KR20200073343A - The steel plate for excellent impact-toughness in welded joint, method for manufacturing thereof, and steel pipe using thereof - Google Patents
The steel plate for excellent impact-toughness in welded joint, method for manufacturing thereof, and steel pipe using thereof Download PDFInfo
- Publication number
- KR20200073343A KR20200073343A KR1020180161118A KR20180161118A KR20200073343A KR 20200073343 A KR20200073343 A KR 20200073343A KR 1020180161118 A KR1020180161118 A KR 1020180161118A KR 20180161118 A KR20180161118 A KR 20180161118A KR 20200073343 A KR20200073343 A KR 20200073343A
- Authority
- KR
- South Korea
- Prior art keywords
- steel
- less
- toughness
- impact toughness
- ferrite
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 112
- 239000010959 steel Substances 0.000 title claims abstract description 112
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 claims abstract description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 239000010936 titanium Substances 0.000 claims description 18
- 229910000859 α-Fe Inorganic materials 0.000 claims description 18
- 239000011572 manganese Substances 0.000 claims description 17
- 239000010955 niobium Substances 0.000 claims description 17
- 239000011651 chromium Substances 0.000 claims description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- 229910001563 bainite Inorganic materials 0.000 claims description 12
- 238000003466 welding Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 11
- 229910001562 pearlite Inorganic materials 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 9
- 229910052758 niobium Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 238000005098 hot rolling Methods 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 229910052750 molybdenum Inorganic materials 0.000 claims description 6
- 239000011733 molybdenum Substances 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 239000011574 phosphorus Substances 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 239000011593 sulfur Substances 0.000 claims description 6
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 4
- 101001027631 Homo sapiens Kinesin-like protein KIF20B Proteins 0.000 abstract description 4
- 101000590687 Homo sapiens U3 small nucleolar ribonucleoprotein protein MPP10 Proteins 0.000 abstract description 4
- 102100032497 U3 small nucleolar ribonucleoprotein protein MPP10 Human genes 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 20
- 230000000694 effects Effects 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 5
- 238000005553 drilling Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 208000010392 Bone Fractures Diseases 0.000 description 3
- 206010017076 Fracture Diseases 0.000 description 3
- 208000027418 Wounds and injury Diseases 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 238000005204 segregation Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 API 규격 5ST CT90 상당의 강도를 가지면서도 용접이음부의 충격인성이 우수한 강재 및 이것을 제조하는 방법과, 상기 강재를 이용하여 얻은 강관을 제공하고자 하는 것이다.The present invention is to provide a steel material having a strength equivalent to API standard 5ST CT90 while having excellent impact toughness in a welded joint, a method for manufacturing the same, and a steel pipe obtained using the steel material.
Description
본 발명은 오일 또는 가스 채굴 등에 사용되는 강재에 관한 것으로서, 보다 상세하게는 용접이음부의 충격인성이 우수한 강재 및 이것의 제조방법과, 상기 강재를 이용하여 얻은 강관에 관한 것이다.
The present invention relates to a steel material used for oil or gas mining, and more particularly, to a steel material excellent in impact toughness of a welded joint, a manufacturing method thereof, and a steel pipe obtained using the steel material.
최근, 유정이나 가스정(이하, '유정'이라 총칭함)을 개발하기 위한 환경이 점점 가혹화되고 있으며, 채산성을 향상시키기 위하여 생산원가를 낮추기 위한 노력들이 지속되고 있다.
Recently, the environment for developing oil wells or gas wells (hereinafter, collectively referred to as'oil wells') is becoming increasingly severe, and efforts to lower production costs in order to improve profitability have continued.
한편, 석유 및 가스 산업 등에서 사용되는 코일드 튜브(coiled tube)는 직경 1인치에서 3.25인치 정도의 소구경의 수km의 튜브를 제작하고, 이를 릴(reel)에 권취한 것으로, 작업 시 릴 스풀링을 통해 공급하는 형태이다.On the other hand, coiled tubes used in the oil and gas industry, etc., manufactured tubes with a diameter of 1 to 3.25 inches and a small diameter of several kilometers, and wound them on a reel, reel spooling during work. It is a form that is supplied through.
이러한 코일드 튜브는 유정, 가스정에서 유체순환, 펌핑, 드릴링, 로그인, 천공 등의 다양한 용도로 사용할 수 있다.
These coiled tubes can be used for various purposes, such as fluid circulation, pumping, drilling, drilling, drilling, and drilling in oil and gas wells.
상기 코일드 튜브는 사용 시마다 릴링/언릴링을 반복하여야 하는 바, 이로 인해 반복굽힘응력이 누적되어 튜브의 조기 파단이 유발되는 문제가 있다.The coiled tube needs to repeat reeling/unreeling every time it is used, and as a result, repeated bending stress accumulates, causing an early fracture of the tube.
특히, 피로 응력이 집중되는 용접부에서는 충격이 가해질 경우, 파단으로 인한 제품수명을 단축시키는 문제가 발생하므로, 충격인성을 향상시킨 소재의 개발과 더불어 용접이음부의 피로 저항성을 향상시킬 수 있는 기술의 개발이 요구된다.
Particularly, when a shock is applied to a welded part in which fatigue stress is concentrated, a problem occurs that shortens the product life due to fracture. Therefore, the development of a material that improves the impact toughness and the fatigue resistance of the welded joint can be improved. Development is required.
본 발명의 일 측면은, API 규격 5ST CT90 상당의 강도를 가지면서도 용접이음부의 충격인성이 우수한 강재 및 이것을 제조하는 방법과, 상기 강재를 이용하여 얻은 강관을 제공하고자 하는 것이다.
One aspect of the present invention is to provide a steel material having a strength equivalent to API standard 5ST CT90 while having excellent impact toughness of a welded joint, a method of manufacturing the same, and a steel pipe obtained using the steel.
본 발명의 과제는 상술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는데 어려움이 없을 것이다.
The subject of this invention is not limited to the above-mentioned content. Anyone having ordinary knowledge in the technical field to which the present invention pertains will have no difficulty in understanding additional problems of the present invention from the contents throughout the present specification.
본 발명의 일 측면은, 중량%로, 탄소(C): 0.10~0.15%, 실리콘(Si): 0.10~0.25%, 망간(Mn): 1.0~2.0%, 인(P): 0.025% 이하, 황(S): 0.005% 이하, 니오븀(Nb): 0.05~0.10%, 니켈(Ni): 0.1~0.3%, 크롬(Cr): 0.15~0.30%, 몰리브덴(Mo): 0.05~0.15%, 티타늄(Ti): 0.01~0.05%, 바나듐(V): 0.05~0.10%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, One aspect of the present invention, by weight, carbon (C): 0.10 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.0 to 2.0%, phosphorus (P): 0.025% or less, Sulfur (S): 0.005% or less, Niobium (Nb): 0.05 to 0.10%, Nickel (Ni): 0.1 to 0.3%, Chromium (Cr): 0.15 to 0.30%, Molybdenum (Mo): 0.05 to 0.15%, Titanium (Ti): 0.01 to 0.05%, Vanadium (V): 0.05 to 0.10%, Nitrogen (N): 0.008% or less, the balance includes Fe and unavoidable impurities,
미세조직이 평균 결정립 크기가 15㎛ 이하, 최대 결정립 크기가 30㎛ 이하인 페라이트와 펄라이트, 잔부 베이나이트로 구성되며, 하기 관계식 1을 만족하는 것을 특징으로 하는 용접이음부 충격인성이 우수한 강재를 제공한다.
A microstructure is composed of ferrite, pearlite, and residual bainite having an average grain size of 15 µm or less and a maximum grain size of 30 µm or less, and provides a steel material having excellent weld joint impact toughness characterized by satisfying the following relational expression 1. .
[관계식 1][Relationship 1]
70 < 3×10-2(5.19[F]+4.46[P]-0.7[B]) - 0.36[Dmax] - 0.3[YS] + 4.7[EL] + 0.755[Hv] < 82 70 <3×10 -2 (5.19[F]+4.46[P]-0.7[B])-0.36[Dmax]-0.3[YS] + 4.7[EL] + 0.755[Hv] <82
(관계식 1에서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 상의 분율, [Dmax]는 페라이트의 최대 결정립 크기(㎛), [YS]는 항복강도(MPa), [EL]은 연신율, Hv는 비커스 경도를 의미한다.)
(In equation 1, [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite phase, [Dmax] is the maximum grain size of ferrite (㎛), [YS] is yield strength (MPa), [EL ] Means elongation, Hv means Vickers hardness.)
본 발명의 다른 일 측면은, 상술한 합금조성을 가지는 강 슬라브를 준비하는 단계; 상기 강 슬라브를 1100~1300℃의 온도범위에서 가열하는 단계; 상기 가열된 강 슬라브를 750~850℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 및 상기 열연강판을 500~600℃까지 냉각한 후 권취하는 단계를 포함하는 용접이음부 충격인성이 우수한 강재의 제조방법을 제공한다.
Another aspect of the present invention, preparing a steel slab having the above-described alloy composition; Heating the steel slab in a temperature range of 1100 to 1300°C; Preparing a hot rolled steel sheet by finishing hot rolling the heated steel slab in a temperature range of 750 to 850°C; And cooling the hot-rolled steel sheet to 500 to 600° C. and then winding it up.
본 발명의 또 다른 일 측면은, 상기 강재를 성형 및 용접하여 얻은 용접이음부의 충격인성이 우수한 강관을 제공한다.
Another aspect of the present invention provides a steel pipe having excellent impact toughness of a welded joint obtained by molding and welding the steel.
본 발명에 의하면, 강관으로 성형 및 용접한 후에도 API 규격 5ST CT90 상당의 강도를 가질 뿐만 아니라, 용접이음부의 충격인성이 우수한 강재를 제공할 수 있다.According to the present invention, it is possible to provide a steel material having not only the strength equivalent to API standard 5ST CT90, but also excellent in the impact toughness of the welded joint even after molding and welding with a steel pipe.
또한, 본 발명의 강재를 성형 및 용접하여 얻어지는 강관은 코일드 튜빙으로서 적합하게 적용할 수 있다.
Further, the steel pipe obtained by molding and welding the steel material of the present invention can be suitably applied as a coiled tubing.
본 발명자들은 가스정 또는 유정 환경에서 사용되는 코일드 튜빙의 수요가 지속적으로 증가하고 있는 추세에 따라 그에 적합한 물성을 향상시킬 수 있는 소재를 개발하기 위하여 깊이 연구하였다. 특히, 소재를 강관으로 제조한 후 PAI 규격 5ST 규격내에서 요구하는 CT90급 상당의 물성을 가지면서, 용접이음부의 충격인성이 우수한 강재를 제공하고자 하였다.The present inventors have studied in depth to develop a material capable of improving physical properties suitable for the demand for a coiled tubing used in a gas well or an oil well environment. In particular, after manufacturing the material as a steel pipe, it was intended to provide a steel material with excellent impact toughness at the welded joint, having properties equivalent to CT90 required within the PAI standard 5ST standard.
그 결과, 강재의 합금조성 및 제조조건과 더불어, 상기 강재의 조직 구성과 기계적 물성 간의 관계를 최적화하는 것으로부터 의도하는 강재를 제공할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
As a result, it was confirmed that the intended steel can be provided by optimizing the relationship between the composition and mechanical properties of the steel, as well as the alloy composition and manufacturing conditions of the steel, and the present invention has been completed.
이하, 본 발명에 대하여 상세히 설명한다.
Hereinafter, the present invention will be described in detail.
본 발명의 일 측면에 따른 용접이음부 충격인성이 우수한 강재는 중량%로, 탄소(C): 0.10~0.15%, 실리콘(Si): 0.10~0.25%, 망간(Mn): 1.0~2.0%, 인(P): 0.025% 이하, 황(S): 0.005% 이하, 니오븀(Nb): 0.05~0.10%, 니켈(Ni): 0.1~0.3%, 크롬(Cr): 0.15~0.30%, 몰리브덴(Mo): 0.05~0.15%, 티타늄(Ti): 0.01~0.05%, 바나듐(V): 0.05~0.10%, 질소(N): 0.008% 이하를 포함할 수 있다.
The weld joint according to an aspect of the present invention has excellent impact toughness in weight%, carbon (C): 0.10 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.0 to 2.0%, Phosphorus (P): 0.025% or less, sulfur (S): 0.005% or less, niobium (Nb): 0.05 to 0.10%, nickel (Ni): 0.1 to 0.3%, chromium (Cr): 0.15 to 0.30%, molybdenum ( Mo): 0.05 to 0.15%, titanium (Ti): 0.01 to 0.05%, vanadium (V): 0.05 to 0.10%, nitrogen (N): 0.008% or less.
이하에서는 본 발명에서 제공하는 강재의 합금조성을 상기와 같이 제한하는 이유에 대하여 상세히 설명한다.Hereinafter, the reason for limiting the alloy composition of the steel material provided in the present invention as described above will be described in detail.
한편, 본 발명에서 특별히 언급하지 않는 한 각 원소의 함량은 중량을 기준으로 하며, 조직의 비율은 면적을 기준으로 한다.
On the other hand, unless specifically stated in the present invention, the content of each element is based on weight, and the proportion of tissue is based on area.
탄소(C): 0.10~0.15%Carbon (C): 0.10~0.15%
탄소(C)는 강의 강도 확보를 위하여 첨가하는 원소로서, 소입성을 향상시켜 강도를 확보할 수 있다. 이러한 C의 함량이 0.10% 미만이면 Nb, V, Ti 등의 석출강화형 원소들과 결합하여 강도를 향상시키는데에 있어서 어려움이 있고, 반면 그 함량이 0.15%를 초과하게 되면 항복강도가 과도하게 높아져 목표 수준의 강도를 초과하게 된다.Carbon (C) is an element added to secure the strength of the steel, and can improve the quenching property to secure the strength. If the content of C is less than 0.10%, it is difficult to improve strength by combining with precipitation-enhancing elements such as Nb, V, Ti, etc., whereas when the content exceeds 0.15%, yield strength is excessively increased. You will exceed your target level of strength.
따라서, 본 발명에서는 C를 0.10~0.15%로 포함할 수 있다.
Therefore, in the present invention, C may be included in 0.10 to 0.15%.
실리콘(Si): 0.10~0.25%Silicon (Si): 0.10~0.25%
실리콘(Si)은 강 제조시 탈산을 위해 첨가하며, 강도 확보에도 유리한 원소이다. 이러한 Si의 함량이 0.10% 미만이면 탈산효과가 불충분하고, 반면 그 함량이 0.25%를 초과하게 되면 MA 상이 형성되어 충격인성이 열화되며, 템퍼링시 취화가 발생할 우려가 있다.Silicon (Si) is added for deoxidation during steel production and is an element that is advantageous for securing strength. If the content of Si is less than 0.10%, the deoxidation effect is insufficient, whereas when the content exceeds 0.25%, the MA phase is formed, impact toughness deteriorates, and embrittlement may occur during tempering.
따라서, 본 발명에서는 Si을 0.10~0.25%로 포함할 수 있다.
Therefore, in the present invention, Si may be included at 0.10 to 0.25%.
망간(Mn): 1.0~2.0%Manganese (Mn): 1.0-2.0%
망간(Mn)은 강의 강도 확보를 위하여 첨가하며, 다만 그 함량이 1.0% 미만이면 목표 수준의 강도를 확보하는데에 어려움이 있다. 반면 상기 Mn의 함량이 2.0%를 초과하게 되면 연주시 중심편석을 생성하여 충격인성의 저하 및 피로특성 저항성을 저해하는 문제가 있다.Manganese (Mn) is added to secure the strength of steel, but if its content is less than 1.0%, it is difficult to secure the target level of strength. On the other hand, when the content of Mn exceeds 2.0%, there is a problem that a central segregation is generated during performance, thereby deteriorating impact toughness and inhibiting fatigue property resistance.
따라서, 본 발명에서는 Mn을 1.0~2.0%로 포함할 수 있다.
Therefore, in the present invention, Mn may be included in an amount of 1.0 to 2.0%.
인(P): 0.025% 이하Phosphorus (P): 0.025% or less
인(P)은 강 중 불가피하게 첨가되는 불순물이며 인성을 저해하므로, 가능한 낮게 함유하는 것이 바람직하다. 이러한 P의 함량이 0.025%를 초과하게 되면 연주시 중심편석을 유발하여 충격인성을 저해하는 문제가 있으므로, 상기 P은 0.025% 이하로 포함할 수 있다.
Phosphorus (P) is an imperatively added impurity in steel and inhibits toughness, so it is preferable to contain it as low as possible. When the content of P exceeds 0.025%, there is a problem that the impact toughness is inhibited by inducing central segregation when playing, so the P may be included in an amount of 0.025% or less.
황(S): 0.005% 이하Sulfur (S): 0.005% or less
황(S)은 강 중 불가피하게 첨가되는 불순물이므로, 가능한 낮게 함유하는 것이 바람직하다. 이러한 S의 함량이 0.005%를 초과하게 되면 강 중 Mn과 결합하여 MnS를 형성하며, 이는 강의 인성을 저하시키는 주요 원인이 된다. 따라서, 상기 S은 0.005% 이하로 포함할 수 있다.
Since sulfur (S) is an imperatively added impurity in steel, it is preferable to contain it as low as possible. When the content of S exceeds 0.005%, MnS is formed by combining with Mn in steel, which is a major cause of deteriorating the toughness of steel. Therefore, the S may be included in 0.005% or less.
니오븀(Nb): 0.05~0.10%Niobium (Nb): 0.05 to 0.10%
니오븀(Nb)은 석출물을 형성하여 강의 강도를 확보하는데에 유리한 원소로서, 특히 NbC 석출물을 생성시켜 석출강화 효과를 얻을 수 있다. 이러한 Nb의 함량이 0.05% 미만이면 석출강화 효과를 충분히 얻을 수 없고, 반면 그 함량이 0.10%를 초과하게 되면 조대한 석출물 및 MA 상의 형성을 촉진하여 인성을 저해하는 문제가 있다.Niobium (Nb) is an element that is advantageous for forming a precipitate to secure the strength of the steel. In particular, it is possible to obtain a precipitation strengthening effect by generating an NbC precipitate. If the content of Nb is less than 0.05%, a precipitation strengthening effect cannot be sufficiently obtained, whereas when the content exceeds 0.10%, there is a problem of inhibiting toughness by promoting formation of coarse precipitates and MA phases.
따라서, 본 발명에서는 Nb을 0.05~0.10%로 포함할 수 있다.
Therefore, in the present invention, Nb may be included in 0.05 to 0.10%.
니켈(Ni): 0.1~0.3%Nickel (Ni): 0.1 to 0.3%
니켈(Ni)은 격자 내 적층결함에너지(SFE)를 낮춰 천이온도를 저하시킴으로써 인성을 향상시키는 역할을 한다. 또한, 저융점 화합물의 생성을 억제하여 열간가공시 크랙의 발생을 억제하는 효과가 있다. 상술한 효과를 충분히 얻기 위해서는 상기 Ni을 0.1% 이상으로 함유할 수 있으나, 그 함량이 0.3%를 초과하게 되면 Ni 화합물이 생성되어 인성이 열화되는 문제가 있다.Nickel (Ni) serves to improve toughness by lowering the stacking fault energy (SFE) in the lattice to lower the transition temperature. In addition, there is an effect of suppressing the generation of a low melting point compound to suppress the occurrence of cracks during hot working. In order to sufficiently obtain the above-described effect, the Ni may be contained in 0.1% or more, but if the content exceeds 0.3%, there is a problem that the Ni compound is generated and the toughness deteriorates.
따라서, 본 발명에서 상기 Ni은 0.1~0.3%로 포함할 수 있다.
Therefore, in the present invention, the Ni may be included in 0.1 to 0.3%.
크롬(Cr): 0.15~0.30%Chromium (Cr): 0.15~0.30%
크롬(Cr)은 강의 경화능과 내식성을 향상시키는데 유효한 원소로서, 그 함량이 0.15% 미만이면 상술한 효과를 충분히 얻을 수 없다. 반면, 그 함량이 0.30%를 초과하게 되면 용접부 결함을 유발하거나 취성을 야기하는 문제가 있다.Chromium (Cr) is an effective element for improving the hardenability and corrosion resistance of steel. If the content is less than 0.15%, the above-described effect cannot be sufficiently obtained. On the other hand, if the content exceeds 0.30%, there is a problem that causes defects in the weld or causes brittleness.
따라서, 본 발명에서 상기 Cr은 0.15~0.30%로 포함할 수 있다.
Therefore, in the present invention, Cr may be included in an amount of 0.15 to 0.30%.
몰리브덴(Mo): 0.05~0.15%Molybdenum (Mo): 0.05~0.15%
몰리브덴(Mo)은 경화능이 큰 원소로서, 강도 향상에 유리할 뿐만 아니라, 피로 저항성 향상에도 유리하다. 이러한 Mo의 함량이 0.05% 미만이면 상술한 효과를 충분히 얻을 수 없고, 반면 그 함량이 0.15%를 초과하게 되면 탄화석출물을 생성시켜 인성을 저해한다.Molybdenum (Mo) is an element having a large hardenability, and is advantageous not only for strength improvement but also for fatigue resistance improvement. If the content of Mo is less than 0.05%, the above-described effect cannot be sufficiently obtained, whereas when the content exceeds 0.15%, carbonized precipitates are generated to inhibit toughness.
따라서, 본 발명에서 상기 Mo은 0.05~0.15%로 포함할 수 있다.
Therefore, in the present invention, the Mo may be included as 0.05 to 0.15%.
티타늄(Ti): 0.01~0.05%Titanium (Ti): 0.01~0.05%
티타늄(Ti)은 강의 강도 및 인성 향상을 위하여 첨가하는 원소로서, 특히 TiC 석출물을 생성하여 석출강화 효과를 얻을 수 있고, TiN 석출물을 생성하여 오스테나이트 결정립 성장을 억제함으로써 결정립 미세화에 의한 강도 및 인성 향상 효과를 얻을 수 있다. 이러한 Ti의 함량이 0.01% 미만이면 상술한 효과를 충분히 얻을 수 없고, 반면 그 함량이 0.05%를 초과하게 되면 조대한 Ti 석출물이 생성되어 인성을 저해하는 문제가 있다.Titanium (Ti) is an element added to improve the strength and toughness of steel. In particular, TiC precipitates can be produced to obtain a precipitation strengthening effect, and TiN precipitates are generated to suppress austenite grain growth, thereby reducing strength and toughness by grain refinement. Improvement effect can be obtained. If the content of Ti is less than 0.01%, the above-described effect cannot be sufficiently obtained, whereas when the content exceeds 0.05%, coarse Ti precipitates are generated, thereby inhibiting toughness.
따라서, 본 발명에서 상기 Ti은 0.01~0.05%로 포함할 수 있다.
Therefore, in the present invention, Ti may be included in an amount of 0.01 to 0.05%.
바나듐(V): 0.05~0.10%Vanadium (V): 0.05~0.10%
바나듐(V)은 석출강화 효과로부터 강의 강도를 향상시키는데 유리한 원소이다. 이러한 V의 함량이 0.05% 미만이면 상술한 효과를 충분히 얻을 수 없고, 반면 그 함량이 0.10%를 초과하게 되면 제조원가가 상승하고 탄화물을 생성시켜 인성이 급격히 저하될 우려가 있다.Vanadium (V) is an element that is advantageous for improving the strength of steel from the precipitation strengthening effect. When the content of V is less than 0.05%, the above-described effect cannot be sufficiently obtained, whereas when the content exceeds 0.10%, the manufacturing cost may increase and the toughness may be rapidly reduced by producing carbide.
따라서, 본 발명에서 상기 V은 0.05~0.10%로 포함할 수 있다.
Therefore, in the present invention, V may be included as 0.05 to 0.10%.
질소(N): 0.008% 이하(0% 제외)Nitrogen (N): 0.008% or less (excluding 0%)
질소(N)는 강 중에서 주로 Ti과 결합하여 질화물을 생성시켜 다른 합금원소의 기능을 저해할 우려가 있다. 특히 그 함량이 0.008%를 초과하게 되면 조대한 석출물을 생성하여 인성을 저해한다.Nitrogen (N) is mainly combined with Ti in the steel to generate nitrides, which may impair the function of other alloying elements. In particular, when the content exceeds 0.008%, coarse precipitates are generated, thereby inhibiting toughness.
따라서, 본 발명에서 상기 N은 0.008% 이하로 제한할 수 있으며, 제강공정의 부하를 고려하여 0%는 제외할 수 있다.
Therefore, in the present invention, the N may be limited to 0.008% or less, and 0% may be excluded in consideration of the load of the steelmaking process.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
The remaining component of the invention is iron (Fe). However, in the normal manufacturing process, impurities that are not intended from the raw material or the surrounding environment may be inevitably mixed, and therefore cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, they are not specifically mentioned in this specification.
상술한 합금조성을 만족하는 본 발명의 강재는 미세조직으로 페라이트 및 펄라이트 복합조직과 함께 일부 베이나이트를 포함할 수 있다.The steel material of the present invention that satisfies the above-described alloy composition may include some bainite together with a ferrite and pearlite composite structure as a microstructure.
구체적으로, 본 발명의 강재는 면적분율 60~80%의 페라이트, 20~40%의 펄라이트를 포함하되, 일부 베이나이트를 포함할 수 있으며, 이때 상기 베이나이트 상은 면적분율 15% 이하로 포함할 수 있다.Specifically, the steel material of the present invention includes ferrite of an area fraction of 60 to 80%, pearlite of 20 to 40%, and may include some bainite, wherein the bainite phase may include an area fraction of 15% or less. have.
상기 페라이트는 격자구조의 슬립면 형성이 용이하여 우수한 충격 흡수성을 나타내므로 면적분율 60% 이상으로 포함하는 것이 바람직하다. 다만, 그 분율이 80%를 초과하게 되면 목표 수준의 강도를 확보할 수 없다.
Since the ferrite is easy to form a slip surface of a lattice structure and exhibits excellent shock absorption, it is preferable to include an area fraction of 60% or more. However, if the fraction exceeds 80%, the target level of strength cannot be secured.
또한, 상기 페라이트는 평균 결정립 크기가 15㎛ 이하이고, 최대 결정립 크기가 30㎛ 이하인 것이 바람직하다. 상기 페라이트의 평균 결정립 크기가 15㎛를 초과하게 되면 충격을 흡수하는 입계가 감소되어 인성이 저하되며, 최대 결정립 크기가 30㎛를 초과하게 되면 비균일 결정립이 존재하여 충격인성이 급격히 저하되는 문제가 있다. 여기서, 평균 결정립 크기는 원 상당 평균 직경을 의미한다.
In addition, the ferrite preferably has an average grain size of 15 μm or less and a maximum grain size of 30 μm or less. When the average grain size of the ferrite exceeds 15 µm, the grain boundary absorbing the impact is reduced and the toughness decreases. When the maximum grain size exceeds 30 µm, non-uniform grains exist and the impact toughness rapidly decreases. have. Here, the average grain size means an average diameter corresponding to a circle.
한편, 상술한 합금조성과 미세조직을 만족하는 본 발명의 강재는 조직 상(phase) 분율과 기계적 물성(YS, El, Hv)간의 관계가 하기 관계식 1을 만족하는 것이 바람직하다.
On the other hand, the steel material of the present invention that satisfies the above-described alloy composition and microstructure, it is preferable that the relationship between the structure phase (phase) fraction and mechanical properties (YS, El, Hv) satisfies the following relational expression 1.
[관계식 1][Relationship 1]
70 < 3×10-2(5.19[F]+4.46[P]-0.7[B]) - 0.36[Dmax] - 0.3[YS] + 4.7[EL] + 0.755[Hv] < 82 70 <3×10 -2 (5.19[F]+4.46[P]-0.7[B])-0.36[Dmax]-0.3[YS] + 4.7[EL] + 0.755[Hv] <82
(관계식 1에서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 상의 분율, [Dmax]는 페라이트의 최대 결정립 크기(㎛), [YS]는 항복강도(MPa), [EL]은 연신율, Hv는 비커스 경도를 의미한다.)
(In equation 1, [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite phase, [Dmax] is the maximum grain size of ferrite (㎛), [YS] is yield strength (MPa), [EL ] Means elongation, Hv means Vickers hardness.)
본 발명에서 조직 상 분율과 결정립 크기는 의도하는 물성을 확보하는데에 중요한 인자이며, 이것에 대해 소재 물성과의 관계를 최적화함으로써 본 발명에서 목표로 하는 용접부 인성을 우수하게 확보할 수 있다.In the present invention, the tissue phase fraction and grain size are important factors in securing the intended physical properties, and by optimizing the relationship between the material properties, the toughness of the weld targeted in the present invention can be excellently secured.
구체적으로, 항복강도는 소재(재료)의 탄성한계를 결정하며, 이러한 항복강도와 연신율이 높을수록 소재의 충격흡수능력 즉, 인성을 향상시킬 수 있다. 다만, 상기 항복강도가 향상된다 하더라도 소재의 경화능(비커스 경도)이 높을수록 소재의 파단 수명이 단축되어 인성이 저하된다. Specifically, the yield strength determines the elastic limit of the material (material), and the higher the yield strength and elongation, the higher the material's impact absorption capacity, that is, toughness. However, even if the yield strength is improved, the higher the hardenability (Vickers hardness) of the material, the shorter the fracture life of the material and the lower the toughness.
그러므로, 본 발명에서는 조직 상 분율 및 결정립 크기와 함께 항복강도, 연신율 및 비커스 경도 간의 관계를 상기 관계식 1로 제어함에 기술적 의의가 있다.
Therefore, in the present invention, there is a technical significance in controlling the relationship between yield strength, elongation and Vickers hardness along with the fraction and grain size on the tissues by the above equation (1).
이하에서는, 본 발명의 다른 일 측면인 용접이음부 충격인성이 우수한 강재를 제조하는 방법에 대하여 상세히 설명한다.
Hereinafter, another aspect of the present invention will be described in detail with respect to a method for manufacturing a steel material having excellent weld joint impact toughness.
본 발명에 따른 강재는 본 발명에서 제안하는 합금조성을 만족하는 강 슬라브를 준비한 후, 이를 [가열 - 열간압연 - 냉각 - 권취]의 일련의 공정을 거쳐 제조할 수 있으며, 하기에서 상기 각각의 공정에 대하여 구체적으로 설명한다.
The steel material according to the present invention can be prepared through a series of processes of [heating-hot rolling-cooling-winding] after preparing a steel slab that satisfies the alloy composition proposed in the present invention. It will be described in detail.
[슬라브 가열 공정][Slab heating process]
강 슬라브의 가열 공정은 후속 압연공정을 원활히 수행하고, 목표로 하는 강판의 물성을 충분히 얻을 수 있도록 강을 가열하는 공정이므로, 적정 오스테나이트 영역 내에서 온도를 유지하여 균질한 초기 미세조직과 석출물을 제어하여야 한다.Since the heating process of the steel slab is a process of smoothly performing the subsequent rolling process and heating the steel so as to sufficiently obtain the properties of the target steel sheet, the temperature is maintained within a suitable austenite region to obtain homogeneous initial microstructure and precipitates. Should be controlled.
본 발명에서는 1100~1300℃의 온도범위에서 가열 공정을 행할 수 있다. 만일, 상기 가열시 온도가 1100℃ 미만이면 Nb, Ti 등의 고융점 화합물들이 완전히 고용되기 어려워 편석대로 잔존할 가능성이 높아지며, 반면 1300℃를 초과하게 되면 초기 결정립이 너무 조대해져 최종 제품에서 미세한 조직을 얻을 수 없게 된다.
In the present invention, a heating process may be performed in a temperature range of 1100 to 1300°C. If the temperature during heating is less than 1100°C, high-melting-point compounds such as Nb and Ti are difficult to be completely dissolved, and thus there is a high possibility of remaining as a segregation zone. On the other hand, when it exceeds 1300°C, the initial crystal grain becomes too coarse and fine in the final product. Organizations cannot be obtained.
[열간압연 공정][Hot rolling process]
상기에 따라 가열된 강 슬라브를 열간압연하여 열연강판으로 제조할 수 있다.The steel slab heated according to the above can be hot-rolled to produce a hot-rolled steel sheet.
상기 열간압연시 마무리 열간압연은 750~850℃의 온도범위에서 행할 수 있다. 만일, 마무리 열간압연 온도가 750℃ 미만이면 MnS가 생성되어 충격인성 및 피로 저항성이 저하될 우려가 있으며, 반면 그 온도가 850℃를 초과하게 되면 이차상(탄화물)의 생성 및 미세조직 결정립의 불균질화가 심화되어 충격인성 및 강도 확보에 어려움이 있다.
Finishing hot rolling at the time of the hot rolling may be performed in a temperature range of 750 ~ 850 ℃. If the finish hot rolling temperature is less than 750°C, MnS may be generated, and thus impact toughness and fatigue resistance may be deteriorated. On the other hand, when the temperature exceeds 850°C, secondary phase (carbide) formation and microstructural crystallites are unstable. It is difficult to secure impact toughness and strength due to intensification of homogenization.
[냉각 및 권취 공정][Cooling and coiling process]
상술한 바에 따라 제조된 열연강판을 냉각한 후 권취할 수 있다.After cooling the hot-rolled steel sheet produced according to the above-described can be wound.
상기 냉각은 500~600℃의 온도범위까지 행한 후 그 온도에서 권취를 행할 수 있다. 이때, 권취 온도가 500℃ 미만이면 베이나이트 상과 같은 경한 저온변태상이 국부적으로 형성되어 피로 저항성이 저하될 우려가 있다. 반면, 그 온도가 600℃를 초과하게 되면 조대한 펄라이트 상이 쉽게 형성되어 피로 전파가 용이하게 됨에 따라 피로 저항성이 저하될 우려가 있다. 보다 유리하게는 500~550℃의 온도범위에서 권취를 행할 수 있다.The cooling may be performed to a temperature range of 500 to 600° C., and then coiled at that temperature. At this time, when the coiling temperature is less than 500°C, a mild low-temperature transformation phase such as a bainite phase is locally formed, and thus there is a fear that fatigue resistance is deteriorated. On the other hand, when the temperature exceeds 600°C, a coarse pearlite phase is easily formed, and thus, fatigue resistance may be deteriorated as fatigue propagation is facilitated. More advantageously, winding can be performed in a temperature range of 500 to 550°C.
상술한 온도범위로 냉각시 냉각속도에 대해서는 특별히 한정하지 아니하나, 저온 변태조직의 형성을 제한하면서 결정립 미세화를 도모하기 위한 측면에서 95℃/s 이하로 행할 수 있다.The cooling rate when cooling to the above-described temperature range is not particularly limited, but can be performed at 95° C./s or less in terms of promoting grain refinement while limiting formation of a low-temperature transformation structure.
다만, 냉각속도가 너무 느리면 페라이트 상이 과도하게 생성되므로, 이를 고려하여 40℃/s 이상으로 행할 수 있다.
However, since the ferrite phase is excessively formed when the cooling rate is too slow, it may be performed at 40° C./s or more in consideration of this.
상기에 따라 제조된 열연강판을 이용하여 강관으로 제조할 수 있다. 일 예로, 제조된 열연강판을 산세 처리 공정으로부터 표면의 스케일을 제거한 후 파이프의 형상으로 성형하고, 맞닿은 부위를 용접하여 피로 저항성이 우수한 강관을 얻을 수 있다. 또 다른 예로서, 상기 열연강판을 소정의 폭으로 슬리팅하고 용접 및 조관할 수 있다.It can be manufactured into a steel pipe using a hot-rolled steel sheet manufactured according to the above. As an example, the prepared hot-rolled steel sheet may be formed into a pipe shape after removing the scale of the surface from the pickling treatment process, and welded abutted portions to obtain a steel pipe having excellent fatigue resistance. As another example, the hot rolled steel sheet may be slit to a predetermined width and welded and fabricated.
상기 강관을 제조하는 방법은 특별히 한정되지 않으나, 경제성이 우수한 전기저항용접을 이용하여 조관할 수 있다. 상기 전기저항용접시 어떠한 용접 방식도 이용할 수 있으므로 용접 방법에 대해서는 특별히 한정하지 아니한다.
The method for manufacturing the steel pipe is not particularly limited, but can be prepared using an electric resistance welding having excellent economic efficiency. Any welding method can be used for the electric resistance welding, so the welding method is not particularly limited.
본 발명의 강재를 이용하여 얻은 강관은 항복강도 620~689MPa, 인장강도 669MPa 이상을 가지며, 용접이음부의 충격인성이 40J 이상으로, 목표로 하는 강도와 더불어 용접부 충격인성을 우수하게 확보할 수 있다. 따라서, 본 발명의 강관은 코일드 튜빙으로서 적합하게 사용할 수 있다.
The steel pipe obtained by using the steel material of the present invention has a yield strength of 620 to 689 MPa, a tensile strength of 669 MPa or more, and the impact toughness of the welded joint is 40 J or more, and the target strength as well as the impact toughness of the welded portion can be excellently secured. . Therefore, the steel pipe of the present invention can be suitably used as a coiled tubing.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are only intended to illustrate the present invention in more detail and are not intended to limit the scope of the present invention. This is because the scope of the present invention is determined by the items described in the claims and the items reasonably inferred therefrom.
(( 실시예Example ))
하기 표 1의 합금조성을 갖는 강 슬라브를 하기 표 2에 나타낸 조건으로 가열 - 마무리 열간압연 - 냉각 - 권취하여 두께 5.2mm의 열연강판을 제조하였다. 이때, 가열은 2시간 동안 행하였으며, 냉각은 70℃/s로 행하였다.The steel slab having the alloy composition of Table 1 was heated-finished hot rolled-cooled-wound under the conditions shown in Table 2 below to prepare a hot-rolled steel sheet having a thickness of 5.2 mm. At this time, heating was performed for 2 hours, and cooling was performed at 70°C/s.
이후, 상기 제조된 각각의 열연강판에 대해 미세조직을 관찰하고, 그 결과를 하기 표 3에 나타내었다.
Then, microstructures were observed for each of the hot-rolled steel sheets prepared, and the results are shown in Table 3 below.
한편, 상기 제조된 열연강판에 대해서 전기저항용접 조관 후 ASTM A370 규격에 따라 인장시험 및 충격시험을 행하였으며, 그 결과를 하기 표 3에 나타내었다. 이때, 상기 인장시험은 MTS 100kN급 인장시험기를 이용하여 10mm/min의 속도로 항복강도(YS), 인장강도(TS), 연신율(El)을 측정하였으며, 충격시험은 용접열영향부(HAZ)에서 샤르피 충격시험기를 이용하여 측정하였다.On the other hand, the prepared hot-rolled steel sheet was subjected to a tensile test and an impact test according to ASTM A370 standard after the electric resistance welding pipe, and the results are shown in Table 3 below. At this time, the tensile test was measured using a MTS 100kN class tensile tester at a rate of 10mm/min yield strength (YS), tensile strength (TS), elongation (El), and the impact test was a welding heat affected zone (HAZ). Was measured using a Charpy impact tester.
그리고, 각 강관의 두께 중심부에서 비커스 경도기를 이용하여 경도를 측정하였으며, 15회 측정한 후 평균값으로 나타내었다.
Then, the hardness was measured using a Vickers hardness tester at the center of the thickness of each steel pipe, and it was expressed as an average value after 15 measurements.
(℃)Heating temperature
(℃)
온도(℃)Finish hot rolling
Temperature (℃)
(℃)Winding temperature
(℃)
division
충격인성
(J@0℃)HAZ
Impact toughness
(J@0℃)
1Relation
One
결정립
(㎛)F average
Crystal grain
(㎛)
결정립
(㎛)F max
Crystal grain
(㎛)
(MPa)YS
(MPa)
(MPa)TS
(MPa)
(%)El
(%)
(Hv)Hardness
(Hv)
(표 3에서 F는 페라이트, P는 펄라이트, B는 베이나이트 이며 각각 면적분율로 나타낸 것이다. 탄소당량(Ceq) 값은 [Ceq = C + Mn/6 + Si/24 + Ni/40 + Cr/5 + Mo/4 + V/14]로부터 도출하여 나타낸 것이다.)
(In Table 3, F is ferrite, P is pearlite, and B is bainite, and each is expressed as an area fraction. The carbon equivalent (Ceq) value is [Ceq = C + Mn/6 + Si/24 + Ni/40 + Cr/ 5 + Mo/4 + V/14].)
상기 표 1 내지 3에 나타낸 바와 같이, 본 발명에서 제안하는 합금조성 및 제조조건을 모두 만족하는 발명강 1 내지 3은 강관을 제조한 후 용접열영향부 충격인성이 40J 이상으로 우수한 것을 확인할 수 있으며, 목표로 하는 강도를 가짐을 확인할 수 있다.As shown in Tables 1 to 3, the invention steels 1 to 3 satisfying both the alloy composition and the manufacturing conditions proposed in the present invention can be confirmed that the weld heat-affected zone has an impact toughness of 40 J or more after manufacturing the steel pipes. , It can be confirmed that it has the target strength.
반면, 합금조성이 본 발명을 벗어나는 비교강 1 내지 6은 조직이 조대하게 형성되거나 석출물 또는 저온 변태상이 과도하게 형성됨에 따라 용접열영향부 충격인성이 열위한 것을 확인할 수 있다.On the other hand, it can be seen that the comparative alloys 1 to 6 in which the alloy composition deviates from the present invention are poor in the impact toughness of the welding heat-affected zone as the structure is coarsely formed or the precipitate or low-temperature transformation phase is excessively formed.
특히, 비교강 1 내지 6 모두 본 발명에서 제안하는 관계식 1을 만족하지 못하였다.In particular, all of Comparative Steels 1 to 6 did not satisfy the relationship 1 suggested in the present invention.
Claims (9)
미세조직이 평균 결정립 크기가 15㎛ 이하, 최대 결정립 크기가 30㎛ 이하인 페라이트와 펄라이트, 잔부 베이나이트로 구성되며,
하기 관계식 1을 만족하는 것을 특징으로 하는 용접이음부 충격인성이 우수한 강재.
[관계식 1]
70 < 3×10-2(5.19[F]+4.46[P]-0.7[B]) - 0.36[Dmax] - 0.3[YS] + 4.7[EL] + 0.755[Hv] < 82
(관계식 1에서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 상의 분율, [Dmax]는 페라이트의 최대 결정립 크기(㎛), [YS]는 항복강도(MPa), [EL]은 연신율, Hv는 비커스 경도를 의미한다.)
In weight percent, carbon (C): 0.10 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.0 to 2.0%, phosphorus (P): 0.025% or less, sulfur (S): 0.005% Hereinafter, niobium (Nb): 0.05 to 0.10%, nickel (Ni): 0.1 to 0.3%, chromium (Cr): 0.15 to 0.30%, molybdenum (Mo): 0.05 to 0.15%, titanium (Ti): 0.01 to 0.05 %, Vanadium (V): 0.05 to 0.10%, Nitrogen (N): 0.008% or less, including residual Fe and unavoidable impurities,
The microstructure is composed of ferrite, pearlite, and residual bainite having an average grain size of 15 μm or less and a maximum grain size of 30 μm or less,
Steel with excellent weld toughness impact toughness, characterized in that it satisfies the following relational expression 1.
[Relationship 1]
70 <3×10 -2 (5.19[F]+4.46[P]-0.7[B])-0.36[Dmax]-0.3[YS] + 4.7[EL] + 0.755[Hv] <82
(In equation 1, [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite phase, [Dmax] is the maximum grain size of ferrite (㎛), [YS] is yield strength (MPa), [EL ] Means elongation, Hv means Vickers hardness.)
상기 페라이트는 면적분율 60~80%로 포함하고, 상기 펄라이트는 면적분율 20~40%로 포함하는 것인 용접이음부 충격인성이 우수한 강재.
According to claim 1,
The ferrite includes an area fraction of 60 to 80%, and the pearlite comprises an area fraction of 20 to 40%.
상기 베이나이트는 면적분율 15% 이하로 포함하는 것인 접이음부 충격인성이 우수한 강재.
According to claim 1,
The bainite is a steel material having excellent impact toughness in the folded part, which includes an area fraction of 15% or less.
상기 강 슬라브를 1100~1300℃의 온도범위에서 가열하는 단계;
상기 가열된 강 슬라브를 750~850℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 및
상기 열연강판을 500~600℃까지 냉각한 후 권취하는 단계
를 포함하는 용접이음부 충격인성이 우수한 강재의 제조방법.
In weight percent, carbon (C): 0.10 to 0.15%, silicon (Si): 0.10 to 0.25%, manganese (Mn): 1.0 to 2.0%, phosphorus (P): 0.025% or less, sulfur (S): 0.005% Hereinafter, niobium (Nb): 0.05 to 0.10%, nickel (Ni): 0.1 to 0.3%, chromium (Cr): 0.15 to 0.30%, molybdenum (Mo): 0.05 to 0.15%, titanium (Ti): 0.01 to 0.05 %, Vanadium (V): 0.05 to 0.10%, Nitrogen (N): 0.008% or less, preparing a steel slab containing the balance Fe and unavoidable impurities;
Heating the steel slab in a temperature range of 1100 to 1300°C;
Preparing a hot rolled steel sheet by finishing hot rolling the heated steel slab in a temperature range of 750 to 850°C; And
After cooling the hot-rolled steel sheet to 500 ~ 600 ℃ winding up
Method for producing a steel material having excellent weld toughness impact welding.
상기 권취는 500~550℃의 온도범위에서 행하는 것인 용접이음부 충격인성이 우수한 강재의 제조방법.
The method of claim 4,
The winding is a method of manufacturing a steel joint having excellent impact toughness that is performed in a temperature range of 500 to 550°C.
상기 냉각은 95℃/s 이하의 냉각속도로 행하는 것인 용접이음부 충격인성이 우수한 강재의 제조방법.
The method of claim 4,
The cooling method is performed at a cooling rate of 95°C/s or less, and a method of manufacturing a steel with excellent weld toughness impact toughness.
상기 강재는 하기 관계식 1을 만족하는 것인 용접이음부 충격인성이 우수한 강재의 제조방법.
[관계식 1]
70 < 3×10-2(5.19[F]+4.46[P]-0.7[B]) - 0.36[Dmax] - 0.3[YS] + 4.7[EL] + 0.755[Hv] < 82
(관계식 1에서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 상의 분율, [Dmax]는 페라이트의 최대 결정립 크기(㎛), [YS]는 항복강도(MPa), [EL]은 연신율, Hv는 비커스 경도를 의미한다.)
The method of claim 4,
The steel is a method of manufacturing a steel joint having excellent impact toughness that satisfies the following relational expression 1.
[Relationship 1]
70 <3×10 -2 (5.19[F]+4.46[P]-0.7[B])-0.36[Dmax]-0.3[YS] + 4.7[EL] + 0.755[Hv] <82
(In equation 1, [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite phase, [Dmax] is the maximum grain size of ferrite (㎛), [YS] is yield strength (MPa), [EL ] Means elongation, Hv means Vickers hardness.)
A steel pipe excellent in impact toughness of a welded joint obtained by molding and welding a steel material according to any one of claims 1 to 3.
상기 용접강관은 항복강도 620~689MPa, 인장강도 669MPa 이상을 가지며, 용접이음부의 충격인성이 40J 이상인 용접이음부 충격인성이 우수한 강관.The method of claim 8,
The welded steel pipe has a yield strength of 620 to 689 MPa, a tensile strength of 669 MPa or higher, and a weld joint having an impact toughness of 40 J or more, which is excellent in impact toughness of a welded joint.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180161118A KR20200073343A (en) | 2018-12-13 | 2018-12-13 | The steel plate for excellent impact-toughness in welded joint, method for manufacturing thereof, and steel pipe using thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180161118A KR20200073343A (en) | 2018-12-13 | 2018-12-13 | The steel plate for excellent impact-toughness in welded joint, method for manufacturing thereof, and steel pipe using thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20200073343A true KR20200073343A (en) | 2020-06-24 |
Family
ID=71407925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180161118A KR20200073343A (en) | 2018-12-13 | 2018-12-13 | The steel plate for excellent impact-toughness in welded joint, method for manufacturing thereof, and steel pipe using thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20200073343A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251587A (en) * | 2020-10-23 | 2021-01-22 | 攀钢集团攀枝花钢铁研究院有限公司 | Heat treatment method for welded joint of bainite steel rail and eutectoid pearlite steel rail |
WO2024100939A1 (en) * | 2022-11-08 | 2024-05-16 | Jfeスチール株式会社 | Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140104497A (en) | 2012-01-18 | 2014-08-28 | 제이에프이 스틸 가부시키가이샤 | Steel strip for coiled tubing and method for producing same |
-
2018
- 2018-12-13 KR KR1020180161118A patent/KR20200073343A/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140104497A (en) | 2012-01-18 | 2014-08-28 | 제이에프이 스틸 가부시키가이샤 | Steel strip for coiled tubing and method for producing same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112251587A (en) * | 2020-10-23 | 2021-01-22 | 攀钢集团攀枝花钢铁研究院有限公司 | Heat treatment method for welded joint of bainite steel rail and eutectoid pearlite steel rail |
CN112251587B (en) * | 2020-10-23 | 2022-03-22 | 攀钢集团攀枝花钢铁研究院有限公司 | Heat treatment method for welded joint of bainite steel rail and eutectoid pearlite steel rail |
WO2024100939A1 (en) * | 2022-11-08 | 2024-05-16 | Jfeスチール株式会社 | Hot-rolled steel sheet, electric resistance welded steel pipe, rectangular steel pipe, line pipe, and building structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2264205B1 (en) | High-strength steel plate excellent in low-temperature toughness, steel pipe, and processes for production of both | |
US11136653B2 (en) | High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same | |
EP2520680B1 (en) | High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same | |
US20140352852A1 (en) | Hot rolled high tensile strength steel sheet and method for manufacturing same | |
KR102131538B1 (en) | Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same | |
CA3121217C (en) | Steel plate having excellent heat affected zone toughness and method for manufacturing thereof | |
KR101839227B1 (en) | Steel sheet for pipe having excellent fatigue resistance, method for manufacturing the same, and welded steel pipe using the same | |
JP6691967B2 (en) | High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same | |
KR101318227B1 (en) | Cu-added complex bainitic steel and manufacturing method thereof | |
US11578392B2 (en) | High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor | |
CA3094517C (en) | A steel composition in accordance with api 5l psl-2 specification for x-65 grade having enhanced hydrogen induced cracking (hic) resistance, and method of manufacturing the steel thereof | |
KR20200073343A (en) | The steel plate for excellent impact-toughness in welded joint, method for manufacturing thereof, and steel pipe using thereof | |
KR102031451B1 (en) | High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same | |
KR20200072968A (en) | The steel plate having excellent fatigue resistance, method for manufacturing thereof, and steel pipe using thereof | |
KR101560943B1 (en) | Hot rolled steel sheet having a good low temperature toughness and method for manufacturing the same | |
KR101795882B1 (en) | Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same | |
KR101903183B1 (en) | Steel material for pipe and manufacturing method of the same | |
KR101913397B1 (en) | Steel material for pipe and manufacturing method of the same | |
KR102020418B1 (en) | Steel sheet having excellent fatigue resistance and its manufacturing method | |
KR102321266B1 (en) | Steel sheet having excellent toughness and method of manufacturing the same | |
KR102020417B1 (en) | Steel sheet having excellent toughness and it manufacturing method | |
KR102305429B1 (en) | High-strength steel sheet having excellent fatigue resistance, method for manufacturing thereof, and welded steel pipe using thereof | |
KR102326239B1 (en) | Steel for pipes and welded steel pipe with excellent fatigue resistance and manufactueing method for the same | |
KR20200047081A (en) | High-strength steel sheet having excellent resistance of sulfide stress crack, and method for manufacturing thereof | |
JP5020691B2 (en) | Steel sheet for high-strength linepipe excellent in low-temperature toughness, high-strength linepipe, and production method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20181213 |
|
PA0201 | Request for examination | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20200214 Patent event code: PE09021S01D |
|
AMND | Amendment | ||
PG1501 | Laying open of application | ||
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20200810 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20200214 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
X091 | Application refused [patent] | ||
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20200810 Comment text: Decision to Refuse Application Patent event code: PX09012R01I Patent event date: 20200413 Comment text: Amendment to Specification, etc. |
|
PX0601 | Decision of rejection after re-examination |
Comment text: Decision to Refuse Application Patent event code: PX06014S01D Patent event date: 20200923 Comment text: Amendment to Specification, etc. Patent event code: PX06012R01I Patent event date: 20200908 Comment text: Decision to Refuse Application Patent event code: PX06011S01I Patent event date: 20200810 Comment text: Amendment to Specification, etc. Patent event code: PX06012R01I Patent event date: 20200413 Comment text: Notification of reason for refusal Patent event code: PX06013S01I Patent event date: 20200214 |
|
X601 | Decision of rejection after re-examination |