KR20200056201A - 라이다 비행시간 측정 장치 및 방법 - Google Patents
라이다 비행시간 측정 장치 및 방법 Download PDFInfo
- Publication number
- KR20200056201A KR20200056201A KR1020180140220A KR20180140220A KR20200056201A KR 20200056201 A KR20200056201 A KR 20200056201A KR 1020180140220 A KR1020180140220 A KR 1020180140220A KR 20180140220 A KR20180140220 A KR 20180140220A KR 20200056201 A KR20200056201 A KR 20200056201A
- Authority
- KR
- South Korea
- Prior art keywords
- reflected wave
- time
- signal
- wave signal
- pulse signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/491—Details of non-pulse systems
- G01S7/4912—Receivers
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
본 발명의 실시예에 따른 라이다 비행시간 측정 방법은 레이저 다이오드로부터 송신되는 레이저 펄스신호를 인가 받은 대상체로부터 반사된 반사파 신호를 수신 받는 단계; 상기 반사파 신호를 임계값과 비교하여 상기 반사파 신호가 임계값 이상일 경우, 상기 반사파 신호를 반사파 펄스 신호로 변환하는 단계; 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지에 상응하는 디지털 데이터를 생성하는 단계; 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터에 기초하여 상기 반사파 신호의 피크 타임을 측정하는 단계; 및 상기 반사파 신호의 피크 타임에 기초하여 비행시간을 측정하는 단계;를 포함할 수 있다.
Description
본 발명은 라이다 비행시간 측정 장치 및 방법에 대한 것으로, 보다 상세하게는 라이다(LIDAR) 센서의 비행시간(ToF) 측정 정확성을 높이는 라이다 비행시간 측정 장치 및 방법에 관한 것이다.
라이다(LIDAR: Light Detection and Ranging)란 레이저를 이용하여 거리를 측정하는 기술로써, 3차원 GIS(Geographic Information System) 정보 구축을 위한 지형 데이터를 구축하고, 이를 가시화하는 형태로 발전되어 건설, 국방 등의 분야에 응용되었고, 최근 들어 자율주행자동차 및 이동로봇 등에 적용되면서 핵심 기술로 주목을 받고 있다.
특히, 자동차용 라이다는 주행중인 차량이 앞 차와의 충돌을 피하거나 또는 충격을 최소화할 수 있도록 차간거리를 실시간으로 측정하여 경고 또는 차량 자동제어를 할 수 있도록 하는 장치로써 라이다/레이다, 영상센서, 통신 3D 맵 등 자율주행차의 차량거리 센서 시스템의 주요 부품 중 가장 필수적인 부품으로 사용되고 있다.
이러한, 라이다(Lidar)는 레이저(Laser) 발생기를 통해 발사된 빛을 광 검출기(Photo Detector)를 통해 수집하여 빛의 이동시간을 통해 거리를 측정하며, 광 검출기(Photo Detector)는 일반적으로 빛을 받으면 전류를 생성하는 포토 다이오드(APD, SPAD, SiPM 등)로 이루어져 있다.
하지만, 포토 다이오드의 경우 온도가 증가할수록 전류를 생성하게 되는 전압(Breakdown Voltage)이 높아지게 되어 온도가 높아질수록 신호의 감도가 낮아지게 되면서 이로 인해 거리 측정에 오차가 발생할 수 있었다.
또한, 라이다 기술은 수십 ~ 수 ns 이내의 데이터 수집 및 처리가 요구되는 매우 정밀한 기술로서 ns 단위의 작은 시간 연산 오차에 대해서도 실제 거리 측정에서는 상당한 거리 오차로 표현되는데, 예를 들어 1ns의 오차에 대하여 약 15cm의 거리 오차가 발생할 수 있으며, 이러한 거리 오차는 차량 및 운전자의 안전에 심각한 영향을 미칠 수 있었다.
본 발명은 상술한 요구에 부응하기 위하여 안출된 것으로, 라이다(Lidar) 센서의 비행시간(ToF) 측정 정확도를 향상시킬 수 있는 라이다 비행시간 측정 장치 및 방법을 제공하는데 있다.
본 발명의 실시예에 따른 라이다 비행시간 측정 방법은 레이저 다이오드로부터 송신되는 레이저 펄스신호를 인가 받은 대상체로부터 반사된 반사파 신호를 수신 받는 단계; 상기 반사파 신호를 임계값과 비교하여 상기 반사파 신호가 임계값 이상일 경우, 상기 반사파 신호를 반사파 펄스 신호로 변환하는 단계; 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지에 상응하는 디지털 데이터를 생성하는 단계; 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터에 기초하여 상기 반사파 신호의 피크 타임을 측정하는 단계; 및 상기 반사파 신호의 피크 타임에 기초하여 비행시간을 측정하는 단계;를 포함할 수 있다.
이 경우, 상기 반사파 신호 피크 타임을 측정하는 단계는, 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값에 대한 하프값을 연산하여, 상기 반사파 신호의 피크 타임을 측정할 수 있다.
또한, 상기 비행시간을 측정하는 단계는 상기 레이저 펄스신호의 피크 타임으로부터 상기 반사파 신호의 피크 타임까지의 비행시간을 측정할 수 있다.
또한, 상기 레이저 펄스신호의 피크 타임은 상기 레이저 펄스신호의 진폭의 하프값을 연산하여 구할 수 있다.
한편, 본 발명의 실시예에 따른 라이다 비행시간 측정 장치는 레이저 다이오드로부터 송신되는 레이저 펄스를 인가 받은 대상체로부터 반사된 반사파 신호를 처리하는 반사파 신호 처리부를 포함하는 제어부에 있어서, 상기 반사파 신호 처리부는, 상기 반사파 신호를 임계값과 비교하여 상기 반사파 신호가 임계값 이상일 경우, 상기 반사파 신호를 반사파 펄스 신호로 변환하는 펄스 신호 변환부;
상기 반사파 펄스 신호를 입력 받아, 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지에 상응하는 디지털 데이터를 생성하는 시간-디지털 변환부; 및 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터에 기초하여 상기 반사파 신호의 피크 타임을 측정하는 반사파 신호 피크 측정부;를 포함하며, 상기 제어부는 상기 반사파 신호의 피크 타임에 기초하여 비행시간을 측정할 수 있다.
이 경우, 상기 반사파 신호 피크 측정부는, 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값에 대한 하프값을 연산하여, 상기 반사파 신호의 피크 타임을 측정하도록 구성될 수 있다.
또한, 상기 제어부는, 상기 레이저 펄스신호의 피크 타임으로부터 상기 반사파 신호의 피크 타임까지의 비행시간을 측정하여 상기 비행 시간을 계산할 수 있다.
또한, 상기 제어부는 상기 레이저 펄스신호의 진폭의 하프값을 연산하여 상기 레이저 펄스신호의 피크 타임을 구할 수 있다.
또한, 상기 시간-디지털 변환부는, 시간 지연을 각각 가지는 복수의 버퍼; 및 상기 복수의 버퍼 각각의 출력과 연결되며 상기 복수의 버퍼 각각의 출력값을 출력하는 복수의 레지스터를 포함할 수 있다.
또한, 상기 시간-디지털 변환부에 포함된 상기 복수의 레지스터는, 상기 반사파 펄스 신호의 상승 엣지에서 출력값이 변하는 라이징 엣지 트리거드(rising edge triggered) D-플립플롭; 및 상기 반사파 펄스 신호의 하강 엣지에서 출력값이 변하는 폴링 엣지 트리거드(falling edge triggered) D-플립플롭;을 포함할 수 있다.
상술한 바와 같이 이루어진 본 발명의 일 실시예에 따른 라이다 비행시간 측정 장치는 포토 다이오드로부터 입력 되는 반사파 신호의 피크 타임(Peak Time)에 기초하여 비행시간(ToF)을 측정하므로, 포토 다이오드의 온도에 따라 반사파 신호에 대한 감도가 변화 되어도, 반사파 신호 감도 변화에 영향을 받지 않고 비행시간을 측정할 수 있다. 따라서, 비행시간 측정 시, 반사파 신호 감도 변화로 인한 비행시간 측정 오차를 줄일 수 있으며, 이로 인해 비행시간 측정의 정확도가 향상될 수 있다. 물론 이러한 효과들에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 실시예에 따른 라이다 시스템을 나타낸 블록도이다.
도 2는 본 발명의 실시예에 따른 라이다 비행시간 측정 방법에 대한 순서도이다.
도 3은 본 발명의 실시예에 따른 반사파 신호의 피크타임(Peak Time)을 측정하는 방법을 설명하기 위한 신호파형을 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 비행시간(ToF)을 측정하는 방법을 설명하기 위한 신호파형을 나타낸 도면이다.
도 5는 본 발명의 실시예에 따른 TDC(Time-to-Digital Converter)의 블록도이다.
도 2는 본 발명의 실시예에 따른 라이다 비행시간 측정 방법에 대한 순서도이다.
도 3은 본 발명의 실시예에 따른 반사파 신호의 피크타임(Peak Time)을 측정하는 방법을 설명하기 위한 신호파형을 나타낸 도면이다.
도 4는 본 발명의 실시예에 따른 비행시간(ToF)을 측정하는 방법을 설명하기 위한 신호파형을 나타낸 도면이다.
도 5는 본 발명의 실시예에 따른 TDC(Time-to-Digital Converter)의 블록도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한, 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 또한, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.
도 1은 본 발명의 실시예에 따른 라이다 시스템을 나타낸 블록도이다.
라이다 시스템(10)은 라이다 비행시간 측정 장치(100), 레이저 다이오드(120), 포토 다이오드(130) 및 광학부(140)를 포함할 수 있다.
보다 구체적으로, 라이다 비행시간 측정 장치(100)는 제어부(105)를 포함할 수 있다.
이때, 제어부(105)는 라이다(Lidar) 센서 시스템의 전체적인 제어 및 비행시간(ToF: Time of Flight)을 측정할 수 있으며, 레이저 다이오드(120)를 구동시키도록 레이저 다이오드 구동 전류를 출력할 수 있다.
레이저 다이오드(120)는 제어부(105)의 제어를 받아, 광학부(140)를 통해 레이저 펄스를 대상체(150)에 송신할 수 있으며, 포토 다이오드(130)는 광학부(140)를 통해 레이저 펄스를 인가 받은 대상체(150)로부터 반사된 반사파 신호를 입력 받을 수 있다.
예컨대, 광학부(140)는 레이저 다이오드(120)에서 송신되는 레이저 펄스 시야각 확보 및 정밀한 각 해상도 확보를 위해 레이저 발광 분포 균일화, 빔 정형 비율, 수광시 빔의 집광력 등 광학적 특성을 고려한 광학 렌즈(140, 145), 프리즘(미도시) 등을 포함할 수 있다.
한편, 제어부(105)는 포토 다이오드(130)로부터 입력 받은 반사파 신호를 처리하는 반사파 신호 처리부(110)를 포함할 수 있으며, 반사파 신호 처리부(110)는 펄스 신호 변환부(113), 시간-디지털 변환부(TDC, Time-to-Digital Converter, 115) 및 반사파 신호 피크 측정부(117)를 포함할 수 있다.
펄스 신호 변환부(113)는 포토 다이오드(130)로부터 반사파 신호를 입력 받을 수 있으며, 입력된 반사파 신호를 임계값(threshold)과 비교하여 반사파 신호가 임계값 이상일 경우, 반사파 신호를 반사파 펄스 신호로 변환할 수 있다.
이때, 펄스 신호 변환부(113)에서 생성된 반사파 펄스 신호는 시간-디지털 변환부(TDC, 115)에 입력되며, 시간-디지털 변환부(TDC, 115)는 반사파 펄스 신호를 입력 받아, 반사파 펄스 신호의 상승 엣지 및 하강 엣지에 상응하는 디지털 데이터를 생성할 수 있다.
여기서, 도 5를 참조하여 본 발명의 실시예에 따른 시간-디지털 변환부를 구체적으로 살펴보면, 시간-디지털 변환부(TDC, 115)는 시간 지연을 각각 가지는 복수의 버퍼(B1 ~ Bn) 및 복수의 버퍼(B1 ~ Bn) 각각의 출력과 연결되며 복수의 버퍼(B1 ~ Bn) 각각의 출력값을 출력하는 복수의 레지스터(510, 520)를 포함할 수 있다.
복수의 버퍼(B1 ~ Bn)는 입력으로 인가된 전압을 출력으로 그대로 출력할 수 있다. 단, 복수의 버퍼는 각각 지연시간(τ1 ~ τn)을 포함할 수 있다. 따라서, 각 버퍼의 지연시간이 동일하다고 가정하면(τ1 = τ2 = … = τn-1 =τn) 입력부에 인가된 전압은 kⅹτ1 초 후에는 k번째 버퍼까지 신호가 이동하게 된다.(단, 1≤k≤n)
한편, 복수의 레지스터(510, 520)는 반사파 펄스 신호의 상승 엣지에서 출력값이 변하는 라이징 엣지 트리거드(rising edge triggered) D-플립플롭(510) 및 반사파 펄스 신호의 하강 엣지에서 출력값이 변하는 폴링 엣지 트리거드(falling edge triggered) D-플립플롭(520)을 포함할 수 있다.
또한, 시간-디지털 변환부(TDC, 115)의 복수의 레지스터(510, 520)는 클럭부(500)의 입력으로 반사파 펄스 신호가 입력될 수 있으며, 복수의 레지스터(510, 520)는 반사파 펄스 신호를 입력 받아 반사파 신호의 상승 엣지 및 하강 엣지의 타임을 검출할 수 있다.
다시 도 1을 참조하여, 반사파 신호 피크 측정부(117)는 시간-디지털 변환부(TDC, 115)에서 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 입력 받을 수 있으며, 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터에 기초하여 반사파 신호의 피크 타임(Peak Time)을 측정할 수 있다.
이 경우, 반사파 신호 피크 측정부(117)는 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값에 대한 하프값, 즉 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값의 평균을 연산하여, 반사파 신호의 피크타임을 측정할 수 있으며, 보다 구체적으로 반사파 피크 측정부(117)에서 반사파 신호의 피크 타임을 측정하는 방법은 도3을 통해 상세히 후술하도록 한다.
한편, 제어부(105)는 반사파 신호 피크 측정부(117)에서 측정된 반사파 신호의 피크 타임(Peak Time)에 기초하여 비행시간(ToF)을 측정할 수 있다.
보다 구체적으로, 제어부(105)는 레이저 펄스신호 진폭의 하프값, 즉 레이저 펄스신호 진폭을 2로 나눈 값을 연산하여 레이저 펄스신호의 피크 타임을 구하고, 레이저 펄스 신호의 피크 타임으로부터 반사파 신호의 피크 타임까지의 비행시간을 측정하여, 비행시간을 계산할 수 있다.
도 2는 본 발명의 실시예에 따른 라이다 비행시간 측정 방법에 대한 순서도이다.
도 2를 참조하면, 먼저 레이저 다이오드(120)로부터 송신되는 레이저 펄스신호를 인가 받은 대상체(150)로부터 반사된 반사파 신호를 수신 받을 수 있다. (단계 S200)
보다 상세하게, 포토 다이오드(130)를 통해 반사파 신호를 입력 받을 수 있으며, 반사파 신호는 펄스 신호 변환부(113)로 입력될 수 잇다.
펄스 신호 변환부(113)는 반사파 신호를 임계값(threshold)과 비교하여 반사파 신호가 임계값 이상일 경우, 반사파 신호를 반사파 펄스 신호로 변환할 수 있다. (단계 S210)
이 경우, 반사파 신호가 임계값 이상이 아닐 경우에는, 반사파 신호를 다시 수신 받을 수 있다.
한편, 반사파 펄스 신호는 시간-디지털 변환부(TDC, 115)로 인가되며, 시간-디지털 변환부(TDC, 115)는 반사파 펄스 신호의 상승 엣지 및 하강 엣지에 상응하는 디지털 데이터를 생성할 수 있다. (단계 S220)
이때, 반사파 신호 피크 측정부(117)는 시간-디지털 변환부(115)로부터 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 입력 받아, 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터에 기초하여 상기 반사파 신호의 피크 타임(Peak Time)을 측정할 수 있다. (단계 S230)
보다 상세하게, 반사파 신호 피크 측정부(117)는 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값에 대한 하프값을 연산하여, 반사파 신호의 피크 타임을 측정할 수 있으며, 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값에 대한 하프값은, 상승 엣지 및 하강 엣지의 디지털 데이터를 더한값을 2로 나눈 값이다.
마지막으로, 제어부(105)는 반사파 신호의 피크 타임에 기초하여 비행시간(ToF)을 측정할 수 있다. (단계 S240)
이 경우, 제어부(105)는 레이저 펄스의 피크 타임부터 반사파 신호의 피크타임까지의 비행시간을 측정할 수 있으며, 레이저 펄스의 피크 타임은 레이저 펄스 진폭의 하프값을 연산하여 레이저 펄스 피크타임을 계산할 수 있으며, 여기서 레이저 펄스 진폭의 하프값은 레이저 펄스 진폭을 2로 나눈 값이다.
도 3은 본 발명의 실시예에 따른 반사파 신호의 피크타임(Peak Time)을 측정하는 방법을 설명하기 위한 신호파형을 나타낸 도면이다.
도 3을 참조하면, 반사파 신호의 피크 타임(Peak Time)을 측정하기 위해, 먼저 펄스 신호 변환부(113)가 포토 다이오드로(130)부터 반사파 신호를 입력 받게 되는데, 이때, 레이저 다이오드(120)에서 송신되는 레이저 펄스는 구형 펄스(Rectangular pulse)로 송신되지만, 레이저 펄스가 대상체(150)에 인가되고 반사되는 과정을 통해 신호가 감쇄되기 때문에 반사파 신호가 포토 다이오드(130)로 입력될 경우, 아치 형태의 신호 혹은 가우시안(Gaussian) 신호로 변화될 수 있다.
따라서, 포토 다이오드(130)로 입력되는 반사파 신호는 레이저 펄스가 감쇄된 형태인 아치 형태의 신호 혹은 가우시안 신호로 변화되기 때문에 반사파 신호는 신호의 최고점 즉, 피크 타임(Peak Time)을 가지게 된다.
한편, 종래에는 포토 다이오드(130)로부터 입력되는 반사파 신호가 임계값(threshold) 이상일 경우, 유효한 신호로 판단하고, 레이저 펄스의 송신 지점부터 반사파 신호의 시작점까지의 비행시간(ToF: Time of Flight)을 측정하였다. 하지만, 포토 다이오드(130)의 경우 온도가 증가할수록 전류를 생성하게 되는 전압(Breakdown Voltage)이 높아지게 되어 수신 반사파의 신호 감도가 낮아지게 되는데, 이로 인해 비행시간을 측정하는데 오차가 발생할 수 었다.
예를 들어, 포토 다이오드(130)의 온도가 저온일 경우의 반사파 신호보다 고온일 경우의 반사파 신호의 감도가 작아지게 되며, 이로 인해 포토 다이오드(130)의 온도가 저온일 경우의 비행시간(ToF)이 포토 다이오드(130)의 온도가 고온일 경우의 비행시간(ToF)보다 짧게 측정될 수 있었다. 한편, 라이다(Lidar) 센서는 1ns의 오차에도 약 15cm의 거리 오차가 발생할 수 있기 때문에, 이러한 오차는 운전자의 안전에 치명적인 영향을 미칠 수 있었다.
하지만, 본 발명은 포토 다이오드(130)로부터 입력 받은 반사파 신호의 피크 타임(Peak Time)에 기초하여 비행시간을 측정하기 때문에 포토 다이오드(130)의 온도에 따라 신호의 감도가 변화되더라도 신호의 감도만 달라질 뿐, 온도의 변화에도 반사파 신호의 피크 타임은 동일하므로, 포토 다이오드(130)의 온도 변화에 따른 신호 감도가 달라지는 것에 대한 영향을 받지 않을 수 있다.
보다 구체적으로 본 발명의 실시예에 따른 반사파 신호의 피크타임을 구하기 위하여, 먼저 펄스 신호 변환부(113)에서 포토 다이오드(130)로부터 입력 받은 반사파 신호와 미리 설정된 임계값(threshold, 300)을 비교하여 반사파 신호가 임계값(threshold, 300) 이상일 경우, 반사파 펄스 신호로 변환한다.
이때, 반사파 펄스 신호는 시간-디지털 변환부(TDC, 115)로 입력되고, 시간-디지털 변환부(TDC, 115)는 반사파 펄스 신호의 상승 엣지 타임(t1) 및 하강 엣지 타임(t2)을 검출할 수 있다.
보다 상세하게, 시간-디지털 변환부(TDC, 115)에서 생성된 상승 엣지 타임(t1) 및 하강 엣지 타임(t2)은 반사파 신호 피크 측정부(117)로 입력되며, 반사파 신호 피크 측정부(117)는 반사파 펄스 신호의 상승 엣지 타임(t1) 및 하강 엣지 타임(t2)을 더한 값을 2로 나눈 값(310)을 연산하여 반사파 신호의 피크 타임(Peak Time, 320)을 측정할 수 있다.
이 경우, 반사파 펄스 신호의 하프 타임(310)과, 반사파 신호의 피크 타임(Peak Time, 320)은 동일하므로, 반사파 펄스 신호의 하프 값(310), 즉 반사파 펄스 신호의 하프 타임(310)을 계산하면, 반사파 신호의 피크 타임(Peak Time, 320)을 구할 수 있다.
도 4는 본 발명의 실시예에 따른 비행시간(ToF)을 측정하는 방법을 설명하기 위한 신호파형을 나타낸 도면이다.
도 4를 참조하면, 본 발명의 제어부(105)는 레이저 펄스의 피크 타임(405)부터 반사파 신호의 피크타임(400, 410)까지의 비행시간(420, 425)을 측정할 수 있다.
이 때, 제어부(105)는 레이저 펄스신호 진폭의 하프값을 연산하여 레이저 펄스신호의 피크타임(405)을 연산할 수 있으며, 보다 상세하게, 레이저 펄스 신호 진폭의 하프값은 레이저 펄스신호 진폭을 2로 나눈값이다.
예컨대, 본 발명은 반사파 신호의 피크 타임(400, 410)에 기초하여 비행시간(420, 425)을 구하기 때문에, 비행시간을 측정하는 시작점을 레이저 펄스신호의 피크 타임(405)으로 설정하고, 비행시간을 측정하는 종료점을 반사파 신호의 피크 타임(400, 410)으로 설정하여 비행시간을 측정할 수 있다.
한편, 포토 다이오드(130)는 온도에 따라 신호감도가 변화되며, 저온일 우의 반사파 신호보다 고온일 경우의 반사파 신호의 감도가 더 작아져서, 레이저 펄스의 시작점부터 반사파 신호의 시작점까지의 비행시간을 측정할 경우, 포토다이오드의 온도에 따라 비행시간 측정이 다르게 측정될 수 있었다.
하지만, 포토 다이오드(130)의 온도 변화에 따라 신호 감도가 달라져도, 포토 다이오드(130)가 저온일 경우의 반사파 신호의 피크 타임(400)과 포토 다이오드가 고온일 경우의 반사파 신호의 피크 타임(410)은 동일하게 나타난다.
따라서, 레이저 펄스의 피크 타임(405), 즉 레이저 펄스의 진폭에 대한 하프 타임(405)부터 반사파 신호의 피크 타임(400,410)까지의 비행시간을 측정(420, 425)하면, 포토 다이오드(130)의 온도에 따라 신호 감도가 변화되는 영향을 받지 않고, 비행시간(420, 425)을 정확하게 측정할 수 있다.
상술한 바와 같이 이루어진 본 발명의 일 실시예에 따른 라이다 비행시간 측정 장치는 포토 다이오드로부터 입력 되는 반사파 신호의 피크 타임(Peak Time)에 기초하여 비행시간(ToF)을 측정하므로, 포토 다이오드의 온도에 따라 반사파 신호에 대한 감도가 변화 되어도, 반사파 신호 감도 변화에 영향을 받지 않고 비행시간을 측정할 수 있다. 따라서, 비행시간 측정 시, 반사파 신호 감도 변화로 인한 비행시간 측정 오차를 줄일 수 있으며, 이로 인해 비행시간 측정의 정확도가 향상될 수 있다.
본 발명의 상세한 설명 및 첨부도면에서는 구체적인 실시예에 관해 설명하였으나, 본 발명은 개시된 실시예에 한정되지 않고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러가지 치환, 변형 및 변경이 가능하다. 따라서, 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들을 포함하는 것으로 해석되어야 할 것이다.
105: 제어부
110: 반사파 신호 처리부
113: 펄스 신호 변환부
115: 시간-디지털 변환부(TDC: Time-to-Digital Converter)
117: 반사파 신호 피크 측정부
110: 반사파 신호 처리부
113: 펄스 신호 변환부
115: 시간-디지털 변환부(TDC: Time-to-Digital Converter)
117: 반사파 신호 피크 측정부
Claims (10)
- 레이저 다이오드로부터 송신되는 레이저 펄스신호를 인가 받은 대상체로부터 반사된 반사파 신호를 수신 받는 단계;
상기 반사파 신호를 임계값과 비교하여 상기 반사파 신호가 임계값 이상일 경우, 상기 반사파 신호를 반사파 펄스 신호로 변환하는 단계;
상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지에 상응하는 디지털 데이터를 생성하는 단계;
상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터에 기초하여 상기 반사파 신호의 피크 타임을 측정하는 단계; 및
상기 반사파 신호의 피크 타임에 기초하여 비행시간을 측정하는 단계;를 포함하는,
라이다 비행시간 측정 방법.
- 제 1 항에 있어서,
상기 반사파 신호 피크 타임을 측정하는 단계는,
상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값에 대한 하프값을 연산하여, 상기 반사파 신호의 피크 타임을 측정하는,
라이다 비행시간 측정 방법.
- 제 1 항에 있어서,
상기 비행시간을 측정하는 단계는
상기 레이저 펄스신호의 피크 타임으로부터 상기 반사파 신호의 피크 타임까지의 비행시간을 측정하는,
라이다 비행시간 측정 방법.
- 제 3 항에 있어서,
상기 레이저 펄스신호의 피크 타임은 상기 레이저 펄스신호의 진폭의 하프값을 연산하여 구하는,
라이다 비행시간 측정 방법.
- 레이저 다이오드로부터 송신되는 레이저 펄스를 인가 받은 대상체로부터 반사된 반사파 신호를 처리하는 반사파 신호 처리부를 포함하는 제어부에 있어서,
상기 반사파 신호 처리부는,
상기 반사파 신호를 임계값과 비교하여 상기 반사파 신호가 임계값 이상일 경우, 상기 반사파 신호를 반사파 펄스 신호로 변환하는 펄스 신호 변환부;
상기 반사파 펄스 신호를 입력 받아, 상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지에 상응하는 디지털 데이터를 생성하는 시간-디지털 변환부; 및
상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터에 기초하여 상기 반사파 신호의 피크 타임을 측정하는 반사파 신호 피크 측정부;를 포함하며,
상기 제어부는 상기 반사파 신호의 피크 타임에 기초하여 비행시간을 측정하는,
라이다 비행시간 측정 장치.
- 제 5 항에 있어서,
상기 반사파 신호 피크 측정부는,
상기 반사파 펄스 신호의 상승 엣지 및 하강 엣지의 디지털 데이터를 더한 값에 대한 하프값을 연산하여, 상기 반사파 신호의 피크 타임을 측정하도록 구성되는,
라이다 비행 시간 측정 장치.
- 제 5 항에 있어서,
상기 제어부는, 상기 레이저 펄스신호의 피크 타임으로부터 상기 반사파 신호의 피크 타임까지의 비행시간을 측정하여 상기 비행 시간을 계산하는,
라이다 비행 시간 측정 장치.
- 제 7 항에 있어서,
상기 제어부는 상기 레이저 펄스신호의 진폭의 하프값을 연산하여 상기 레이저 펄스신호의 피크 타임을 구하는,
라이다 비행시간 측정 장치.
- 제 5 항에 있어서,
상기 시간-디지털 변환부는,
시간 지연을 각각 가지는 복수의 버퍼; 및
상기 복수의 버퍼 각각의 출력과 연결되며 상기 복수의 버퍼 각각의 출력값을 출력하는 복수의 레지스터를 포함하는,
라이다 비행시간 측정 장치.
- 제 9 항에 있어서,
상기 시간-디지털 변환부에 포함된 상기 복수의 레지스터는,
상기 반사파 펄스 신호의 상승 엣지에서 출력값이 변하는 라이징 엣지 트리거드(rising edge triggered) D-플립플롭; 및
상기 반사파 펄스 신호의 하강 엣지에서 출력값이 변하는 폴링 엣지 트리거드(falling edge triggered) D-플립플롭;을 포함하는,
라이다 비행시간 측정 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180140220A KR102163661B1 (ko) | 2018-11-14 | 2018-11-14 | 라이다 비행시간 측정 장치 및 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180140220A KR102163661B1 (ko) | 2018-11-14 | 2018-11-14 | 라이다 비행시간 측정 장치 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200056201A true KR20200056201A (ko) | 2020-05-22 |
KR102163661B1 KR102163661B1 (ko) | 2020-10-08 |
Family
ID=70913962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180140220A KR102163661B1 (ko) | 2018-11-14 | 2018-11-14 | 라이다 비행시간 측정 장치 및 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102163661B1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022039899A1 (en) * | 2020-08-21 | 2022-02-24 | Beijing Voyager Technology Co. Ltd. | Range estimation for lidar systems |
CN114859686A (zh) * | 2022-04-29 | 2022-08-05 | 河北新华北集成电路有限公司 | 基于激光雷达的计时装置及计时方法 |
WO2023059498A1 (en) * | 2021-10-05 | 2023-04-13 | Argo AI, LLC | System and method for differential comparator-based time-of-flight measurement with amplitude estimation |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950027361A (ko) * | 1994-03-25 | 1995-10-16 | 김주용 | 레이저를 이용한 광학식 거리 측정장치및 그 방법 |
KR960024258A (ko) * | 1994-12-31 | 1996-07-20 | 김주용 | 광학식 거리 측정 장치 및 방법 |
KR960035056A (ko) * | 1995-03-13 | 1996-10-24 | 김주용 | 거리오차 보정이 가능한 거리측정장치 및 방법 |
KR960035059A (ko) * | 1995-03-13 | 1996-10-24 | 김주용 | 거리오차 보정이 가능한 광학식 거리측정장치 및 방법 |
KR970048600A (ko) * | 1995-12-19 | 1997-07-29 | 전성원 | 차량의 거리측정을 위한 레이저 다이오드 트리거신호 변환장치 |
JPH11281744A (ja) * | 1998-01-28 | 1999-10-15 | Nikon Corp | 距離測定装置 |
JP2003139857A (ja) * | 2001-11-01 | 2003-05-14 | Nec Eng Ltd | レーザ測距装置 |
KR20120013515A (ko) * | 2010-08-05 | 2012-02-15 | (주)이오시스템 | 광학측정장치의 아발란치 포토 다이오드 이득 보상 장치 |
JP2013033024A (ja) * | 2011-07-05 | 2013-02-14 | Denso Corp | 距離,速度測定装置 |
-
2018
- 2018-11-14 KR KR1020180140220A patent/KR102163661B1/ko active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950027361A (ko) * | 1994-03-25 | 1995-10-16 | 김주용 | 레이저를 이용한 광학식 거리 측정장치및 그 방법 |
KR960024258A (ko) * | 1994-12-31 | 1996-07-20 | 김주용 | 광학식 거리 측정 장치 및 방법 |
KR960035056A (ko) * | 1995-03-13 | 1996-10-24 | 김주용 | 거리오차 보정이 가능한 거리측정장치 및 방법 |
KR960035059A (ko) * | 1995-03-13 | 1996-10-24 | 김주용 | 거리오차 보정이 가능한 광학식 거리측정장치 및 방법 |
KR970048600A (ko) * | 1995-12-19 | 1997-07-29 | 전성원 | 차량의 거리측정을 위한 레이저 다이오드 트리거신호 변환장치 |
JPH11281744A (ja) * | 1998-01-28 | 1999-10-15 | Nikon Corp | 距離測定装置 |
JP2003139857A (ja) * | 2001-11-01 | 2003-05-14 | Nec Eng Ltd | レーザ測距装置 |
KR20120013515A (ko) * | 2010-08-05 | 2012-02-15 | (주)이오시스템 | 광학측정장치의 아발란치 포토 다이오드 이득 보상 장치 |
JP2013033024A (ja) * | 2011-07-05 | 2013-02-14 | Denso Corp | 距離,速度測定装置 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022039899A1 (en) * | 2020-08-21 | 2022-02-24 | Beijing Voyager Technology Co. Ltd. | Range estimation for lidar systems |
US11782157B2 (en) | 2020-08-21 | 2023-10-10 | Guangzhou Woya Laideling Technology Co., Ltd. | Range estimation for LiDAR systems |
WO2023059498A1 (en) * | 2021-10-05 | 2023-04-13 | Argo AI, LLC | System and method for differential comparator-based time-of-flight measurement with amplitude estimation |
US12007510B2 (en) | 2021-10-05 | 2024-06-11 | Lg Innotek Co., Ltd. | System and method for differential comparator-based time-of-flight measurement with amplitude estimation |
CN114859686A (zh) * | 2022-04-29 | 2022-08-05 | 河北新华北集成电路有限公司 | 基于激光雷达的计时装置及计时方法 |
CN114859686B (zh) * | 2022-04-29 | 2024-02-06 | 河北新华北集成电路有限公司 | 基于激光雷达的计时装置及计时方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102163661B1 (ko) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102030457B1 (ko) | 거리 검출 센서 시간 변이 보상 장치 및 방법 | |
CN110244316B (zh) | 接收光脉冲的接收器组件、LiDAR模组和接收光脉冲的方法 | |
CN108594254B (zh) | 一种提高tof激光成像雷达测距精度的方法 | |
CN108196264B (zh) | 一种激光测距方法、装置及系统 | |
US9110158B2 (en) | Biphoton ranging with HOM interference | |
KR102163661B1 (ko) | 라이다 비행시간 측정 장치 및 방법 | |
CN107884779B (zh) | 激光雷达、车辆、测距误差测量方法、及测距方法 | |
JP6514920B2 (ja) | 光波距離計 | |
US20210333377A1 (en) | Methods and systems for increasing the range of time-of-flight systems by unambiguous range toggling | |
CN107843903B (zh) | 一种多阀值tdc高精度激光脉冲测距方法 | |
Palojarvi et al. | Pulsed time-of-flight laser radar module with millimeter-level accuracy using full custom receiver and TDC ASICs | |
US20150268343A1 (en) | Range finder, mobile object and range-finding method | |
CN110244315B (zh) | 用于接收光信号的接收装置和用于接收光信号的方法 | |
US5523835A (en) | Distance measuring equipment | |
KR20190085758A (ko) | 시간 디지털 변환 카운터 및 이를 포함하는 라이더 시스템 | |
CN115542285A (zh) | 用于激光雷达的抗干扰方法、装置、电子设备和存储介质 | |
US11994587B2 (en) | Optoelectronic detection device, method for the operation of such a detection device, and motor vehicle with such a detection device | |
CN115877394A (zh) | 基于脉位调制技术的激光雷达测距方法及其测距系统 | |
CN203720351U (zh) | 精确测定物体角度和角速度的激光雷达测量仪 | |
Kurtti et al. | An integrated receiver channel for a laser scanner | |
US20200292667A1 (en) | Object detector | |
Menglin et al. | Design of lightweight and small sized airborne laser scanner | |
KR102176700B1 (ko) | 라이다 비행시간 측정 장치 및 방법 | |
Chen et al. | High-precision infrared pulse laser ranging for active vehicle anti-collision application | |
Kurtti et al. | A CMOS chip set for accurate pulsed time-of-flight laser range finding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |