[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102020417B1 - Steel sheet having excellent toughness and it manufacturing method - Google Patents

Steel sheet having excellent toughness and it manufacturing method Download PDF

Info

Publication number
KR102020417B1
KR102020417B1 KR1020170177716A KR20170177716A KR102020417B1 KR 102020417 B1 KR102020417 B1 KR 102020417B1 KR 1020170177716 A KR1020170177716 A KR 1020170177716A KR 20170177716 A KR20170177716 A KR 20170177716A KR 102020417 B1 KR102020417 B1 KR 102020417B1
Authority
KR
South Korea
Prior art keywords
less
steel
grain size
microstructure
strength
Prior art date
Application number
KR1020170177716A
Other languages
Korean (ko)
Other versions
KR20190076149A (en
Inventor
김영훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020170177716A priority Critical patent/KR102020417B1/en
Publication of KR20190076149A publication Critical patent/KR20190076149A/en
Application granted granted Critical
Publication of KR102020417B1 publication Critical patent/KR102020417B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

충격인성이 우수한 용접강관용 강재 및 그 제조방법이 제공된다.
본 발명의 용접강관용 강재는, 중량%로, 탄소(C): 0.10~0.15%, 실리콘(Si): 0.1~0.5%, 망간(Mn): 0.5~1.2%, 인(P): 0.025% 이하, 황(S): 0.005% 이하, 니오븀(Nb): 0.05~0.1%, 니켈(Ni): 0.05~0.2%, 크롬(Cr): 0.1~0.3%, 몰리브덴(Mo): 0.05~0.15%, 티타늄(Ti): 0.01~0.05%, 바나듐(V): 0.05~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 그 미세조직이 평균 결정립 크기 15㎛ 이하와 최대 결정립 크기 30㎛ 이하를 만족하는 페라이트 60~80면적%, 펄라이트: 20~40 면적% 및 잔여 베이나이트로 조성되고, 관계식 1을 충족한다.
Provided is a welded steel pipe having excellent impact toughness and a method of manufacturing the same.
Steel for welding steel pipe of the present invention, in weight%, carbon (C): 0.10 to 0.15%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 1.2%, phosphorus (P): 0.025% Sulfur (S): 0.005% or less, Niobium (Nb): 0.05 to 0.1%, Nickel (Ni): 0.05 to 0.2%, Chromium (Cr): 0.1 to 0.3%, Molybdenum (Mo): 0.05 to 0.15% , Titanium (Ti): 0.01% to 0.05%, vanadium (V): 0.05% to 0.1%, nitrogen (N): 0.008% or less, residual Fe and inevitable impurities, and the microstructure has an average grain size of 15 μm or less and 60 to 80 area% of ferrite satisfying the maximum grain size of 30 μm or less, perlite: 20 to 40 area% and residual bainite, and satisfying Equation 1.

Description

충격인성이 우수한 용접강관용 강재 및 그 제조방법{STEEL SHEET HAVING EXCELLENT TOUGHNESS AND IT MANUFACTURING METHOD}Welded steel pipe with excellent impact toughness and manufacturing method {STEEL SHEET HAVING EXCELLENT TOUGHNESS AND IT MANUFACTURING METHOD}

본 발명은 오일이나 가스 채굴 등에 사용되는 용접강관 제조용 강재 및 그 제조방법에 관한 것으로, 보다 상세하게는, 충격인성이 우수한 용접강관 이음부를 제공할 수 있는 용접강관 제조용 강재 및 그 제조방법에 관한 것이다The present invention relates to a steel for manufacturing welded steel pipes used in oil and gas mining, etc., and more particularly, to a steel for manufacturing welded steel pipes capable of providing welded steel pipe joints with excellent impact toughness and a method for manufacturing the same.

석유 및 가스 산업에서 사용되는 코일드 튜브는 직경 1인치에서 3.25인치의 수km의 튜브를 제조하여 이를 큰 릴 스풀링을 통해 공급되는 형태를 나타내며, 유정이나 가스정에서 유체순환, 펌핑, 드릴링, 로그인, 천공 등 다양한 용도로 사용되고 있다. 이때 사용시 마다 반복되는 릴링과 언릴링을 통해 반복굽힘응력이 누적되어 튜브의 조기 파단을 유발한다. The coiled tube used in the oil and gas industry manufactures several kilometers of tubes ranging in diameter from 1 inch to 3.25 inches and is supplied through large reel spooling, and can be used for fluid circulation, pumping, drilling, logging, It is used for various purposes such as drilling. At this time, repeated bending stress is accumulated through reeling and unreeling every time, causing premature failure of the tube.

특히, 피로응력이 집중되는 용접부에서는 충격이 가해질 경우, 파단으로 인한 제품수명을 단축시키는 경우가 문제가 발생하므로 용접부의 충격인성이 향상된 강재의 개발요구가 지속되어 오고 있다.In particular, in a weld where the fatigue stress is concentrated, a problem occurs when the impact is applied, which shortens the product life due to fracture, and thus the demand for development of the steel with improved impact toughness of the weld has been continued.

대한민국 특허출원 10-2002-0050500호Republic of Korea Patent Application 10-2002-0050500

따라서 본 발명은 상술한 종래기술의 한계를 해소하기 위하여 안출된 것으로서, API 규격 5ST CT90급 상당의 강도를 가지면서도 충격인성이 우수한 용접강관 제조용 강재 및 그 제조방법을 제공함을 목적으로 한다. Accordingly, the present invention has been made to solve the above-mentioned limitations of the prior art, and an object of the present invention is to provide a welded steel pipe manufacturing steel and a method of manufacturing the same, having a strength equivalent to that of the API standard 5ST CT90 grade.

또한 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들에 한정되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.In addition, the technical problems to be achieved in the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above are clearly understood by those skilled in the art from the following description. Could be.

상기 목적을 달성하기 위한 본 발명은,The present invention for achieving the above object,

중량%로, 탄소(C): 0.10~0.15%, 실리콘(Si): 0.1~0.5%, 망간(Mn): 0.5~1.2%, 인(P): 0.025% 이하, 황(S): 0.005% 이하, 니오븀(Nb): 0.05~0.1%, 니켈(Ni): 0.05~0.2%, 크롬(Cr): 0.1~0.3%, 몰리브덴(Mo): 0.05~0.15%, 티타늄(Ti): 0.01~0.05%, 바나듐(V): 0.05~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 그 미세조직이 평균 결정립 크기 15㎛ 이하와 최대 결정립 크기 30㎛ 이하를 만족하는 페라이트 60~80면적%, 펄라이트: 20~40 면적% 및 잔여 베이나이트로 조성되고, 하기 관계식 1을 충족하는 충격인성이 우수한 용접강관용강재를 제공한다.By weight%, carbon (C): 0.10 to 0.15%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 1.2%, phosphorus (P): 0.025% or less, sulfur (S): 0.005% Niobium (Nb): 0.05 to 0.1%, Nickel (Ni): 0.05 to 0.2%, Chromium (Cr): 0.1 to 0.3%, Molybdenum (Mo): 0.05 to 0.15%, Titanium (Ti): 0.01 to 0.05 %, Vanadium (V): 0.05-0.1%, nitrogen (N): 0.008% or less, including residual Fe and unavoidable impurities, and the microstructure satisfies the average grain size of 15 μm or less and the maximum grain size of 30 μm or less It provides 60 to 80 area% of ferrite, 20% to 40% of area of pearlite and residual bainite, and provides a welded steel pipe having excellent impact toughness that satisfies Equation 1 below.

[관계식 1][Relationship 1]

50 <209 + 4.91F + 0.063P - 3.82B - 0.891 Dmax - 0.217YS - 0.05Hv -30Ceq < 80 50 <209 + 4.91F + 0.063P-3.82B-0.891 Dmax-0.217YS-0.05Hv -30Ceq <80

(여기서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 미세조직의 분율을 의미하며, Dmax는 최대 결정립 사이즈(㎛), YP는 소재의 강도(MPa), Hv는 비커스경도, Ceq는 탄소당량을 의미한다)(Where [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite microstructure, Dmax is maximum grain size (µm), YP is material strength (MPa), and Hv is Vickers hardness) , Ceq means carbon equivalent)

또한 본 발명은, In addition, the present invention,

상술한 합금조성을 갖는 강 슬라브를 준비하는 단계; Preparing a steel slab having the alloy composition described above;

상기 강 슬라브를 1100~1300℃의 온도범위에서 재가열하는 단계; Reheating the steel slab in a temperature range of 1100 to 1300 ° C .;

상기 재가열된 강 슬라브를 750~850℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 및 Manufacturing a hot rolled steel sheet by finishing hot rolling of the reheated steel slab at a temperature range of 750 ° C. to 850 ° C .; And

상기 열연강판을 냉각한 후 500~550℃사이의 온도에서 권취하는 단계를 포함하는 충격인성이 우수한 용접강관용 강재의 제조방법을 제공한다.After cooling the hot rolled steel sheet provides a method for producing a welded steel pipe excellent in impact toughness, including the step of winding at a temperature between 500 ~ 550 ℃.

또한 본 발명은 상기 용접강관용 강재를 성형 및 용접하여 얻어지는 충격인성이 우수한 용접강관에 관한 것이다. The present invention also relates to a welded steel pipe having excellent impact toughness obtained by molding and welding the steel for welding steel pipe.

상술한 구성의 본 발명에 따르면, API 규격 5ST CT90급 상당의 강도를 가지면서도 충격인성이 우수한 용접강관 제조용 강재를 효과적으로 제공할 수 있다. According to the present invention having the above-described configuration, it is possible to effectively provide a steel for manufacturing welded steel pipe having excellent impact toughness while having strength equivalent to API standard 5ST CT90 class.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

본 발명자는 가스정이나 유정환경에서 유체순환, 펌핑, 드릴링, 로그인, 천공 등의 용도의 코일드 튜빙이 지속적으로 수요가 증가하고 있는 점을 고려하여, 보다 원가절감 및 물성을 향상시킬 수 있는 소재를 개발하고 이에 적합한 용접물성을 확보함에 연구를 수행하였다. 특히, 코일드 튜브 제조후 API 5ST 규격내에서 요구하는 CT90급 상당의 항복강도(620~689MPa) 및 인장강도 (669MPa 이상)를 충족시킬 수 있는 강재를 개발하고 본 발명을 제시하는 것이다. The present inventors consider that coiled tubing for fluid circulation, pumping, drilling, logging, drilling, etc. are continuously increasing in gas wells or oil well environments, and thus, materials that can improve cost and physical properties can be improved. The research was carried out to develop and secure suitable weld properties. In particular, after the manufacture of the coiled tube to develop a steel that can meet the yield strength (620 ~ 689MPa) and tensile strength (669MPa or more) equivalent to the CT90 class required in the API 5ST standard and present the present invention.

즉, 본 발명의 용접강관용 강재는, 중량%로, 탄소(C): 0.10~0.15%, 실리콘(Si): 0.1~0.5%, 망간(Mn): 0.5~1.2%, 인(P): 0.025% 이하, 황(S): 0.005% 이하, 니오븀(Nb): 0.05~0.1%, 니켈(Ni): 0.05~0.2%, 크롬(Cr): 0.1~0.3%, 몰리브덴(Mo): 0.05~0.15%, 티타늄(Ti): 0.01~0.05%, 바나듐(V): 0.05~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 그 미세조직이 평균 결정립 크기 15㎛ 이하와 최대 결정립 크기 30㎛ 이하를 만족하는 페라이트 60~80면적%, 펄라이트: 20~40 면적% 및 잔여 베이나이트로 구성되고, 상기 관계식 1을 충족한다. That is, the steel for welding steel pipe of the present invention is, in weight%, carbon (C): 0.10 to 0.15%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 1.2%, phosphorus (P): 0.025% or less, sulfur (S): 0.005% or less, niobium (Nb): 0.05-0.1%, nickel (Ni): 0.05-0.2%, chromium (Cr): 0.1-0.3%, molybdenum (Mo): 0.05- 0.15%, titanium (Ti): 0.01-0.05%, vanadium (V): 0.05-0.1%, nitrogen (N): 0.008% or less, the balance Fe and inevitable impurities, the microstructure of the average grain size 15㎛ It consists of 60 to 80 area%, ferrite: 20 to 40 area%, and residual bainite, which satisfy the following and a maximum grain size of 30 μm or less, satisfying the above equation 1.

이하, 본 발명의 강재 조성성분 및 그 함량 제한사유를 설명한다. 이때, 각 성분들의 함량은 특별한 언급이 없는 한 중량%를 의미한다.Hereinafter, the steel composition and the reason for the content limitation of the present invention. At this time, the content of each component means weight% unless otherwise specified.

C: 0.1~0.15%C: 0.1 ~ 0.15%

C 는 강도확보를 위해 첨가되는 원소로서, 소입성을 향상시켜 강도를 확보할 수 있다. 상기 C의 함량이 0.1% 미만일 경우에는 Nb, V, Ti와 결합하여 강도의 확보에 어려움이 있고, 0.15%를 초과할 경우에는 항복강도가 상승하여 목표로 하는 강도를 초과하므로 바람직하지 못하다.C is an element added for securing strength, and the hardenability can be improved to secure strength. When the content of C is less than 0.1%, it is difficult to secure strength by combining with Nb, V, and Ti, and when it exceeds 0.15%, the yield strength rises to exceed the target strength, which is not preferable.

Si: 0.1~0.5%Si: 0.1 ~ 0.5%

Si 는 강의 제조에서 탈산처리 및 강도확보를 위해 첨가되는 원소로서, 상기 Si의 함량이 0.1% 미만일 경우에는 Si의 탈산효과가 저하된다는 문제가 있고, 0.5%를 초과할 경우에는 MA형성으로 인한 충격인성을 저하시키고, 템퍼링시 취하가 발생할 수 있다는 문제점이 있다.Si is an element added for deoxidation treatment and securing strength in the production of steel, and when the content of Si is less than 0.1%, there is a problem in that the deoxidation effect of Si is lowered. There is a problem that the toughness is lowered and withdrawal may occur during tempering.

Mn: 0.5~1.2%Mn: 0.5 ~ 1.2%

Mn 은 강도 확보를 위해 첨가되는 원소로서, 상기 Mn의 함량이 0.5% 미만일 경우에는 강도 확보에 어려움이 있고, 2.5%를 초과할 경우에는 연주 시 중심편석을 형성시켜 충격인성 저하 및 피로특성 저항성을 저하시키는 문제가 있다.Mn is an element added to secure the strength, when the Mn content is less than 0.5%, it is difficult to secure the strength, and when it exceeds 2.5%, Mn forms a central segregation during performance, thereby reducing impact toughness and fatigue resistance. There is a problem of deterioration.

따라서, 본 발명에서는 상기 Mn의 함량을 0.5~1.2%로 제한하는 것이 바람직하다.Therefore, in the present invention, it is preferable to limit the content of Mn to 0.5 ~ 1.2%.

P: 0.025% 이하(0%는 제외)P: 0.025% or less (except 0%)

P 는 강의 제조에서 불가피하게 발생되는 불순물로서 적을수록 바람직하다. 상기 P의 함량이 0.025%를 초과할 경우에는 연주시 중심편석을 형성시켜 충격인성을 저하시킬 수 있다는 문제점이 있다.P is preferably an impurity that is inevitably generated in the production of steel. If the content of P exceeds 0.025%, there is a problem in that impact toughness may be reduced by forming a central segregation during playing.

S: 0.005% 이하(0%는 제외)S: 0.005% or less (except 0%)

S 는 강의 제조에서 불가피하게 발생되는 불순물로서 적을수록 바람직하다. 상기 S의 함량이 0.005%를 초과할 경우에는 Mn과 반응하여 MnS를 생성시켜 강재의 인성을 저하시키는 주요인자로서, 강내 함유량이 적을수록 유리하다S is preferably an impurity that is inevitably generated in the production of steel. When the content of S exceeds 0.005%, it is a major factor that reduces the toughness of steel by reacting with Mn to produce MnS.

Nb: 0.05~0.1%Nb: 0.05-0.1%

Nb 는 강의 강도 확보를 위해 첨가되는 원소로서, 상기 NbC석출물을 생성시켜 석출강화 효과를 가져온다. 상기 Nb의 함량이 0.05% 미만일 경우에는 석출강화 효과가 미비하고, 0.1%를 초과할 경우에는 조대한 석출물 및 MA 형성을 촉진하여 인성을 저하시키는 문제가 있다.Nb is an element added to secure the strength of the steel, and produces the NbC precipitate to bring the precipitation strengthening effect. When the content of Nb is less than 0.05%, the precipitation strengthening effect is insignificant, and when the content of Nb is more than 0.1%, coarse precipitates and MA may be promoted to reduce toughness.

Ni: 0.05~0.2%Ni: 0.05-0.2%

니켈(Ni)은 격자내 적층결함에너지를 낮추어 천이온도를 저하시킴으로써, 인성을 향상시키는 효과를 가져온다. 또한 저융점 화합물의 생성을 억제하여 열간가공시 크랙이 발생하는 현상을 억제하는 효과도 있다. Nickel (Ni) has the effect of improving the toughness by lowering the lamination defect energy in the lattice to lower the transition temperature. In addition, there is also an effect of suppressing the generation of cracks during hot processing by inhibiting the production of low melting point compounds.

상술한 효과를 얻기 위해서는 최소한 0.05% 이상으로 Ni을 첨가하는 것이 바람직하나, 반면에 0.2%을 초과할 경우 Ni화합물을 생성시켜 오히려 인성을 저하시키는 문제가 있을 수 있다.In order to obtain the above-mentioned effect, it is preferable to add Ni at least 0.05% or more, on the other hand, if it exceeds 0.2%, there may be a problem in that the Ni compound is generated to lower the toughness.

Cr: 0.1~0.3%Cr: 0.1-0.3%

크롬(Cr)은 경화능, 내식성을 향상시키기 위해 첨가되는 원소로서, 0.1% 미만 첨가되면 상기 효과가 적고, 0.3%를 초과하여 첨가되면 용접부 결함을 유발하거나 취성을 야기시키므로, 그 함량을 0.1~0.3%로 제한하는 것이 바람직하다.Chromium (Cr) is an element added to improve the hardenability and corrosion resistance, and when added below 0.1%, the above effect is less. When added above 0.3%, chromium (Cr) causes weld defects or causes brittleness. It is desirable to limit it to 0.3%.

Mo: 0.05~0.15%Mo: 0.05-0.15%

몰리브덴(Mo)은 강도확보 및 내식성을 향상시키기 위해 첨가되는 원소로서, 0.05% 미만 첨가되면 강도상승 및 내식성 효과가 적고, 0.15%를 초과하여 첨가되면 탄화석출물을 생성시켜 인성을 저하시키므로, 그 함량을 0.05~0.15%로 제한하는 것이 바람직하다.Molybdenum (Mo) is an element added to secure strength and to improve corrosion resistance. If it is added less than 0.05%, the effect of increase in strength and corrosion resistance is small, and if it is added more than 0.15%, it generates carbide precipitates to lower toughness. Is preferably limited to 0.05 to 0.15%.

Ti: 0.01~0.05%Ti: 0.01% to 0.05%

Ti 은 강의 강도 및 인성 향상을 위해 첨가되는 원소로서, TiC석출물을 생성시켜 석출강화 효과를 가져오고, TiN을 석출시켜 오스테나이트 결정립 성장을 억제시켜 미세한 결정립을 생성시켜 강도 확보 및 인성향상을 가져온다. 상기 Ti의 함량이 0.01% 미만일 경우에는 상기와 같은 효과를 나타내지 않으며, 0.05%를 초과할 경우에는 조대한 Ti석출물이 생성되어 인성을 저하시키는 문제가 있다.Ti is an element added to improve the strength and toughness of the steel, and produces a TiC precipitate to have a precipitation strengthening effect, and TiN precipitates to inhibit austenite grain growth, thereby producing fine grains to secure strength and improve toughness. When the content of Ti is less than 0.01%, the above effects are not exhibited. When the content of Ti is more than 0.05%, coarse Ti precipitates are generated, thereby lowering toughness.

V: 0.05~0.1%V: 0.05-0.1%

V 은 강의 강도 및 인성 향상을 위해 첨가되는 원소로서, VC석출물을 생성시켜 석출강화 효과를 가져오고, VN을 석출시켜 오스테나이트 결정립 성장을 억제시켜 미세한 결정립을 생성시켜 강도 확보 및 인성향상을 가져온다. 상기 V의 함량이 0.05%미만일 경우에는 상기와 같은 효과를 나타내지 않으며, 0.1%를 초과할 경우에는 조대한 석출물이 형성되어 인성을 저하시키는 문제가 있다.V is an element added to improve the strength and toughness of the steel, and produces a VC precipitate to have a precipitation strengthening effect, and precipitates VN to inhibit austenite grain growth, thereby producing fine grains to secure strength and improve toughness. When the content of V is less than 0.05%, it does not exhibit the same effect as above, and when it exceeds 0.1%, coarse precipitates are formed, which lowers the toughness.

N: 0.008% 이하(0%는 제외)N: 0.008% or less (except 0%)

N 는 강 중에서 주로 Ti 또는 Al 등과 결합하여 질화물을 생성시켜 타 합금원소의 기능을 저하시킨다. 그 함량이 0.008%를 초과하게 되면 조대한 석출물이 생성되어 인성을 저하시키며, AlN 석출물이 증가하여 Al탈산효과를 저하시키는 문제가 있다.N is mainly bonded to Ti or Al in the steel to form nitride to reduce the function of other alloying elements. When the content exceeds 0.008%, coarse precipitates are produced to reduce toughness, and AlN precipitates are increased to decrease Al deoxidation effect.

따라서, 본 발명에서는 상기 N의 함량을 0.008% 이하로 제한하는 것이 바람직하다.Therefore, in the present invention, it is preferable to limit the content of N to 0.008% or less.

본 발명의 나머지 성분은 철(Fe) 및 기타 불가피한 불순물이다. 다만, 통상의 철강 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining components of the present invention are iron (Fe) and other unavoidable impurities. However, in the conventional steel manufacturing process, impurities that are not intended from the raw material or the surrounding environment may be inevitably mixed, and thus cannot be excluded. Since these impurities are known to those skilled in the art of ordinary steel manufacturing, not all of them are specifically mentioned herein.

한편 본 발명의 용접강관용 강재는 그 미세조직이 페라이트와 펄라이트, 혹은 페라이트, 펄라이트 및 베이나이트의 복합조직으로 이루어질 수 있다. Meanwhile, the steel for welding steel pipe of the present invention may have a microstructure of ferrite and pearlite, or a composite structure of ferrite, pearlite and bainite.

이때, 상기 페라이트는 결정립 크기는 평균 결정립 크기가 15㎛ 이하 및 최대결정립 크기가 30㎛ 이하인 것이 바람직하다. 만일 평균 결정립 크기가 15㎛를 초과하게 되면 충격을 흡수하는 입계의 감소로 인해 인성이 낮아지는 문제가 있고, 최대 결정립 크기가 30㎛를 초과하게 되면, 비균일 결정립의 존재로 충격인성이 급격하게 저하하는 문제점이 있다. 이때, 상기 결정립 원형 면적당 직경을 기준으로 한다.In this case, the ferrite grain size is preferably the average grain size is 15㎛ or less and the maximum grain size is 30㎛ or less. If the average grain size exceeds 15 μm, the toughness decreases due to the reduction of the impact-absorbing grain boundary. If the maximum grain size exceeds 30 μm, the impact toughness rapidly increases due to the presence of non-uniform grains. There is a problem of deterioration. At this time, based on the diameter per grain circular area.

바람직하게는, 상기 미세조직은 면적분율로 60~80%의 페라이트, 20~40%의 펄라이트 및 잔부 베이나트로 이루어진 것이다. 상기 페라이트는 격자구조의 슬립면 형성이 용이하여 충격흡수성이 우수하며, 면적분율 60% 이상으로 포함하는 것이 바람직하다. 다만, 본 발명의 합금 미세조직에서 점하는 점유율이 최대 80면적% 초과시 강도 확보에 어려움이 있다.Preferably, the microstructure is composed of 60 to 80% ferrite, 20 to 40% pearlite, and the balance bainata in an area fraction. The ferrite is easy to form a slip surface of the lattice structure is excellent in shock absorption, it is preferable to include an area fraction of 60% or more. However, when the occupancy percentage of the alloy microstructure of the present invention exceeds 80 area%, it is difficult to secure strength.

나아가, 본 발명의 용접강관용 강재는 하기 관계식 1을 만족하는 것이 바람직하다.Furthermore, it is preferable that the steel material for welded steel pipes of this invention satisfy | fills following formula (1).

[관계식 1][Relationship 1]

50 <209 + 4.91F + 0.063P - 3.82B - 0.891 Dmax - 0.217YS - 0.05Hv -30Ceq < 80 50 <209 + 4.91F + 0.063P-3.82B-0.891 Dmax-0.217YS-0.05Hv -30Ceq <80

(여기서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 미세조직의 분율을 의미하며, Dmax는 최대 결정립 사이즈(㎛), YP는 소재의 강도(MPa), Hv는 비커스경도, Ceq는 탄소당량을 의미한다)(Where [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite microstructure, Dmax is maximum grain size (µm), YP is material strength (MPa), and Hv is Vickers hardness) , Ceq means carbon equivalent)

본 발명에서 상기 미세조직 분율 및 결정립 크기는 모두 강재의 물성 확보에 중요한 항목들이다. 따라서 상기 관계식 1에서 정의되는 값이 본 발명의 범위를 벗어나게 되면 미세조직 및 충격 저항성에 영향을 미치게 되고, 이로 인해 용접부 인성을 확보할 수 없다. In the present invention, both the microstructure fraction and the grain size are important items for securing the properties of the steel. Therefore, if the value defined in the relational formula 1 is out of the scope of the present invention affects the microstructure and impact resistance, it can not secure the weld toughness.

또한 상기 미시적인 측면에서의 특성만으로는 인성에의 영향을 판단할 수 없으며, 이를 보강하기 위해서 거시적인 측면에서의 재료의 물성도 동시에 감안되어야 한다. 항복강도는 재료의 탄성한계를 결정하며, 항복강도가 높을수록 재료의 충격흡수능력, 즉 인성은 높일 수 있다. 그러나, 항복강도가 높아진다고 하더라도 재료의 항복비가 높을수록 재료의 파단수명 단축으로 인한 인성은 저하된다.In addition, it is not possible to determine the influence on the toughness only by the characteristics in the microscopic aspect, and in order to reinforce it, the physical properties of the material in the macroscopic aspect should be considered at the same time. Yield strength determines the elastic limit of the material. The higher the yield strength, the higher the shock absorption capacity, i.e., toughness, of the material. However, even if the yield strength is increased, the higher the yield ratio of the material, the lower the toughness due to the shortened fracture life of the material.

따라서 본 발명의 상술한 관계식 1에 의해 정의되는 값이 50초과 80 미만의 범위에 있을때, 미시적 및 거시적 측면에서 강재의 충격저항성을 제고할 수 있다. Therefore, when the value defined by the above-mentioned relational expression 1 of the present invention is in the range of more than 50 and less than 80, it is possible to improve the impact resistance of the steel in the microscopic and macroscopic aspects.

다음으로, 본 발명의 충격인성이 우수한 용접강관용 강재의 제조방법을 설명한다.Next, the manufacturing method of the steel for welded steel pipe excellent in the toughness of this invention is demonstrated.

본 발명에 따른 용접강관용 강재 제조방법은, 상술한 합금조성을 갖는 강 슬라브를 준비하는 단계; 상기 강 슬라브를 1100~1300℃의 온도범위에서 재가열하는 단계; 상기 재가열된 강 슬라브를 750~850℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 및 상기 열연강판을 냉각한 후 500~550℃사이의 온도에서 권취하는 단계를 포함한다.Steel production method for a welded steel pipe according to the present invention comprises the steps of preparing a steel slab having the above-described alloy composition; Reheating the steel slab in a temperature range of 1100 to 1300 ° C .; Manufacturing a hot rolled steel sheet by finishing hot rolling of the reheated steel slab at a temperature range of 750 ° C. to 850 ° C .; And after cooling the hot-rolled steel sheet comprises a step of winding at a temperature between 500 ~ 550 ° C.

[재가열 및 열간압연 공정][Reheating and Hot Rolling Process]

본 발명에서는 먼저, 전술한 합금 조성성분을 갖는 강 슬라블 마련한 후, 이를 재가열한다. In the present invention, first, a steel slab having the aforementioned alloy composition is prepared, and then reheated.

슬라브의 재가열 공정에선 생산된 슬라브의 열간압연, 냉각, 권취를 통한 목표된 물성을 확보하기 위해 적정 오스테나이트 영역내 온도를 유지하여 균질한 초기 미세조직 및 석출물을 제어하여야 한다. In the slab reheating process, homogeneous initial microstructures and precipitates should be controlled by maintaining the temperature in the appropriate austenite zone to achieve the desired physical properties through hot rolling, cooling, and winding of the slabs produced.

본 발명에서는 1100~1300℃의 온도범위에서 재가열 공정을 행함이 바람직하다. 만일 재가열 온도가 1100℃ 미만이면 Nb 및 Ti 등의 고융점 화합물들이 재가열되지 않아, 편석대로 잔존하게 되며, 반면 1300℃를 초과하게 되면 초기 조대한 미세조직의 생성으로 목표로 최종제품의 미세한 조직을 제어할 수 없는 문제가 있다.In this invention, it is preferable to perform a reheating process in the temperature range of 1100-1300 degreeC. If the reheating temperature is lower than 1100 ° C, high melting point compounds such as Nb and Ti will not be reheated and remain as segregation zones, whereas if the reheating temperature is higher than 1300 ° C, the fine structure of the final product will be aimed at the formation of an initial coarse microstructure. There is a problem that can not be controlled.

상기와 같이 재가열된 슬라브는 후속하여, 750~850℃의 온도범위에서 마무리 열간압연됨이 바람직하다. 만일 상기 마무리 열간압연 온도가 750℃ 미만이면 MnS의 발생으로 인한 충격인성 및 피로저항성이 저하되며, 850℃를 초과하면 미세조직 결정립의 불균질화가 심화되어 황화물응력균열 저항성에 악영향을 끼칠 수 있다. The slab reheated as described above is subsequently finished hot rolled in the temperature range of 750 ~ 850 ℃. If the finish hot rolling temperature is less than 750 ℃ impact toughness and fatigue resistance due to the generation of MnS is lowered, if it exceeds 850 ℃ deep heterogeneity of microstructure grains may adversely affect the sulfide stress cracking resistance.

따라서 본 발명에서는 상기 마무리 열간압연 온도는 750~850℃로 제한하는 것이 바람직하다.Therefore, in the present invention, the finishing hot rolling temperature is preferably limited to 750 ~ 850 ℃.

[냉각 및 권취 공정][Cooling and winding process]

이어, 본 발명에서는 상기 마무리 열간압연된 열연강판을 냉각한 후, 500~550℃의 온도에서 권취하는 것이 바람직하다. 상기 권취온도가 500℃ 미만이면 베이나이트상과 같은 경한 저온변태상이 국부적으로 생성되어, 피로저항성이 저하될 우려가 있다. 반면, 권취온도가 550℃를 초과하면 조대한 펄라이트상이 쉽게 형성되어 피로 전파가 용이하게 되어 피로저항성이 저하될 우려가 있기 때문이다. Subsequently, in the present invention, after the finished hot rolled hot rolled steel sheet is cooled, it is preferably wound at a temperature of 500 to 550 ° C. If the coiling temperature is less than 500 ° C., a low temperature transformation phase such as bainite phase is locally generated, and there is a fear that fatigue resistance is lowered. On the other hand, if the coiling temperature exceeds 550 ℃ coarse pearlite phase is easily formed and fatigue propagation is easy, there is a fear that the fatigue resistance is lowered.

따라서 본 발명에서는 상기 권취온도를 500~550℃로 제한하는 것이 바람직하다.Therefore, in the present invention, it is preferable to limit the winding temperature to 500 ~ 550 ℃.

한편 상술한 강 조성성분과 강 제조공정으로 제조된 강재는 페라이트와 펄라이트를 포함하는 미세조직을 갖는다. 그리고 이러한 강재는 파이프 형상으로 성형하고, 접촉된 강판의 가장자리를 용접하여 충격인성이 우수한 용접강관을 얻을 수 있다.On the other hand, the steel composition prepared by the above-described steel composition and steel manufacturing process has a microstructure including ferrite and pearlite. In addition, the steel is molded into a pipe shape, and welded edges of the steel sheets in contact with each other may be used to obtain welded steel tubes having excellent impact toughness.

즉, 상기 제조된 열연강판을 이용하여 용접 및 성형을 할 수 있으며, 그 일 예로, 제조된 열연강판을 제조하고자 하는 파이프 구경만큼의 폭을 슬리팅하고 용접, 조관할 수 있다. 상기 용접강관을 제조하는 방법은 특별히 한정되지 않으나, 경제성이 가장 뛰어난 전기저항 용접을 이용하여 조관하는 것이 바람직하다. 전기저항 용접 시 어떠한 용접 방식도 이용할 수 있으므로 용접 방법에 대해 특별히 한정하지는 아니한다.That is, welding and molding may be performed using the manufactured hot rolled steel sheet. For example, the width may be as much as the pipe diameter to be manufactured to manufacture the manufactured hot rolled steel sheet. The method for producing the welded steel pipe is not particularly limited, but it is preferable to pipe the tube using electrical resistance welding having the most economical efficiency. The welding method is not particularly limited since any welding method can be used for electric resistance welding.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예) (Example)

하기 표 1과 같은 합금 성분조성을 갖는 강 슬라브를 1200℃~1300℃의 온도에서 2시간 동안 재가열한 후, 하기 표 2와 같은 마무리 열간압연, 냉각 및 권취함으로써 두께가 5.2mm인 강재를 제조하였다. The steel slab having the alloy composition as shown in Table 1 was reheated at a temperature of 1200 ° C to 1300 ° C for 2 hours to prepare a steel material having a thickness of 5.2 mm by finishing hot rolling, cooling, and winding as shown in Table 2 below.

이후, 상기 제조된 열연강판에 대해 미세조직을 관찰하였으며, 전기저항용접 조관 후 ASTM A370에 따라 인장시험 및 충격시험을 수행하여 항복강도, 인장강도, 경도 및 충격인성을 측정하여 그 결과를 하기 표 3에 나타내었다. 여기에서, 경도값은 강대 두께 중심부에서 15회 측정한 평균값을 나타내며, 탄소 당량(Ceq)은 다음의 식에 의해 계산된 값이다. Then, the microstructure of the prepared hot-rolled steel sheet was observed, and after the electrical resistance welded tube was subjected to a tensile test and an impact test according to ASTM A370 to measure the yield strength, tensile strength, hardness and impact toughness and the results are shown in the following table. 3 is shown. Here, the hardness value represents an average value measured 15 times at the center of the strip thickness, and the carbon equivalent (Ceq) is a value calculated by the following equation.

Ceq = C + Mn/6 + Si/24 + Ni/40 + Cr/5 + Mo/4 + V/14 Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14

강종Steel grade 조성성분 (중량%)Ingredients (% by weight) CC SiSi MnMn PP SS NbNb NiNi CrCr MoMo TiTi VV NN aa 0.130.13 0.240.24 1.041.04 0.0070.007 0.0010.001 0.0580.058 0.130.13 0.20.2 0.100.10 0.020.02 0.050.05 0.0050.005 bb 0.110.11 0.250.25 1.061.06 0.0110.011 0.0020.002 0.0630.063 0.110.11 0.170.17 0.130.13 0.020.02 0.060.06 0.0050.005 cc 0.110.11 0.240.24 0.990.99 0.0070.007 0.0020.002 0.0660.066 0.100.10 0.20.2 0.090.09 0.010.01 0.060.06 0.0040.004 dd 0.120.12 0.250.25 1.061.06 0.0060.006 0.0020.002 0.060.06 0.100.10 0.170.17 0.110.11 0.020.02 0.060.06 0.0050.005 ee 0.120.12 0.250.25 1.041.04 0.0090.009 0.0010.001 0.0570.057 0.110.11 0.160.16 0.110.11 0.020.02 0.060.06 0.0040.004 ff 0.120.12 0.30.3 1.041.04 0.0060.006 0.0010.001 0.060.06 0.180.18 0.160.16 0.140.14 0.020.02 0.050.05 0.0050.005 gg 0.120.12 0.290.29 1.041.04 0.0050.005 0.0010.001 0.060.06 0.190.19 0.160.16 0.140.14 0.020.02 0.060.06 0.0040.004 hh 0.110.11 0.260.26 1.011.01 0.0050.005 0.0010.001 0.0670.067 0.010.01 0.190.19 0.090.09 0.010.01 0.060.06 0.0050.005 ii 0.10.1 0.270.27 0.990.99 0.0070.007 0.0010.001 0.0630.063 0.020.02 0.20.2 0.100.10 0.010.01 0.050.05 0.0040.004

강종
Steel grade
제조 조건Manufacture conditions
재가열온도(℃)Reheating Temperature (℃) 마무리 열간압연온도(℃)Finish Hot Rolling Temperature (℃) 궈취온도(℃)Boiling Temperature (℃) aa 12031203 773773 524524 bb 11601160 781781 518518 cc 11851185 775775 504504 dd 11381138 777777 504504 ee 12301230 784784 512512 ff 12001200 761761 565565 gg 12001200 789789 565565 hh 12071207 784784 502502 ii 11801180 780780 500500


구분

division
강종
Steel grade
미세조직Microstructure 기계적 물성Mechanical properties HAZ 충격인성(J, 0℃)

HAZ impact toughness (J, 0 ℃)

관계식1

Relationship 1

조직분율(%)% Of organization F 평균 결정입 크기 (㎛)
F average grain size (㎛)
F 최대 결정입 크기(㎛)
F maximum grain size (㎛)
항복강도(MPa)
Yield strength (MPa)
인장강도(MPa)
Tensile Strength (MPa)
겅도
(Hv)
Thistle
(Hv)
탄소당량
Carbon equivalent
FF PP BB 발명예1Inventive Example 1 aa 7171 2929 00 8.58.5 2525 671671 696696 209.3209.3 0.360.36 42.642.6 59.859.8 발명예2Inventive Example 2 bb 6868 3232 00 8.48.4 2121 642642 714714 204.3204.3 0.370.37 73.973.9 74.774.7 발명예3Inventive Example 3 cc 7070 3030 00 7.87.8 1515 654654 703703 206206 0.350.35 63.563.5 74.674.6 비교예1Comparative Example 1 dd 6767 2424 99 1111 2525 672672 737737 208.3208.3 0.380.38 21.321.3 32.832.8 비교예2Comparative Example 2 ee 6767 2525 88 6.86.8 4141 712712 770770 213.3213.3 0.370.37 18.618.6 13.013.0 비교예3Comparative Example 3 ff 6767 2626 77 1515 3535 705705 761761 194.5194.5 0.380.38 9.39.3 23.623.6 비교예4Comparative Example 4 gg 6868 2626 66 2020 2020 690690 753753 206206 0.380.38 18.618.6 42.942.9 비교예5Comparative Example 5 hh 6363 3737 00 8.58.5 2323 610610 667667 198.3198.3 0.350.35 4747 80.780.7 비교예6Comparative Example 6 ii 6464 3636 00 6.76.7 2020 615615 669669 194.3194.3 0.350.35 34.634.6 82.282.2

* 상기 표 3에서 F는 페라이트, P는 펄라이트, 그리고 B는 베이나이트를 의미함.* In Table 3, F means ferrite, P means pearlite, and B means bainite.

그리고 관계식 1은 209 + 4.91F + 0.063P - 3.82B - 0.891 Dmax - 0.217YS - 0.05Hv -30Ceq임.  And relation 1 is 209 + 4.91F + 0.063P-3.82B-0.891 Dmax-0.217YS-0.05Hv -30Ceq.

상기 표 1 내지 3에 나타낸 바와 같이, 본 발명에서 제안하는 합금 조성 및 제조조건을 모두 만족하는 발명예 1-3은 모두 용접강관을 제조한 후, 충격인성이 모두 40J 이상으로 우수한 것을 확인할 수 있다.As shown in Tables 1 to 3, Inventive Examples 1-3 satisfying all of the alloy composition and manufacturing conditions proposed by the present invention can be confirmed that after the weld steel pipes are all manufactured, the impact toughness is superior to 40 J or more. .

이에 반하여, 합금조성, 제조조건 또는 관계식 1이 본 발명에서 제안하는 범위를 벗어나는 비교예 1-6은 모두 조대한 조직이 형성되어나 석출물 및 저온 변태상이 형성됨에 따라 충격인성이 열위하였다. On the contrary, Comparative Examples 1-6, in which alloy composition, manufacturing conditions, or relational formula 1 were outside the range proposed by the present invention, were inferior in impact toughness as coarse structures were formed but precipitates and low temperature transformation phases were formed.

특히, 비교예 1-2는 합금조성과 제조공정은 본 발명범위 이내이나 관계식 1이 본 발명범위를 벗어나는 경우로서, 충격인성이 좋지 않음을 확인할 수 있다. In particular, Comparative Example 1-2 is an alloy composition and manufacturing process is within the scope of the present invention, but the relationship 1 is outside the scope of the present invention, it can be confirmed that the impact toughness is not good.

이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예에 관하여 설명하였으나 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시 예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention has been described with respect to the preferred embodiment of the present invention, those skilled in the art to which the present invention pertains various modifications without departing from the scope of the present invention Of course it is possible. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined by the equivalents as well as the claims to be described later.

Claims (4)

중량%로, 탄소(C): 0.10~0.15%, 실리콘(Si): 0.1~0.5%, 망간(Mn): 0.5~1.2%, 인(P): 0.025% 이하, 황(S): 0.005% 이하, 니오븀(Nb): 0.05~0.1%, 니켈(Ni): 0.05~0.2%, 크롬(Cr): 0.1~0.3%, 몰리브덴(Mo): 0.05~0.15%, 티타늄(Ti): 0.01~0.05%, 바나듐(V): 0.05~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 그 미세조직이 평균 결정립 크기 15㎛ 이하와 최대 결정립 크기 30㎛ 이하를 만족하는 페라이트 60~80면적%, 펄라이트: 20~40 면적% 및 잔여 베이나이트로 조성되고, 하기 관계식 1을 충족하며, 620~689MP의 항복강도와 669MPa 이상의 인장강도를 가지는 충격인성이 우수한 용접강관용 강재.
[관계식 1]
50 <209 + 4.91F + 0.063P - 3.82B - 0.891 Dmax - 0.217YS - 0.05Hv -30Ceq < 80
(여기서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 미세조직의 분율을 의미하며, Dmax는 최대 결정립 사이즈(㎛), YP는 소재의 강도(MPa), Hv는 비커스경도, Ceq는 탄소당량을 의미한다)
By weight%, carbon (C): 0.10 to 0.15%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 1.2%, phosphorus (P): 0.025% or less, sulfur (S): 0.005% Niobium (Nb): 0.05 to 0.1%, Nickel (Ni): 0.05 to 0.2%, Chromium (Cr): 0.1 to 0.3%, Molybdenum (Mo): 0.05 to 0.15%, Titanium (Ti): 0.01 to 0.05 %, Vanadium (V): 0.05-0.1%, nitrogen (N): 0.008% or less, including residual Fe and unavoidable impurities, and the microstructure satisfies the average grain size of 15 μm or less and the maximum grain size of 30 μm or less Ferritic 60 ~ 80 area%, pearlite: 20 ~ 40 area% and residual bainite, satisfy the following Equation 1, and have excellent impact toughness of 620 ~ 689MP yield strength and tensile strength of 669MPa or more. .
[Relationship 1]
50 <209 + 4.91F + 0.063P-3.82B-0.891 Dmax-0.217YS-0.05Hv -30Ceq <80
(Where [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite microstructure, Dmax is maximum grain size (µm), YP is material strength (MPa), and Hv is Vickers hardness) , Ceq means carbon equivalent)
제 1항의 강재를 성형 및 용접하여 얻어지는 충격인성이 우수한 용접강관.
A welded steel pipe excellent in impact toughness obtained by forming and welding the steel of claim 1.
중량%로, 탄소(C): 0.10~0.15%, 실리콘(Si): 0.1~0.5%, 망간(Mn): 0.5~1.2%, 인(P): 0.025% 이하, 황(S): 0.005% 이하, 니오븀(Nb): 0.05~0.1%, 니켈(Ni): 0.05~0.2%, 크롬(Cr): 0.1~0.3%, 몰리브덴(Mo): 0.05~0.15%, 티타늄(Ti): 0.01~0.05%, 바나듐(V): 0.05~0.1%, 질소(N): 0.008% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 준비하는 단계;
상기 강 슬라브를 1100~1300℃의 온도범위에서 재가열하는 단계;
상기 재가열된 강 슬라브를 750~850℃의 온도범위에서 마무리 열간압연하여 열연강판을 제조하는 단계; 및
상기 열연강판을 냉각한 후 500~550℃사이의 온도에서 권취하는 단계를 포함하고,
상기 권취된 강재는,
그 미세조직이 평균 결정립 크기 15㎛ 이하와 최대 결정립 크기 30㎛ 이하를 만족하는 페라이트 60~80면적%, 펄라이트: 20~40 면적% 및 잔여 베이나이트로 조성되고, 하기 관계식 1을 충족하며, 620~689MP의 항복강도와 669MPa 이상의 인장강도를 가지는 것을 특징으로 하는 충격인성이 우수한 용접강관용 강재의 제조방법.
[관계식 1]
50 <209 + 4.91F + 0.063P - 3.82B - 0.891 Dmax - 0.217YS - 0.05Hv -30Ceq < 80
(여기서 [F]는 페라이트, [P]는 펄라이트, [B]는 베이나이트 미세조직의 분율을 의미하며, Dmax는 최대 결정립 사이즈(㎛), YP는 소재의 강도(MPa), Hv는 비커스경도, Ceq는 탄소당량을 의미한다)
By weight%, carbon (C): 0.10 to 0.15%, silicon (Si): 0.1 to 0.5%, manganese (Mn): 0.5 to 1.2%, phosphorus (P): 0.025% or less, sulfur (S): 0.005% Niobium (Nb): 0.05 to 0.1%, Nickel (Ni): 0.05 to 0.2%, Chromium (Cr): 0.1 to 0.3%, Molybdenum (Mo): 0.05 to 0.15%, Titanium (Ti): 0.01 to 0.05 Preparing a steel slab containing%, vanadium (V): 0.05 to 0.1%, nitrogen (N): 0.008% or less, balance Fe and inevitable impurities;
Reheating the steel slab in a temperature range of 1100 to 1300 ° C .;
Manufacturing a hot rolled steel sheet by finishing hot rolling of the reheated steel slab at a temperature range of 750 ° C. to 850 ° C .; And
After cooling the hot rolled steel sheet comprising the step of winding at a temperature between 500 ~ 550 ℃,
The wound steel is,
The microstructure is composed of 60 to 80 area% of ferrite, 20 to 40 area% of perlite and residual bainite satisfying the average grain size of 15 μm or less and the maximum grain size of 30 μm or less, satisfying the following Equation 1, 620 A method for producing a welded steel pipe having excellent impact toughness, characterized by having a yield strength of ˜689 MP and a tensile strength of 669 MPa or more.
[Relationship 1]
50 <209 + 4.91F + 0.063P-3.82B-0.891 Dmax-0.217YS-0.05Hv -30Ceq <80
(Where [F] is ferrite, [P] is pearlite, [B] is the fraction of bainite microstructure, Dmax is maximum grain size (µm), YP is material strength (MPa), and Hv is Vickers hardness) , Ceq means carbon equivalent)
삭제delete
KR1020170177716A 2017-12-22 2017-12-22 Steel sheet having excellent toughness and it manufacturing method KR102020417B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170177716A KR102020417B1 (en) 2017-12-22 2017-12-22 Steel sheet having excellent toughness and it manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170177716A KR102020417B1 (en) 2017-12-22 2017-12-22 Steel sheet having excellent toughness and it manufacturing method

Publications (2)

Publication Number Publication Date
KR20190076149A KR20190076149A (en) 2019-07-02
KR102020417B1 true KR102020417B1 (en) 2019-09-10

Family

ID=67258002

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170177716A KR102020417B1 (en) 2017-12-22 2017-12-22 Steel sheet having excellent toughness and it manufacturing method

Country Status (1)

Country Link
KR (1) KR102020417B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013808A (en) 2006-07-05 2008-01-24 Jfe Steel Kk High-tensile-strength welded steel pipe for automotive structural member, and manufacturing method therefor
JP2009203492A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp High-tensile welded steel pipe for automobile structural member, and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3143054B2 (en) * 1995-05-30 2001-03-07 株式会社神戸製鋼所 High-strength hot-rolled steel sheet with low yield strength after forming, pipe formed using the same, and method for producing the high-strength hot-rolled steel sheet
KR100382421B1 (en) 2000-12-21 2003-05-09 위니아만도 주식회사 Dew prevention apparatus of evaporator case
JP4572002B1 (en) * 2009-10-28 2010-10-27 新日本製鐵株式会社 Steel sheet for line pipe having good strength and ductility and method for producing the same
EP3246427B1 (en) * 2015-03-06 2018-12-12 JFE Steel Corporation High strength electric resistance welded steel pipe and manufacturing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008013808A (en) 2006-07-05 2008-01-24 Jfe Steel Kk High-tensile-strength welded steel pipe for automotive structural member, and manufacturing method therefor
JP2009203492A (en) * 2008-02-26 2009-09-10 Jfe Steel Corp High-tensile welded steel pipe for automobile structural member, and method for producing the same

Also Published As

Publication number Publication date
KR20190076149A (en) 2019-07-02

Similar Documents

Publication Publication Date Title
KR101839227B1 (en) Steel sheet for pipe having excellent fatigue resistance, method for manufacturing the same, and welded steel pipe using the same
KR101940872B1 (en) Hot rolled steel sheet for use in oil well pipe, steel pipe using the same and method for manufacturing thereof
KR101920973B1 (en) Austenitic steel having excellent surface properties and method for manufacturing thereof
KR101318227B1 (en) Cu-added complex bainitic steel and manufacturing method thereof
US11578392B2 (en) High-strength high-toughness hot-rolled steel sheet and manufacturing method therefor
KR101758528B1 (en) Steel sheet for pipe having low deviation of mechanical property, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR20160078600A (en) Hot rolled steel sheet for pipe having expending property and method for manufacturing the same
KR20200073343A (en) The steel plate for excellent impact-toughness in welded joint, method for manufacturing thereof, and steel pipe using thereof
KR102020418B1 (en) Steel sheet having excellent fatigue resistance and its manufacturing method
KR102020417B1 (en) Steel sheet having excellent toughness and it manufacturing method
KR101316325B1 (en) Hot-rolled steel sheet having high strength and low yield ratio for use in oil well tube and method for producing the same and steel pipe prepared by the same and method for producing the same
KR101795882B1 (en) Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR101903183B1 (en) Steel material for pipe and manufacturing method of the same
KR101758527B1 (en) Steel sheet for pipe having excellent weldability, method for manufacturing the same, and method for manufacturing welded steel pipe using the same
KR101913397B1 (en) Steel material for pipe and manufacturing method of the same
KR102326239B1 (en) Steel for pipes and welded steel pipe with excellent fatigue resistance and manufactueing method for the same
KR20200072968A (en) The steel plate having excellent fatigue resistance, method for manufacturing thereof, and steel pipe using thereof
KR102305429B1 (en) High-strength steel sheet having excellent fatigue resistance, method for manufacturing thereof, and welded steel pipe using thereof
KR102321266B1 (en) Steel sheet having excellent toughness and method of manufacturing the same
KR101675677B1 (en) Non-heated hot-rolled steel sheet and method of manufacturing the same
KR20190058889A (en) Manufacturing method for hot rolled steel sheet for oil well tube and hot rolled steel sheet thereof
KR102031447B1 (en) Hot rodled steel sheet and method for manufacturing the same
US11519060B2 (en) Hot-rolled steel sheet with excellent low-temperature toughness, steel pipe, and manufacturing method therefor
KR101639901B1 (en) Hot rolled steels having excellent impact toughness and workability for use in oil well tube and method for producing the same and steel pipe prepared by the same
KR101412372B1 (en) Hot-rolled steel sheet and method of manufacturing the hot-rolled steel sheet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant