의 버튼은, 모두 디스플레이 (37) 에 표시되는 가상적인 버튼으로서 구성되고, 당해 버튼의 표시 영역에 상당하는 터치 패널의 위치를 오퍼레이터가 손가락으로 접촉함으로써 조작할 수 있다.In addition, the buttons on the packaging
「포장 외주」 의 「지정」 버튼을 조작하면, 무선 통신 단말 (46) 이 포장 형상 기록 모드로 전환된다. 이 포장 형상 기록 모드에 있어서, 오퍼레이터가 트랙터 (1) 에 올라타서 운전하고, 포장 (90) 의 외주를 따라 1 바퀴 주회시키면, 그 때의 측위용 안테나 (6) 의 위치 정보의 추이에 기초하여, 포장 (90) 의 위치 및 형상이 취득 (산출) 된다. 이로써, 포장 (90) 의 위치 및 형상의 지정을 실시할 수 있다.When the "designation" button of the "outer packaging" is operated, the
무선 통신 단말 (46) 의 제어부 (71) 는, 얻어진 포장 (90) 의 위치 및 형상을, 도 7 에 나타내는 바와 같이, 포장 정보 입력 화면 (82) 의 평면 표시부 (88) 에 그래피컬하게 표시한다. 포장 (90) 의 위치 및 형상의 지정을 다시 하고자하는 경우에는, 지금까지 지정한 내용을 「리셋」 버튼의 조작에 의해 파기하고, 다시 「지정」 버튼을 조작하면 된다.The
또한, 상기와 같이 포장 (90) 에 있어서 트랙터 (1) 를 실제로 주행시킴으로써 포장 (90) 의 위치 및 형상을 지정하는 것 대신에, 예를 들어, 무선 통신 단말 (46) 의 디스플레이 (37) 에 지도를 표시시키고, 지도 상에 있어서 오퍼레이터가 복수의 점을 지정함으로써, 지정한 점끼리를 연결하는 선이 교차하지 않게 이른바 폐로 그래프에 의해 특정한 다각형의 위치 및 형상을 포장 (90) 의 위치 및 형상으로서 지정할 수도 있다.In addition, instead of specifying the position and shape of the
「작업 개시 위치」 의 「지정」 버튼을 조작하면, 도 7 에 나타내는 바와 같이, 지정된 포장 (90) 의 위치 및 형상이 평면 표시부 (88) 에 표시된 상태에서, 오퍼레이터는 적절한 점을 자율 주행의 개시 위치로서 지정할 수 있다. 지정된 개시 위치에는 개시 위치 마크 (C1) 가 표시된다. 또한, 「리셋」 버튼의 동작은 상기와 동일하다.When the ``designation'' button of the ``work start position'' is operated, as shown in Fig. 7, the position and shape of the designated
「작업 종료 위치」 의 「지정」 버튼을 조작하면, 「작업 개시 위치」 의 「지정」 버튼과 동일하게, 적절한 점을, 자율 주행의 종료 위치로서 지정할 수 있다. 지정된 종료 위치에는, 종료 위치 마크 (C2) 가 표시된다. 「리셋」 버튼의 동작은 상기와 동일하다.When the "designation" button of the "work end position" is operated, an appropriate point can be designated as the end position of autonomous driving, similarly to the "designation" button of the "work start position". At the designated end position, an end position mark C2 is displayed. The operation of the "reset" button is the same as above.
포장 정보 입력 화면 (82) 에 있어서 오퍼레이터가 지정한 포장 정보는, 포장 정보 설정부 (52) 에 기억된다. 포장 정보의 입력이 완료되면, 제어부 (71) 는, 도 8 에 나타내는 바와 같은 작업 정보 입력 화면 (83) 을 표시하도록 디스플레이 (37) 를 제어한다.The packaging information designated by the operator on the packaging
작업 정보 입력 화면 (83) 에서는, 구체적인 작업의 정보 (상기 작업 정보) 를 입력할 수 있다. 구체적으로는, 작업 정보 입력 화면 (83) 에는, 로봇 트랙터 (1) 와 유인의 트랙터의 협조 작업의 유무, 유인의 트랙터가 협조 작업하는 경우의 패턴, 유인의 트랙터가 협조 작업하는 경우의 당해 유인의 트랙터의 작업폭, 로봇 트랙터 (1) 의 스킵수, 인접하는 작업 경로 (93A) 에 있어서의 작업폭의 오버랩 허용량, 침지폭, 및 비경작지의 폭 등을 입력하는 란이 각각 형성되어 있다.On the job
「유인 트랙터의 협조 작업의 유무」 의 란에서는, 로봇 트랙터 (1) 를 단독으로 자율 주행시켜 농작업을 실시하거나 (유인 트랙터의 수반 없음), 또는 자율 주행하는 로봇 트랙터 (1) 와 유인의 트랙터 (오퍼레이터가 탑승하는 트랙터) 를 수반시킴으로써 농작업을 실시하거나 (유인 트랙터의 수반 있음) 중 어느 것을 선택하는 것이 가능하게 되어 있다.In the column of ``Presence or absence of cooperative work of a manned tractor'', the
「수반 있음」 의 경우, 「협조 작업 패턴」 의 란에서, 로봇 트랙터 (1) 에 대한 유인의 트랙터의 위치의 패턴을, 로봇 트랙터 (1) 의 바로 뒤, 좌측 경사 뒤, 우측 경사 뒤 중 어느 것에서 선택하는 것이 가능하게 되어 있다. 또, 「유인 트랙터의 작업폭」 의 란에서, 유인 트랙터의 작업폭 (작업기에 의해 작업이 실시되는 유효폭) 을 입력할 수 있다.In the case of "with accompanying", in the column of "Cooperative work pattern", the pattern of the position of the manned tractor with respect to the
「로봇 트랙터의 스킵수」 의 란에는, 드롭 다운 리스트 박스가 배치되어 있고, 드롭 다운 조작에 의해, 스킵수로서 설정 가능한 수치의 일람이 선택 가능하게 표시된다. 오퍼레이터는, 그 일람으로부터 1 개를 선택함으로써, 작업 경로 (93A) 를 몇 개 건너뛰고 농작업을 실시할지를 지정할 수 있다. 본 실시형태에 있어서는, 스킵수 (SN) 를 0, 1 또는 2 중 어느 것에서 선택함으로써 설정할 수 있다. 스킵 주행을 희망하지 않는 경우에는, 스킵수 (SN) 로서 제로를 선택하면 된다.A drop-down list box is arranged in the column of "Number of skips of robot tractor", and a list of values that can be set as the number of skips is displayed in a selectable manner by the drop-down operation. By selecting one from the list, the operator can specify how
「작업폭의 오버랩 허용량」 의 란에서는, 서로 인접하는 작업 경로 (93A) 사이에서 작업폭끼리가 일부 중복되어도 되는 경우, 그 중복폭의 상한값을 입력할 수 있다. 중복을 전혀 허용하지 않는 경우에는, 이 란에 제로를 입력하면 된다.In the column of the "work width overlap allowable amount", when the working widths may partially overlap between the working
「침지폭」 의 란에서는, 예를 들어, 무인의 트랙터 (1) 에 장착되는 작업기 (3) 의 사이즈 등에 기초하여 미리 산출되는 침지의 폭의 하한값과 동일하거나 그것보다 큰 값을 설정할 수 있다.In the column of "immersion width", a value equal to or greater than the lower limit of the immersion width calculated in advance based on the size of the
「비경작지의 폭」 의 란에서는, 자율 주행의 종료 후에 포장 (90) 의 외주를 따라 수동 주행으로 주회하면서 작업하는 것 등을 고려하면서, 적절한 값을 설정할 수 있다.In the column of "width of uncultivated land", it is possible to set an appropriate value while taking into account, for example, working while rotating by manual driving along the outer periphery of the
오퍼레이터가 작업 정보 입력 화면 (83) 의 입력란을 모두 입력하고 「자율 주행 경로를 생성」 버튼을 조작했을 경우, 자율 주행 경로 생성부 (47) 에 의해 자율 주행 경로 (93) 가 생성됨과 함께, 당해 자율 주행 경로 (93) 가 작업 영역 분할부 (54) 에 기억된다. 생성된 자율 주행 경로 (93) 는 확인을 위해 디스플레이 (37) 에 적절히 표시되고, 오퍼레이터가 도시 생략된 「확정」 버튼을 조작함으로써, 자율 주행 경로 (93) 를 확정시킬 수 있다.When the operator inputs all the input fields of the work
자율 주행 경로 (93) 의 확정 후에는, 제어부 (71) 는, 도시되지 않은 경로 데이터 전송 화면을 디스플레이 (37) 에 표시하도록 제어한다. 이 경로 데이터 전송 화면에서는, 오퍼레이터는, 자율 주행 경로 생성부 (47) 에 의해 생성한 자율 주행 경로 (93) 의 데이터를, 트랙터 (1) 측에 예를 들어 무선에 의해 전송하여, 트랙터 (1) 가 구비하는 기억부 (55) 에 기억시킬 수 있다.After the
자율 주행 경로 (93) 의 데이터가 트랙터 (1) 에 입력되면, 오퍼레이터가 무선 통신 단말 (46) 을 적절히 조작함으로써, 트랙터 (1) 에 자율 주행의 개시를 지시할 수 있다. 자율 주행의 개시가 지시되면, 트랙터 (1) 는, 무선 통신 단말 (46) 로부터 당해 트랙터 (1) 에 송신된 자율 주행 경로 (93) 에 따라 자율 주행하여, 자율 작업을 실시한다.When data of the
다음으로, 자율 주행 경로 (93) 를 생성할 때에 자율 주행 경로 생성부 (47) 에서 실시되는 구체적인 처리에 대해, 도 9 내지 도 15 까지를 참조하여 설명한다. 도 9 는, 자율 주행 경로 생성부 (47) 를 생성할 때에 자율 주행 경로 생성부 (47) 에서 실시되는 처리를 나타내는 플로우 차트이다. 도 10 은, 스킵 주행을 실시하는 자율 주행 경로 (93) 를 생성하기 위해, 작업 영역 (91) 에 복수의 작업 경로 (93A) 가 배치되는 모습을 나타내는 도면이다. 도 11 은, 스킵 주행을 실시하는 경우에 작업의 단위가 되는, 특정한 수의 작업 경로 (93A) 로 이루어지는 그룹을 나타내는 도면이다. 도 12 는, 작업 영역 (91) 이 분할되어 복수의 구획 (S) 이 생성되는 모습을 나타내는 도면이다. 도 13 은, 작업 영역 (91) 이 분할되어, 작업 경로 (93A) 의 수가 특정한 수보다 큰 예외의 구획 (SE) 을 포함하는 복수의 구획 (S, SE) 이 생성되는 모습을 나타내는 도면이다. 도 14 는, 작업 경로 (93A) 의 작업 순서가 결정된 모습을 나타내는 도면이다. 도 15 는, 도 14 에서 결정된 작업 순서에 기초하여 자율 주행 경로 (93) 가 생성되는 모습을 나타내는 도면이다.Next, specific processing performed by the autonomous driving
도 8 에 나타내는 작업 정보 입력 화면 (83) 에 있어서 「자율 주행 경로를 생성」 버튼이 조작되면, 최초로, 포장 정보 입력 화면 (82) 에 있어서 설정된 포장 (90) 의 형상과, 작업 정보 입력 화면 (83) 에 있어서 설정된 침지폭 및 비경작지의 폭에 기초하여, 작업 영역 (91) 및 비작업 영역 (92) 이 정해진다. 그 후에 도 9 의 처리가 개시되어, 자율 주행 경로 생성부 (47) 는, 작업 영역 (91) 내에 작업 경로 (93A) 를 서로 간격을 두고 배치한다 (스텝 S101). 각각의 작업 경로 (93A) 는, 도 7 의 포장 정보 입력 화면 (82) 에서 설정된 작업 방향을 따르도록 배치된다. 또, 작업 경로 (93A) 를 배치하는 간격은, 작업 영역 (91) 에 대한 작업기 (3) 의 작업 누락이 생기지 않도록, 또한 작업 효율이 양호해지도록, 당해 작업기 (3) 의 작업폭 (W) 등을 고려하여 결정된다. 또한, 작업 영역 (91) 에 있어서 배치되는 작업 경로 (93A) 의 열수 (개수) 는, 작업 영역 (91) 의 크기, 작업기 (3) 의 작업폭 (W), 및 오버랩 허용량에 기초하여 산출 가능하기 때문에, 본 스텝에 있어서는 작업 영역 (91) 에 작업 경로 (93A) 를 배치하는 일 없이, 배치되어야 할 작업 경로 (93A) 의 열수를 산출하여, 스텝 S102 로 진행되는 것으로 해도 된다.When the "Generate autonomous travel route" button is operated on the job
다음으로, 자율 주행 경로 생성부 (47) 는, 작업 정보 설정부 (53) 에서 설정된 (작업 정보 입력 화면 (83) 에서 입력된) 로봇 트랙터 (1) 의 스킵수 (SN) 의 정보를 취득하고, 스킵수 (SN) 가 1 이상인지의 여부를 판단한다 (스텝 S102).Next, the autonomous travel
스텝 S102 의 판단의 결과, 스킵수 (SN) 가 0 인 경우, 자율 주행 경로 생성부 (47) 는, 작업 경로 (93A) 가 나열되는 방향의 일측의 단으로부터 당해 작업 경로 (93A) 를 차례로 (건너뛰는 일 없이) 주행하여 타측의 단까지 도달하는 자율 주행 경로 (93) 를 생성하고 (스텝 S103), 처리를 종료한다. 이로써, 스킵 없음의 자율 주행 경로 (93) 가 생성된다.As a result of the determination in step S102, when the skip number SN is 0, the autonomous travel
스텝 S102 의 판단의 결과, 스킵수 (SN) 가 1 이상인 경우, 자율 주행 경로 생성부 (47) 는, 작업 영역 (91) 에 있어서의 작업 경로 (93A) 의 수 (작업 경로수 (TP)) 가, 기본 단위 경로수 (BP) 이상인지의 여부를 판단한다 (스텝 S104).As a result of the determination in step S102, when the number of skips SN is 1 or more, the autonomous travel
여기서, 기본 단위 경로수 (BP) 에 대해 설명한다. 즉, 본 실시형태의 로봇 트랙터 (1) 에 있어서의 스킵 주행은, 서로 인접하면서 나열되는 특정한 수의 작업 경로 (93A) 로 이루어지는 그룹을 단위로 하여 실시된다. 어느 그룹에 대해 스킵 주행이 일단 개시되면, 당해 그룹에 속하는 모든 작업 경로 (93A) 에 대해 작업이 완료될 때까지, 다른 그룹에 대해 스킵 주행이 실시되는 일은 없다.Here, the basic unit path number BP will be described. That is, the skip running in the
예를 들어 스킵수 (SN) 가 1 인 경우, 도 11(a) 에 나타내는 바와 같이, 서로 인접하면서 나열되는 5 개 (5 열) 의 작업 경로 (93A) 를 생각한다. 또한, 이하의 설명에서는, 각각의 작업 경로 (93A) 를, 자율 주행의 개시 위치에 가까운 측에서부터 A, B, C, D, E 와 같이 알파벳으로 부르는 경우가 있다. 이 그룹에 대해 스킵 주행을 실시하는 경우, 트랙터 (1) 는, A 를 주행한 후, 1 개 건너뛰고 C 를 주행하고, 다시 1 개 건너뛰고 E 를 주행한다. 그 후, 건너뛰는 방향을 일단 반전시키고, 또한 통상보다 많게 2 개 건너뛰고, B 를 주행한다. 그 후, 건너뛰는 방향을 다시 반전하고, D 를 주행한다. 이상과 같이, A, C, E, B, D 의 순서로 작업을 실시함으로써, 설정된 스킵수 (SN) (즉, 1) 에 대체로 따르면서, 5 개의 작업 경로 (93A) 에 대해 작업을 완료시킬 수 있다.For example, in the case where the skip number SN is 1, as shown in Fig. 11A, five (five rows)
또, 스킵수 (SN) 가 2 인 경우, 도 11(b) 에 나타내는 바와 같이, 서로 인접하면서 나열되는 7 개의 작업 경로 (93A) 를 생각한다. 또한, 이하의 설명에서는, 각각의 작업 경로 (93A) 를, 자율 주행의 개시 위치에 가까운 측에서부터 A, B, C, D, E, F, G 와 같이 알파벳으로 부르는 경우가 있다. 이 그룹에 대해 스킵 주행을 실시하는 경우, 트랙터 (1) 는, A 를 주행한 후, 2 개 건너뛰고 D 를 주행하고, 다시 2 개 건너뛰고 G 를 주행한다. 그 후, 건너뛰는 방향을 일단 반전시키고, 또한 설정수보다 많게 3 개 건너뛰고, C 를 주행한다. 계속해서, 건너뛰는 방향을 반전하여 F 를 주행한다. 그 후, 건너뛰는 방향을 반전시키고, 또한 설정수보다 많게 3 개 건너뛰고, B 를 주행한다. 계속해서, 건너뛰는 방향을 반전시키고, E 를 주행한다. 이상과 같이, A, D, G, C, F, B, E 의 순서로 작업을 실시함으로써, 설정된 스킵수 (SN) (즉, 2) 에 대체로 따르면서, 7 개의 작업 경로 (93A) 에 대해 작업을 완료시킬 수 있다.Moreover, when the skip number SN is 2, as shown in FIG. 11(b), consider seven
이상을 기초로 하여 설명하면, 기본 단위 경로수 (BP) 란, 스킵 주행에 의해 작업을 완료시키는 기본적인 단위 (그룹) 에 있어서의 작업 경로 (93A) 의 수를 의미한다. 스킵수 (SN) 가 1 인 경우에는, 기본 단위 경로수 (BP) 는 5 가 되고, 스킵수 (SN) 가 2 인 경우에는, 기본 단위 경로수 (BP) 는 7 이 된다. 일반화하면, 기본 단위 경로수 (BP) 는, 스킵수 (SN) 에 대해, 2(SN + 1) + 1 로 나타낸다.When described based on the above, the basic unit path number BP means the number of
따라서, 스텝 S104 는, 스텝 S101 에서 배치된 작업 경로 (93A) 의 수가, 상기의 그룹을 적어도 1 개 형성하는 데에 충분한지의 여부를 판단하는 것을 실질적으로 의미한다.Accordingly, step S104 substantially means determining whether or not the number of
스텝 S104 의 판단에서, 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 에 미치지 않는 경우, 상기의 그룹을 1 개도 형성할 수 없는 것을 의미한다. 따라서, 제어부 (71) 는, 설정된 스킵수 (SN) 에서의 자율 주행 경로 (93) 의 생성을 할 수 없다는 취지의 메시지를 디스플레이 (37) 에 표시시키도록 제어하고 (스텝 S105), 처리를 종료한다.In the determination of step S104, when the number of work paths TP is less than the number of basic unit paths BP, it means that none of the above groups can be formed. Accordingly, the
스텝 S104 의 판단에서, 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 이상인 경우, 자율 주행 경로 생성부 (47) 는, 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 의 정수배인지의 여부를 판단한다 (스텝 S106).In the determination of step S104, when the number of work paths TP is equal to or greater than the number of basic unit paths BP, the autonomous travel
스텝 S106 의 판단에서, 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 의 정수배인 경우, 자율 주행 경로 생성부 (47) 는, 작업 경로 (93A) 가 나열되는 방향으로 작업 영역 (91) 을 분할하여, 복수의 구획 (S) 을 생성한다 (스텝 S107). 이 분할은, 각각의 구획 (S) 에 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 와 동일해지도록 실시된다. 도 12 에는, 스킵수 (SN) 가 1 (기본 단위 경로수 (BP) 가 5) 인 경우에, 15 개의 작업 경로 (93A) 가 배치된 작업 영역 (91) 을 분할하여, 각각이 5 개의 작업 경로 (93A) 를 갖는 3 개의 구획 (S) 을 형성하는 예가 나타나 있다. 단, 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 와 동일한 경우에는, 분할할 필요가 없기 때문에, 작업 영역 (91) 의 전체에 1 개의 구획 (S) 이 생성된다.In the determination of step S106, when the number of work paths TP is an integer multiple of the number of basic unit paths BP, the autonomous travel
스텝 S106 의 판단에서, 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 의 정수배와 상이한 경우에도, 자율 주행 경로 생성부 (47) 는, 작업 경로 (93A) 가 나열되는 방향으로 작업 영역 (91) 을 분할하여, 복수의 구획 (S) 을 생성한다 (스텝 S108). 이 분할은, 각각의 구획 (S) 에 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 와 동일해지는 것을 원칙으로 하지만, 예외로서, 1 개의 구획 (SE) 만은, 당해 구획 (SE) 에 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 를 상회하도록 실시된다. 도 13 에는, 스킵수 (SN) 가 1 (기본 단위 경로수 (BP) 가 5) 인 경우에, 16 개의 작업 경로 (93A) 가 배치된 작업 영역 (91) 을 분할하여, 각각이 5 개의 작업 경로 (93A) 를 갖는 2 개의 구획 (제 1 구획) (S) 과, 6 개의 작업 경로 (93A) 를 갖는 1 개의 예외의 구획 (제 2 구획) (SE) 을 형성하는 예가 나타나 있다. 이 예외의 구획 (SE) 은, 작업 경로 (93A) 가 나열되는 방향의 단부, 다시 말하면, 자율 주행의 종료 위치에 가까운 측의 단부에 배치되는 것이 바람직하다. 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 의 2 배를 하회하는 경우에는, 분할할 필요가 없기 때문에, 작업 영역 (91) 의 전체에 1 개의 (예외의) 구획 (SE) 이 생성된다.In the determination of step S106, even when the number of work paths TP is different from an integer multiple of the number of basic unit paths BP, the autonomous travel
1 또는 복수의 구획 (S) 이 생성되면, 자율 주행 경로 생성부 (47) 는, 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 와 동일한 (원칙의) 구획 (S) 과, 기본 단위 경로수 (BP) 를 상회하는 (예외의) 구획 (SE) 의 양방에 대해, 작업 경로 (93A) 를 트랙터 (1) 가 소정의 작업 순서에 따라 주행하도록 자율 주행 경로 (93) 를 생성한다 (스텝 S109).When one or a plurality of divisions S are generated, the autonomous driving
상기의 작업 순서란, 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 와 동일한 (원칙의) 구획 (S) 에 대해서는, 스킵수 (SN) 가 1 인 경우에는 상기 서술한 A, C, E, B, D 의 순서를 의미하고, 스킵수 (SN) 가 2 인 경우에는 상기 서술한 A, D, G, C, F, B, E 의 순서를 의미한다. 또한, 도 14 에는, 스킵수 (SN) 가 1 이고 작업 영역 (91) 이 도 12 와 같이 분할되었을 경우에, 작업 경로 (93A) 의 작업 순서가 결정되는 모습이 나타나 있다. 도 14 에 있어서 각각의 작업 경로 (93A) 에 부여되어 있는 동그라미가 부여된 숫자는 결정된 작업 순서를 나타낸다.In the above-described work order, for the (in principle) division S where the number of
각각의 구획 (S) 에 배치되어 있는 작업 경로 (93A) 를 상기의 순서에 따라 주행하도록 자율 주행 경로 (93) 를 (도 15 에 나타내는 바와 같이) 생성함으로써, 당해 구획 (S) 을 단위로 하는 미세한 스킵 주행 패턴의 반복이 실현된다. 즉, 자율 주행 개시 위치에 가장 가까운 구획 (S) 에 대해 스킵 주행이 상기의 스킵 주행 패턴에 따라 실시되고, 당해 구획 (S) 의 작업이 완료되면, 그에 인접하는 구획 (S) 에 대해 스킵 주행이 상기의 스킵 주행 패턴에 따라 실시된다. 상기를 반복하면서 자율 주행·자율 작업을 실시함으로써, 작업이 도중에 중단되어도, 작업이 완료된 지점과 미작업의 지점이 교대로 나타나는 부분을 구획 (S) 내의 작은 범위로 남겨둘 수 있다.By generating the autonomous travel path 93 (as shown in Fig. 15) so as to travel the
또한, 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 를 상회하는 구획 (예외의 구획) (SE) 에 대해서는, 원칙의 구획 (S) 에서의 작업 순서와 유사한 작업 순서가 되는 것이 바람직하지만, 작업 경로 (93A) 를 스킵하는 수를 어느 정도 유연하게 생각하여, 적당한 작업 순서로 작업 경로 (93A) 를 주행하도록 자율 주행 경로 (93) 를 생성하면 된다.In addition, it is preferable that the number of
이상의 처리에 의해, 스킵 주행을 수반하는 작업에 적합한 자율 주행 경로 (93) 를 생성할 수 있다. 또한, 도 12 내지 도 15 까지는 스킵수 (SN) 가 1 인 경우가 나타나 있지만, 스킵수 (SN) 가 2 인 경우도, 도 11(b) 에 나타내는 바와 같이 기본 단위 경로수 (BP) 가 7 이 되는 점, 작업 순서가 A, D, G, C, F, B, E 가 되는 점을 제외하고, 상기와 완전히 동일하게 생성할 수 있다.By the above processing, it is possible to generate an
이상에서 설명한 바와 같이, 본 실시형태의 자율 주행 경로 생성 시스템 (99) 은, 미리 정해진 작업 영역 (91) 에 대해 작업을 실시하기 위해 트랙터 (1) 를 자율 주행시키는 자율 주행 경로 (93) 를 생성한다. 자율 주행 경로 생성 시스템 (99) 은, 작업 영역 분할부 (54) 와, 자율 주행 경로 생성부 (47) 를 구비한다. 작업 영역 분할부 (54) 는, 작업 영역 (91) 을 복수의 구획 (S) 으로 분할한다. 자율 주행 경로 생성부 (47) 는, 작업 영역 분할부 (54) 에 의해 분할된 각 구획 (S) 의 각각에 배치된 복수의 작업 경로 (93A) 를 포함하도록 자율 주행 경로 (93) 를 생성한다. 작업 영역 분할부 (54) 는, 각 구획 (S) 에 포함되는 작업 경로 (93A) 의 수가 서로 동일한 기본 단위 경로수 (BP) 가 되도록 작업 영역 (91) 을 분할할 수 있다.As described above, the autonomous travel
이로써, 스킵 주행에 의한 작업을 실시하는 경우에도, 분할된 작은 구획 (S) 을 단위로 하여, 작업 영역 (91) 의 단으로부터 차례로 작업해 갈 수 있다. 따라서, 작업이 도중에 중단되었을 경우에도, 작업 영역 (91) 에 있어서 작업이 완료된 지점과 미작업의 지점이 교대로 나타나는 부분을, 구획 (S) 내의 작은 범위로 억제할 수 있다. 따라서, 작업이 완료된 지점이 명확하게 되기 쉽고, 원활하게 작업의 재개를 실시할 수 있다. 또, 작업의 중단 전후에서 비 등에 의해 토양 환경이 변화했을 경우에도, 작업 품질이 상이한 부분이 광범위에 걸쳐 빗살상으로 생기는 것을 방지할 수 있다.Thereby, even in the case of performing the operation by skip running, it is possible to work sequentially from the end of the
또, 본 실시형태의 자율 주행 경로 생성 시스템 (99) 에 있어서, 자율 주행 경로 생성부 (47) 는, 복수의 작업 경로 (93A) 에 대해 스킵수 (SN) 에 기초하여 작업 순서를 설정한다. 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 와 동등한 구획 (S) 이 복수 있는 경우에, 자율 주행 경로 생성부 (47) 는, 도 14 에 나타내는 바와 같이, 당해 구획 (S) 사이에서 서로 대응하는 각각의 작업 경로 (93A) 에 대해 동일한 작업 순서를 설정한다.In addition, in the autonomous travel
이로써, 구획 (S) 을 단위로 하여 일정한 작업 순서를 작업 경로 (93A) 에 대해 설정할 수 있기 때문에, 규칙적인 스킵 주행을 실현할 수 있음과 함께, 자율 주행 경로 (93) 의 생성 처리를 간략화할 수 있다.Thereby, since it is possible to set a certain work sequence for the
또, 본 실시형태의 자율 주행 경로 생성 시스템 (99) 에 있어서, 작업 영역 분할부 (54) 는, 작업 영역 (91) 에 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 의 정수배가 아닌 경우에, 도 13 에 나타내는 바와 같이, 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 와 동일한 원칙의 구획 (S) 과, 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 보다 큰 예외의 구획 (SE) 을 형성하도록 작업 영역 (91) 을 복수의 구획 (S, SE) 으로 분할한다.In addition, in the autonomous travel
이로써, 포함되는 작업 경로 (93A) 의 수가 기본 단위 경로수 (BP) 에 미치지 않는 구획이 생기지 않게 되므로, 스킵 주행을 수반하는 자율 주행 경로 (93) 를 용이하게 생성할 수 있다.Thereby, since the number of the included
다음으로, 도 16 및 도 17 을 참조하여, 포장 (90) 및 작업 영역 (91) 의 형상에 의해, 트랙터 (1) 가 비작업 영역 (92) 에 있어서 복수회의 선회나 방향 전환 조작을 필요로 하는 예를 설명한다. 도 16 은, 비작업 영역 (92) 에 있어서 트랙터 (1) 가 복수회의 선회를 실시하는 예를 나타내는 도면이다. 도 17 은, 비작업 영역 (92) 에 있어서 트랙터 (1) 가 복수회의 선회 및 방향 전환을 실시하는 예를 나타내는 도면이다.Next, referring to FIGS. 16 and 17, depending on the shape of the
도 16 에 나타낸 포장 (90P) 에서는, 비작업 영역 (92) 에, L 자로가 연속되는 크랭크 형상의 부분이 존재하고 있다. 작업 순서가 결정된 작업 경로 (93A) 의 단점끼리를 연결하는 비작업 경로 (93B) 가 당해 부분을 통과하는 경우, 비작업 경로 (93B) 는, 비작업 영역 (92) 에 들어가도록 (즉, 트랙터 (1) 가 작업 영역 (91) 에 진입하는 일도, 포장 (90P) 의 외측으로 비어져 나오는 일도 없이), 소정의 마진을 전망하여 생성된다. 이 때, L 자로의 부분에 있어서는, 주행 기체 (2) 의 선회 반경 (R) 이 고려된다. 도 16 의 예에서는, 비작업 영역 (92) 이 크랭크상의 부분을 갖기 때문에, 도 15 에서 나타낸 포장 (90) 과 비교하여, 비작업 영역 (92) 에서의 선회가 2 회 여분으로 필요해지고 있다.In the
또, 도 16 과 동일한 포장 (90P) 이어도, 도 17 에 나타내는 바와 같이, 작업 경로 (93A) 로부터 비작업 경로 (93B) 로 들어간 직후에 크랭크 형상의 부분을 통과할 필요가 생기는 경우가 있다. 이 때, 비작업 경로 (93B) 에 들어간 직후에 L 자로에서의 선회를 실시했다고 해도, 주행 기체 (2) 또는 작업기 (3) 가 포장 (90P) 의 외측으로 비어져 나와 버린다. 이 경우에는, 도 17 에 나타내는 바와 같이, 비작업 경로 (93B) 는, L 자로의 부분의 선회에 더하여, 주행 기체 (2) 를 일단 전후시키는 방향 전환도 수반하는 경로로서 생성된다.Moreover, even if it is the
이와 같이, 비작업 영역 (92) 이 부정형인 경우, 자율 주행 경로 생성부 (47) 가 필요에 따라 선회나 방향 전환을 수반하도록 비작업 경로 (93B) 를 생성함으로써, 스킵 주행을 적절히 실시할 수 있다.In this way, when the
이상으로 본 발명의 바람직한 실시형태를 설명했지만, 상기의 구성은 예를 들어 이하와 같이 변경할 수 있다.Although the preferred embodiment of the present invention has been described above, the above configuration can be changed as follows, for example.
상기의 실시형태에 있어서는, 기본 단위 경로수 (BP) 가 스킵수 (SN) 에 대해 2(SN + 1) + 1 로 나타내는 수치로 했지만, 다른 수치로 변경해도 된다. 즉, 기본 단위 경로수 (BP) 는, M(SN + 1) + 1 (M 은 2 이상의 자연수) 로 나타낸다.In the above-described embodiment, although the basic unit path number BP is a numerical value represented by 2 (SN + 1) + 1 with respect to the skip number SN, it may be changed to another value. That is, the basic unit path number BP is represented by M(SN + 1) + 1 (M is a natural number of 2 or more).
상기의 실시형태에 있어서는, 스킵수 (SN) 는 1 또는 2 에서 선택할 수 있다고 했지만, 필요에 따라 3 이상의 수치를 선택할 수 있는 구성으로 해도 된다.In the above-described embodiment, it was said that the skip number SN can be selected from 1 or 2, but it may be a configuration in which a numerical value of 3 or more can be selected as necessary.
작업을 실시하는 작업 경로 (93A) 의 차례 (작업 순서) 는, 도 11 에서 나타낸 예에 한정되지 않고, 적절히 변경할 수도 있다.The order (operation sequence) of the
스텝 S102 의 판단의 결과, 스킵수 (SN) 가 0 인 경우, 자율 주행 경로 생성부 (47) 는, 작업 영역 (91) 을 분할하는 일 없이 자율 주행 경로 (93) 를 생성하는 것으로 했지만, 작업 영역 (91) 을 분할한 후에, 자율 주행 경로 (93) 를 생성하는 것으로 해도 된다.As a result of the determination in step S102, when the number of skips SN is 0, the autonomous travel
도 9 에 나타내는 스텝 S105 에 있어서, 메시지를 표시하는 대신에, 상기 서술한 발명이 해결하고자 하는 과제에서 서술한 (단순한 스킵 주행을 실시하는) 자율 주행 경로를 생성해도 된다. 혹은, 작업 경로수 (TP) 가 기본 단위 경로수 (BP) 에 미치지 않는 경우에는, 스킵수 (SN) 를 0 으로 변경하도록 재촉하고, 사용자가 스킵수 (SN) 를 0 으로 변경한 경우에는 스텝 S103 으로 진행되고, 사용자가 스킵수 (SN) 를 0 으로 변경하지 않았던 경우에 스텝 S105 로 진행되는 것으로 해도 된다.In step S105 shown in Fig. 9, instead of displaying a message, the autonomous travel route described in the problem to be solved by the above-described invention (simple skip driving) may be generated. Or, if the number of work paths (TP) does not reach the basic unit path number (BP), it is urged to change the number of skips (SN) to 0, and if the user changes the number of skips (SN) to 0, step It may proceed to S103, and may proceed to step S105 when the user has not changed the skip number SN to 0.
그런데, 도 14 및 도 15 에 나타내는 바와 같이 작업 영역 (91) 이 복수의 구획 (S) 으로 분할되거나, 혹은 복수의 구획 (S) 과 단일 구획 (SE) 으로 분할되는 경우, 트랙터 (1) 에 의해 자율 주행·자율 작업되는 구획에 대한 작업 순서는, 예를 들어, 개시 위치에 가까운 구획으로부터 순서대로 설정되고, 특정한 구획에 대해 작업이 완료되면, 그에 인접하는 구획에서 작업이 실시된다. 그러나 각 구획에 대한 작업 순서는, 이것에 한정되는 것은 아니며 임의의 차례가 설정 가능해도 된다.By the way, as shown in Figs. 14 and 15, when the working
상기의 실시형태에서는, 작업 정보 입력 화면 (83) 에서 설정된 침지폭 및 비경작지의 폭에 기초하여 비작업 영역 (92) 이 정해지고, 포장 (90) 에서 비작업 영역 (92) 을 제외한 나머지 영역으로서 작업 영역 (91) 이 정해져 있다. 그러나, 작업 영역 (91) 을 설정하는 방법은 상기에 한정되지 않고, 예를 들어, 상기 서술한 포장 정보 입력 화면 (82) 에 있어서 평면 표시부 (88) 에 표시된 포장 (90) 의 임의의 점을 오퍼레이터가 지정함으로써 작업 영역 (91) 및 비작업 영역 (92) 을 설정할 수 있도록 구성되어도 된다.In the above embodiment, the
상기의 실시형태에서는, 자율 주행 경로 생성 시스템 (99) 을 구성하는 작업 영역 분할부 (54) 및 자율 주행 경로 생성부 (47) 는, 무선 통신 단말 (46) 측에 구비되어 있다. 그러나, 작업 영역 분할부 (54) 및 자율 주행 경로 생성부 (47) 중 일부 또는 전부가 트랙터 (1) 측에 구비되어도 된다.In the above-described embodiment, the work
<제 2 실시형태><Second Embodiment>
다음으로, 본 개시의 제 2 실시형태에 관련된 자율 주행 경로 생성 시스템 (199) 에 대해, 주로 도 18 내지 도 34 까지를 참조하여 상세하게 설명한다. 도 18 은, 제 2 실시형태에 관련된 로봇 트랙터 (1) 및 무선 통신 단말 (46) 의 전기계의 주요한 구성을 나타내는 블록도이다. 이하에서는, 제 1 실시형태와 동일한 구성의 부재 및 스텝에는 동일한 부호를 부여하고, 설명을 적절히 생략하는 경우가 있다.Next, an autonomous travel
본 실시형태의 자율 주행 경로 생성 시스템 (199) 의 주된 구성은, 무선 통신 단말 (46) 에 구비된다. 본 실시형태의 무선 통신 단말 (46) 은, 상기 서술한 제어부 (71), 디스플레이 (표시부) (37), 및 통신부 (72) 외에, 추가로, 표시 제어부 (31), 기억부 (32), 포장 외주 설정부 (33), 장애물 외주 설정부 (34), 작업 영역 설정부 (주행 영역 설정부) (35), 개시 종료 위치 설정부 (151), 작업 방향 설정부 (주행 방향 설정부) (36), 및 자율 주행 경로 생성부 (147) 등을 구비한다. 또한, 포장 외주 설정부 (33), 장애물 외주 설정부 (34), 작업 영역 설정부 (주행 영역 설정부) (35), 개시 종료 위치 설정부 (151), 및 작업 방향 설정부 (주행 방향 설정부) (36) 를 합한 것은, 제 1 실시형태에 있어서의 포장 정보 설정부 (52) 에 대응하는 것이다. 또, 자율 주행 경로 생성부 (147) 는 제 1 실시형태에 있어서의 자율 주행 경로 생성부 (47) 에 대응하는 것이다.The main configuration of the autonomous travel
본 실시형태의 무선 통신 단말 (46) 도, 제 1 실시형태의 경우와 동일하게, 상기한 소프트웨어와 하드웨어의 협동에 의해, 표시 제어부 (31), 기억부 (32), 포장 외주 설정부 (33), 장애물 외주 설정부 (34), 작업 영역 설정부 (35), 개시 종료 위치 설정부 (151), 작업 방향 설정부 (36), 및 자율 주행 경로 생성부 (147) 등으로서 동작할 수 있다.The
표시 제어부 (31) 는, 디스플레이 (37) 에 표시하는 표시용 데이터를 작성하고, 표시 내용을 적절히 제어한다. 본 실시형태의 표시 제어부 (31) 는, 사용자에 의해 소정의 조작이 이루어졌을 때, 도 19 에 나타내는 포장 정보 입력 화면 (182) 을 디스플레이 (37) 에 표시시킨다. 도 19 는, 무선 통신 단말 (46) 에 표시되는, 트랙터 (1) 가 주행하는 포장에 관한 정보를 입력하기 위한 화면의 일례를 나타내는 도면이다.The display control unit 31 creates display data to be displayed on the
이 포장 정보 입력 화면 (182) 에서는, 트랙터 (1) 가 주행하는 포장에 관한 정보를 입력할 수 있다. 구체적으로는, 포장 정보 입력 화면 (182) 에는, 포장의 형상을 도형으로 (그래피컬하게) 나타내는 평면 표시부 (88) 가 배치되어 있다. 또, 포장 정보 입력 화면 (182) 에 있어서, 「포장 외주의 위치」 의 란 및 「장애물의 외주의 위치」 의 란에는, 「기록 개시」 및 「리셋」 의 버튼이 각각 배치되어 있다. 또, 포장 정보 입력 화면 (182) 에 있어서, 「작업 개시 위치·작업 종료 위치」, 「작업 방향」 의 각각의 란에는, 「지정」 및 「리셋」 의 버튼이 배치되어 있다.In this pavement
기억부 (32) 는, 사용자가 무선 통신 단말 (46) 의 터치 패널을 조작함으로써 입력한 포장에 관한 정보 등을 기억함과 함께, 생성된 주행 경로의 정보 등을 기억할 수 있다.The storage unit 32 can store information on the pavement input by the user by operating the touch panel of the
포장 외주 설정부 (33) 는, 트랙터 (1) 가 자율 주행을 실시하는 대상이 되는 포장의 외주의 위치를 설정하는 것이다. 구체적으로는, 사용자가 포장 정보 입력 화면 (182) 에 있어서 「포장 외주의 위치」 의 「기록 개시」 버튼을 조작하면, 무선 통신 단말 (46) 이 포장 외주 기록 모드로 전환된다. 이 포장 외주 기록 모드에 있어서, 트랙터 (1) 를 포장의 외주를 따라 1 바퀴 주회시키면, 그 때의 측위용 안테나 (6) 의 위치 정보의 추이가 포장 외주 설정부 (33) 에서 기록되고, 당해 포장 외주 설정부 (33) 에서 포장의 형상이 설정 (취득) 된다. 이로써 포장의 위치 및 형상을 설정할 수 있다. 또, 「리셋」 버튼을 조작함으로써, 포장 외주의 위치의 기록 (설정) 을 다시 실시할 수 있다.The pavement outer
장애물 외주 설정부 (34) 는, 트랙터 (1) 가 자율 주행을 실시하는 대상의 포장 내에 배치되는 장애물의 외주 영역을 설정하는 것이다. 구체적으로는, 사용자가 포장 정보 입력 화면 (182) 에 있어서 「장애물의 외주의 위치」 의 「기록 개시」 버튼을 조작하면, 무선 통신 단말 (46) 이 장애물 외주 기록 모드로 전환된다. 이 장애물 외주 기록 모드에 있어서, 트랙터 (1) 를 장애물의 외주 영역의 각부 (角部) 에 배치시키고 그 때의 측위용 안테나 (6) 의 위치 정보를 장애물 외주 설정부 (34) 에서 기록하면, 당해 장애물 외주 설정부 (34) 에서 장애물을 다각형 (예를 들어, 장방형) 으로 둘러싼 형상이 설정 (취득) 된다. 이 다각형은, 예를 들어, 각 각부를 연결하는 선분이 교차하지 않게 이른바 폐로 그래프에 의해 특정한 다각형으로서 산출할 수 있다. 이로써, 장애물의 외주 영역의 위치 및 형상을 설정할 수 있다. 또한, 장애물 외주 설정부 (34) 에서 설정되는 장애물의 외주 영역은, 장애물을 둘러싸는 중공상의 다각형의 영역이고, 그 내측 가장자리와 외측 가장자리 사이의 거리는, 트랙터 (1) (작업기 (3)) 의 차폭과 동일하거나 그것보다 약간 넓어져 있다.The obstacle outer
작업 영역 설정부 (35) 는, 트랙터 (1) 가 자율 주행을 실시하는 대상의 포장 내에 배치되는, 자율적으로 주행하면서 농작업을 실시하는 작업 영역 (주행 영역) 의 위치를 설정하는 것이다. 구체적으로 설명하면, 본 실시형태의 무선 통신 단말 (46) 에 있어서는, 포장 정보 입력 화면 (182) 과는 다른 입력 화면 (도시 생략) 에 있어서, 침지의 폭과, 비경작지의 폭을 설정 가능하게 구성되어 있다. 그리고, 침지 및 비경작지로 이루어지는 비작업 영역이, 상기의 설정 내용과, 포장 외주 설정부 (33) 에서 설정된 포장의 위치 및 형상에 기초하여 정해짐과 함께, 포장의 영역으로부터 비작업 영역을 제외한 영역이 작업 영역으로서 정해진다.The work
개시 종료 위치 설정부 (151) 는, 트랙터 (1) 가 자율 주행을 개시하는 지점인 개시 지점과, 자율 주행을 종료하는 지점인 종료 지점을 설정하는 것이다. 구체적으로는, 사용자가 포장 정보 입력 화면 (182) 에 있어서 「작업 개시 위치·작업 종료 위치」 의 「지정」 버튼을 조작하면, 평면 표시부 (88) 에, 포장 외주 설정부 (33) 에서 설정한 포장의 데이터가 지도 데이터에 중첩되어 표시된다. 이 상태에서, 사용자가 포장의 윤곽 근방의 임의의 점을 선택함으로써, 선택한 점의 위치 정보를 개시 지점 및 종료 지점으로 하여 개시 종료 위치 설정부 (151) 에서 설정 (기록) 할 수 있다. 또한, 「리셋」 버튼의 기능에 대해서는 상기와 동일하다.The start end
작업 방향 설정부 (36) 는, 트랙터 (1) 가 작업 영역에 있어서 농작업을 실시하면서 주행하는 방향 (주행로의 방향) 을 설정하는 것이다. 구체적으로는, 사용자가 포장 정보 입력 화면 (182) 에 있어서 「작업 방향」 의 「지정」 버튼을 조작하면, 평면 표시부 (88) 에, 포장 외주 설정부 (33) 에서 설정한 포장의 형상이 지도 데이터에 중첩되어 표시된다. 이 상태에서, 사용자가, 예를 들어 포장을 지정할 때에 지정한 복수의 점 중에서 2 점을 선택함으로써, 당해 2 점을 연결한 직선의 방향을 작업 방향 (주행 방향) 으로 하여 작업 방향 설정부 (36) 에서 설정 (기록) 할 수 있다. 또한, 작업 방향을 지정할 때에 선택하는 점은 2 점에 한정되지 않고, 3 점 이상의 복수점이어도 된다. 이로써, 포장 등의 윤곽을 따른, 보다 정확한 작업 방향을 지정하는 것이 가능하다. 또, 「리셋」 버튼의 기능에 대해서는 상기와 동일하다.The work
본 실시형태에 있어서의 자율 주행 경로 생성부 (147) 는, 포장 내에 있어서 트랙터 (1) 가 자율적으로 주행하는 주행 경로를 생성한다. 제 1 실시형태와 동일하게 이 주행 경로에는, 직선상 또는 꺾은선상의 주행로와, 원호상의 선회로가 교대로 포함된다. 자율 주행 경로 생성부 (147) 는, 포장 외주 설정부 (33) 에서 설정된 포장 외주의 위치, 작업 영역 설정부 (35) 에서 설정된 작업 영역의 위치, 개시 종료 위치 설정부 (151) 에서 설정된 개시 지점 및 종료 지점의 위치, 그리고 작업 방향 설정부 (36) 에서 설정된 작업 방향의 정보를 취득하고, 이들 정보에 기초하여 자동적으로 주행 경로를 생성한다. 이 주행 경로는, 기본적으로는, 직선상 또는 꺾은선상의 주행로가 작업 영역에 포함되고, 선회로가 포장 내의 작업 영역 이외의 영역 (비작업 영역) 에 포함되도록 생성된다. 단, 포장 내에 장애물이 존재하는 경우에는, 자율 주행 경로 생성부 (147) 는, 장애물을 회피하도록 주행 경로를 생성한다. 이것에 대해서는 이후에 상세히 서술한다. 자율 주행 경로 생성부 (147) 가 작성한 주행 경로는, 기억부 (32) 에 기억된다.The autonomous travel
다음으로, 자율 주행 경로 생성부 (147) 가 주행 경로를 생성할 때의 구체적인 처리에 대해, 도 20 및 도 21 을 참조하여 설명한다. 도 20 은, 주행 경로를 생성할 때에 자율 주행 경로 생성부 (147) 에서 실시되는 처리를 나타내는 플로우 차트이다. 도 21 은, 도 20 의 처리의 계속을 나타내는 플로우 차트이다.Next, specific processing when the autonomous travel
맨 처음에, 자율 주행 경로 생성부 (147) 는, 포장 외주 설정부 (33) 에서 설정된 포장 외주의 위치, 작업 영역 설정부 (35) 에서 설정된 작업 영역의 위치, 개시 종료 위치 설정부 (151) 에서 설정된 개시 지점 및 종료 지점의 위치, 그리고 작업 방향 설정부 (36) 에서 설정된 작업 방향의 정보를 취득하고, 이들 정보에 기초하여 잠정 주행 경로 (T0) 를 생성한다 (도 22 를 참조). 구체적으로는, 자율 주행 경로 생성부 (147) 는, 포장 내에 장애물이 없는 것으로 간주하고, 작업 영역 내에 복수의 잠정 주행로 (P0) 를 서로 간격을 두고 나열한 잠정 주행 경로 (T0) 를 생성한다 (스텝 S201). 각각의 잠정 주행로 (P0) 는, 작업 방향을 따르도록 배치되어 있다.Initially, the autonomous driving
자율 주행 경로 생성부 (147) 에 의해 생성되는 잠정 주행 경로 (T0) 의 예를 도 22 에 나타내고 있다. 도 22 는, 복수의 잠정 주행로 (P0) 를 나열한 잠정 주행 경로 (T0) 를 생성한 예를 나타내는 도면이다. 도 22 에 있어서, 실선의 화살표로 나타낸 경로는, 무인의 트랙터 (1) 가 주행하는 주행 경로이다. 무인의 트랙터 (1) 가 주행하는 주행로에 인접하는 (화살표가 부여된 2 열의 주행로 사이에 배치된다), 화살표가 부여되어 있지 않은 주행로는, 협조 작업을 실시하기 위한 유인의 트랙터가 무인의 트랙터 (1) 에 부수하여 주행하는 주행로를 나타내고 있다. 도 22 의 예에서는, 유인의 트랙터는, 왕로 (도 22 의 지면 상방을 향하는 방향의 주행로) 에서는 무인의 트랙터 (1) 의 우측 경사 뒤를, 복로 (도 22 의 지면 하방을 향하는 방향의 주행로) 에서는 좌측 경사 뒤를, 각각 따라가도록 주행하는 것이 상정되어 있다.An example of the provisional travel path T0 generated by the autonomous travel
계속해서, 자율 주행 경로 생성부 (147) 는, 장애물 외주 설정부 (34) 로부터 장애물 외주 영역을 취득하고, 스텝 S201 에서 생성한 잠정 주행로 (P0) 중에, 장애물 외주 영역과 간섭하는 잠정 주행로가 있는지의 여부를 판단한다 (스텝 S202).Subsequently, the autonomous travel
스텝 S202 의 판단의 결과, 장애물 외주 영역과 간섭하는 잠정 주행로가 없는 경우 (스텝 S202, 아니오), 포장 내에 장애물이 없는 것으로 간주하고 작성한 잠정 주행 경로 (T0) 를 주행 경로 (T) 로서 그대로 사용할 수 있기 때문에, 자율 주행 경로 생성부 (147) 는 이 잠정 주행 경로 (T0) 를 주행 경로 (T) 로 하고 (스텝 S203), 경로의 생성을 종료한다.As a result of the determination of step S202, if there is no provisional travel path interfering with the outer circumference of the obstacle (step S202, No), it is assumed that there is no obstacle in the pavement, and the created provisional travel path T0 is used as the travel path T as it is. Therefore, the autonomous travel
한편, 스텝 S202 의 판단의 결과, 장애물 외주 영역과 간섭하는 잠정 주행로가 있는 경우 (스텝 S202, 예), 자율 주행 경로 생성부 (147) 는, 장애물을 회피한 주행 경로를 작성하기 위해, 스텝 S204 이후의 처리를 실시한다.On the other hand, as a result of the determination of step S202, when there is a provisional travel path that interferes with the outer circumference of the obstacle (step S202, YES), the autonomous travel
스텝 S204 의 처리에 있어서, 자율 주행 경로 생성부 (147) 는, 장애물 외주 영역과 간섭하는 잠정 주행로 (P0) 의 각각에 대해, 당해 잠정 주행로 (P0) 의 시단 (始端) 인 지점 (F) 을 시점으로 하고, 장애물 외주 영역에 이르는 점인 지점 (G) 을 종점으로 하는 제 1 주행로 (P1) 를 취득한다. 도 23 에, 1 개의 잠정 주행로 (P0) 에 관해 제 1 주행로 (P1) 를 생성하고 있는 모습을 나타내고 있다.In the processing of step S204, the autonomous travel
계속해서, 스텝 S205 의 처리에 있어서, 자율 주행 경로 생성부 (147) 는, 제 1 주행로 (P1) 의 종점 (지점 (G)) 을 시점으로 하여, 장애물 외주 영역을 통과하면서 장애물 반대측으로 돌아, 당해 장애물을 관통하도록 제 1 주행로 (P1) 를 연장한 가상 연장선 (L) 상의 위치이고, 장애물 외주 영역에서 나오는 위치 (지점 (H)) 에 이르는 우회로 (Q) 를 생성한다. 도 24 에, 1 개의 잠정 주행로 (P0) 에 관해 우회로 (Q) 를 생성하고 있는 모습을 나타내고 있다. 도 24 에 나타내는 바와 같이, 이 우회로 (Q) 는, 당해 잠정 주행로 (P0) 를 기준으로 하여 미작업 영역측 (바꿔 말하면, 제 1 주행로 (P1) 에 이를 때까지의 주행 경로에서 보았을 때 먼 쪽) 으로 우회하도록 생성된다.Subsequently, in the processing of step S205, the autonomous travel
계속해서, 스텝 S206 의 처리에 있어서, 자율 주행 경로 생성부 (147) 는, 우회로 (Q) 의 종점 (지점 (H)) 을 시점으로 하여, 잠정 주행로 (P0) 의 종단 (지점 (J)) 을 종점으로 하는 제 2 주행로 (P2) 를 취득한다. 이 제 2 주행로 (P2) 는, 잠정 주행로 (P0) 상에 배치된다. 또한, 상기의 도 24 에, 1 개의 잠정 주행로 (P0) 에 관해 제 2 주행로 (P2) 를 생성하고 있는 모습을 나타내고 있다.Subsequently, in the processing of step S206, the autonomous travel
계속해서, 스텝 S207 의 처리에 있어서, 자율 주행 경로 생성부 (147) 는, 장애물 외주 영역과 간섭하는 개개의 잠정 주행로 (P0) 에 대해 생성한 우회로 (Q1, Q2, Q3, …) 중에, 소정 거리 (L1) 이상의 경로 길이의 우회로가 1 개 이상 있는지의 여부를 판단한다.Subsequently, in the processing of step S207, the autonomous travel
스텝 S207 의 판단의 결과, 소정 거리 (L1) 이상의 길이의 우회로 (Q) 가 1 개도 없는 경우 (스텝 S207, 아니오), 트랙터 (1) 가 우회로 (Q) 를 지나도록 주행시켜도 주행 경로가 극단적으로 길어져 버리는 일은 없기 때문에, 이 우회로 (Q) 를 주행 경로로서 채용한다.As a result of the determination in step S207, when there is no detour Q having a length of more than the predetermined distance L1 (step S207, NO), even if the
즉, 스텝 S208 에 있어서, 자율 주행 경로 생성부 (147) 는, 장애물 외주 영역과 간섭하는 잠정 주행로 (P0) 의 각각을, 당해 잠정 주행로 (P0) 에 기초하여 생성한 제 1 주행로 (P1), 우회로 (Q), 제 2 주행로 (P2) 로 이루어지는 주행로로 치환한다. 이로써, 장애물을 우회한 주행 경로 (T1) 가 생성된다. 도 25 에, 장애물을 우회함으로써 장애물을 회피하는 주행 경로 (T1) 를 생성한 예를 나타내고 있다.That is, in step S208, the autonomous travel
한편, 스텝 S207 의 판단의 결과, 소정 거리 (L1) 이상의 길이의 우회로 (Q) 가 1 개 이상 있었을 경우 (스텝 S207, 예), 트랙터 (1) 를 우회로 (Q) 를 따라 주행시키면 주행 경로가 과잉으로 길어져버려 작업이 비효율이 되므로, 이 우회로 (Q) 는 주행 경로로서 채용되지 않는다.On the other hand, as a result of the determination in step S207, when there is at least one bypass Q having a length equal to or greater than the predetermined distance L1 (step S207, YES), when the
즉, 길이가 소정 거리 (L1) 이상이 되어 버리는 우회로 (Q) 가 있는 경우에는, 도 21 에 나타내는 스텝 S211 에 있어서, 자율 주행 경로 생성부 (147) 는, 생성한 각 우회로 (Q1, Q2, Q3, …) 및 제 2 주행로 (P2) 를 파기한다. 계속해서, 스텝 S212 에 있어서, 자율 주행 경로 생성부 (147) 는, 제 1 주행로 (P1) 의 종점 (지점 (G)) 을 시점으로 하여, 장애물 외주 영역을 통과하면서 미작업 영역측으로 리턴하는 리턴로 (D) 를 생성한다. 도 26 에, 1 개의 제 1 주행로 (P1) 에 관해 리턴로 (D) 를 생성하고 있는 모습을 나타내고 있다.That is, when there is a detour Q whose length becomes equal to or greater than the predetermined distance L1, in step S211 shown in Fig. 21, the autonomous traveling
계속해서, 스텝 S213 에 있어서, 자율 주행 경로 생성부 (147) 는, 리턴로 (D) 의 종점 (지점 (K)) 을 시점으로 하여, 제 1 주행로 (P1) 를 생성한 잠정 주행로 (P0) 의 미작업측에 평행하게 배치되는 다음의 잠정 주행로 (P0) 의 종단 (지점 (M)) 을 종점으로 하는 제 3 주행로 (P3) 를 생성한다. 상기의 도 26 에, 1 개의 제 1 주행로 (P1) 에 관해 복로로서의 제 3 주행로 (P3) 를 생성하고 있는 모습을 나타내고 있다.Subsequently, in step S213, the autonomous travel
계속해서, 스텝 S214 에 있어서, 자율 주행 경로 생성부 (147) 는, 장애물 외주 영역과 간섭하여, 연속되는 왕복의 잠정 주행로 (P0) 를 (복수의 왕복로가 있는 경우에는, 그 각각을), 제 1 주행로 (P1), 리턴로 (D), 제 3 주행로 (P3) 로 이루어지는 주행로로 치환한다. 이로써, 장애물 앞에서 리턴한 주행 경로 (T2) 가 생성된다. 도 27 에, 장애물 앞에서 리턴함으로써 장애물을 회피하는 주행 경로 (T2) 를 생성한 예를 나타내고 있다. Subsequently, in step S214, the autonomous travel
또한, 스텝 S214 의 처리에 의해 장애물 앞에서 리턴하는 주행 경로를 생성했을 경우, 장애물의 반대측의 영역에 있어서도, 도 27 에 있어서 파선으로 나타내는 바와 같이, 장애물 앞에서 리턴하는 주행 경로 (T3) 가 적절히 생성된다. 도 27 에서는, 무인 트랙터 (1) 는 주행 경로 (T2) 를 주행하면서 농작업을 실시하여 종료 지점에 도달한 후, 비작업 영역을 지나 주행 경로 (T3) 의 시점으로 이동하여, 주행 경로 (T3) 를 주행하면서 농작업을 실시하는 예가 나타나 있다. 단, 상기는 일례로서, 예를 들어, 장애물로 분단된 일측의 영역을 작업한 후, 곧바로 반대측을 작업하도록 주행 경로가 생성되어도 된다.In addition, when a travel path that returns in front of an obstacle is generated by the process of step S214, a travel path T3 that returns in front of the obstacle is appropriately generated, as indicated by a broken line in Fig. 27, also in the area on the opposite side of the obstacle. . In Fig. 27, the
이상으로 설명한 바와 같이, 본 실시형태의 자율 주행 경로 생성 시스템 (199) 은, 미리 정해진 작업 영역에 있어서 트랙터 (1) 를 자율 주행시키기 위한 주행 경로를 생성한다. 이 자율 주행 경로 생성 시스템 (199) 은, 작업 방향 설정부 (36) 와, 자율 주행 경로 생성부 (147) 와, 장애물 외주 설정부 (34) 를 구비한다. 작업 방향 설정부 (36) 는, 작업 영역 내에 있어서의 트랙터 (1) 의 주행 방향 (작업 방향) 을 설정한다. 자율 주행 경로 생성부 (147) 는, 작업 영역 내에 있어서 작업 방향 설정부 (36) 에 의해 설정된 작업 방향을 따라 형성된 복수의 주행로를 포함하는 주행 경로를 생성 가능하다. 장애물 외주 설정부 (34) 는, 작업 영역 내의 장애물에 대해 장애물 외주 영역을 설정한다. 자율 주행 경로 생성부 (147) 는, 제 1 주행로 (P1) 와, 우회로 (Q) 와, 제 2 주행로 (P2) 를 포함하도록 주행 경로를 생성하는 것이 가능하다 (도 22 내지 도 25 까지를 참조). 제 1 주행로 (P1) 는, 작업 방향을 따라 배치된다. 우회로 (Q) 는, 제 1 주행로 (P1) 의 종점 (지점 (G)) 을 시점으로 하여, 장애물 외주 영역을 통과하면서 장애물의 반대측으로 돌아, 당해 장애물을 관통하도록 제 1 주행로 (P1) 를 연장한 가상 연장선 (L) 상의 위치에 이른다. 제 2 주행로 (P2) 는, 우회로 (Q) 의 종점 (지점 (H)) 을 시점으로 하여, 가상 연장선 (L) 상에 배치된다.As described above, the autonomous travel
이로써, 제 1 주행로 (P1) 와, 우회로 (Q) 와, 제 2 주행로 (P2) 를 포함하는 주행 경로가 생성된다. 따라서, 이 주행 경로를 따라 트랙터 (1) 를 자율 주행시킴으로써, 장애물을 우회하도록 트랙터 (1) 를 주행시키는 것이 가능하다. 또한, 우회로 (Q) 는 사전에 설정된 장애물 외주 영역을 통과하도록 배치되므로, 주행 경로 전체와의 관계 등을 고려하여 우회로를 계획적으로 생성함으로써, 무인 트랙터 (1) 에 의한 작업을 원활하게 할 수 있다. 또, 우회로 (Q) 이외의 부분에서는, 주행로를 작업 방향을 따른 경로로 할 수 있고, 자율 주행 경로 생성의 알고리즘을 심플하게 할 수 있다. 이와 같이, 주행로를 기본적으로는 작업 방향을 따른 직선상 또는 꺾은선상의 경로로 함으로써, 복수의 주행로를 1 세트로 하여 취급하는 것이 용이해져, 1 세트마다 농작업을 실시해 가는 방식도 용이하게 실현될 수 있다.As a result, a travel path including the first travel path P1, the bypass Q, and the second travel path P2 is generated. Therefore, it is possible to drive the
또, 본 실시형태의 자율 주행 경로 생성 시스템 (199) 에 있어서는, 자율 주행 경로 생성부 (147) 는, 우회로 (Q) 의 경로 길이가 소정 거리 (L1) 미만인 경우에, 제 1 주행로 (P1), 우회로 (Q) 및 제 2 주행로 (P2) 를 포함하도록 주행 경로를 생성하는 것이 가능하다 (도 25 를 참조). 한편, 자율 주행 경로 생성부 (147) 는, 상기 우회로의 경로가 소정 거리 (L1) 이상인 경우에, 제 1 주행로 (P1), 리턴로 (D) 및 제 3 주행로 (P3) 를 포함하도록 상기 주행 경로를 생성하는 것이 가능하다 (도 27 을 참조). 리턴로 (D) 는, 제 1 주행로 (P1) 의 종점 (지점 (G)) 을 시점으로 하여, 장애물 외주 영역을 통과하면서 장애물 앞에서 리턴한다 (도 26 을 참조). 제 3 주행로 (P3) 는, 리턴로 (D) 의 종점 (지점 (K)) 을 시점으로 하여, 제 1 주행로 (P1) 와 평행하게 배치된다.In addition, in the autonomous travel
이로써, 우회로 (Q) 의 경로 길이가 소정 거리 (L1) 이상이 되는 경우에는, 장애물을 우회하는 경로 대신에, 장애물 앞에서 리턴하는 경로를 주행 경로로서 생성할 수 있다. 따라서, 주행 경로 중 작업에 기여하지 않는 부분이 과잉으로 길어져 버리는 것을 방지할 수 있다.Thereby, when the path length of the bypass Q becomes more than the predetermined distance L1, instead of a path bypassing the obstacle, a path returning in front of the obstacle can be generated as a travel path. Accordingly, it is possible to prevent the portion of the traveling route that does not contribute to the work from becoming excessively long.
또, 본 실시형태의 자율 주행 경로 생성 시스템 (199) 에 있어서는, 자율 주행 경로 생성부 (147) 는, 작업 영역에 있어서 장애물이 도상으로 배치되어 있는 경우, 우회로 (Q) 를, 제 1 주행로 (P1) 에 이를 때까지의 주행 경로에서 보았을 때 먼 쪽 (미작업 영역측) 에서부터 장애물의 반대측으로 돌도록 생성한다.In addition, in the autonomous travel
이로써, 트랙터 (1) 를 자율 주행 경로 생성부 (147) 에서 생성한 주행 경로 (T1) 를 따라 주행시켜도, 장애물을 우회할 때, 제 1 주행로 (P1) 에 이를 때까지 트랙터 (1) 가 주행해 온 영역 (농작업을 실시한 영역) 에 다시 들어가는 일이 없다. 따라서, 트랙터 (1) 에 실시하게 한 작업에 영향을 미치지 않게 하면서, 장애물을 회피하여 트랙터 (1) 를 주행시킬 수 있다. 또, 무인 트랙터 (1) 에 부수하여 유인 트랙터를 주행시키고 있는 경우, 무인 트랙터 (1) 가 장애물을 우회할 때에 유인 트랙터의 측에 접근하는 것을 방지할 수 있어, 충돌 등이 발생하지 않는다.In this way, even if the
<제 3 실시형태><Third embodiment>
다음으로, 본 개시의 제 3 실시형태에 관련된 자율 주행 경로 생성 시스템 (199) 에 대해, 도 24 및 도 28 등을 참조하여 설명한다. 이하에서는, 제 2 실시형태와 동일한 구성의 부재 및 스텝에는 동일한 부호를 부여하고, 설명을 적절히 생략하는 경우가 있다.Next, an autonomous travel
제 3 실시형태에 관련된 자율 주행 경로 생성 시스템 (199) 에 있어서, 주행 경로를 생성할 때에 자율 주행 경로 생성부 (147) 에서 실시되는 처리는, 대체로는 제 2 실시형태와 동일하지만, 스텝 S207 대신에 스텝 S307 의 처리가 실시되는 점에서 상이하다.In the autonomous traveling
스텝 S307 의 처리에 있어서, 자율 주행 경로 생성부 (147) 는, 장애물 외주 영역과 간섭하는 개개의 잠정 주행로 (P0) 에 대해 생성한 우회로 (Q1, Q2, Q3, …) 중에, 트랙터 (1) 가 장애물을 회피 (우회) 하기 위해서 작업 방향과 수직인 방향으로 이동해야 하는 거리인 회피 거리 (L10) (도 24 를 참조) 가 소정 거리 (L2) 이상인 우회로가 1 개 이상 있는지의 여부를 판단한다.In the processing of step S307, the autonomous travel
스텝 S307 의 판단의 결과, 회피 거리 (L10) 가 소정 거리 (L2) 이상인 우회로 (Q) 가 1 개도 없는 경우 (스텝 S307, 아니오), 트랙터 (1) 가 우회로 (Q) 를 지나도록 주행시켜도, 작업 영역 내에 장애물이 없는 경우와 비교하여 주행 경로의 경로 길이가 극단적으로 길어져 버리는 일은 없기 때문에, 이 우회로 (Q) 를 사용하여 장애물을 회피하는 것으로 한다. 즉, 스텝 S208 의 처리가 되어 우회로 (Q) 를 포함하는 주행 경로 (T1) 가 생성된다.As a result of the determination in step S307, when there is no detour Q in which the avoidance distance L10 is equal to or greater than the predetermined distance L2 (step S307, NO), even if the
한편, 스텝 S307 의 판단의 결과, 회피 거리 (L10) 가 소정 거리 (L2) 이상인 우회로 (Q) 가 1 개 이상 있었을 경우 (스텝 S307, 예), 트랙터 (1) 를 우회로 (Q) 를 따라 주행시키면 주행 경로의 경로 길이가 극단적으로 길어져버려 작업이 비효율이 되므로, 이 우회로 (Q) 는 채용되지 않는다. 즉, 자율 주행 경로 생성부 (147) 는, 도 21 에 나타내는 스텝 S211 내지 스텝 S214 까지의 처리에 의해, 우회로 대신이 되는 리턴로 (D) 를 생성한다.On the other hand, as a result of the determination in step S307, when there is at least one bypass Q in which the avoidance distance L10 is equal to or greater than the predetermined distance L2 (step S307, YES), the
본 실시형태의 처리에 의해서도, 우회로가 과잉으로 길어져 버리는 것을 방지할 수 있다. 또, 본 실시형태에서는 우회로 (Q) 의 경로 길이가 아니라 회피 거리 (L10) 를 사용하여 판정하므로, 우회로 (Q) 가 지나치게 긴지의 여부를 자율 주행 경로 생성부 (147) 가 간편하게 판단할 수 있다.Also by the processing of this embodiment, it is possible to prevent the bypass circuit from becoming excessively long. In addition, in this embodiment, since the determination is made using the avoidance distance L10, not the path length of the bypass Q, the autonomous travel
이상으로 설명한 바와 같이, 본 실시형태의 자율 주행 경로 생성부 (147) 는, 트랙터 (1) 가 장애물을 회피하기 위해 작업 방향과 수직인 방향으로 이동해야 하는 거리인 회피 거리 (L10) 가 소정 거리 (L2) 미만인 경우에, 제 1 주행로 (P1), 우회로 (Q) 및 제 2 주행로 (P2) 를 포함하도록 주행 경로를 생성하는 것이 가능하다. 한편, 자율 주행 경로 생성부 (147) 는, 회피 거리 (L10) 가 소정 거리 (L2) 이상인 경우에, 제 1 주행로 (P1), 리턴로 (D) 및 제 3 주행로 (P3) 를 포함하도록 주행 경로를 생성하는 것이 가능하다. 리턴로 (D) 는, 제 1 주행로 (P1) 의 종점 (지점 (G)) 을 시점으로 하여, 장애물 외주 영역을 통과하면서 장애물 앞에서 리턴한다. 제 3 주행로 (P3) 는, 리턴로의 종점 (지점 (K)) 을 시점으로 하여, 제 1 주행로 (P1) 와 평행하게 배치된다 (도 26 을 참조).As described above, in the autonomous travel
이로써, 장애물을 우회하기 위해 작업 방향과 수직인 방향으로 이동해야 하는 회피 거리 (L10) 가 소정 거리 (L2) 이상이 되는 경우에는, 장애물을 우회하는 경로 대신에, 장애물 앞에서 리턴하는 경로 (T2) 를 주행 경로로서 생성할 수 있다. 따라서, 주행 경로 (T2) 중 작업에 기여하지 않는 부분이 과잉으로 길어져 버리는 것을 방지할 수 있다.Accordingly, when the avoidance distance (L10), which must be moved in a direction perpendicular to the work direction in order to bypass the obstacle, becomes more than the predetermined distance (L2), instead of the path bypassing the obstacle, the path T2 returns in front of the obstacle. Can be created as a travel route. Accordingly, it is possible to prevent the portion of the travel path T2 that does not contribute to work from becoming excessively long.
<제 4 실시형태><Fourth embodiment>
다음으로, 본 개시의 제 4 실시형태에 관련된 자율 주행 경로 생성 시스템 (199) 에 대해, 도 29 등을 참조하여 설명한다. 이하에서는, 제 2 실시형태와 동일한 구성의 부재 및 스텝에는 동일한 부호를 부여하고, 설명을 적절히 생략하는 경우가 있다.Next, an autonomous travel
제 4 실시형태에 관련된 자율 주행 경로 생성 시스템 (199) 에 있어서, 주행 경로를 생성할 때에 자율 주행 경로 생성부 (147) 에서 실시되는 처리는, 대체로는 제 2 실시형태와 동일하지만, 스텝 S207 대신에 스텝 S407 의 처리가 실시되는 점에서 상이하다.In the autonomous traveling
스텝 S407 의 처리에 있어서, 자율 주행 경로 생성부 (147) 는, 장애물 외주 영역과 간섭하는 개개의 잠정 주행로 (P0) 에 대해 생성한 우회로 (Q1, Q2, Q3, …) 중에, 트랙터 (1) 가 장애물을 회피 (우회) 하기 위해서 필요한 선회 횟수 또는 선회 각도가 소정 이상 (예를 들어, 5 회 이상, 또는 120°이상) 인 우회로가 1 개 이상 있는지의 여부를 판단한다.In the processing of step S407, the autonomous travel
스텝 S407 의 판단의 결과, 선회 횟수 또는 선회 각도가 소정 이상인 우회로 (Q) 가 1 개도 없는 경우 (스텝 S407, 아니오), 트랙터 (1) 가 우회로 (Q) 를 지나도록 주행시켜도, 그다지 복잡한 경로는 되지 않기 때문에, 이 우회로 (Q) 를 사용하여 장애물을 회피하는 것으로 한다. 즉, 스텝 S208 의 처리가 되어 우회로 (Q) 를 포함하는 주행 경로가 생성된다.As a result of the determination in step S407, when there is no one bypass Q having the number of turns or the turning angle equal to or greater than a predetermined (step S407, No), even if the
한편, 스텝 S407 의 판단의 결과, 선회 횟수 또는 선회 각도가 소정 이상인 우회로 (Q) 가 1 개 이상 있었을 경우 (스텝 S407, 예), 트랙터 (1) 를 우회로 (Q) 를 따라 주행시키면 주행 경로가 복잡하게 되어 버려, 작업이 비효율적으로 되거나 사용자가 혼란되거나 할 우려가 있으므로, 이 우회로 (Q) 는 채용되지 않는다. 즉, 자율 주행 경로 생성부 (147) 는, 도 21 에 나타내는 스텝 S211 내지 스텝 S214 까지의 처리에 의해, 우회로 대신이 되는 리턴로 (D) 를 생성한다.On the other hand, as a result of the determination in step S407, when there is at least one bypass Q having a number of turns or a turning angle of a predetermined or more (step S407, YES), when the
이상으로 설명한 바와 같이, 본 실시형태의 자율 주행 경로 생성부 (147) 에 있어서는, 우회로 (Q) 에 있어서의 선회 횟수 또는 선회 각도가 소정 미만인 경우에, 제 1 주행로 (P1), 우회로 (Q) 및 제 2 주행로 (P2) 를 포함하도록 주행 경로를 생성하는 것이 가능하다. 한편, 자율 주행 경로 생성부 (147) 는, 우회로 (Q) 에 있어서의 선회 횟수 또는 선회 각도가 소정 이상인 경우에, 제 1 주행로 (P1), 리턴로 (D) 및 제 3 주행로 (P3) 를 포함하도록 주행 경로를 생성하는 것이 가능하다. 리턴로 (D) 는, 제 1 주행로 (P1) 의 종점 (지점 (G)) 을 시점으로 하여, 장애물 외주 영역을 통과하면서 장애물 앞에서 리턴한다. 제 3 주행로 (P3) 는, 리턴로 (D) 의 종점 (지점 (K)) 을 시점으로 하여, 제 1 주행로 (P1) 와 평행하게 배치된다.As described above, in the autonomous travel
이로써, 장애물을 우회하기 위해서 필요한 선회 횟수 또는 선회 각도가 소정 이상인 경우에는, 장애물을 우회하는 경로 대신에, 장애물 앞에서 리턴하는 리턴로 (D) 를 포함하는 경로를 주행 경로로서 생성할 수 있다. 따라서, 선회 횟수 또는 선회 각도가 많은 주행 경로를 생성해 버리는 것을 방지할 수 있으므로, 작업을 원활하게 실시할 수 있다.Accordingly, when the number of turns required to bypass the obstacle or the turning angle is more than a predetermined value, instead of the path bypassing the obstacle, a path including the return path D that returns in front of the obstacle can be created as a travel path. Accordingly, it is possible to prevent generation of a travel path having a large number of turns or turning angles, so that the operation can be performed smoothly.
이와 같이, 본 실시형태의 자율 주행 경로 생성 시스템 (199) 에서는, 주행로가 최대한 직선상이 되도록 하면서, 또한 장애물을 회피할 수 있도록 하고 있다. 또, 장애물을 회피하기 위한 패스로서, 장애물을 우회하는 패스와, 장애물 앞에서 리턴하는 패스를 적절히 구분하여 사용하는 것으로 하고 있다. 이와 같이, 주행로가 최대한 직선상으로 생성됨으로써, 자율 주행 경로 생성의 알고리즘을 심플하게 할 수 있고, 또, 사용자에게 있어서도 알기 쉬운 주행 경로로 할 수 있다.As described above, in the autonomous travel
이상으로 제 2 실시형태 내지 제 4 실시형태까지의 바람직한 실시형태를 설명했지만, 이들 실시형태의 구성은 예를 들어 이하와 같이 변경할 수 있다.Preferred embodiments from the second to fourth embodiments have been described above, but the configuration of these embodiments can be changed as follows, for example.
상기의 실시형태에서는, 자율 주행 경로 생성부 (147) 는, 작업 영역 내에 제 1 주행로 (P1), 우회로 (Q), 및 제 2 주행로 (P2) 로 이루어지는 주행로를 생성하는 것으로 하였다. 바꿔 말하면, 장애물을 회피하기 위한 주행로를, 작업 영역 내에 들어가도록 생성하는 것으로 하였다. 그러나, 반드시 이것에 한정되는 것은 아니며, 예를 들어 이것 대신에, 우회로 (Q) 가 비경작지 (비작업 영역) 로 비어져 나오도록 주행로를 생성해도 된다.In the above-described embodiment, it is assumed that the autonomous travel
상기의 실시형태에서는, 자율 주행 경로 생성부 (147) 는, 우회로 (Q) 를, 미작업 영역측으로 우회하도록 생성하는 것으로 하였다. 그러나, 반드시 이것에 한정되는 것은 아니며, 예를 들어 이것 대신에, 미작업 영역측으로 우회하는 우회로 (QA) 와, 작업 영역측 (이미 농작업을 실시한 측) 으로 우회하는 우회로 (QB) 를 잠정적으로 생성하고, 이들 우회로 (QA, QB) 의 경로 길이를 비교하여, 길이가 짧아지는 편의 우회로를 채용하는 것으로 해도 된다.In the above-described embodiment, it is assumed that the autonomous travel
예를 들어, 무인 트랙터 (1) 에 부수하여 유인 트랙터를 당해 무인 트랙터 (1) 의 경사 뒤에 위치하도록 주행시키고, 협조 작업을 실시하고 있는 경우에 있어서, 무인 트랙터 (1) 를 우회로 (Q) 를 따라 주행시키면 유인 트랙터에 접근할 우려가 있을 때에는, 그 취지의 경고를 무선 통신 단말 (46) 의 디스플레이 (37) 에 표시하는 것으로 해도 된다. 구체적으로는, 경고를 나타내는 표시용 데이터를 표시 제어부 (31) 에서 생성하고, 이 표시용 데이터에 기초하는 경고 화면을 디스플레이 (37) 에 표시시키는 것으로 하면 된다. 또한, 상기와 같은 경고 화면의 표시예를 도 30 에 나타내고 있다.For example, when the
상기의 실시형태에서는, 장애물이 작업 영역 내에 도상으로 있는 것으로 하였다. 그러나, 실제로는, 장애물이 작업 영역의 윤곽과 겹치도록 배치되어 있는 상황도 당연하게 생각된다. 예를 들어, 도 31 에는, 장애물이 포장의 단부로부터 중앙을 향하여 돌출되도록 배치된 예가 나타나 있다. 본 발명의 자율 주행 경로 생성 시스템 (199) 에서는, 이와 같은 경우에도, 장애물을 회피하면서 효율이 양호한 주행 경로를 생성할 수 있다. 또한, 도 31 과 같이, 미작업 영역측으로 우회하는 우회로를 작성하는 것이 물리적으로 불가능한 경우에는, 이것 대신에, 작업 영역측 (이미 농작업을 실시한 측) 으로 우회하는 우회로를 생성하는 것으로 해도 된다.In the above-described embodiment, it is assumed that the obstacle is in the form of an island in the work area. However, in reality, it is taken for granted that the obstacles are arranged so as to overlap the outline of the work area. For example, FIG. 31 shows an example in which an obstacle is disposed so as to protrude from the end of the pavement toward the center. In the autonomous travel
상기의 실시형태에 개시한 발명은, 포장의 윤곽이 복잡하게 되어 있는 경우에도 적용할 수 있다. 예를 들어, 도 32 와 같이 포장의 윤곽에 오목상의 부분이 형성되어 있는 경우, 당해 포장의 외주의 형상이 포장 외주 설정부 (33) 에서 설정되게 된다. 이와 같은 경우에도, 단순한 사각형의 포장에 있어서 장애물이 내측을 향하여 돌출상으로 배치되어 있다고 간주하면, 도 31 의 경우와 완전히 동일하게 생각할 수 있다. 즉, 본 발명은, 포장의 윤곽의 일부가 오목상으로 되어 있기 때문에 실질적으로 「장애물」 이 되는 경우에도 적용할 수 있다.The invention disclosed in the above embodiment can be applied even when the outline of the packaging is complicated. For example, when a concave portion is formed in the outline of the package as shown in FIG. 32, the shape of the outer periphery of the package is set by the outer
도 20 의 스텝 S207 에서, 복수의 우회로 중에 소정 거리 (L1) 이상의 경로 길이의 우회로가 1 개 이상 있는지의 여부를 판단하는 것 대신에, 복수의 우회로의 경로 길이의 합계가 소정 거리 이상 있는지의 여부를 판단해도 된다. 동일하게, 도 28 의 스텝 S307 에서, 회피 거리의 합계가 소정 거리 이상 있는지의 여부를 판단해도 된다.In step S207 of Fig. 20, instead of determining whether there is at least one bypass having a path length of a predetermined distance L1 or more among the plurality of bypasses, whether the sum of the path lengths of the plurality of bypasses is equal to or greater than a predetermined distance. You may judge Similarly, in step S307 of Fig. 28, it may be determined whether the sum of the avoidance distances is equal to or greater than a predetermined distance.
무인 트랙터 (1) 가 장애물을 우회하기 시작할 때, 윙커 등의 방향 지시기를 기능시켜, 무선 통신 단말 (46) 의 사용자나 유인 트랙터의 오퍼레이터 등에 주의를 재촉하는 것으로 해도 된다. 이로써, 예를 들어 무인 트랙터 (1) 가 유인 트랙터에 접근할 우려가 있는 경우에, 사용자가 이것을 알아차릴 수 있어, 충돌 등을 미연에 막을 수 있다.When the
상기의 실시형태에서는, 우회로 (Q) 로서, 제 1 주행로 (P1) 의 종점 (G) 을 시점으로 하여, 장애물 외주 영역을 통과하면서 장애물의 반대측으로 돌아, 당해 장애물을 관통하도록 제 1 주행로 (P1) 를 연장한 가상 연장선 (L) 상의 위치에 이르는 우회로 (Q) 를 생성하는 것으로 했지만, 이것에 한정되는 것은 아니다. 즉, 우회로는, 장애물을 사이에 두고 배치되는 제 1 주행로의 종점 (장애물 외주 영역에 이르는 점) 과 제 2 주행로의 시점 (장애물 외주 영역으로부터 나오는 점) 을 접속하는 통로이면 되고, 제 2 주행로의 시점은, 제 1 주행로를 연장한 가상 연장선 상의 점이 아니어도 된다. 제 2 주행로의 시점이, 제 1 주행로를 연장한 가상 연장선 상의 점이 아닌 경우란, 예를 들어 도 33 에 나타내는 바와 같이, 잠정 주행로 (P0') 가 꺾은선상의 주행로로서, 제 1 주행로 (P1') 와 제 2 주행로 (P2') 가 굴절부를 통하여 접속됨으로써 꺾은선상의 잠정 주행로 (P0') 가 형성되어 있고, 또한, 굴절부가 장애물 외주 영역 또는 장애물이 존재하는 영역에 위치하는 경우가 예시된다. 또한, 도 33 에 있어서는, 제 1 주행로 (P1') 의 시점을 F', 종점을 G', 제 2 주행로 (P2') 의 시점을 H', 종점을 J', 우회로를 Q' 로 하여 나타내고 있다.In the above embodiment, as the bypass Q, with the end point G of the first travel path P1 as a starting point, while passing through the outer circumferential region of the obstacle, it returns to the opposite side of the obstacle, and the first travel path passes through the obstacle. Although it was set to generate the bypass circuit Q reaching the position on the virtual extension line L which extended (P1), it is not limited to this. That is, the bypass may be a path connecting the end point (point reaching the outer circumferential area of the obstacle) of the first travel path disposed with an obstacle therebetween and the viewpoint of the second driving path (point coming out of the outer circumference of the obstacle), and the second The viewpoint of the travel path may not be a point on the virtual extension line extending the first travel path. When the viewpoint of the second travel path is not a point on the virtual extension line extending the first travel path, for example, as shown in FIG. 33, the provisional travel path P0' is a travel path on a broken line, and the first The travel path P1' and the second travel path P2' are connected through a bend to form a curved temporary travel path P0', and the bend is located in the outer circumference of the obstacle or the area where the obstacle exists. The case where it is located is illustrated. In Fig. 33, the starting point of the first travel path P1' is set to F', the end point is G', the start point of the second travel path P2' is H', the end point is J', and the bypass is Q'. Is shown.
상기의 실시형태에서는, 작업 영역에 있어서 장애물이 도상으로 존재하고 있는 경우, 장애물 외주 영역에 있어서, 우회로 (Q) 를 제 1 주행로 (P1) 에 이를 때까지의 주행 경로에서 보았을 때 먼 쪽에서부터 장애물의 반대측으로 돌도록 생성하는 것으로 했지만, 이것에 한정되는 것은 아니다. 우회로는, 장애물 외주 영역 중 종료 지점에 가까운 측에 생성하는 것으로 하면 되고, 바꿔 말하면, 우회로는 장애물 외주 영역에 이른 후, 장애물 외주 영역 내에 있어서 종료 지점을 향하여 선회시키는 선회로를 포함하도록 생성하는 것으로 하면 된다.In the above-described embodiment, when an obstacle exists in the form of a road in the work area, in the outer peripheral area of the obstacle, the bypass Q is viewed from the far side when viewed from the travel path until reaching the first travel path P1. Although it was supposed to be generated so as to turn to the opposite side of the obstacle, it is not limited to this. The bypass can be generated on the side close to the end point of the obstacle outer circumference area, in other words, the bypass is generated to include a turning circuit that turns toward the end point in the obstacle outer circumference area after reaching the obstacle outer circumference area. Just do it.
즉, 작업 영역에 있어서 주행로의 개수는, 작업 영역의 폭 및 트랙터 (1) (작업기 (3)) 의 차폭이 고려되어 정해지지만, 각 작업로에 있어서의 작업 순서는 사용자의 지정에 따라 적절히 설정하는 것이 가능하다. 사용자의 지정으로는, 현재 주행 중의 주행로 (P10) 와 다음으로 주행하는 주행로 (P11) 사이의 작업로의 개수 (스킵수) 를 지정하는 것이 가능하고, 당해 개수가 0 인 경우, 주행로 (P10) 와 주행로 (P11) 는 인접하고, 당해 개수가 2 인 경우, 주행로 (P10) 와 주행로 (P11) 는 2 개의 주행로를 사이에 두고 배치되어 있게 된다. 각 작업로에 있어서의 작업 순서는 원칙적으로 개시 지점으로부터 종료 지점을 향하여 순차 설정되지만, 상기 개수가 0 이외인 경우, 일부, 종료 지점으로부터 개시 지점을 향하여 설정되는 (바꿔 말하면, 종료 지점 가까이의 주행로를 주행한 후, 개시 지점 가까이의 미경 (未耕) 의 주행로를 주행하는) 경우가 있다. 그리고, 종료 지점으로부터 개시 지점을 향한 후에 주행하는 미경의 주행로 상에 장애물이 존재하는 경우, 우회로는 다른 미경의 주행로측, 즉, 종료 지점측을 지나도록 장애물 외주 영역 내에 생성된다.That is, the number of travel paths in the work area is determined in consideration of the width of the work area and the vehicle width of the tractor 1 (work machine 3), but the work order in each work path is appropriately determined according to the user's designation. It is possible to set. With the user's designation, it is possible to designate the number of work paths (the number of skips) between the current running path P10 and the next running path P11, and if the number is 0, the running path (P10) and the travel path P11 are adjacent, and when the number is 2, the travel path P10 and the travel path P11 are arranged with two travel paths interposed therebetween. In principle, the work order in each work path is set sequentially from the start point to the end point, but if the number is other than 0, it is partially set from the end point to the start point (in other words, running near the end point After traveling on the road, there is a case of traveling on an unexplored traveling route near the starting point. In addition, when an obstacle exists on an unexplored travel path that is driven from the end point to the start point, a bypass is generated in the outer circumferential area of the obstacle so as to pass through another unviewed travel path side, that is, the end point side.
또한, 종료 지점으로부터 개시 지점을 향한 후에 주행하는 미경의 주행로 상에 장애물이 존재하는 경우에 있어서 인접하는 주행로가 양쪽 모두에 기경 (旣耕) 의 주행로인 경우, 우회로의 경로 길이가 보다 짧은 우회로, 또는 선회 횟수가 보다 적은 우회로를 생성하는 것으로 하면 된다.In addition, when an obstacle exists on an undiagnosed running path that runs after heading from the end point to the start point, when the adjacent running paths are paths of premature distance on both sides, the path length of the bypass is more It is sufficient to create a short detour or a detour with a smaller number of turns.
<제 5 실시형태><Fifth Embodiment>
상기의 실시형태에서는 장애물이 없는 것으로 간주하고 복수의 잠정 주행로를 포함하는 잠정 주행 경로를 생성하고, 각 잠정 주행로가 장애물 외주 영역과 간섭하는지의 여부에 따라, 적절히 수정하여 (치환하여) 주행 경로를 생성하는 것으로 했지만, 주행 경로의 생성 방법은 이것에 한정되는 것은 아니다. 상기의 실시형태에 있어서 장애물이 없는 것으로 간주하고 잠정 주행 경로를 생성한 것은, 주행 경로를 생성하는 처리에 있어서, 잠정 주행로를 우회로를 포함하는 주행로로 치환하는지의 여부의 판단 처리 (예를 들어 도 20 의 스텝 S207) 가, 잠정 주행로를 생성한 후에 실시되기 때문이지만, 사전에 당해 판단을 실시함으로써 잠정 주행로를 생성하는 일 없이 주행로를 생성하는 것으로 해도 된다.In the above embodiment, it is assumed that there is no obstacle, and a provisional travel path including a plurality of provisional travel paths is generated, and according to whether each provisional travel path interferes with the outer circumference area of the obstacle, it is appropriately modified (substitute) to travel. Although it was supposed to generate the route, the method of generating the travel route is not limited to this. In the above embodiment, it is considered that there are no obstacles and the provisional travel path is generated. In the processing of generating the travel path, the determination process of whether to replace the provisional travel path with a travel path including a detour (for example, For example, it is because step S207 in FIG. 20 is performed after generating the provisional travel path, but by making the determination in advance, the travel path may be generated without generating the provisional travel path.
구체적으로는, 장애물 외주 설정부 (34) 에 의해 장애물의 외주 영역이 설정되었을 때, 당해 장애물의 외주 영역에 있어서 우회로를 생성할지의 여부가 정해짐으로써 실현 가능하다. 예를 들어, 상기의 도 20 의 스텝 S207 의 처리에 있어서 소정 거리 이상의 길이의 우회로가 1 개 이상 있었을 경우, 우회로의 경로 길이가 과잉으로 길어져, 작업이 비효율이 되는 것을 피하기 위해, 우회로를 주행 경로로서 채용하지 않는 것으로 하고 있지만, 장애물 외주 설정부 (34) 에 의해 설정된 장애물의 외주 영역에 있어서 만일 우회로가 생성되었을 경우의 우회로의 경로 길이는 사전에 산출 가능하다. 예를 들어 장애물의 외주 영역이 중공의 사각형상의 영역인 경우, 우회로의 최대 경로 길이는, 원칙적으로, 당해 외주 영역의 외측 가장자리의 횡변 (작업 방향에 수직인 방향의 변) 의 길이와, 종변 (작업 방향에 평행한 방향의 변) 의 길이의 합계의 길이 (이하, 최대 경로 길이 (A) 라고 칭한다) 이다. 여기서 「원칙적으로」 란, 우회로의 경로 길이가 가장 짧아지도록 생성한다면이라는 의미이며, 예를 들어 다른 요인 (예를 들어, 상기 서술한 기경의 주행로측을 생성하지 않고, 미경의 주행로측을 생성한다는 요인) 에 의해 우회로의 경로 길이가 가장 짧아지도록 생성하지 않는 경우에 있어서, 당해 외주 영역의 외측 가장자리의 횡변 (작업 방향에 수직인 방향의 변) 의 길이의 2 배의 길이와, 종변 (작업 방향에 평행한 방향의 변) 의 길이의 합계의 길이 (이하, 최대 경로 길이 (B) 라고 칭한다) 이다. 그리고, 자율 주행 경로 생성부 (147) 는, 적어도 최대 경로 길이 (A) 가 소정 거리 이상이 되는 장애물의 외주 영역에 있어서는, 우회로를 포함하지 않는 주행로를 생성함과 함께, 최대 경로 길이 (A) 및 최대 경로 길이 (B) 모두가 소정 거리 미만이 되는 장애물의 외주 영역에 있어서는, 우회로를 포함하는 주행로를 생성하여 각 주행로를 포함하는 주행 경로를 생성하는 것이 가능하다.Specifically, when the outer circumferential region of the obstacle is set by the obstacle outer
도 34 의 스텝 S501 ∼ S504 에는, 상기의 수법으로 주행 경로를 생성할 때에 자율 주행 경로 생성부 (147) 에서 실시되는 처리를 플로우 차트로 간이적으로 나타내고 있다. 이 처리를 설명하면, 최초로, 자율 주행 경로 생성부 (147) 는 모든 장애물 외주 영역에 대해 미리 최대 경로 길이를 계산한다 (스텝 S501). 그 후, 자율 주행 경로 생성부 (147) 는, 작업 영역 중 장애물 외주 영역 (장애물) 과 간섭하지 않는 부분에 대해, 리턴도 우회도 없는 주행로를 생성한다 (스텝 S502). 다음으로, 자율 주행 경로 생성부 (147) 는, 작업 영역 중 장애물 외주 영역과 간섭하는 부분에 대해서는, 당해 장애물 외주 영역의 최대 경로 길이가 소정값 이상인 경우에는 리턴로를 포함하는 주행로를 생성하고 (스텝 S503), 소정값 미만인 경우에는 우회로를 포함하는 주행로를 생성한다 (스텝 S504). 이와 같이, 우회로를 포함하는 주행로를 생성하는지의 여부를, 장애물의 외주 영역에 대응시켜 둠으로써, 잠정 주행로를 생성하는 일 없이 주행 경로를 생성하는 것이 가능하다.In steps S501 to S504 of Fig. 34, a flow chart schematically shows the processing performed by the autonomous traveling
상기의 실시형태에서는, 도시 생략된 입력 화면에서 침지의 폭 및 비경작지의 폭을 설정함으로써 비작업 영역이 정해지고, 포장으로부터 비작업 영역을 제외한 나머지 영역으로서 작업 영역이 정해져 있다. 그러나, 작업 영역을 설정하는 방법은 상기에 한정되지 않고, 예를 들어, 상기 서술한 포장 정보 입력 화면 (182) 에 있어서 평면 표시부 (88) 에 표시된 포장의 임의의 점을 사용자가 지정함으로써 작업 영역 및 비작업 영역을 설정할 수 있도록 구성되어도 된다.In the above embodiment, the non-work area is determined by setting the width of the immersion and the width of the uncultivated land on an input screen not shown, and the work area is defined as the remaining area except for the non-work area from the pavement. However, the method of setting the working area is not limited to the above, for example, by designating an arbitrary point of the packaging displayed on the
본 발명의 자율 주행 경로 생성 시스템은, 상기 서술한 무인 트랙터 (1) 와 유인 트랙터의 협조 작업에 한정되지 않고, 무인 트랙터 (1) 만이 단독으로 자율 주행·자율 작업을 실시하는 경우에도 적용할 수 있다.The autonomous driving route generation system of the present invention is not limited to the cooperative work of the
상기의 실시형태에서는, 자율 주행 경로 생성 시스템 (199) 을 구성하는 작업 방향 설정부 (36) 과, 자율 주행 경로 생성부 (147) 와, 장애물 외주 설정부 (34) 는, 무선 통신 단말 (46) 측에 구비되어 있는 것으로 했지만, 이것에 한정되는 것은 아니다. 즉, 작업 방향 설정부 (36), 자율 주행 경로 생성부 (147), 및 장애물 외주 설정부 (34) 중 일부 또는 전부가 트랙터 (1) 측에 구비되어 있는 것으로 해도 된다.In the above embodiment, the work
<제 6 실시형태><Sixth embodiment>
다음으로, 본 개시의 제 6 실시형태에 관련된 자율 주행 경로 생성 시스템 (299) 에 대해, 주로 도 35 내지 도 44 까지를 참조하여 상세하게 설명한다. 도 35 는, 제 6 실시형태에 관련된 로봇 트랙터 (1) 및 무선 통신 단말 (46) 의 전기계의 주요한 구성을 나타내는 블록도이다.Next, an autonomous travel route generation system 299 according to a sixth embodiment of the present disclosure will be described in detail with reference mainly to FIGS. 35 to 44. Fig. 35 is a block diagram showing a main configuration of an electric system of the
본 실시형태의 트랙터 (1) 는, 카메라 (외부 환경 정보 취득부) 를 구비하고 있다. 카메라 (247) 는 트랙터 (1) 의 전방을 촬영함으로써 동영상 또는 화상을 검출한다. 도 1 및 도 2 에는 나타내지 않았지만, 카메라 (247) 는 트랙터 (1) 의 루프 (29) 에 장착되어 있다. 카메라 (247) 로 촬영된 동영상 또는 화상의 데이터는, 무선 통신부 (40) 에 의해, 무선 통신용 안테나 (48) 로부터 무선 통신 단말 (46) 에 송신된다. 동영상 또는 화상의 데이터를 수신한 무선 통신 단말 (46) 은, 그 내용을 디스플레이 (37) 에 표시한다.The
또, 카메라 (247) 가 촬영한 동영상 또는 화상은, 제어부 (4) 또는 무선 통신 단말 (46) 로 화상 해석된다. 이로써, 포장에 있어서의 외부 환경 정보, 예를 들어, 트랙터 (1) 의 주위에 존재하는 특정 대상 (예를 들어, 이랑 또는 홈 등의 포장 표면 형상, 돌 등의 장애물 포장의 단부) 의 위치, 크기 등이 검출된다. 또, 취득한 화상 또는 동영상 중 특정 대상이 차지하는 범위 (특정 대상의 크기), 특정 대상이 표시되는 위치 등에 기초하여, 특정 대상의 위치 (특정 대상이 존재하는 방향 및 특정 대상까지의 거리) 가 검출된다. 또한, 특정 대상의 검출 결과에 따라 실시되는 처리에 대해서는 후술한다.Further, the moving picture or image captured by the
본 실시형태의 자율 주행 경로 생성 시스템 (299) 의 주요한 구성은, 무선 통신 단말 (46) 에 구비된다. 본 실시형태의 자율 주행 경로 생성 시스템 (299) 은, 상기 서술한 제어부 (71), 통신부 (72), 표시 제어부 (31), 기억부 (32), 포장 외주 설정부 (33), 장애물 외주 설정부 (34), 작업 영역 설정부 (주행 영역 설정부) (35), 개시 종료 위치 설정부 (151), 및 작업 방향 설정부 (주행 방향 설정부) (36) 등 외에, 추가로, 경로 생성부 (276), 보정 정보 산출부 (277), 및 보정 경로 생성부 (278) 등을 구비한다.The main configuration of the autonomous travel route generation system 299 of the present embodiment is provided in the
본 실시형태의 무선 통신 단말 (46) 도, 제 1 실시형태의 경우와 동일하게, 상기한 소프트웨어와 하드웨어의 협동에 의해, 경로 생성부 (276), 보정 정보 산출부 (277), 및 보정 경로 생성부 (278) 등으로서 동작할 수 있다.The
본 실시형태의 경로 생성부 (276) 도, 상기의 실시형태와 동일하게, 주행 경로를, 기본적으로는, 직선상 또는 꺾은선상의 주행로가 작업 영역에 포함되고, 선회로가 포장 내의 작업 영역 이외의 영역 (비작업 영역) 에 포함되도록 생성한다. 단, 포장 내에 장애물이 존재하는 경우에는, 경로 생성부 (276) 는, 장애물을 회피하도록 주행 경로를 생성한다. 이것에 대해서는, 이후에 상세히 서술한다. 경로 생성부 (276) 가 생성한 주행 경로는, 기억부 (32) 에 기억된다.The
보정 정보 산출부 (277) 는, 카메라 (247) 가 취득한 특정 대상 (예를 들어, 이랑 또는 홈 등의 포장 표면 형상, 돌 등의 장애물, 포장의 단부) 의 검출 결과에 기초하여, 주행 경로를 보정하기 위한 보정 정보를 산출한다. 보정 경로 생성부 (278) 는, 보정 정보 산출부 (277) 가 산출한 보정 정보에 기초하여, 주행 경로를 보정한 보정 경로를 생성한다. 또한, 보정 정보 산출부 (277) 및 보정 경로 생성부 (278) 가 실시하는 상세한 처리는 후술한다.The correction
다음으로, 카메라 (247) 가 검출한 외부 환경 정보에 기초하여 이랑의 위치를 검출하고, 주행 경로를 자동 보정하는 처리에 대해 도 36 내지 도 41 을 참조하여 설명한다. 여기서, 자동 보정이란, 무선 통신 단말 (46) 이 주행 경로를 보정한 보정 경로를 생성하는 것을 말하고, 또한 기억부 (32) 에 기억되어 있는 주행 경로를 보정 경로로 갱신하는 것을 포함해도 된다.Next, a process of detecting the position of the ridge and automatically correcting the travel route based on the external environment information detected by the
맨 처음에, 포장에 형성된 이랑을 따라 트랙터 (1) 가 작업을 실시할 때에 설정되는 주행 경로 (T) 에 대해 설명한다. 도 37 에 나타내는 바와 같이, 주행 경로 (T) 는, 주행로 (P5 ∼ P8) 와, 선회로 (U5 ∼ U7) 로 구성되어 있다. 주행로 (P5 ∼ P8) 는, 포장에 형성된 이랑의 중앙을 지나도록 형성된 직선상의 경로이다. 선회로 (U5) 는, 주행로 (P5) 와 주행로 (P6) 를 접속하는 원호상의 경로이다. 선회로 (U6) 는, 주행로 (P6) 와 주행로 (P7) 를 접속하는 원호상의 경로이다. 선회로 (U7) 는, 주행로 (P7) 와 주행로 (P8) 를 접속하는 원호상의 경로이다.First, the travel path T set when the
여기서, 도 38 에 나타내는 바와 같이, 개시 지점측의 이랑의 위치 (상세하게는 이랑의 중앙 위치) 가 포장의 단부측 (종료 지점의 반대측) 으로 어긋나 있는 경우를 생각한다. 이 경우에 있어서, 기억부 (32) 에는, 도 37 에 나타내는 주행 경로 (T) 가 기억되어 있는 것으로 한다. 따라서, 주행 경로 (T) 를 보정하지 않고 주행하면, 트랙터 (1) 가 이랑의 중앙을 통과하지 않기 때문에, 트랙터 (1) 에 의한 작업이 적절히 실시되지 않게 될 가능성이 있다. 이 점에서, 본 실시형태의 무선 통신 단말 (46) 은, 도 36 에 나타내는 플로우 차트에 기초하여 처리를 실시함으로써, 이랑의 위치 어긋남을 고려하여 주행 경로 (T) 를 보정할 수 있다.Here, as shown in FIG. 38, a case where the position of the gyrus on the start point side (in detail, the center position of the gyrus) is shifted toward the end side of the pavement (the opposite side of the end point) is considered. In this case, it is assumed that the storage unit 32 stores the travel path T shown in FIG. 37. Therefore, when traveling without correcting the travel route T, there is a possibility that the
맨 처음에, 무선 통신 단말 (46) 은, 카메라 (247) 가 검출한 화상 (동영상이어도 된다, 이하 동일) 을 해석함으로써, 이랑을 검출했는지의 여부의 판단을 실시한다 (스텝 S601). 예를 들어, 이랑이 형성되어 있는 부분은 다른 부분보다 높아져 있기 때문에, 무선 통신 단말 (46) 은, 카메라 (247) 가 검출한 화상에 기초하여, 이랑이 형성되어 있는 부분과, 이랑이 형성되어 있지 않은 부분을 구별할 수 있다. 이상과 같이 하여, 무선 통신 단말 (46) 은 이랑을 검출한다. 도 38 에 나타내는 예에서는, 예를 들어 트랙터 (1) 의 자율 주행 및 자율 작업의 개시가 지시된 타이밍이나, 트랙터 (1) 가 개시 지점에 도착한 타이밍 또는 그 조금 전의 타이밍 등의 적절한 타이밍에 있어서, 무선 통신 단말 (46) 이 개시 지점측의 단부의 이랑을 검출한다.Firstly, the
스텝 S601 에서 이랑을 검출했다고 판단했을 경우, 무선 통신 단말 (46) 은, 카메라 (247) 에서 검출한 이랑의 중앙 위치 (실제의 이랑의 중앙 위치) 를 검출한다 (스텝 S602). 이랑의 중앙 위치란, 이랑의 폭 방향 (짧은 방향) 의 중앙의 위치이다. 무선 통신 단말 (46) 은, 카메라 (247) 가 검출한 화상에 기초하여, 트랙터 (1) 로부터 이랑까지의 거리를 산출한다. 이로써, 트랙터 (1) 에 대한 이랑의 상대 위치를 검출할 수 있다. 또, 트랙터 (1) 의 절대 위치는, 위치 정보 산출부 (49) 에 의해 검출 가능하다. 무선 통신 단말 (46) 은, 트랙터 (1) 에 대한 이랑의 상대 위치와, 트랙터 (1) 의 절대 위치에 기초하여, 이랑의 절대 위치 (즉 주행 경로 상에 있어서의 이랑의 위치) 를 검출할 수 있다. 무선 통신 단말 (46) 은, 절대 위치를 구한 이랑의 폭 방향의 중앙을 특정함으로써, 이랑의 중앙 위치 (절대 위치) 를 산출한다. 도 38 에 나타내는 예에서는, 무선 통신 단말 (46) 은, 개시 지점측의 단부의 이랑의 중앙 위치를 검출한다.When determining that the gyrus has been detected in step S601, the
다음으로, 무선 통신 단말 (46) 은, 등록한 주행 경로와, 이랑의 중앙 위치가 임계값 이상 상이한지의 여부를 판단한다 (스텝 S603). 무선 통신 단말 (46) 은, 기억부 (32) 에 기억하고 있는 주행 경로 (상세하게는 주행 경로 중 이번에 검출한 이랑을 지나는 주행로) 와, 스텝 S602 에서 검출한 이랑의 중앙 위치를 비교함으로써, 양자의 어긋남량을 산출한다. 도 38 에 나타내는 예에서는, 이랑은 폭 방향으로 평행하게 어긋나서 형성되어 있기 때문에, 이랑의 길이 방향에 걸쳐서 어긋남량은 일정하다.Next, the
또, 스텝 S603 에 있어서의 임계값은 임의이지만, 예를 들어 이하의 조건을 만족시키는 값인 것이 바람직하다. 즉, 본 실시형태에서는 GNSS-RTK 법을 이용한 고정밀도의 위성 측위 시스템이 사용되고 있지만, 미량 (2 ∼ 3 ㎝ 정도) 의 측정 오차는 생길 수 있다. 따라서, 임계값은, 트랙터 (1) 의 위치의 측정 오차보다 큰 값 (예를 들어, 2 ㎝ 이상, 3 ㎝ 이상, 4 ㎝ 이상) 인 것이 바람직하다. 또, 트랙터 (1) 의 작업을 저해하지 않는 어긋남량에 기초하여 임계값을 정해도 된다. 또, 임계값은, 오퍼레이터가 무선 통신 단말 (46) 을 조작함으로써 변경 가능해도 된다.Moreover, although the threshold value in step S603 is arbitrary, it is preferable that it is a value satisfying the following conditions, for example. That is, in the present embodiment, a high-precision satellite positioning system using the GNSS-RTK method is used, but a measurement error of a small amount (about 2-3 cm) may occur. Therefore, the threshold value is preferably a value larger than the measurement error of the position of the tractor 1 (eg, 2 cm or more, 3 cm or more, 4 cm or more). Further, a threshold value may be determined based on the amount of shift that does not hinder the work of the
무선 통신 단말 (46) 은, 등록한 주행 경로와, 이랑의 중앙 위치의 어긋남량 (상이) 이 임계값보다 작다고 판단했을 경우 (스텝 S603, 아니오), 이 이랑에 대해서는 보정 경로를 생성하지 않고 스텝 S601 의 처리로 되돌아간다. 한편, 무선 통신 단말 (46) 은, 등록한 주행 경로와, 이랑의 중앙 위치가 임계값 이상 상이하다고 판단했을 경우 (스텝 S603, 예), 트랙터 (1) 가 자율 주행 중이면 자율 주행의 정지 신호를 트랙터 (1) 에 송신하여, 트랙터 (1) 를 일시 정지시킨다 (스텝 S604). 트랙터 (1) 가 자율 주행 중이 아니면 스텝 S605 로 진행된다.When the
다음으로, 무선 통신 단말 (46) 은, 주행 경로의 자동 보정에 대해 오퍼레이터의 허가가 있는지의 여부를 판단한다 (스텝 S605). 무선 통신 단말 (46) 은, 주행 경로의 자동 보정을 허가하는 취지의 설정이 사전에 실시되어 있었을 경우, 오퍼레이터의 허가가 있는 것으로 판단한다. 주행 경로의 자동 보정의 허가가 사전에 설정되어 있지 않은 경우, 무선 통신 단말 (46) 은, 디스플레이 (37) 에 소정의 내용을 표시하고, 오퍼레이터에게 자동 보정의 허가를 구한다.Next, the
무선 통신 단말 (46) 은, 예를 들어, 「주행 경로의 자동 보정을 허가한다」 및 「주행 경로의 자동 보정을 허가하지 않는다」 를 디스플레이 (37) 에 표시한다. 「주행 경로의 자동 보정을 허가한다」 가 오퍼레이터에게 선택되었을 경우, 예를 들어, 「1 개의 주행로를 자동 보정」 및 「모든 주행로를 자동 보정」 이 표시된다. 「1 개의 주행로를 자동 보정」 이 오퍼레이터에 의해 선택되었을 경우, 무선 통신 단말 (46) 은, 1 개의 주행로 (도 38 에 있어서의 주행로 (P5)) 를 자동 보정하고, 다른 주행로 (도 38 에 있어서의 주행로 (P6 ∼ P8)) 는 자동 보정하지 않는다. 또, 「모든 주행로를 자동 보정」 이 오퍼레이터에 의해 선택되었을 경우, 무선 통신 단말 (46) 은, 모든 주행로 (도 38 에 있어서의 주행로 (P5 ∼ P8)) 를 자동 보정한다.The
또한, 「주행 경로의 자동 보정을 허가하지 않는다」 가 오퍼레이터에 의해 선택되었을 경우, 무선 통신 단말 (46) 에는, 「주행 경로를 수동 보정한다」, 「주행 경로를 보정하지 않고 작업을 속행한다」, 「작업을 중지한다」 등의 선택지가 표시된다.In addition, when "do not allow automatic correction of the travel path" is selected by the operator, the
무선 통신 단말 (46) (상세하게는 보정 정보 산출부 (277)) 은, 주행 경로의 자동 보정에 대해 오퍼레이터의 허가가 있다고 판단했을 경우 (스텝 S605, 예), 트랙터 (1) 의 위치 정보 및 이랑의 중앙 위치 등에 기초하여 보정 정보를 산출한다 (스텝 S606). 상기 서술한 바와 같이, 무선 통신 단말 (46) 은, 위치 정보 산출부 (49) 가 검출한 트랙터 (1) 의 절대 위치와, 트랙터 (1) 에 대한 이랑의 상대 위치에 기초하여, 실제의 이랑의 절대 위치 (즉 주행 경로 상의 실제의 이랑의 위치) 를 검출할 수 있다.When the wireless communication terminal 46 (in detail, the correction information calculation unit 277) determines that there is permission from the operator for automatic correction of the travel route (step S605, YES), the position information of the
보정 정보란, 주행 경로를 보정하기 위한 정보이며, 구체적으로는, 주행 경로의 오프셋량, 오프셋 방향, 주행 경로의 각도 변경량 등이다. 도 38 에 나타내는 예에서는, 이랑은 폭 방향으로 평행하게 어긋나 형성되어 있기 때문에, 주행 경로의 오프셋량 및 오프셋 방향이 보정 정보에 상당한다. 또한, 복수개의 경로를 보정하는 경우, 경로마다 보정 정보가 산출된다. 무선 통신 단말 (46) 은, 스텝 S603 에서 구한, 주행 경로와, 이랑의 중앙 위치의 어긋남량을 오프셋량으로 한다. 또, 무선 통신 단말 (46) 은, 이랑의 실제의 중앙 위치에 대해 주행 경로가 어긋나 있는 방향을 어긋남 방향으로 한다.The correction information is information for correcting the travel route, specifically, the offset amount of the travel route, the offset direction, the angle change amount of the travel route, and the like. In the example shown in FIG. 38, since the ridge is formed to be shifted in parallel in the width direction, the offset amount and the offset direction of the travel path correspond to the correction information. In addition, when correcting a plurality of paths, correction information is calculated for each path. The
다음으로, 무선 통신 단말 (46) (상세하게는 보정 경로 생성부 (278)) 은, 스텝 S606 에서 산출한 보정 정보에 기초하여 보정 경로를 생성하고, 기억부 (32) 에 기억되어 있는 주행 경로를 갱신한다 (스텝 S607). 도 38 에 나타내는 바와 같이 실제의 이랑의 위치가 어긋나 있는 경우, 도 39 에 나타내는 바와 같이 보정 경로가 생성된다. 또한, 도 39 에서는, 1 개의 주행로를 자동 보정하는 취지가 선택되었을 경우에 생성되는 보정 경로가 나타나 있다. 도 39 에 나타내는 예에서는, 무선 통신 단말 (46) 은, 주행로 (P5) 를 보정한 보정 경로인 주행로 (P51) 를 생성한다. 또, 무선 통신 단말 (46) 은, 선회로 (U5) 를 보정한 보정 경로인 선회로 (U51) 를 생성한다. 도 39 에 나타내는 주행로 (P51) 의 생성 방법으로는 예를 들어 주행로 (P5) 의 시점 및 종점의 위치를 상기 보정 정보에 기초하여 오프셋시키고, 오프셋 후의 시점 및 종점을 접속하는 경로를 주행로 (P51) 로서 생성한다. 요컨대, 보정 경로 생성부 (278) 는, 미리 생성된 주행로 (P5) 의 위치 (주행로 (P5) 로서 폭 정보가 포함되는 경우에는 중앙 위치) 및 검출한 이랑의 중앙 위치에 기초하여 산출되는 보정 정보에 기초하여, 당해 주행로 (P5) 의 시점 및 종점을 오프셋시키고, 오프셋 후의 시점 및 종점에 기초하여 주행로 (P5) 와는 상이한 새로운 주행로 (P51) 를 보정 경로로서 생성하는 것이 가능하다.Next, the wireless communication terminal 46 (in detail, the correction route generation unit 278) generates a correction route based on the correction information calculated in step S606, and the travel route stored in the storage unit 32 Is updated (step S607). As shown in FIG. 38, when the position of the actual ridge is shifted, a correction path is generated as shown in FIG. 39. In addition, in Fig. 39, a correction path generated when the effect of automatically correcting one travel path is selected. In the example shown in FIG. 39, the
다음으로, 무선 통신 단말 (46) 은, 트랙터 (1) 의 주행을 재개하고, 스텝 S607 에서 갱신한 주행 경로를 따라 트랙터 (1) 를 주행시킨다 (스텝 S608). 그 후에도 무선 통신 단말 (46) 은, 이랑을 검출했는지의 여부의 판단을 실시하고 (스텝 S601), 이랑을 검출한 경우에는, 스텝 S602 이후의 처리를 실시한다. 이와 같이 연속해서 상기의 처리를 실시함으로써, 주행로 (P6 ∼ P8) 와 실제의 이랑의 중앙 위치가 어긋나 있는 경우에도, 당해 주행로 (P6 ∼ P8) 를 보정할 수 있다.Next, the
다음으로, 복수개의 이랑이 경사지도록 어긋나 있는 경우에 대해, 도 36, 도 40 및 도 41 을 참조하여 설명한다.Next, a case where a plurality of teeth is shifted so as to be inclined will be described with reference to Figs. 36, 40, and 41.
도 40 에서는, 미리 생성한 주행 경로에 대해 실제의 이랑 (카메라 (247) 로 검출한 이랑) 이 경사져 있다. 여기서, 카메라 (247) 는, 트랙터 (1) 의 바로 옆의 이랑의 화상뿐만 아니라, 또한 전방의 이랑의 화상도 촬영한다. 따라서, 무선 통신 단말 (46) 은, 이 화상을 해석함으로써, 바로 옆뿐만 아니라 또한 전방의 이랑의 위치를 산출 가능하다. 따라서, 스텝 S603 에 있어서, 무선 통신 단말 (46) 은, 트랙터 (1) 의 바로 옆뿐만 아니라 또한 전방에 있어서, 등록한 주행 경로와, 카메라 (247) 로 검출한 이랑의 중앙 위치의 어긋남량을 산출 가능하다. 또한, 스텝 S603 에서는, 주행 경로와 이랑의 중앙 위치의 위치 어긋남에 기초하여 판단을 실시하고 있지만, 이것 대신에, 주행 경로의 방향과, 이랑이 형성되는 방향의 어긋남각에 기초하여 판단을 실시해도 된다.In Fig. 40, the actual ridge (the ridge detected by the camera 247) is inclined with respect to the travel route generated in advance. Here, the
도 40 에 나타내는 예에서는, 주행 경로에 대해 이랑이 경사져 있기 때문에, 스텝 S606 에 있어서, 무선 통신 단말 (46) (보정 정보 산출부 (277)) 은, 보정 정보로서, 주행 경로의 각도 변경량을 산출한다. 상기 서술한 바와 같이, 무선 통신 단말 (46) 은, 카메라 (247) 가 검출한 화상에 기초하여 이랑이 형성되는 방향을 검출할 수 있다. 따라서, 주행 경로의 방향과, 이랑이 형성되는 방향을 비교함으로써, 주행 경로의 각도 변경량을 산출한다.In the example shown in FIG. 40, since the ridge is inclined with respect to the travel route, in step S606, the wireless communication terminal 46 (correction information calculation unit 277) calculates the angle change amount of the travel route as correction information. Calculate. As described above, the
또, 도 40 에 나타내는 예에서는, 모든 이랑이 주행 경로에 대해 경사져 있기 때문에, 오퍼레이터가 스텝 S605 에 있어서 「주행 경로의 자동 보정을 허가한다」 를 선택하고, 또한 「모든 주행로를 자동 보정」 을 선택한 것으로 한다. 따라서, 무선 통신 단말 (60) (상세하게는 보정 경로 생성부 (278)) 은, 스텝 S608 에 있어서, 주행로 (P5 ∼ P8) 에 대해, 스텝 S606 에서 구한 각도 변경량에 기초하여, 보정 경로로서의, 주행로 (P51), 주행로 (P61), 주행로 (P71), 주행로 (P81), 선회로 (U51), 선회로 (U71) (도 41 을 참조) 를 생성하고 기억부 (32) 에 기억되어 있는 주행 경로를 갱신한다.In addition, in the example shown in FIG. 40, since all ridges are inclined with respect to the travel path, the operator selects "Allow automatic correction of the travel path" in step S605, and also performs "automatic correction of all travel paths". Make it your choice. Therefore, the wireless communication terminal 60 (in detail, the correction path generation unit 278), in step S608, with respect to the travel paths P5 to P8, based on the angle change amount determined in step S606, the correction path As, the traveling route P51, the traveling route P61, the traveling route P71, the traveling route P81, the turning circuit U51, the turning circuit U71 (refer FIG. 41) are created, and the storage part 32 ) To update the driving route stored in.
이하, 주행로 (P51) 를 예로 보정 경로의 생성 방법에 대해 설명하지만, 다른 보정 경로에 대해서도 동일하게 생성 가능하다. 도 41 에 나타내는 바와 같이, 주행로 (P5) 의 시점과 이랑의 중앙 위치가 일치하고 있지만, 이랑이 형성되어 있는 방향이 어긋나 있는 경우에 있어서의 주행로 (P51) 의 생성 방법으로는 예를 들어 주행로 (P5) 의 시점은 유지한 채로, 종점의 위치를 상기 보정 정보 (각도 변경량) 및 주행로 (P5) 의 경로 길이에 기초하여 산출되는 값 (예를 들어, 경로 길이 × tan (각도 변경량)) 만큼 오프셋시키고, 상기 시점 및 오프셋 후의 종점을 접속하는 경로를 주행로 (P51) 로서 생성한다. 요컨대, 보정 경로 생성부 (278) 는, 이랑의 형성 방향에 기초하여 산출되는 보정 정보에 기초하여, 당해 주행로 (P5) 의 종점을 오프셋시키고, 시점 및 오프셋 후 종점에 기초하여 주행로 (P5) 와는 상이한 새로운 주행로 (P51) 를 보정 경로로서 생성하는 것이 가능하다.Hereinafter, a method of generating a correction path will be described using the travel path P51 as an example, but other correction paths can be similarly generated. As shown in FIG. 41, the viewpoint of the running path P5 and the center position of the ridge coincide, but as a method of generating the running path P51 when the direction in which the ridge is formed is shifted, for example A value calculated based on the correction information (angle change amount) and the path length of the travel path P5 and the position of the end point while maintaining the starting point of the travel path P5 (e.g., path length × tan (angle It is offset by the amount of change)), and a path connecting the starting point and the end point after the offset is created as the travel path P51. In short, the correction
또한, 도 39 및 도 41 을 조합하여 보정 경로를 생성할 수도 있는 것은 말할 필요도 없다. 즉, 이랑의 중심 위치가 주행 경로의 위치에 대해 어긋나 있고, 또한 이랑의 형성 방향이 어긋나 있는 경우, 전자의 어긋남에 기초하여 산출되는 보정 정보에 기초하여 주행로의 시점을 오프셋함과 함께, 전자 및 후자의 어긋남에 기초하여 산출되는 보정 정보에 기초하여 주행로의 종점을 오프셋하고, 오프셋 후의 시점 및 종점을 접속하는 경로를 주행로 (P51) 로서 생성하는 것이 가능하다.It goes without saying that it is also possible to create a correction path by combining FIGS. 39 and 41. That is, when the center position of the ridge is shifted from the position of the travel path, and the direction of formation of the ridge is deviated, the viewpoint of the driving route is offset based on the correction information calculated based on the former deviation, and the electronic And it is possible to offset the end point of the traveling route based on the correction information calculated based on the deviation of the latter, and generate a route connecting the starting point and the end point after the offset as the traveling route P51.
다음으로, 카메라 (247) 가 검출한 외부 환경 정보에 기초하여 장애물의 위치 및 크기를 검출하고, 주행 경로를 자동 보정하는 처리에 대해 도 42 내지 도 44 를 참조하여 설명한다. 이하의 설명에 있어서도, 도 37 에 나타내는 주행 경로 (T) 가 미리 기억부 (32) 에 기억되어 있는 것으로 한다. 이하, 도 42 의 플로우 차트를 참조하여, 장애물을 검출했을 경우에 주행 경로를 보정하는 처리에 대해 설명한다.Next, a process of detecting the position and size of an obstacle and automatically correcting the travel path based on external environment information detected by the
맨 처음에, 무선 통신 단말 (46) 은, 카메라 (247) 가 검출한 화상을 해석함으로써, 장애물을 검출했는지의 여부의 판단을 실시한다 (스텝 S701). 예를 들어, 장애물 (돌, 쓰레기, 다른 작업 차량) 이 형성되어 있는 부분은 다른 부분과 색 및 크기가 상이하기 때문에, 무선 통신 단말 (46) 은, 카메라 (247) 가 검출한 화상에 기초하여, 장애물을 검출 가능하다. 도 43 에 나타내는 예에서는, 트랙터 (1) 가 주행로 (P5) 를 따라 주행하고 있는 동안에 장애물을 검출한다.First, the
스텝 S701 에서 장애물을 검출했다고 판단했을 경우, 무선 통신 단말 (46) 은, 이랑의 경우와 동일하게, 카메라 (247) 로 검출한 장애물의 위치 및 크기를 검출한다 (스텝 S702). 장애물의 크기란, 장애물의 폭, 높이, 깊이 중 적어도 1 개이다. 예를 들어, 장애물의 높이에 따라서는 장애물의 깊이를 검출할 수 없다. 이 경우, 무선 통신 단말 (46) 은, 장애물의 폭과 높이를 검출한다. 또, 장애물의 높이는 주행 경로와 관련이 낮기 때문에, 장애물의 높이의 검출을 생략해도 된다.When it is determined that the obstacle has been detected in step S701, the
다음으로, 무선 통신 단말 (46) 은, 검출한 장애물이 등록이 완료된 상태인지의 여부를 판단한다 (스텝 S703). 스텝 S703 의 판단은, 기억부 (32) 에 등록 (기억) 되어 있는 장애물의 정보와, 스텝 S702 에서 검출한 장애물의 위치 및 크기를 비교함으로써 실시된다. 보다 상세히 설명하면 검출한 장애물이 등록이 완료되었는지의 여부는, 검출한 장애물이 존재하는 영역이 등록이 완료된 장애물의 영역 중 적어도 일부와 중복되어 있는 경우, 등록이 완료된 것으로 판단하고, 등록이 완료된 장애물의 영역에 중복되어 있지 않은 경우, 등록이 완료되지 않은 것으로 판단한다.Next, the
무선 통신 단말 (46) 은, 검출한 장애물이 등록되어 있는 경우 (스텝 S703, 예), 등록이 완료된 장애물과 검출한 장애물의 위치 또는 크기가 임계값 이상 상이한지의 여부를 판단한다 (스텝 S704). 이 임계값은, 스텝 S603 과 동일하게, 위성 측위 시스템의 오차, 또는 트랙터 (1) 의 작업을 저해하는지의 여부에 기초하여 결정하는 것이 바람직하다.When the detected obstacle is registered (step S703, YES), the
무선 통신 단말 (46) 은, 검출한 장애물의 위치 및/또는 크기가 등록이 완료된 장애물과 임계값 이상 상이한 경우 (스텝 S704, 예), 자율 주행의 정지 신호를 트랙터 (1) 에 송신하여, 트랙터 (1) 를 일시 정지시킨다 (스텝 S705). 또한, 무선 통신 단말 (46) 은, 등록이 완료된 장애물과 검출한 장애물의 위치 및/또는 크기의 어긋남량이 임계값보다 작은 경우 (스텝 S704, 아니오), 이 장애물에 대해서는 보정 경로를 생성하지 않고 스텝 S701 의 처리로 되돌아간다. 보다 상세히 설명하면, 검출한 장애물이 존재하는 영역이 등록이 완료된 장애물의 영역과 일치하거나, 혹은 내포되는 경우, 그리고 검출한 장애물이 존재하는 영역이 등록이 완료된 장애물의 영역의 일부와 중복되는 경우이고, 예를 들어, 중복되지 않는 영역의 크기가 임계값 이상인 경우에는, 스텝 S705 로 진행된다.When the position and/or size of the detected obstacle differs from the registered obstacle by a threshold value or more (step S704, YES), the
또, 무선 통신 단말 (46) 은, 검출한 장애물이 등록되어 있지 않은 경우 (스텝 S703, 아니오), 자율 주행의 정지 신호를 트랙터 (1) 에 송신하여, 트랙터 (1) 를 일시 정지시킨다 (스텝 S705). 도 43 에 나타내는 예에서는, 등록되어 있지 않은 장애물이 검출된 것으로 한다. 또한, 미등록된 장애물을 검출했을 경우에도, 당해 장애물이 임계값 이상 (예를 들어 트랙터 (1) 의 작업을 저해하지 않을 정도로) 작은 경우에는, 스텝 S701 의 처리로 되돌아가도 된다.Further, when the detected obstacle is not registered (step S703, NO), the
다음으로, 무선 통신 단말 (46) 은, 주행 경로의 자동 보정에 대해 오퍼레이터의 허가가 있는지의 여부를 판단한다 (스텝 S706). 이 판단은, 기본적으로는, 도 36 의 스텝 S605 와 동일하다. 단, 장애물은 오퍼레이터가 수작업으로 제거할 수 있을 가능성이 있다. 따라서, 오퍼레이터는, 장애물을 제거한 후에, 「주행 경로를 보정하지 않고 작업을 속행한다」 를 선택함으로써, 등록한 주행 경로를 따라 작업을 계속할 수 있다. 또, 장애물의 형상에 따라서는, 주행로가 오버랩하는 (또는 미리 설정된 허용 오버랩량을 초과하는) 보정 경로가 생성되는 경우도 생각할 수 있다. 이 경우, 무선 통신 단말 (46) 은, 오버랩에 관한 허가를 오퍼레이터에게 요구한다.Next, the
무선 통신 단말 (46) (상세하게는 보정 정보 산출부 (277)) 은, 주행 경로의 자동 보정에 대해 오퍼레이터의 허가가 있다고 판단했을 경우 (스텝 S706, 예), 트랙터 (1) 의 위치 정보, 장애물의 위치 및 크기 등에 기초하여 보정 정보를 산출한다 (스텝 S707). 상기 서술한 바와 같이, 무선 통신 단말 (46) 은, 위치 정보 산출부 (49) 가 검출한 트랙터 (1) 의 절대 위치와, 트랙터 (1) 에 대한 장애물의 상대 위치에 기초하여, 실제의 장애물의 절대 위치 (즉 주행 경로 상의 실제의 장애물의 위치) 를 검출할 수 있다. 여기서 보정 정보는, 검출한 장애물이 등록이 완료된 장애물인 경우, 등록이 완료된 장애물의 영역을 보정한 보정 후의 영역이, 등록이 완료된 장애물의 영역 및 검출한 장애물이 존재하는 영역을 내포하는 영역이 되도록 보정하기 위한 정보이다. 이에 대해, 검출한 장애물이 등록이 완료된 장애물이 아닌 경우, 새롭게 등록해야 할 장애물의 영역으로서 당해 영역이, 검출한 장애물이 존재하는 영역을 내포하는 영역이 되도록 보정하기 (새롭게 등록하기) 위한 정보이다.When the wireless communication terminal 46 (in detail, the correction information calculation unit 277) determines that there is permission from the operator for automatic correction of the travel route (step S706, YES), the position information of the
다음으로, 무선 통신 단말 (46) (상세하게는 보정 경로 생성부 (278)) 은, 스텝 S707 에서 산출한 보정 정보에 기초하여 보정 경로를 생성하고, 기억부 (32) 에 기억되어 있는 주행 경로를 갱신한다 (스텝 S708). 도 43 및 도 44 에 나타내는 예에서는, 무선 통신 단말 (46) 은, 주행로 (P5), 주행로 (P6), 선회로 (U5) 를 보정하여, 앞에서 선회하는 보정 경로인 주행로 (P51), 주행로 (P61), 선회로 (U51) 를 생성한다.Next, the wireless communication terminal 46 (in detail, the correction route generation unit 278) generates a correction route based on the correction information calculated in step S707, and the travel route stored in the storage unit 32 Is updated (step S708). In the examples shown in Figs. 43 and 44, the
이하, 보정 경로의 생성 방법에 대해 설명한다. 검출한 장애물이 등록이 완료된 장애물이었을 경우, 보정 정보에 기초하여 상기 보정 정보가 자율 주행·자율 작업에 영향을 미치는 주행로를 특정한다. 예를 들어, 주행로 (P5) 를 주행 중에 검출한 장애물이 등록이 완료된 장애물보다 트랙터 (1) 의 주행 방향에 대해 어긋나 있는 경우, 당해 어긋남에 기초하는 보정 정보는 주행로 (P5) 에 영향을 미치는 것으로 특정되고, 트랙터 (1) 의 주행 방향에 대해 수직 방향으로 어긋나 있는 경우, 당해 어긋남에 기초하는 보정 정보는 주행로 (P5) 에 인접하는 주행로 (P6) 에 영향을 미치는 것으로 특정된다. 그리고, 특정된 주행로의 시점 및 종점 중, 장애물의 주위에 형성되어 있는 종점을, 보정 정보에 기초하여 오프셋함으로써 시점 및 오프셋 후의 종점에 기초하여 새로운 주행로를 보정 경로로서 생성한다.Hereinafter, a method of generating a correction path will be described. When the detected obstacle is an obstacle for which registration has been completed, a travel path in which the correction information affects the autonomous driving/autonomous operation is specified based on the correction information. For example, when an obstacle detected while traveling on the travel path P5 is deviated from the registered obstacle with respect to the travel direction of the
한편, 검출한 장애물이 등록이 완료된 장애물이 아닌 경우, 상기와 동일하게, 보정 정보에 기초하여 상기 보정 정보가 자율 주행·자율 작업에 영향을 미치는 주행로를 특정한다. 그리고, 특정된 주행로의 시점 및 종점 중, 종점을, 보정 정보에 기초하여 포장단으로부터 장애물의 주위로 변경하여, 시점 및 변경 후의 종점에 기초하여 새로운 주행로를 보정 경로로서 생성한다.On the other hand, if the detected obstacle is not an obstacle for which registration has been completed, as in the same manner as above, based on the correction information, a travel path in which the correction information affects the autonomous driving/autonomous operation is specified. Then, among the starting and ending points of the specified travel path, the end point is changed from the pavement end to the perimeter of the obstacle based on the correction information, and a new travel path is generated as a correction path based on the starting point and the end point after the change.
다음으로, 무선 통신 단말 (46) 은, 트랙터 (1) 의 주행을 재개하고, 스텝 S708 에서 갱신한 주행 경로를 따라 트랙터 (1) 를 주행시킨다 (스텝 S709). 그 후에도 무선 통신 단말 (46) 은, 장애물을 검출했는지 여부의 판단을 실시하고 (스텝 S701), 장애물을 검출한 경우에는, 스텝 S702 이후의 처리를 실시한다. 이와 같이 연속해서 상기의 처리를 실시함으로써, 포장에 미등록된 장애물이 복수 있는 경우에도, 주행 경로를 보정할 수 있다.Next, the
또한, 무선 통신 단말 (46) 은 스텝 S708 에 있어서, 검출된 장애물이 등록이 완료된 장애물인 경우, 보정 경로를 생성하는 것에 더하여, 사용자에 대해 장애물 외주 설정부 (34) 에 의한 장애물의 재등록 또는 보정 정보에 기초하는 장애물의 등록 변경을 제안하는 것이 바람직하고, 또한 검출된 장애물이 등록이 완료된 장애물이 아닌 경우, 보정 경로를 생성하는 것에 더하여, 사용자에 대해 장애물 외주 설정부 (34) 에 의한 장애물의 신규 등록 또는 보정 정보에 기초하는 장애물의 신규 등록을 제안하는 것이 바람직하다.Further, in step S708, when the detected obstacle is a registered obstacle, in addition to generating a correction path, the
이상으로 설명한 바와 같이, 본 실시형태의 자율 주행 경로 생성 시스템 (299) 은, 경로 생성부 (276) 와, 기억부 (32) 와, 카메라 (247) 와, 보정 정보 산출부 (277) 와, 보정 경로 생성부 (278) 를 구비한다. 경로 생성부 (276) 는, 주행 경로를 생성한다. 기억부 (32) 는, 경로 생성부 (276) 가 생성한 주행 경로를 기억한다. 카메라 (247) 는, 트랙터 (1) 에 형성되고, 작업 영역 내에 있어서의 외부 환경 정보 (특정 대상 (이랑 또는 장애물 등) 의 위치 및 크기 등) 를 취득한다. 보정 정보 산출부 (277) 는, 카메라 (247) 가 취득한 외부 환경 정보에 기초하여, 주행 경로를 보정하기 위한 보정 정보를 산출한다. 보정 경로 생성부 (278) 는, 보정 정보 산출부 (277) 가 산출한 보정 정보에 기초하여 주행 경로를 보정한 보정 경로를 생성하고, 기억부 (32) 에 기억한다.As described above, the autonomous travel route generation system 299 of the present embodiment includes a
이로써, 트랙터 (1) 에 형성된 카메라 (247) 에서 취득된 외부 환경 정보에 기초하여 주행 경로가 보정된다. 따라서, 미리 생성된 주행 경로를 현재의 환경 등에 기초하여 보정할 수 있다. 또, 보정 경로를 기억부 (32) 에 기억함으로써, 다음번 이후에 주행 경로를 보정하는 수고를 없앨 수 있다.Thereby, the traveling route is corrected based on the external environment information acquired by the
이상으로 본 발명의 바람직한 실시형태를 설명했지만, 상기의 구성은 예를 들어 이하와 같이 변경할 수 있다.Although the preferred embodiment of the present invention has been described above, the above configuration can be changed as follows, for example.
상기의 제 6 실시형태에서는, 외부 환경 정보에 의해 특정되는 특정 대상으로서, 이랑 및 장애물을 들어 설명했지만, 다른 특정 대상 (홈 또는 포장의 단부) 이어도 된다. 예를 들어, 포장의 외주의 위치를 설정하는 경우, 상기 서술한 바와 같이, 트랙터 (1) 를 포장의 외주를 따라 1 바퀴 주회시킨다. 이 때, 무선 통신 단말 (46) 은, 카메라 (247) 에 기초하여, 포장의 단부를 검출 가능하다. 무선 통신 단말 (46) 은, 등록된 포장의 단부와, 검출한 포장의 단부의 어긋남량이 임계값 이상인 경우에, 포장 외주의 설정을 보정하고, 당해 포장 외주의 영향을 받는 경우에는, 주행 경로도 보정한다.In the sixth embodiment described above, as the specific object specified by the external environment information, the ridge and the obstacle have been described, but other specific objects (grooves or end portions of the pavement) may be used. For example, in the case of setting the position of the outer periphery of the pavement, as described above, the
상기의 실시형태에서는, 외부 환경 정보 취득부로서 카메라 (247) 를 예로 들어 설명했지만, 외부 환경 정보 취득부는 레이더 장치이어도 된다. 또, 상기의 실시형태에 있어서 기억부 (32) 가 기억하는 정보 중 적어도 일부를 기억부 (55) 에 기억해도 된다. 동일하게, 기억부 (55) 가 기억하는 정보 중 적어도 일부를 기억부 (32) 에 기억해도 된다.In the above embodiments, the
상기의 실시형태에서는, 자율 주행 경로 생성 시스템 (299) 을 구성하는 경로 생성부 (276) 와, 기억부 (32) 와, 보정 정보 산출부 (277) 와, 보정 경로 생성부 (278) 는, 무선 통신 단말 (46) 측에 구비되어 있는 것으로 했지만, 이것에 한정되는 것은 아니다. 즉, 이들의 일부 또는 전부가 트랙터 (1) 측 또는 다른 기기에 구비되어 있어도 된다.In the above embodiment, the
상기 실시형태에서는, 보정 정보 산출부 (277) 가 외부 환경 정보 취득부 (예를 들어 카메라 (247)) 가 취득한 정보에 기초하여 보정 정보를 산출하고, 보정 정보 산출부 (277) 에 의해 산출된 보정 정보에 기초하여 보정 경로 생성부 (278) 가 보정 경로를 생성하는 것으로 했지만, 보정 정보는 보정 정보 산출부 (277) 에 의해 산출된 것이 아니어도 되고, 사용자가 외부 입력 장치 (예를 들어 디스플레이 (37)) 를 조작함으로써 입력한 보정값이어도 된다. 사용자가 트랙터 (1) 의 자율 주행·자율 작업을 개시시키고자 할 때나, 카메라 (247) 에 의해 주행 경로와 이랑의 중앙 위치의 위치 어긋남이 검출되었을 때에 있어서, 디스플레이 (37) 를 조작하여 보정값을 입력 가능하게 함으로써, 사용자가 원하는 양태로 위치 어긋남을 보정한 보정 경로를 생성하는 것이 가능하다. 또한, 사용자가 적절한 보정값을 입력 가능하게 하기 위해, 표시 제어부 (31) 는, 보정 정보 산출부 (277) 는 산출한 보정 정보에 기초하여 추천되는 보정값을 디스플레이 (37) 에 표시하는 것으로 하면 된다. 또, 무선 통신 단말 (46) 은, 사용자에 의해 입력된 보정값이, 상기 추천되는 보정값을 일탈하고 있는 경우에는, 경고를 실시하여 보정값의 수정을 구하는 것으로 해도 된다.In the above embodiment, the correction
또, 복수열의 주행로 중, 특정한 주행로에 대해 보정 경로가 생성되었을 경우, 당해 특정한 주행로를 포함하여, 트랙터 (1) 에 의해 자율 주행·자율 작업이 실시되어 있지 않은 주행로 (이하, 주행 예정 주행로라고 칭한다) 를, 상기 보정 경로의 생성에 수반하여 보정하는 것으로 해도 되고, 당해 특정한 주행로만 보정하고, 다른 경로를 보정하지 않는 것으로 해도 된다. 전자의 경우, 예를 들어 특정한 주행로를 N ㎝ 만큼 개시 위치측에 오프셋한 보정 경로가 생성되었을 경우, 주행 예정 주행로도 동일하게 N ㎝ 만큼 개시 위치측에 오프셋한 보정 경로가 생성된다. 한편, 후자의 경우, 예를 들어 특정한 주행로를 N ㎝ 만큼 개시 위치측에 오프셋한 보정 경로가 생성되어도, 주행 예정 주행로는 보정되지 않고 유지된다. 이 경우, 특정한 주행로의 다음에 트랙터 (1) 에 의해 자율 주행·자율 작업이 실시되는 다음 주행로의 시점은 변경되지 않기 때문에, 특정한 주행로의 종점과 다음 주행로의 시점을 접속하는 선회로가 별도로 생성된다.In addition, when a correction path is generated for a specific travel path among a plurality of driving paths, a driving path including the specific driving path in which autonomous driving/autonomous work is not performed by the tractor 1 (hereinafter referred to as driving (Referred to as a scheduled travel route) may be corrected with the generation of the correction route, or only the specific route may be corrected and no other route may be corrected. In the former case, when, for example, a correction path in which a specific travel path is offset to the start position side by N cm is generated, a correction path that is also offset to the start position side by N cm is generated in the same manner as the planned travel path. On the other hand, in the latter case, even if a corrected route in which a specific traveling route is offset by N cm to the start position side is generated, the planned traveling route is not corrected and is maintained. In this case, since the timing of the next driving route where autonomous driving/autonomous work is performed by the
상기 실시형태에서는, 검출한 장애물이 등록이 완료된 장애물인지의 여부를 판단하는 것으로 했지만, 등록이 완료되지 않은 장애물이란, 작업 영역 내에 존재하는 정적인 (자신의 의사 또는 바람 등의 자연 현상으로 이동하지 않는다) 장애물뿐만 아니라, 동적인 (자신의 의사 또는 바람 등의 자연 현상으로 이동한다) 장애물이어도 된다. 동적인 장애물로는 인간이나 동물을 들 수 있다. 도 42 의 스텝 S707 에 있어서 보정 정보 산출부 (277) 는, 트랙터 (1) 의 위치 정보, 장애물의 위치 및 크기 등에 기초하여 보정 정보를 산출하는 것으로 했지만, 특히, 등록이 완료되지 않은 장애물이 동적인 장애물인 경우, 보정 정보에는 추가로, 당해 장애물의 시간 경과적인 위치 변화를 특정 가능한 정보가 포함된다. 시간 경과적인 위치 변화를 특정 가능한 정보는, 동적인 장애물의 이동 방향 및 이동 속도를 나타내는 정보가 포함되어 있어도 되고, 또, 트랙터 (1) 와 동적인 장애물의 위치 (이간 거리) 및 이동 속도에 기초하여 산출되는 트랙터 (1) 가 동적인 장애물과 접촉할 때까지의 시간 (이하, 시간 (TM1)) 이 경과했을 때에 있어서의 동적인 장애물의 위치 정보가 포함되어 있어도 된다. 또한, 장애물이 동적인지 정적인지는, 카메라 (247) 가 검출한 동영상 또는 복수의 화상에 기초하여, 예를 들어 장애물의 위치 변화를 포착함으로써 특정 가능하다.In the above embodiment, it is determined whether or not the detected obstacle is an obstacle for which registration has been completed. However, an obstacle that has not been registered means a static (self-intentional or natural phenomenon such as wind) existing in the work area. It may be not only an obstacle, but also a dynamic (moving by one's own intention or natural phenomena such as wind). Dynamic obstacles include humans and animals. In step S707 of Fig. 42, the correction
장애물이 동적인 장애물인 경우, 무선 통신 단말 (46) 은, 상기 시간 (TM1) 이 경과한 시점에 있어서 트랙터 (1) 와 동적인 장애물이 접촉하는지의 여부를 판단하고, 접촉하지 않는다고 판단했을 경우, 보정 정보에 기초하는 보정 경로를 생성하지 않는다. 한편, 상기 시간 (TM1) 이 경과한 시점에 있어서 트랙터 (1) 와 동적인 장애물이 접촉했다고 판단했을 경우, 보정 정보에 기초하는 보정 경로를 생성한다. 보정 경로로는, 상기 시간 (TM1) 이 경과한 시점에 있어서 트랙터 (1) 와 동적인 장애물이 접촉하지 않는 경로가 된다. 따라서, 등록이 완료되지 않은 장애물이 정적인 장애물인 경우, 특정된 주행로의 시점 및 종점 중, 종점을 변경하여 보정 경로를 생성하는 것으로 했지만, 동적인 장애물인 경우, 시점 및 종점을 변경하지 않고, 시간 (TM1) 경과 후에 동적인 장애물을 회피하는 우회로를 포함하는 보정 경로가 생성된다. 동적인 장애물을 우회하는 경우, 당해 우회로에는 동적인 장애물과의 접촉을 회피하기 위한 선회로가 포함되지만, 그 선회 방향은, 동적인 장애물의 이동 방향과는 반대의 방향인 것이 바람직하다.When the obstacle is a dynamic obstacle, the
또한, 동적인 장애물은 항상 일정한 움직임을 한다고는 한정되지 않고, 시간 경과적으로 상이한 움직임이 되는 경우가 있다. 그 경우 적절히 동적인 장애물과의 접촉을 회피하는 보정 경로를 생성하는 것으로 하면 되지만, 트랙터 (1) 가 그대로 이동을 속행했을 경우에, 동적인 장애물과의 접촉을 피할 수 없거나, 혹은 동적인 장애물의 이동 방향이 단시간에 연속해서 변경되는 등 접촉의 회피가 곤란하다고 판단했을 경우, 트랙터 (1) 를 정지시키는 것으로 해도 된다. 그 경우, 트랙터 (1) 가 정지한 위치에서 종점까지의 보정 경로를 생성하는 것으로 하면 된다.In addition, dynamic obstacles are not limited to always making constant movements, and may be different movements over time. In that case, it is sufficient to create a corrected path that appropriately avoids contact with a dynamic obstacle. However, when the
<제 7 실시형태><Seventh embodiment>
다음으로, 본 개시의 제 7 실시형태에 관련된 자율 주행 경로 생성 시스템 (399) 에 대해, 주로 도 45 내지 도 57 까지를 참조하여 상세하게 설명한다. 도 45 는, 본 개시의 제 7 실시형태에 관련된 자율 주행 경로 생성 시스템 (399) 이 생성한 자율 주행 경로 (93) 를 따라 주행하는 로봇 트랙터 (1) 의 전체적인 구성을 나타내는 측면도이다.Next, the autonomous travel
본 실시형태의 로봇 트랙터 (1) 는, 제 1 실시형태에 있어서의 작업기 (3) 대신에 작업기 (300) 를 구비하고 있다. 본 개시에서는, 작업기 (300) 로서, 도시 생략된 회전 칼날에 의해 예초 작업을 실시하는 예초 작업부 (작업부) (3A) 를 구비하는 예초기가 사용되고 있다. 이 예초기는, 예초 작업부 (3A) 를 주행 기체 (2) 에 대해 기체 좌우 방향으로 오프셋시킨 상태에서 예초 작업을 실시하는 것이 가능한 오프셋형 예초기 (오프셋형 작업기) 로서 구성되어 있다. 도 46 에는, 예초 작업부 (3A) 가 주행 기체 (2) 에 대해 진행 방향 우측으로 오프셋한 상태가 나타나 있다. 단, 자세한 것은 도시되지 않지만, 작업기 (300) 는 유압 실린더 (후술하는 오프셋 액추에이터 (345)) 를 구비하고 있고, 이 유압 실린더를 구동시킴으로써, 예초 작업부 (3A) 를, 도 46 과는 반대측으로 (진행 방향 좌측으로) 오프셋시키거나, 주행 기체 (2) 의 바로 뒤에 위치시키거나 할 수도 있다.The
작업기 (300) 는, 예초 작업부 (3A) 등을 제어하기 위한 작업기 제어부 (350) 를 구비한다. 작업기 제어부 (350) 는, 도시되지 않은 CPU, ROM, RAM, I/O 등을 구비하여 구성되어 있고, CPU 는, 각종 프로그램 등을 ROM 으로부터 판독 출력하여 실행할 수 있다. 작업기 제어부 (350) 는, 주행 기체 (2) 의 제어부 (4) 와 전기적으로 접속되어 있고, 제어부 (4) 로부터의 지령에 기초하여 작업기 (300) 를 제어할 수 있다. 작업기 제어부 (350) 에는, 오프셋 컨트롤러 (365) 가 전기적으로 접속되어 있다.The
오프셋 컨트롤러 (365) 는, 작업기 (300) 의 예초 작업부 (3A) 의 오프셋량을 제어하는 것이다. 구체적으로는, 작업기 (300) 는, 오프셋 액추에이터 (345) 를 구비하고 있다. 오프셋 액추에이터 (345) 로는, 예를 들어 유압 실린더, 전동 모터 등이 생각되지만, 이들에 한정되지 않는다. 이 구성에서, 오프셋 컨트롤러 (365) 는, 작업기 제어부 (350) 로부터 입력된 제어 신호에 기초하여 오프셋 액추에이터 (345) 를 구동시킨다. 이 제어에 의해, 작업기 (300) 의 예초 작업부 (3A) 를 기체 좌우 방향으로 변위시킬 수 있다.The offset
오프셋 액추에이터 (345) 를 제어부 (4) (작업기 제어부 (350)) 에 의해 제어하여, 작업기 (300) 의 예초 작업부 (3A) 를 주행 기체 (2) 로부터 적절히 오프셋시킨 상태에서 트랙터 (1) 를 주행시킴으로써, 예초 작업부 (3A) 가 지나는 경로의 중심과 주행 기체 (2) 가 지나는 경로의 중심이 기체 좌우 방향으로 어긋난 상태에서 예초 작업부 (3A) 에 의한 작업을 실시할 수 있다.The offset
작업기 (300) 의 오프셋 컨트롤러 (365) 를 포함하는, 복수의 상기 컨트롤러 (예를 들어, 엔진 컨트롤러 (61) 등) 는, 트랙터 (1) 의 제어부 (4) 로부터 입력되는 신호에 기초하여 작업기 (300) 등의 각 부를 제어하고 있다. 따라서, 제어부 (4) 가 실질적으로 각 부를 제어하고 있다고 파악할 수 있다.A plurality of the controllers (e.g.,
다음으로, 자율 주행 경로 생성 시스템 (399) 에 대해, 주로 도 47 및 도 48 을 참조하여 보다 상세하게 설명한다.Next, the autonomous driving
본 실시형태의 자율 주행 경로 생성 시스템 (399) 의 주된 구성은, 무선 통신 단말 (46) 에 구비된다. 도 48 에 나타내는 바와 같이, 본 실시형태의 무선 통신 단말 (46) 은, 상기 서술한 제어부 (71) 와, 디스플레이 (표시부) (37), 및 통신부 (72) 등 외에, 작업 차량 정보 설정부 (오프셋 설정부) (51), 포장 정보 설정부 (개시 종료 위치 설정부) (52), 작업 정보 설정부 (53), 및 자율 주행 경로 생성부 (354) 등을 구비한다.The main configuration of the autonomous travel
본 실시형태의 무선 통신 단말 (46) 도, 제 1 실시형태의 경우와 동일하게, 상기한 소프트웨어와 하드웨어의 협동에 의해, 작업 차량 정보 설정부 (오프셋 설정부) (51), 포장 정보 설정부 (개시 종료 위치 설정부) (52), 작업 정보 설정부 (53), 및 자율 주행 경로 생성부 (354) 등으로서 동작할 수 있다.The
작업 차량 정보 설정부 (51) 는, 트랙터 (1) 에 관한 정보 (이하, 작업 차량 정보라고 부르는 경우가 있다) 를 설정하기 위한 것이다. 작업 차량 정보 설정부 (51) 는, 트랙터 (1) 의 기종, 트랙터 (1) 에 있어서 측위용 안테나 (6) 가 장착되어 있는 위치, 작업기 (300) 의 종류, 작업기 (300) 의 사이즈 및 형상, 작업기 (300) 의 주행 기체 (2) 에 대한 위치, 트랙터 (1) 의 작업 중의 차속 및 엔진 회전수, 트랙터 (1) 의 선회 중의 차속 및 엔진 회전수 등에 대해, 오퍼레이터가 무선 통신 단말 (46) 을 적절히 조작함으로써 지정한 내용을 기억할 수 있다.The work vehicle
작업 차량 정보 설정부 (51) 는, 상기의 작업기 (300) 의 사이즈로서, 예초 작업부 (3A) 에 의해 작업이 실시되는 좌우 방향의 유효폭 (도 46 에 나타내는 폭 (E2). 이하, 작업폭이라고 부르는 경우가 있다) 을 설정할 수 있다. 또, 작업 차량 정보 설정부 (51) 는, 작업기 (300) 가 오프셋형 작업기인 경우에, 상기의 작업기 (300) 의 주행 기체 (2) 에 대한 위치로서, 예초 작업부 (3A) 를 주행 기체 (2) 에 대해 오프셋시키는 방향 (기체 좌측 방향인가, 기체 우측 방향인가, 또는 양방인가) 과, 오프셋 작업을 실시하는 경우의 기체 좌우 방향의 오프셋 거리 (E1) 를 설정할 수 있다.The work vehicle
오프셋 거리 (E1) 는, 도 46 및 도 49 에 나타내는 바와 같이, 주행 기체 (2) 에 적절히 설정된 기준점 (2C) 과, 작업기 (300) (예초 작업부 (3A)) 에 적절히 설정된 기준점 (3C) 사이의 기체 좌우 방향에서의 거리로서 정의할 수 있다. 주행 기체 (2) 의 기준점 (2C) 은, 주행 기체 (2) 의 위치를 대표하는 점으로서 임의로 정할 수 있지만, 당해 기준점 (2C) 은 주행 기체 (2) 의 좌우 방향 중앙에 위치하도록 설정하는 것이 바람직하다. 작업기 (300) (예초 작업부 (3A)) 의 기준점 (3C) 에 대해서도, 당해 작업기 (300) (예초 작업부 (3A)) 의 위치를 대표하는 점으로서 임의로 정할 수 있지만, 당해 기준점 (3C) 은 예초 작업부 (3A) 의 좌우 방향 중앙에 위치하도록 설정하는 것이 바람직하다. 또한, 주행 기체 (2) 에 대한 작업기 (300) 의 연결 위치가 주행 기체 (2) 의 좌우 방향 중앙이 아닌 경우, 상기 기준점 (2C) 대신에 당해 연결 위치 (복수 위치에서 연결되어 있는 경우에는 연결 위치 중심) 를 기준점으로 하여, 당해 기준점과 상기 기준점 (3C) 사이의 기체 좌우 방향에서의 거리를 오프셋 거리 (E1) 로서 정의하는 것으로 해도 된다. 또, 측위용 안테나 (6) 의 장착 위치는, 도 45 에 나타내는 바와 같이 주행 기체 (2) 의 기준점 (2C) 과 일치하고 있어도 되고, 일치하지 않아도 되다.The offset distance E1 is a
포장 정보 설정부 (52) 는, 포장 정보를 설정하기 위한 것이다. 포장 정보 설정부 (52) 는, 포장 (380) 의 위치 및 형상, 자율 주행시키고자 하는 개시 위치 및 종료 위치, 작업 방향 등에 대해, 오퍼레이터가 무선 통신 단말 (46) 을 조작함으로써 설정한 내용을 기억할 수 있다.The packaging
작업 정보 설정부 (53) 는, 작업을 구체적으로 어떻게 실시할지에 관한 정보 (이하, 작업 정보라고 부르는 경우가 있다) 를 설정하기 위한 것이다. 작업 정보 설정부 (53) 는, 작업 정보로서, 로봇 트랙터 (1) 와 유인의 트랙터의 협조 작업의 유무, 트랙터 (1) 가 침지에 있어서 선회하는 경우에 스킵하는 작업 경로 (383A) 의 수인 스킵수, 침지의 폭, 및 비경작지의 폭 등을 설정 가능하게 구성되어 있다.The job
자율 주행 경로 생성부 (354) 는, 트랙터 (1) 를 자율 주행시키는 경로인 자율 주행 경로 (383) 를 생성하기 위한 것이다. 자율 주행 경로 생성부 (354) 는, 작업 차량 정보 설정부 (51), 포장 정보 설정부 (52) 및 작업 정보 설정부 (53) 로 설정된 정보에 기초하여, 트랙터 (1) 의 자율 주행 경로 (383) 를 생성하고 기억할 수 있다.The autonomous travel
다음으로, 주로 도 50 내지 도 53 까지를 참조하여, 자율 주행 경로 (383) 를 생성하기 위한 무선 통신 단말 (46) 에 있어서의 설정에 대해 설명한다. 도 50 은, 무선 통신 단말 (46) 의 디스플레이 (37) 에 있어서의 작업 차량 정보 입력 화면 (391) 의 표시예를 나타내는 도면이다. 도 51 은, 무선 통신 단말 (46) 의 디스플레이 (37) 에 있어서의 포장 정보 입력 화면 (392) 의 표시예를 나타내는 도면이다. 도 52 는, 무선 통신 단말 (46) 의 디스플레이 (37) 에 있어서의 작업 정보 입력 화면 (393) 의 표시예를 나타내는 도면이다.Next, with reference mainly to Figs. 50 to 53, the setting in the
무선 통신 단말 (46) 에 있어서 오퍼레이터가 소정의 조작을 실시하면, 제어부 (71) 는, 도 50 에 나타내는 작업 차량 정보 입력 화면 (391) 을 디스플레이 (37) 에 표시하도록 제어한다.When the operator performs a predetermined operation in the
작업 차량 정보 입력 화면 (391) 에는, 제 1 실시형태에 관련된 작업 차량 정보 입력 화면 (81) 과 동일한 정보인 트랙터 (1) 의 기종, 트랙터 (1) 의 크기, 측위용 안테나 (6) 의 주행 기체 (2) 에 대한 장착 위치, 작업기 (300) 의 종류, 작업기 (300) 의 작업폭 (E2) 을 입력하는 란 외에, 3 점 링크 기구의 후단 (로어 링크의 후단) 으로부터 작업기 (300) 의 후단까지의 거리, 주행 기체 (2) 에 대해 작업기 (300) (예초 작업부 (3A)) 를 오프셋하는 것이 가능한 방향, 작업기 (300) 를 오프셋했을 경우의 기체 좌우 방향의 오프셋 거리 (구체적으로는, 주행 기체 (2) 의 기준점 (2C) 과 예초 작업부 (3A) 의 기준점 (3C) 사이의 기체 좌우 방향의 거리) (E1) 등을 입력하는 란이 각각 배치되어 있다.In the work vehicle
오퍼레이터는, 무선 통신 단말 (46) 을 조작하여, 작업 차량 정보 입력 화면 (391) 의 각 란에 배치되어 있는 텍스트 박스에 수치를 입력하거나 드롭 다운 박스의 일람에서 선택하거나 함으로써, 설정을 실시한다. 이로써, 작업기 (300) 가 갖는 예초 작업부 (3A) 의 작업폭 (E2), 예초 작업부 (3A) 를 주행 기체 (2) 에 대해 오프셋시키는 것이 가능한 좌우 오프셋 방향 (우측인가, 좌측인가, 양방인가) 및 오프셋 거리 (E1) 등을 포함하는 각종 정보를 설정할 수 있다.The operator operates the
작업 차량 정보 입력 화면 (391) 에 있어서 오퍼레이터가 지정한 작업 차량 정보는, 작업 차량 정보 설정부 (51) 에 기억된다. 작업 차량 정보의 입력이 완료되면, 제어부 (71) 는, 제 1 실시형태의 도 7 에 나타낸 것과 대체로 동일한, 포장 정보 입력 화면 (392) 을 표시하도록 디스플레이 (37) 를 제어한다 (도 51).The work vehicle information designated by the operator on the work vehicle
포장 정보 입력 화면 (392) 에는, 제 1 실시형태에 나타낸 것과 대체로 동일한 내용의 포장 정보가 입력되고, 설정이 실시되지만, 이하에서는, 본 실시형태에 특유의 설정 내용에 대해 상세하게 설명한다.In the packaging
도 7 에는, 포장 (90) 의 위치 및 형상, 작업의 개시 위치 그리고 종료 위치를 설정한 예가 나타나 있다. 도 7 의 예에 있어서는, 사각형상의 포장 (90) 의 귀퉁이의 하나에 개시 위치가 설정되고, 당해 귀퉁이와 대각 위치에 있는 귀퉁이에 종료 위치가 설정되어 있다. 이와 같이, 본 실시형태의 자율 주행 경로 생성 시스템 (399) 에서는, 제 1 실시형태에 나타낸 것과 동일하게, 개시 위치 및 종료 위치의 양방이 포장 (380) 의 단부에 설정되는 것을 원칙으로 하고 있다.7 shows an example in which the position and shape of the
한편, 본 실시형태에 있어서는, 작업기 (300) (예초 작업부 (3A)) 가 주행 기체 (2) 에 대해 기체 좌우 방향 중 어느 쪽으로 오프셋하면서 작업 가능하다는 취지의 설정이 작업 차량 정보 설정부 (51) 에서 설정되어 있는 경우, 자율 주행의 개시 위치 및 종료 위치 중 일방 (만) 에 대해, 작업 영역 (381) 의 중앙 부근의 점을 지정할 수 있다. 도 51 에, 이와 같은 경우의 예를 나타내고 있다. 도 51 의 예에서는, 개시 위치가 포장 (380) 의 귀퉁이에 설정되는 한편, 종료 위치가 포장 (3800) 의 중앙부에 설정되어 있다. 또한, 이와 같은 설정은 오프셋형 작업기를 사용하는 경우에 특유의 것이며, 오프셋형이 아닌 작업기를 사용하는 경우에는, 도 51 과 같은 지정을 실시할 수 없다.On the other hand, in the present embodiment, the setting to the effect that the work machine 300 (the
포장 정보 입력 화면 (392) 에 있어서 오퍼레이터가 지정한 포장 정보는, 포장 정보 설정부 (52) 에 기억된다. 포장 정보의 입력이 완료되면, 제어부 (71) 는, 도 52 에 나타내는 바와 같은 작업 정보 입력 화면 (393) 을 표시하도록 디스플레이 (37) 를 제어한다.The packaging information designated by the operator on the packaging
작업 정보 입력 화면 (393) 에서는, 구체적인 작업의 정보 (상기 작업 정보) 를 입력할 수 있다. 구체적으로는, 작업 정보 입력 화면 (393) 에는, 로봇 트랙터 (1) 와 유인 트랙터의 협조 작업의 유무, 유인의 트랙터가 협조 작업하는 경우의 패턴, 유인의 트랙터가 협조 작업하는 경우의 당해 유인의 트랙터의 작업폭, 유인의 트랙터가 협조 작업하는 경우의 로봇 트랙터 (1) 의 스킵수 (작업 경로를 몇 열 건너뛰고 주행하는지), 인접하는 작업 경로에 있어서의 작업폭의 오버랩 허용량, 작업기 (300) 의 초기 오프셋 방향, 침지의 폭, 및 비경작지의 폭 등을 입력하는 란이 각각 형성되어 있다.On the job
이 중, 「유인 트랙터의 협조 작업의 유무」, 「협조 작업 패턴」, 「로봇 트랙터의 스킵수」, 「작업폭의 오버랩 허용량」, 「침지 폭」, 및 「비경작지의 폭」 의 각 란에는, 전술한 제 1 실시형태와 동일한 방법으로 설정값이 입력된다.Among them, the columns of ``Presence or absence of cooperative work of manned tractor'', ``cooperative work pattern'', ``number of robot tractor skips'', ``overlap allowable amount of working width'', ``dipping width'', and ``width of uncultivated land'' , The set value is input in the same manner as in the first embodiment described above.
「작업기의 초기 오프셋 방향」 의 란에서는, 트랙터 (1) 에 오프셋형 작업기를 장착하고 있는 경우에, 자율 주행의 개시 시점에 있어서 작업기 (300) (예초 작업부 (3A)) 가 좌우 어느 쪽으로 오프셋하고 있는가, 또는 오프셋하지 않는가를 지정할 수 있다.In the column of ``initial offset direction of work machine'', when the offset type work machine is mounted on the
또한, 본 실시형태와 같이 오프셋형 작업기를 사용하는 경우의 「침지 폭」 및 「비경작지의 폭」 에 대해서는, 오프셋 없음의 작업기를 사용하는 경우와 비교하여 넓어지도록, 설정값이 제한되어도 된다. 이로써, 오프셋형 작업기를 장착했을 경우에도, 작업기 (300) 의 단부 (예초 작업부 (3A) 의 단부) 가 포장 (380) 으로부터 비어져 나오지 않게 고려하면서, 당해 침지 등에서의 자율 주행 경로를 용이하게 형성할 수 있다.In addition, as for the "immersion width" and "the width of the non-cultivated land" in the case of using the offset type work machine as in the present embodiment, the set values may be limited so as to increase as compared to the case of using the work machine without offset. In this way, even when the offset type work machine is mounted, the end of the work machine 300 (the end of the
단, 본 실시형태에 있어서는, 작업기 (300) 로서 오프셋형 작업기를 장착하여 작업하는 취지가 작업 차량 정보로서 설정되어 있는 경우, 자율 주행 경로 (383) 의 생성 로직의 복잡화를 피하기 위해, 「유인 트랙터의 협조 작업의 유무」 의 란은 입력할 수 없도록 (즉, 협조 작업 없음이 강제된다) 되어 있다. 또, 동일한 사정에 의해, 작업기 (300) 로서 오프셋형 작업기를 사용하는 경우, 「로봇 트랙터의 스킵수」 의 란은 입력할 수 없도록 (즉, 스킵수가 강제적으로 제로가 된다) 되어 있다. 따라서, 본 실시형태에 있어서는, 오프셋형 작업기를 사용하여 트랙터 (1) 에 자율 주행·자율 작업시키는 경우, 유인 트랙터의 존재를 고려한 경로를 생성하여 자율 주행·자율 작업시킬 수 없고, 작업 경로 (383A) 를 1 열 이상 건너뛰어 작업할 수도 없다.However, in the present embodiment, in the case where the purpose of working by attaching an offset type work machine as the
다음으로, 도 53 을 참조하면서, 자율 주행 경로 생성부 (354) 가 자율 주행 경로 (383) 를 생성하는 처리에 대해 설명한다. 도 53 은, 자율 주행 경로 (383) 를 생성하는 처리를 나타내는 플로우 차트이다.Next, with reference to FIG. 53, the process by which the autonomous travel
도 52 에 나타내는 작업 정보 입력 화면 (393) 에 있어서 「자율 주행 경로를 생성」 버튼이 조작되면, 최초로, 포장 정보 입력 화면 (392) 에 있어서 설정된 포장 (380) 의 형상과, 작업 정보 입력 화면 (393) 에 있어서 설정된 침지의 폭 및 비경작지의 폭에 기초하여, 작업 영역 (381) 및 비작업 영역 (382) 이 정해진다. 그 후에 도 53 의 처리가 개시되고, 최초로 자율 주행 경로 생성부 (354) 는, 작업 영역 (381) 에 있어서 예초 작업부 (3A) 가 지나는 경로 (384) 를, 도 54 의 파선 화살표와 같이 생성한다 (스텝 S801). 이 때의 경로의 계산은, 주행 기체 (2) 의 기준점 (2C) 이 아니라, 작업기 (300) 의 기준점 (예초 작업부 (3A) 의 기준점) (3C) 을 기준으로 하여 실시된다. 또한, 이하에서는, 작업 영역 (381) 에 있어서 작업기 (300) 의 기준점 (3C) 이 지나는 경로 (384) 를, 「작업기 작업 경로」 라고 부르는 경우가 있다.When the "create autonomous travel route" button is operated on the job
다음으로, 자율 주행 경로 생성부 (354) 는, 스텝 S801 의 처리에서 생성된 작업기 작업 경로 (상기 경로 (384)) 와, 작업 차량 정보 설정부 (51) 에 의해 설정된 오프셋 방향 및 오프셋 거리에 기초하여 (바꿔 말하면 주행 기체 (2) 의 기준점 (2C) 에 기초하여), 작업 영역 (381) 에 있어서의 주행 기체 (2) 가 지나는 경로 (작업 경로 (383A)) 를, 도 55 의 굵은 선 화살표와 같이 생성한다 (스텝 S802). 이 계산은, 간단한 기하학적 관계에 기초하여 실시할 수 있다. 또한, 이하에서는, 작업 영역 (381) 에 있어서 주행 기체 (2) 의 기준점 (2C) 이 지나는 경로를, 「주행 기체 작업 경로」 라고 부르는 경우가 있다.Next, the autonomous travel
그 후, 자율 주행 경로 생성부 (354) 는, 스텝 S802 의 처리에서 생성된 주행 기체 작업 경로 (작업 경로 (383A)) 의 단점을 연결하도록, 비작업 영역 (382) 에 있어서 주행 기체 (2) 의 기준점 (2C) 이 지나는 경로 (비작업 경로 (383B)) 를, 도 56 의 굵은 선 화살표와 같이 생성한다 (스텝 S803). 이 때, 자율 주행의 개시 위치와 주행 기체 작업 경로의 단점을 연결하는 경로, 및 주행 기체 작업 경로의 단점과 자율 주행의 종료 위치를 연결하는 경로도 동일하게 생성된다. 비작업 영역 (382) 에 있어서 주행 기체 (2) 가 지나는 경로는, 작업기 (300) 의 단부가 포장 (380) 으로부터 외부로 비어져 나오는 것을 방지하는 관점에서, 필요에 따라 소정의 마진 내에 있어서 적절히 수정된다. 이상에 의해, 포장 (380) (작업 영역 (381) 및 비작업 영역 (382)) 에 있어서의 주행 기체 (2) 의 자율 주행 경로 (383) 를 생성할 수 있다.After that, the autonomous travel
또한, 본 실시형태에 있어서 자율 주행 경로 생성 시스템 (399) 이 생성할 수 있는 자율 주행 경로 (383) 는 2 종류 있고, 그 중의 하나가, 도 56 의 굵은 선 화살표로 나타내는 리턴 주행 경로이다. 이 리턴 주행 경로는, 도 7 의 예와 같이 포장 정보 설정부 (52) 에서 설정된 자율 주행의 개시 위치 및 종료 위치가 모두 포장 (380) 의 단부인 경우에 적용되는 것이며, 포장 (380) 의 가장자리부와 가장자리부 사이에서 리턴을 반복하면서 작업을 실시하도록 생성된다.In addition, there are two types of
이 리턴 주행 경로의 특징은, 도 54 에 나타내는 작업기 작업 경로가, 미리 지정된 작업 방향과 평행한 직선로를, 당해 작업 방향과 수직인 방향으로 왕로, 복로, 왕로, … 로 교대로 나열함으로써 형성되는 것이다. 이 작업기 작업 경로를 배치함에 있어서는, 작업 영역 (381) 에 대한 작업기 (300) 의 작업 누락이 생기지 않도록, 또한 작업 효율이 양호해지도록, 당해 작업기 (300) 의 작업폭 (E2) 등이 고려된다. 또, 작업기 작업 경로의 배치는, 지정된 개시 위치 (또는 개시 위치의 근방) 로부터 상기의 작업 방향에 따라 최초의 작업이 실시되고, 가능한 한 종료 위치 (또는 종료 위치의 근방) 에 있어서 작업이 종료하도록, 적절히 고려된다.The characteristic of this return travel path is that the work machine work path shown in FIG. 54 is a straight line parallel to a predetermined work direction, and a forward, return, outward path in a direction perpendicular to the work direction, ... It is formed by alternately listing them. In arranging this work machine work path, the working width E2 of the
또한, 작업 영역 (381) 또는 포장 (380) 의 형상이 복잡한 경우에는, 상기의 왕로 및 복로를, 직선로 대신에 꺾은선로 등으로 해도 된다.Moreover, when the shape of the
그런데, 본 실시형태에 있어서는, 작업기 (300) 가, 예초 작업부 (3A) 의 오프셋 방향을 변경 가능하게 구성되어 있다. 이 경우, 자율 주행 경로 생성부 (354) 는, 필요에 따라, 예초 작업부 (3A) 의 오프셋 방향을, 작업 경로 (383A) 와 작업 경로 (383A) 를 연결하는 비작업 경로 (383B) 에 있어서 변경할 수 있다. 예를 들어, 도 55 의 예에서는, 좌측에서부터 1 개째 및 2 개째의 작업 경로 (383A) 에 있어서의 예초 작업부 (3A) 의 오프셋 방향은 우측이지만, 3 개째에서는 오프셋 방향이 좌측으로 전환되어 있고, 그 후도 또한 교대로 전환되어 있다. 이와 같이 경로를 생성함으로써, 비경작지의 폭 (사이드 마진 (SM1)) 의 크기 등의 여러 가지 사정에 따라 자율 주행·자율 작업을 유연하게 실시할 수 있다. 또, 예초 작업부 (3A) 의 오프셋 방향을 비작업 경로 (383B) 에 있어서 전환함으로써, 자율 주행 경로 (383) 를 단순한 처리로 생성할 수 있다.By the way, in this embodiment, the
다음으로, 또 하나의 자율 주행 경로인 주회 주행 경로에 대해, 도 57 을 참조하여 설명한다.Next, another autonomous traveling route, a circumferential traveling route, will be described with reference to FIG. 57.
도 57 에 나타내는 주회 주행 경로는, 도 51 의 예와 같이 포장 정보 설정부 (52) 에서 설정된 자율 주행의 개시 위치 및 종료 위치의 일방이 포장 (380) 의 중앙인 경우에 생성되는 것이다. 도 51 의 예에서는 자율 주행의 종료 위치가 포장 (380) 의 중앙에 설정되어 있으므로, 주회 주행 경로는 도 57 의 굵은 선 화살표와 같이, 포장 (380) 내를 외측으로부터 내측으로 각 (角) 소용돌이상으로 주회하도록 생성된다. 단, 자율 주행의 개시 위치를 포장 (380) 의 중앙에, 종료 위치를 포장 (380) 의 단부에 각각 설정할 수도 있고, 이 경우, 주회 주행 경로는, 포장 (380) 내를 내측으로부터 외측으로 각소용돌이상으로 주회하도록 생성된다.The circumferential travel path shown in FIG. 57 is generated when one of the start and end positions of autonomous travel set by the pavement
이 주회 주행 경로도 도 53 에서 나타내는 처리에 의해 생성된다. 구체적으로는, 작업 영역 (381) 에 있어서 작업기 작업 경로 (도 57 의 파선 화살표의 경로 (384)) 가 작업기 (300) 의 기준점 (3C) 을 기준으로 하여 소용돌이상으로 생성되고, 이 작업기 작업 경로가 오프셋됨으로써 (주행 기체 (2) 의 기준점 (2C) 에 기초하여) 주행 기체 작업 경로 (작업 경로 (383A)) 가 생성된다. 또한, 자율 주행의 개시 위치 근방의 부분은 비작업 영역 (382) 으로 되어 있으므로, 이 비작업 영역 (382) 에 있어서 주행 기체 (2) 의 기준점 (2C) 이 지나는 경로 (비작업 경로 (383B)) 를, 자율 주행의 개시 위치와 주행 기체 작업 경로의 단점을 연결하도록 생성한다. 이상에 의해, 도 57 에 굵은 선 화살표로 나타내는 주회 주행 경로를 생성할 수 있다.This circumferential travel path is also generated by the processing shown in FIG. 53. Specifically, in the
도 57 에 나타내는 주회 주행 경로의 예에 있어서는, 작업기 (300) 의 오프셋 방향이 자율 주행 경로 (383) 의 도중에 변경되지 않는다. 바꿔 말하면, 당해 주회 주행 경로에서는, 포장 (380) 의 외측으로부터 내측을 향하여 작업을 해가는 경로의 전체 행정에 있어서, 작업기 (300) 가 주행 기체 (2) 보다 포장 (380) 의 중앙측에 오프셋한 상태가 유지되어 있다. 따라서, 주행 기체 (2) 는 작업기 (300) 에 의한 작업을 마친 부분을 주행하기 때문에, 예를 들어, 예초 작업에 있어서 항상 전망이 양호한 상태에서 작업을 실시하게 할 수 있다. 또한, 주회 주행 경로에 있어서도, 리턴 주행 경로와 동일하게, 작업 내용에 따라 자율 주행 경로 (383) 의 도중에 작업기 (300) 의 오프셋 방향을 변경해도 된다.In the example of the circumferential travel path shown in FIG. 57, the offset direction of the
본 실시형태에서는 포장 (주행 영역) (380) 에 작업 영역 (381) 및 비작업 영역 (382) 이 포함되는 것으로 했지만, 작업 영역 (381) 과 비작업 영역 (382) 은 일부가 중복되는 영역이어도 된다. 작업 영역 (381) 과 비작업 영역 (382) 의 일부가 중복되는이란, 그 중복 영역을 트랙터 (1) 가 N 회 (N 은 2 이상의 정수) 주행하는 경우에 있어서, X 회 (X 는 N 미만의 정수) 는 작업기 (300) 에 의한 작업을 실시하지 않고 주행하고, N - X 회는 작업기 (300) 에 의한 작업을 실시하면서 주행하는 것을 의미한다. 따라서, 본 실시형태에 있어서 작업 영역 (381) 이란, 작업기 (300) 에 의한 작업을 수반하여 트랙터 (1) 가 주행하는 영역이라고 할 수 있고, 비작업 영역 (382) 이란, 작업기 (300) 에 의한 작업을 수반하지 않고 트랙터 (1) 가 주행하는 영역이라고도 할 수 있다.In the present embodiment, the
도 57 에 나타내는 바와 같이, 작업기 작업 경로가 포장 (380) 의 중심부를 향하여 소용돌이상으로 생성되는 경우, 포장 (380) 의 중심부에서는 트랙터 (1) 의 선회 반경보다 좁은 잔존 영역에 대해 작업기 (300) 에 의해 작업을 실시하기 위해, 방향 전환 (트랙터 (1) 를 일단 후진시켜 잔존 영역으로부터 일정 거리 떨어진 후에, 잔존 영역으로 이동하는 동작) 이 필요할 수 있다. 이 일련의 방향 전환 동작은, 작업기 (300) 에 의해 작업이 실시되지 않기 때문에, 일련의 방향 전환 동작이 실시되는 영역은 비작업 영역 (382) 이라고 할 수 있다. 자율 주행 경로 생성부 (354) 는 그러한 방향 전환 동작을 실시하기 위한 경로를 생성함에 있어서는 작업기 (300) 의 기준점 (3C) 이 아니라, 주행 기체 (2) 의 기준점 (2C) 에 기초하여 경로를 생성한다. 요컨대 본 실시형태에 있어서 자율 주행 경로 생성부 (354) 는, 작업기 (300) 에 의한 작업을 수반하여 트랙터 (1) 가 주행하는 영역에 대해서는 작업기 (300) 의 기준점 (3C) 에 기초하여 경로 (작업기 작업 경로) 를 생성하고, 작업기 (300) 에 의한 작업을 수반하지 않고 트랙터 (1) 가 주행하는 영역에 대해서는 주행 기체 (2) 의 기준점 (2C) 에 기초하여 경로 (주행 기체 작업 경로) 를 생성하는 것이 가능하다.As shown in FIG. 57, when the work machine work path is generated in a vortex shape toward the center of the
이상으로 설명한 바와 같이, 본 실시형태의 자율 주행 경로 생성 시스템 (399) 은, 미리 정해진 포장 (380) 에 있어서, 주행 기체 (2) 와 주행 기체 (2) 에 장착되는 작업기 (300) 를 구비하는 트랙터 (1) 를 자율 주행시키기 위한 자율 주행 경로 (383) 를 생성한다. 자율 주행 경로 생성 시스템 (399) 은, 작업 차량 정보 설정부 (51) 와, 자율 주행 경로 생성부 (354) 를 구비한다. 작업 차량 정보 설정부 (51) 는, 주행 기체 (2) 의 기준점 (2C) 에 대한 작업기 (300) 의 기준점 (3C) 의 오프셋 방향 및 오프셋 거리를 설정 가능하다. 자율 주행 경로 생성부 (354) 는, 작업기 (300) 의 기준점 (3C) 에 기초하여 포장 (380) 내에 있어서의 자율 주행 경로 (383) 를 생성 가능하다.As described above, the autonomous traveling
이로써, 작업기 (300) 의 기준점 (3C) 이 지나는 경로 (384) 와 주행 기체 (2) 의 기준점 (2C) 이 지나는 경로 (작업 경로 (383A)) 를 어긋나게 한 자율 주행 경로 (383) 를 생성할 수 있다. 그 결과, 트랙터 (1) 의 자율 주행을, 예를 들어 포장단을 제초하면서 주행하는 경우 등, 여러 가지 작업 형태에 적용할 수 있다.Thereby, the
또, 본 실시형태의 자율 주행 경로 생성 시스템 (399) 에 있어서, 포장 (380) 은, 작업기 (300) 에 의해 작업이 실시되는 작업 영역 (381) 과, 작업 영역 (381) 의 주위에 설정되는 비작업 영역 (382) 을 포함한다. 자율 주행 경로 생성부 (354) 는, 작업기 (300) 의 기준점 (3C) 에 기초하여 작업 영역 (381) 내에 있어서의 작업 경로 (383A) 를 생성하고, 주행 기체 (2) 의 기준점 (2C) 에 기초하여 비작업 영역 (382) 내에 있어서의 비작업 경로 (383B) 를 생성한다.In addition, in the autonomous travel
이로써, 자율 주행 경로 (383) 를 생성할 때의 위치의 기준을 작업 영역 (381) 과 비작업 영역 (382) 사이에서 상이하게 함으로써, 작업 영역 (381) 에 있어서 작업기 (300) (예초 작업부 (3A)) 를 오프셋시켜 작업하는 경우에도, 작업 영역 (381) 및 비작업 영역 (382) 의 양방에 있어서, 자율 주행 경로 (383) 의 생성 처리를 단순화할 수 있다.Thereby, by making the reference of the position at the time of generating the
또, 본 실시형태의 자율 주행 경로 생성 시스템은, 포장 (380) 에 있어서의 트랙터 (1) 에 의한 작업의 개시 위치 및 종료 위치를 설정하는 포장 정보 설정부 (52) 를 구비한다. 도 7 에 나타내는 바와 같이, 포장 정보 설정부 (52) 에 의해 개시 위치 및 종료 위치의 양방이 포장 (380) 의 단부에 설정되었을 경우, 자율 주행 경로 생성부 (354) 는, 자율 주행 경로 (383) 로서, 포장 (380) 의 가장자리부와 가장자리부 사이에서 리턴을 반복하면서 개시 위치로부터 종료 위치를 향하는 리턴 주행 경로 (도 56) 를 생성한다. 도 51 에 나타내는 바와 같이, 포장 정보 설정부 (52) 에 의해 개시 위치 및 종료 위치의 일방이 포장 (380) 의 단부에 설정되고, 타방이 포장 (380) 의 중앙부에 설정되었을 경우, 자율 주행 경로 생성부 (354) 는, 자율 주행 경로 (383) 로서, 개시 위치로부터 종료 위치를 향하는 소용돌이상의 주회 주행 경로 (도 57) 를 생성한다.In addition, the autonomous travel route generation system of the present embodiment includes a pavement
이로써, 2 종류의 자율 주행 경로 (383) 를 작업 내용 등에 따라 적절히 선택할 수 있기 때문에, 작업 효율을 향상시킬 수 있다.Thereby, since the two types of
이상으로 본 발명의 바람직한 실시형태를 설명했지만, 상기의 구성은 예를 들어 이하와 같이 변경할 수 있다.Although the preferred embodiment of the present invention has been described above, the above configuration can be changed as follows, for example.
상기의 실시형태에 있어서, 자율 주행의 개시 위치와 종료 위치의 양방이 포장 (380) 의 단부에 지정되었을 경우에, 리턴 주행 경로가 생성된다. 그러나, 예를 들어, 생성된 리턴 주행 경로를 확인을 위해 디스플레이 (37) 에 표시할 때, 메시지의 표시 등의 적절한 방법으로, 자율 주행 경로 생성 시스템 (399) 측으로부터 오퍼레이터에게 주회 주행 경로의 생성을 제안해도 된다.In the above embodiment, when both the starting position and the ending position of autonomous driving are designated at the end of the
오프셋형 작업기로는, 상기의 예초 작업기에 한정되지 않고, 예를 들어 오프셋형의 플라우를 사용할 수 있다.The offset type working machine is not limited to the above mowing machine, and, for example, an offset type plow can be used.
상기의 실시형태에 있어서는, 주행 기체 (2) 에 대해 작업기 (300) 를 오프셋하는 것이 가능한 취지가 작업 차량 정보 설정부 (51) 에서 설정된 경우에만, 자율 주행의 개시 위치 또는 종료 위치로서 포장 (380) 의 중앙부를 선택 가능하게 구성되어 있다. 그러나, 비오프셋형의 작업기 (300) 를 사용하는 경우에 있어서도, 포장 (380) 의 중앙부를 자율 주행의 개시 위치 또는 종료 위치로서 선택할 수 있도록 해도 된다.In the above embodiment, only when the effect that the
상기의 실시형태에 있어서는, 작업기 (300) 를 주행 기체 (2) 에 대해, 기체 좌측 방향 및 기체 우측 방향으로 오프셋시킬 수 있는 것으로 했지만, 좌우 일측 방향으로밖에 오프셋할 수 없게 해도 된다. 이 경우, (오프셋하지 않을 때에는, 오프셋 거리 (E1) 가 0 이므로) 작업 차량 정보 설정부 (51) 에 있어서 오프셋 거리 (E1) 만을 설정하도록 구성하고, 자율 주행 경로 생성 시스템 (399) 에 의해 자율 주행 경로 (383) 의 생성을 실시하는 것으로 할 수 있다.In the above-described embodiment, the
상기의 실시형태에서는, 왕복 주행 경로에 있어서는, 트랙터 (1) 가 작업의 진행 방향에 대해 교대로 반대 방향을 향하고, 주회 주행 경로에 있어서는, 트랙터 (1) 가 작업의 진행 방향에 대해 항상 동일한 방향을 향하고 있다. 즉, 왕복 주행 경로에서는 오프셋 방향을 반전시킬 필요성이 높고, 주회 주행 경로에서는 오프셋 방향을 반전시킬 필요성이 낮다고 할 수 있다. 따라서, 생성되는 경로가 왕복 주행 경로인 경우에는 오프셋 방향이 필요에 따라 반전되고, 생성되는 경로가 주회 주행 경로인 경우에는 오프셋 방향이 도중에 변경 (반전) 되지 않게 해도 된다.In the above embodiment, in the reciprocating travel path, the
또, 작업기 (300) 로서, 좌우 일측에만 오프셋 가능한 것은 주행 기체 (2) 에 장착할 수 없고, 좌우 양측에 오프셋 가능한 것만을 주행 기체 (2) 에 장착할 수 있도록 해도 된다. 이 경우, 좌우 일측에만 오프셋 가능한 경우를 고려하지 않아도 되므로, 도 50 의 설정 화면에 있어서, 「작업기가 좌우 오프셋 가능한 방향」 의 「좌측만」 및 「우측만」 의 항목을 생략할 수 있다.Further, as the
상기의 실시형태에서는, 작업 정보 입력 화면 (393) 에서 설정된 침지의 폭 및 비경작지의 폭에 기초하여 비작업 영역 (382) 이 정해지고, 포장 (380) 으로부터 비작업 영역 (382) 을 제외한 나머지 영역으로서 작업 영역 (381) 이 정해져 있다. 그러나, 작업 영역 (381) 을 설정하는 방법은 상기에 한정되지 않고, 예를 들어, 상기 서술한 포장 정보 입력 화면 (392) 에 있어서 평면 표시부 (88) 에 표시된 포장 (380) 의 임의의 점을 오퍼레이터가 지정함으로써 작업 영역 (381) 및 비작업 영역 (382) 을 설정할 수 있도록 구성되어도 된다.In the above embodiment, the
상기의 실시형태에서는, 자율 주행 경로 생성 시스템 (399) 을 구성하는 작업 차량 정보 설정부 (51) 와, 자율 주행 경로 생성부 (354) 는, 무선 통신 단말 (46) 측에 구비되어 있다. 그러나, 작업 차량 정보 설정부 (51) 및 자율 주행 경로 생성부 (354) 중 일부 또는 전부가 트랙터 (1) 측에 구비되어 있는 것으로 해도 된다.In the above-described embodiment, the work vehicle
1
트랙터 (작업 차량)
47
자율 주행 경로 생성부 (경로 생성부)
54
작업 영역 분할부 (영역 분할부)
91
작업 영역 (주행 영역)
93
자율 주행 경로 (주행 경로)
93A
작업 경로 (주행로)
99
자율 주행 경로 생성 시스템
BP
기본 단위 경로수 (소정값)
S
구획
SE
예외의 구획
SN
스킵수 (기준값)1 tractor (working vehicle)
47 Autonomous driving route generation unit (route generation unit)
54 Working area division (area division)
91 working area (driving area)
93 autonomous driving route (driving route)
93A work path (runway)
99 autonomous driving route generation system
BP basic unit number of paths (prescribed value)
S compartment
SE exception compartment
SN skip count (reference value)
Claims (5)
상기 주행 영역 내에 있어서의 상기 작업 차량의 주행 방향을 설정하는 주행 방향 설정부와,
상기 주행 영역 내에 있어서 상기 주행 방향 설정부에 의해 설정된 상기 주행 방향을 따라 형성된 복수의 주행로를 포함하는 상기 주행 경로를 생성 가능한 경로 생성부와,
상기 주행 영역 내의 장애물에 대해 장애물 외주 영역을 설정하는 장애물 외주 설정부를 구비하고,
상기 경로 생성부는,
상기 주행 방향을 따라 배치되는 제 1 주행로와,
상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물의 반대측으로 돌아, 당해 장애물을 관통하도록 상기 제 1 주행로를 연장한 가상 연장선 상의 위치에 이르는 우회로와,
상기 우회로의 종점을 시점으로 하여, 상기 가상 연장선 상에 배치되는 제 2 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능한 것을 특징으로 하는 자율 주행 경로 생성 시스템.As an autonomous driving route generation system that creates a driving route for autonomously driving a work vehicle in a predetermined driving area,
A travel direction setting unit that sets a travel direction of the work vehicle in the travel area;
A route generator capable of generating the traveling route including a plurality of traveling routes formed along the traveling direction set by the traveling direction setting unit in the traveling area;
And an obstacle outer circumference setting unit for setting an obstacle outer circumference area with respect to the obstacle in the driving area,
The path generation unit,
A first driving path disposed along the driving direction,
A detour to a position on a virtual extension line in which the first travel path is extended so as to pass through the obstacle while returning to the opposite side of the obstacle while passing through the obstacle outer circumferential region as a starting point,
The autonomous driving route generation system, characterized in that it is possible to generate the driving route so as to include a second driving route disposed on the virtual extension line by using the end point of the bypass as a starting point.
상기 경로 생성부는,
상기 우회로의 경로 길이가 소정 거리 미만인 경우에, 상기 제 1 주행로, 상기 우회로 및 상기 제 2 주행로를 포함하도록 상기 주행 경로를 생성하고,
상기 우회로의 경로 길이가 소정 거리 이상인 경우에,
상기 제 1 주행로와,
상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물 앞에서 리턴하는 리턴로와,
상기 리턴로의 종점을 시점으로 하여, 상기 제 1 주행로와 평행하게 배치되는 제 3 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능한 것을 특징으로 하는 자율 주행 경로 생성 시스템.The method of claim 1,
The path generation unit,
When the path length of the bypass is less than a predetermined distance, generating the travel path to include the first travel path, the bypass and the second travel path,
When the path length of the bypass is more than a predetermined distance,
The first driving path,
A return path returning in front of the obstacle while passing through the outer peripheral area of the obstacle, with the end point of the first travel path as a starting point,
The autonomous driving route generation system, characterized in that it is possible to generate the driving route so as to include a third driving route arranged parallel to the first driving route by using the end point of the return route as a starting point.
상기 경로 생성부는,
상기 작업 차량이 상기 장애물을 회피하기 위해서 상기 주행 방향과 수직인 방향으로 이동해야 하는 거리인 회피 거리가 소정 거리 미만인 경우에, 상기 제 1 주행로, 상기 우회로 및 상기 제 2 주행로를 포함하도록 상기 주행 경로를 생성하고,
상기 회피 거리가 소정 거리 이상인 경우에,
상기 제 1 주행로와,
상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물 앞에서 리턴하는 리턴로와,
상기 리턴로의 종점을 시점으로 하여, 상기 제 1 주행로와 평행하게 배치되는 제 3 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능한 것을 특징으로 하는 자율 주행 경로 생성 시스템.The method of claim 1,
The path generation unit,
When the avoidance distance, which is a distance that the working vehicle must move in a direction perpendicular to the driving direction in order to avoid the obstacle, is less than a predetermined distance, the first driving path, the bypass, and the second driving path may be included. Create a driving route,
When the avoidance distance is more than a predetermined distance,
The first driving path,
A return path returning in front of the obstacle while passing through the outer peripheral area of the obstacle, with the end point of the first travel path as a starting point,
The autonomous driving route generation system, characterized in that it is possible to generate the driving route so as to include a third driving route arranged parallel to the first driving route by using the end point of the return route as a starting point.
상기 경로 생성부는,
상기 우회로에 있어서의 선회 횟수 또는 선회 각도가 소정 미만인 경우에, 상기 제 1 주행로, 상기 우회로 및 상기 제 2 주행로를 포함하도록 상기 주행 경로를 생성하고,
상기 우회로에 있어서의 상기 선회 횟수 또는 상기 선회 각도가 소정 이상인 경우에,
상기 제 1 주행로와,
상기 제 1 주행로의 종점을 시점으로 하여, 상기 장애물 외주 영역을 통과하면서 상기 장애물 앞에서 리턴하는 리턴로와,
상기 리턴로의 종점을 시점으로 하여, 상기 제 1 주행로와 평행하게 배치되는 제 3 주행로를 포함하도록 상기 주행 경로를 생성하는 것이 가능한 것을 특징으로 하는 자율 주행 경로 생성 시스템.The method of claim 1,
The path generation unit,
When the number of turns or the turning angle in the bypass is less than a predetermined, the travel path is generated to include the first travel path, the bypass and the second travel path,
When the number of turns or the turning angle in the bypass is a predetermined or more,
The first driving path,
A return path returning in front of the obstacle while passing through the outer peripheral area of the obstacle, with the end point of the first travel path as a starting point,
The autonomous driving route generation system, characterized in that it is possible to generate the driving route so as to include a third driving route arranged parallel to the first driving route by using the end point of the return route as a starting point.
상기 경로 생성부는, 상기 주행 영역에 있어서 상기 장애물이 도상으로 배치되어 있는 경우, 상기 우회로를, 상기 제 1 주행로에 이를 때까지의 상기 주행 경로에서 보았을 때 먼 쪽에서부터 상기 장애물의 반대측으로 돌도록 생성하는 것을 특징으로 하는 자율 주행 경로 생성 시스템.The method according to any one of claims 1 to 4,
The path generation unit, when the obstacle is arranged in a road shape in the driving area, rotates the bypass from a far side to the opposite side of the obstacle when viewed from the driving path until reaching the first driving path. An autonomous driving route generation system, characterized in that to generate.
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016094515A JP6739228B2 (en) | 2016-05-10 | 2016-05-10 | Autonomous driving route generation system |
JPJP-P-2016-094513 | 2016-05-10 | ||
JP2016094513A JP6739227B2 (en) | 2016-05-10 | 2016-05-10 | Autonomous driving route generation system |
JPJP-P-2016-094515 | 2016-05-10 | ||
JP2016102978A JP6692692B2 (en) | 2016-05-24 | 2016-05-24 | Autonomous driving route generation system |
JPJP-P-2016-102978 | 2016-05-24 | ||
JPJP-P-2016-102980 | 2016-05-24 | ||
JP2016102980A JP6682354B2 (en) | 2016-05-24 | 2016-05-24 | Autonomous driving route generation system |
KR1020207017172A KR20200075029A (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
PCT/JP2017/014436 WO2017195510A1 (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207017172A Division KR20200075029A (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210016086A true KR20210016086A (en) | 2021-02-10 |
KR102283928B1 KR102283928B1 (en) | 2021-07-29 |
Family
ID=60267829
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020217003434A KR102283928B1 (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
KR1020187026558A KR102079890B1 (en) | 2016-05-10 | 2017-04-07 | Autonomous driving route generation system |
KR1020207017172A KR20200075029A (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
KR1020207004115A KR102126168B1 (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187026558A KR102079890B1 (en) | 2016-05-10 | 2017-04-07 | Autonomous driving route generation system |
KR1020207017172A KR20200075029A (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
KR1020207004115A KR102126168B1 (en) | 2016-05-10 | 2017-04-07 | Autonomous travel route generating system |
Country Status (3)
Country | Link |
---|---|
KR (4) | KR102283928B1 (en) |
CN (2) | CN114995427A (en) |
WO (1) | WO2017195510A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11622495B2 (en) | 2021-06-01 | 2023-04-11 | Gint Co., Ltd. | Method of automatically combining farm vehicle and work machine and farm vehicle |
KR20230049792A (en) | 2021-10-06 | 2023-04-14 | 대한민국(농촌진흥청장) | Autunomous driving device, agriculturl machinery including the same and method therefor for controlling the autonomous agriculturl machinery control |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6919531B2 (en) * | 2017-11-30 | 2021-08-18 | 井関農機株式会社 | Work vehicle |
WO2019227001A1 (en) | 2018-05-25 | 2019-11-28 | The Toro Company | Autonomous grounds maintenance machines with path planning for trap and obstacle avoidance |
WO2020171229A1 (en) * | 2019-02-22 | 2020-08-27 | 株式会社ナイルワークス | Drone piloting machine, and piloting program |
KR102049937B1 (en) * | 2019-03-11 | 2019-11-28 | 엘에스엠트론 주식회사 | Automatic control system for agricultural working machine |
CN110209154B (en) * | 2019-04-09 | 2022-10-14 | 丰疆智能科技股份有限公司 | Residual harvesting path planning system and method of automatic harvester |
CN110057364B (en) * | 2019-04-30 | 2020-08-07 | 盐城工业职业技术学院 | Paddy field tractor pose detection and yaw angle extraction method and device |
KR102168104B1 (en) * | 2019-05-24 | 2020-10-21 | 장진만 | Automatic driving method of agricultural vehicle |
CN110502021B (en) * | 2019-09-24 | 2022-07-15 | 一米信息服务(北京)有限公司 | Agricultural machinery operation path planning method and system |
JP7237788B2 (en) * | 2019-09-26 | 2023-03-13 | 株式会社クボタ | work vehicle |
JP7358163B2 (en) * | 2019-09-30 | 2023-10-10 | 株式会社小松製作所 | Control system, work vehicle control method, and work vehicle |
KR102304098B1 (en) * | 2019-11-05 | 2021-09-23 | 대한민국 | Automatic driving agricultural machine device supporting image-based path recognition and steering angle calculation techniques and operation method thereof |
CN118476376A (en) * | 2019-11-29 | 2024-08-13 | 株式会社久保田 | Automatic running control system, combine harvester and harvester |
CN112868366A (en) * | 2019-11-29 | 2021-06-01 | 株式会社久保田 | Automatic travel control system, automatic travel route generation system, and combine |
CN110825091A (en) * | 2019-11-29 | 2020-02-21 | 洛阳中科龙网创新科技有限公司 | Intelligent tractor intelligent routing method and device based on unmanned aerial vehicle |
CN113448324B (en) * | 2020-03-09 | 2023-08-04 | 北京合众思壮科技股份有限公司 | Path planning method, path planning device, electronic equipment and storage medium |
SE2050727A1 (en) * | 2020-06-17 | 2021-12-18 | Husqvarna Ab | Methods of navigating a self-propelled robotic tool, and robotic tools, and computer pograms implementing such methods |
CN111854744A (en) * | 2020-07-17 | 2020-10-30 | 无锡卡尔曼导航技术有限公司 | Operation method of GNSS single-point positioning and inertial navigation mower |
CN114475602B (en) * | 2020-11-12 | 2023-05-09 | 宇通客车股份有限公司 | Vehicle, vehicle turning method and device |
CN115016451B (en) * | 2021-03-05 | 2024-10-29 | 广东博智林机器人有限公司 | Robot operation track planning method, device, computer equipment and storage medium |
CN113678587B (en) * | 2021-08-09 | 2023-04-14 | 华南农业大学 | Unmanned rice intertillage weeding machine and operation method thereof |
CN113804212B (en) * | 2021-08-23 | 2022-07-26 | 上海联适导航技术股份有限公司 | Path planning method and device for harrowing operation |
JP7528039B2 (en) * | 2021-08-27 | 2024-08-05 | 株式会社クボタ | Cruise control system |
KR102669118B1 (en) * | 2021-12-29 | 2024-05-24 | 재단법인대구경북과학기술원 | Apparatus and method for agricultural autonomous vehicle control |
CN115290095A (en) * | 2022-09-28 | 2022-11-04 | 陕西耕辰科技有限公司 | Agricultural machine operation path automatic planning method and system, agricultural machine and storage medium |
KR102592085B1 (en) * | 2023-02-02 | 2023-10-20 | 주식회사 긴트 | Ab driving guidance line shift system for precision autonomous driving of agricultural vehicles and operation method thereof |
CN116149337B (en) * | 2023-04-14 | 2023-07-07 | 未岚大陆(北京)科技有限公司 | Mowing control method, mowing machine, mowing device and electronic equipment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1165657A (en) * | 1997-08-22 | 1999-03-09 | Minolta Co Ltd | Controller for mobile object |
JP2011254704A (en) * | 2010-06-04 | 2011-12-22 | Chugoku Electric Power Co Inc:The | Method and system for automatic farming |
WO2015118731A1 (en) * | 2014-02-06 | 2015-08-13 | ヤンマー株式会社 | Control device for parallel travel work system |
JP2015201155A (en) | 2014-03-31 | 2015-11-12 | ヤンマー株式会社 | Coordinated travel work system |
JP2016021181A (en) * | 2014-07-15 | 2016-02-04 | シャープ株式会社 | Self-propelled electronic equipment |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003114719A (en) * | 2001-08-03 | 2003-04-18 | Sanyo Electric Co Ltd | Mobile robot |
JP2003345437A (en) * | 2002-05-22 | 2003-12-05 | Toshiba Tec Corp | Autonomous traveling robot |
JP4543247B2 (en) * | 2003-12-25 | 2010-09-15 | 井関農機株式会社 | Rice transplanter |
CN102167038B (en) * | 2010-12-03 | 2013-09-04 | 北京农业信息技术研究中心 | Method and device for generating all-region-covering optimal working path for farmland plot |
JP5667731B1 (en) * | 2014-03-06 | 2015-02-12 | ジオサーフ株式会社 | Field guidance system, field guidance method, software, and storage medium storing software |
JP6189779B2 (en) * | 2014-03-27 | 2017-08-30 | 株式会社クボタ | Work vehicle coordination system |
-
2017
- 2017-04-07 CN CN202210633017.5A patent/CN114995427A/en active Pending
- 2017-04-07 KR KR1020217003434A patent/KR102283928B1/en active IP Right Grant
- 2017-04-07 KR KR1020187026558A patent/KR102079890B1/en active Application Filing
- 2017-04-07 CN CN201780027984.4A patent/CN109074081A/en active Pending
- 2017-04-07 KR KR1020207017172A patent/KR20200075029A/en active Application Filing
- 2017-04-07 KR KR1020207004115A patent/KR102126168B1/en active IP Right Grant
- 2017-04-07 WO PCT/JP2017/014436 patent/WO2017195510A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1165657A (en) * | 1997-08-22 | 1999-03-09 | Minolta Co Ltd | Controller for mobile object |
JP2011254704A (en) * | 2010-06-04 | 2011-12-22 | Chugoku Electric Power Co Inc:The | Method and system for automatic farming |
WO2015118731A1 (en) * | 2014-02-06 | 2015-08-13 | ヤンマー株式会社 | Control device for parallel travel work system |
JP2015201155A (en) | 2014-03-31 | 2015-11-12 | ヤンマー株式会社 | Coordinated travel work system |
JP2016021181A (en) * | 2014-07-15 | 2016-02-04 | シャープ株式会社 | Self-propelled electronic equipment |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11622495B2 (en) | 2021-06-01 | 2023-04-11 | Gint Co., Ltd. | Method of automatically combining farm vehicle and work machine and farm vehicle |
US11785874B2 (en) | 2021-06-01 | 2023-10-17 | Gint Co., Ltd. | Method of automatically combining farm vehicle and work machine and farm vehicle |
US11877526B2 (en) | 2021-06-01 | 2024-01-23 | Gint Co., Ltd. | Method of automatically combining farm vehicle and work machine and farm vehicle |
US11910737B2 (en) | 2021-06-01 | 2024-02-27 | Gint Co., Ltd. | Method of automatically combining farm vehicle and work machine and farm vehicle |
US12052940B2 (en) | 2021-06-01 | 2024-08-06 | Gint Co., Ltd. | Method of automatically combining farm vehicle and work machine and farm vehicle |
KR20230049792A (en) | 2021-10-06 | 2023-04-14 | 대한민국(농촌진흥청장) | Autunomous driving device, agriculturl machinery including the same and method therefor for controlling the autonomous agriculturl machinery control |
KR102691506B1 (en) | 2021-10-06 | 2024-08-05 | 대한민국 | Autunomous driving device, agriculturl machinery including the same and method therefor for controlling the autonomous agriculturl machinery control |
Also Published As
Publication number | Publication date |
---|---|
KR102126168B1 (en) | 2020-06-24 |
KR102283928B1 (en) | 2021-07-29 |
CN114995427A (en) | 2022-09-02 |
CN109074081A (en) | 2018-12-21 |
KR102079890B1 (en) | 2020-02-20 |
KR20200018732A (en) | 2020-02-19 |
KR20200075029A (en) | 2020-06-25 |
KR20180116319A (en) | 2018-10-24 |
WO2017195510A1 (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102079890B1 (en) | Autonomous driving route generation system | |
JP6663366B2 (en) | Route generation system, and autonomous traveling system that causes a work vehicle to travel along a route generated by the route generation system | |
JP6682354B2 (en) | Autonomous driving route generation system | |
KR102144244B1 (en) | Route generating device | |
KR102341191B1 (en) | Work vehicle and travel region specification device | |
KR102279839B1 (en) | path generation system | |
US10598505B2 (en) | Travel route generation apparatus and method for generating travel route | |
JP6812247B2 (en) | Travel route generator and travel route generation program | |
JP6739228B2 (en) | Autonomous driving route generation system | |
CN111448530A (en) | Target route generation system for work vehicle | |
JP2018073050A (en) | Running route creating device | |
KR20210100079A (en) | autonomous driving system | |
JP2021083332A (en) | Autonomous travel control system | |
JP6977000B2 (en) | Route generation system for work vehicles | |
JP6739227B2 (en) | Autonomous driving route generation system | |
JP7022161B2 (en) | Autonomous driving system | |
JP2023129688A (en) | Autonomous travelling system and method of autonomous travelling | |
JP2020109693A (en) | Autonomous travel route generation system | |
JP7407569B2 (en) | Area registration system | |
JP2023134573A (en) | Work vehicle target route generation system and work vehicle target route generation method | |
JP2021082315A (en) | Path generation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |