[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20200034711A - Thermally conductive particle-filled fiber - Google Patents

Thermally conductive particle-filled fiber Download PDF

Info

Publication number
KR20200034711A
KR20200034711A KR1020207001351A KR20207001351A KR20200034711A KR 20200034711 A KR20200034711 A KR 20200034711A KR 1020207001351 A KR1020207001351 A KR 1020207001351A KR 20207001351 A KR20207001351 A KR 20207001351A KR 20200034711 A KR20200034711 A KR 20200034711A
Authority
KR
South Korea
Prior art keywords
particles
thermally conductive
resin
conductive particle
filled
Prior art date
Application number
KR1020207001351A
Other languages
Korean (ko)
Inventor
카즈히데 요시야마
겐스케 나카
키미히로 마츠카와
Original Assignee
칸토 덴카 코교 가부시키가이샤
고쿠리츠 다이가쿠 호우진 교토 코우게이 센이 다이가쿠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칸토 덴카 코교 가부시키가이샤, 고쿠리츠 다이가쿠 호우진 교토 코우게이 센이 다이가쿠 filed Critical 칸토 덴카 코교 가부시키가이샤
Publication of KR20200034711A publication Critical patent/KR20200034711A/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/046Reinforcing macromolecular compounds with loose or coherent fibrous material with synthetic macromolecular fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/08Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated carboxylic acids or unsaturated organic esters, e.g. polyacrylic esters, polyvinyl acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

본 발명은 수지와 열전도성 입자를 함유하는 열전도성 입자 충전 파이버로서, 열전도성 입자의 적어도 일부가 상기 파이버의 내부에 존재하고, 열전도성 입자의 평균 입경이 10~1000nm이며, 평균 섬유 직경이 50~10000nm인 열전도성 입자 충전 파이버이다. The present invention is a heat-conductive particle-filled fiber containing a resin and heat-conductive particles, wherein at least a portion of the heat-conductive particles are present inside the fiber, and the average particle diameter of the heat-conductive particles is 10 to 1000 nm, and the average fiber diameter is 50. It is a thermally conductive particle-filled fiber of ~ 10000 nm.

Description

열전도성 입자 충전 파이버 Thermally conductive particle-filled fiber

본 발명은 열전도성 입자 충전 파이버 및 그 제조 방법, 및 수지 조성물 및 그 제조 방법에 관한 것이다. The present invention relates to a thermally conductive particle-filled fiber and a method for producing the same, and a resin composition and a method for producing the same.

수지, 카본, 금속 산화물 등을 사용한 미세섬유는 일반적으로 나노 파이버라고 칭해지는 섬유 직경이 나노 스케일의 섬유이다. 미세섬유는 표면적이 매우 크고, 각종 용도(예를 들면, 고성능 필터, 전지 세퍼레이터, 전자파 실드재, 인공피혁, 세포 배양 기재, IC칩, 유기 EL, 태양전지 등)에 응용되는 것이 기대되고 있다. Microfibers using resins, carbon, metal oxides, etc. are nano-scale fibers having a fiber diameter generally referred to as nanofibers. The microfiber has a very large surface area, and is expected to be applied to various uses (for example, high-performance filters, battery separators, electromagnetic shielding materials, artificial leather, cell culture substrates, IC chips, organic EL, solar cells, etc.).

미세섬유의 특성 예를 들면 물리적 특성이나 전기적 특성 등을 바꾸기 위해서, 또 소정의 기능을 부여하기 위해서, 목적에 따른 재료를 당해 미세섬유와 복합화시키는 것이 제안되어 있다. In order to change the properties of microfibers, for example, physical properties, electrical properties, etc., and to impart a predetermined function, it has been proposed to combine the material according to the purpose with the microfibers.

일본 특개 2004-3070호 공보에는, 열가소성 수지로 이루어지는 섬유의 표면에 고체 입자를 담지하는 섬유로서, 상기 고체 입자의 융점 또는 분해 온도가 상기 열가소성 수지의 융점보다 높고, 상기 고체 입자의 평균 입자 직경이 상기 섬유의 평균 직경의 1/3 이하이며, 소정의 유효 표면적률이 50% 이상인 고체 입자 담지 섬유가 개시되어 있다. Japanese Unexamined Patent Publication No. 2004-3070, a fiber supporting solid particles on the surface of a fiber made of a thermoplastic resin, wherein the melting point or decomposition temperature of the solid particles is higher than the melting point of the thermoplastic resin, and the average particle diameter of the solid particles is Disclosed are solid particle-carrying fibers having a predetermined effective surface area ratio of 50% or more and less than 1/3 of the average diameter of the fibers.

일본 특개 2016-11474호 공보에는, 열가소성 수지로 이루어지는 섬유를 포함하는 부직포의 표면에 0.1~20g/m2로 소성 하이드록시아파타이트 입자가 열융착에 의해 고착된, 전단 강성이 8.5gf/cm·deg인 구강 청소용 부직포가 개시되어 있다. Japanese Unexamined Patent Publication No. 2016-11474 discloses a shear stiffness of 8.5 gf / cm · deg in which 0.1 to 20 g / m 2 of calcined hydroxyapatite particles are fixed by heat fusion on the surface of a nonwoven fabric comprising fibers made of a thermoplastic resin. Phosphorus oral cleaning non-woven fabrics are disclosed.

일본 특개 2006-336121호 공보에는, 평균 섬유 직경이 50~1000nm, 섬유 길이가 100μm 이상인 지르코니아 섬유를 소정의 단계를 거쳐 제조하는 것이 개시되어 있다. Japanese Patent Publication No. 2006-336121 discloses that zirconia fibers having an average fiber diameter of 50 to 1000 nm and a fiber length of 100 µm or more are produced through predetermined steps.

일본 특표 2011-529437호 공보에는, 세공을 가지는 금속 산화물 담체와, 이 세공 내에 분산된 금속 나노 입자를 포함하고, 직경이 300nm 이하인 나노 파이버가 개시되어 있다. Japanese Patent Publication No. 2011-529437 discloses a nanofiber having a diameter of 300 nm or less, including a metal oxide carrier having pores and metal nanoparticles dispersed in the pores.

일본 특개 2015-86270호 공보에는, 유기 수지 중에 섬유상 알루미나 필러가 분산된, 소정의 열전도율을 가지는 필러 분산 유기 수지 복합체가 개시되어 있다. Japanese Patent Application Laid-Open No. 2015-86270 discloses a filler-dispersed organic resin composite having a predetermined thermal conductivity, in which a fibrous alumina filler is dispersed in an organic resin.

일본 특개 2008-75010호 공보에는, 매트릭스인 수지(A)와 섬유상물로 이루어지는 복합체로서, 이 섬유상물이 수지(B)와 무기 입자로 이루어지는 수지 복합체가 개시되어 있다. Japanese Patent Application Laid-Open No. 2008-75010 discloses a resin composite composed of a resin (A) as a matrix and a fibrous substance, wherein the fibrous substance is composed of a resin (B) and inorganic particles.

일본 특표 2010-526941호 공보에는, 나노 사이즈 또는 마이크로 사이즈의 해독 입자를 포함하는, 나노 사이즈 또는 마이크로 사이즈의 섬유가 개시되어 있다. Japanese Patent Publication No. 2010-526941 discloses nano-sized or micro-sized fibers containing nano-sized or micro-sized detoxifying particles.

일본 특개 2016-79202호 공보에는, 열전도성 무기 입자와 셀룰로오스 나노 파이버의 복합재로 이루어지는 방열재로서, 상기 셀룰로오스 나노 파이버는 그 표면을 에스테르화 및/또는 에테르화하여 수식되어 있는 방열재가 개시되어 있다. Japanese Patent Application Laid-Open No. 2016-79202 discloses a heat radiation material composed of a thermally conductive inorganic particle and a composite material of cellulose nanofibers, wherein the cellulose nanofiber is modified by esterifying and / or etherifying its surface.

산화마그네슘 등의 화합물은 열전도성이나 내열성 등이 우수한 것이 알려져 있고, 수지 조성물의 열전도성을 높이기 위한 열전도성 필러로서 다양한 수지에 사용되어 있다. Compounds such as magnesium oxide are known to be excellent in thermal conductivity, heat resistance, and the like, and are used in various resins as thermal conductive fillers for increasing the thermal conductivity of resin compositions.

본 발명은 열전도성이 우수하고, 수지에 대해서도 우수한 열전도성을 부여할 수 있는, 열전도성 입자를 함유하는 열전도성 입자 충전 파이버를 제공한다. The present invention provides a thermally conductive particle-filled fiber containing thermally conductive particles that are excellent in thermal conductivity and can also impart excellent thermal conductivity to resins.

본 발명은 수지와 평균 입경이 10~1000nm인 열전도성 입자를 함유하고, 평균 섬유 직경이 50~10000nm인, 열전도성 입자 충전 파이버에 관한 것이다. The present invention relates to a heat-conductive particle-filled fiber containing a resin and heat-conductive particles having an average particle diameter of 10 to 1000 nm, and an average fiber diameter of 50 to 10000 nm.

본 발명은 수지와 열전도성 입자를 함유하는 열전도성 입자 충전 파이버로서, The present invention is a thermally conductive particle-filled fiber containing a resin and thermally conductive particles,

열전도성 입자의 적어도 일부가 상기 파이버의 내부에 존재하고, At least a portion of the thermally conductive particles are present inside the fiber,

열전도성 입자의 평균 입경이 10~1000nm이며, The average particle diameter of the thermally conductive particles is 10 to 1000 nm,

평균 섬유 직경이 50~10000nm인, The average fiber diameter is 50 to 10000 nm,

열전도성 입자 충전 파이버를 포함한다. And thermally conductive particle-filled fibers.

또 본 발명은 상기 본 발명의 열전도성 입자 충전 파이버와 수지를 함유하는, 수지 조성물에 관한 것이다. Moreover, this invention relates to the resin composition containing the said thermally conductive particle-filled fiber and resin of this invention.

또 본 발명은 상기 본 발명의 열전도성 입자 충전 파이버의 제조 방법으로서, 수지, 열전도성 입자 및 용매를 함유하는 폴리머 용액을 사용하여 전계 방사법에 의해 방사하는 공정을 가지는, 열전도성 입자 충전 파이버의 제조 방법에 관한 것이다. In addition, the present invention is a method for producing a thermally conductive particle-filled fiber of the present invention, which has a process of spinning by an electric field spinning method using a polymer solution containing a resin, thermally-conductive particles, and a solvent. It's about how.

또 본 발명은 상기 본 발명의 열전도성 입자 충전 파이버를 제조하는 공정(I)과, 상기 공정(I)에서 얻어진 열전도성 입자 충전 파이버를 수지에 배합하는 공정(II)을 가지는 수지 조성물의 제조 방법으로서, 공정(I)이 수지, 열전도성 입자 및 용매를 함유하는 폴리머 용액을 사용하여 전계 방사법에 의해 방사하는 공정을 가지는, 수지 조성물의 제조 방법에 관한 것이다. In addition, the present invention is a method for producing a resin composition having a step (I) of manufacturing the thermally conductive particle-filled fiber of the present invention and a step (II) of blending the thermally-conductive particle-filled fiber obtained in the step (I) with a resin. As, it relates to a method for producing a resin composition, wherein the step (I) has a step of spinning by an electric field spinning method using a polymer solution containing a resin, thermally conductive particles and a solvent.

본 발명에 의하면, 열전도성이 우수하고, 수지에 대해서도 우수한 열전도성을 부여할 수 있는, 열전도성 입자를 함유하는 열전도성 입자 충전 파이버가 제공된다. According to the present invention, there is provided a heat-conductive particle-filled fiber containing heat-conductive particles, which is excellent in heat conductivity and can also impart excellent heat conductivity to a resin.

도 1은 실시예, 비교예에서 얻어진 필름의 열전도율과 산화마그네슘 입자의 첨가량과의 관계를 나타내는 그래프이다. 1 is a graph showing the relationship between the thermal conductivity of films obtained in Examples and Comparative Examples and the amount of magnesium oxide particles added.

(발명을 실시하기 위한 형태) (Form for carrying out the invention)

<열전도성 입자 충전 파이버 및 그 제조 방법> <The thermally conductive particle-filled fiber and its manufacturing method>

본 발명은 수지와 평균 입경이 10~1000nm인 열전도성 입자를 함유하고, 평균 섬유 직경이 50~10000nm인 미세 파이버에 관한 것이다. 본 발명의 파이버는 평균 입경이 10~1000nm인 열전도성 입자가 분산된 수지로 이루어지는, 평균 섬유 직경이 50~10000nm인 수지 파이버이다. The present invention relates to a fine fiber having a resin and thermally conductive particles having an average particle diameter of 10 to 1000 nm, and an average fiber diameter of 50 to 10000 nm. The fiber of the present invention is a resin fiber having an average fiber diameter of 50 to 10000 nm, made of a resin in which thermally conductive particles having an average particle diameter of 10 to 1000 nm are dispersed.

본 발명의 열전도성 입자 충전 파이버는 수지와 열전도성 입자를 함유한다. The thermally conductive particle-filled fiber of the present invention contains a resin and thermally conductive particles.

수지는 에폭시 수지, 아크릴 수지, 아미드·이미드 수지, 페놀 수지, 실리콘 수지 등으로부터 선택되는 1종 이상의 수지를 들 수 있다. 수지는 에폭시기와 같은 경화성의 기를 가지는 것이어도 된다. Examples of the resin include one or more resins selected from epoxy resins, acrylic resins, amide-imide resins, phenol resins, and silicone resins. The resin may have a curable group such as an epoxy group.

본 발명의 열전도성 입자 충전 파이버는 수지를 바람직하게는 25~90질량%, 보다 바람직하게는 25~80질량%, 더욱 바람직하게는 50~70질량% 함유한다. The thermally conductive particle-filled fiber of the present invention preferably contains a resin of 25 to 90% by mass, more preferably 25 to 80% by mass, and even more preferably 50 to 70% by mass.

본 발명에 있어서, 열전도성 입자는 열전도율이 1.0W/m·K 이상인 입자를 말한다. In the present invention, the thermally conductive particles refer to particles having a thermal conductivity of 1.0 W / m · K or more.

열전도성 입자는 평균 입경이 10~1000nm, 바람직하게는 10~500nm, 보다 바람직하게는 10~100nm이다. 이와 같은 평균 입경의 열전도성 입자, 예를 들면 산화마그네슘 입자는 예를 들면 기상 산화법에 의해 입수할 수 있다. The thermally conductive particles have an average particle diameter of 10 to 1000 nm, preferably 10 to 500 nm, and more preferably 10 to 100 nm. The thermally conductive particles having such an average particle diameter, for example, magnesium oxide particles, can be obtained, for example, by a gas phase oxidation method.

여기서, 열전도성 입자의 평균 입경은 동적 광산란법(DLS:Dynamic Light Scattering Measurement)에 의해 측정된 것이다. 평균 입경은 예를 들면 다이나믹 광산란 광도계에 의해 측정할 수 있고, 구체적으로는 열전도성 입자를 분산매에 마그네틱 스터러로 24시간정도 교반, 분산시키고, 얻어진 분산액을 다이나믹 광산란 광도계(예를 들면, 오츠카덴시 가부시키가이샤제, 형번:DLS-7000HL)를 사용하여 측정할 수 있다. Here, the average particle diameter of the thermally conductive particles is measured by dynamic light scattering measurement (DLS). The average particle diameter can be measured by, for example, a dynamic light scattering photometer, specifically, stirring and dispersing the thermally conductive particles in a dispersion medium with a magnetic stirrer for about 24 hours, and the obtained dispersion is subjected to a dynamic light scattering photometer (for example, Otsukaden It can be measured using a commercially available product, model number: DLS-7000HL).

열전도성 입자로서는 금속 산화물 입자, 금속 질화물 입자 및 탄소 입자로부터 선택되는 1종 이상을 들 수 있다. 구체적으로는 열전도성 입자로서는 산화마그네슘 입자, 산화알루미늄 입자, 질화붕소 입자, 질화알루미늄 입자, 질화규소 입자, 나노다이아, 카본나노튜브 및 그래핀 입자로부터 선택되는 1종 이상을 들 수 있다. 바람직하게는 금속 산화물 입자이며, 보다 바람직하게는 산화마그네슘 입자이다. Examples of the thermally conductive particles include one or more selected from metal oxide particles, metal nitride particles, and carbon particles. Specifically, the thermally conductive particles include at least one selected from magnesium oxide particles, aluminum oxide particles, boron nitride particles, aluminum nitride particles, silicon nitride particles, nanodia, carbon nanotubes, and graphene particles. It is preferably a metal oxide particle, and more preferably a magnesium oxide particle.

본 발명의 열전도성 입자 충전 파이버는 열전도성 입자를 바람직하게는 20~90질량%, 보다 바람직하게는 25~90질량%, 더욱 바람직하게는 30~90질량%, 보다 더 바람직하게는 30~80질량%, 보다 더 바람직하게는 30~60질량% 함유한다. 후술하는 본 발명의 수지 조성물에 있어서, 동일한 양의 열전도성 입자를 수지 조성물 중에 배합하는 경우, 상기 범위에서 열전도성 입자를 함유하는 본 발명의 열전도성 입자 충전 파이버를 사용하는 것이, 수지 조성물의 제조면이나 열전도율의 향상 효과의 면에서 유리한 경우가 있다. 그 때문에, 본 발명의 열전도성 입자 충전 파이버는 상기 범위에서 열전도성 입자를 함유하는 것이 바람직하다. The thermally conductive particle-filled fiber of the present invention preferably contains 20 to 90% by mass of the thermally conductive particles, more preferably 25 to 90% by mass, more preferably 30 to 90% by mass, even more preferably 30 to 80% by mass. It contains 30% by mass, more preferably 30% by mass. In the resin composition of the present invention to be described later, when the same amount of the thermally conductive particles are blended in the resin composition, the use of the thermally conductive particle-filled fiber of the present invention containing the thermally conductive particles in the above range is the production of the resin composition. It may be advantageous in terms of the effect of improving the surface or thermal conductivity. Therefore, it is preferable that the thermally conductive particle-filled fiber of the present invention contains thermally conductive particles in the above range.

본 발명의 열전도성 입자 충전 파이버는 평균 섬유 직경이 50~10000nm, 바람직하게는 100~5000nm, 보다 바람직하게는 100~1000nm이다. The thermally conductive particle-filled fiber of the present invention has an average fiber diameter of 50 to 10000 nm, preferably 100 to 5000 nm, more preferably 100 to 1000 nm.

여기서, 열전도성 입자 충전 파이버의 평균 섬유 직경은 얻어진 나노 파이버를 주사형 전자 현미경(히타치하이테크놀로지즈제 SU1510)에 의해 촬영하여 얻은 화상으로부터 랜덤으로 50개소를 선택하여 평균값을 구함으로써 측정할 수 있다. Here, the average fiber diameter of the thermally conductive particle-filled fiber can be measured by randomly selecting 50 locations from an image obtained by photographing the obtained nanofiber with a scanning electron microscope (SU1510 manufactured by Hitachi High Technologies) to obtain an average value.

본 발명의 열전도성 입자 충전 파이버는 평균 섬유 길이가 바람직하게는 100μm 이상, 보다 바람직하게는 500μm 이상, 더욱 바람직하게는 1000μm 이상이다. The thermally conductive particle-filled fiber of the present invention has an average fiber length of preferably 100 μm or more, more preferably 500 μm or more, and even more preferably 1000 μm or more.

여기서, 열전도성 입자 충전 파이버의 평균 섬유 길이는 얻어진 나노 파이버를 주사형 전자 현미경에 의해 촬영하여 얻은 화상으로부터 랜덤으로 50개소를 선택하여 평균값을 구함으로써 측정할 수 있다. Here, the average fiber length of the thermally conductive particle-filled fiber can be measured by randomly selecting 50 points from an image obtained by scanning an obtained nanofiber with a scanning electron microscope and obtaining an average value.

본 발명의 열전도성 입자 충전 파이버는 바람직하게는 열전도성 입자의 적어도 일부가 섬유 내부에 존재한다. 즉, 본 발명의 열전도성 입자 충전 파이버는 열전도성 입자가 분산된 미세섬유이다. 이와 같은 상태를 얻기 위해서, 본 발명의 열전도성 입자 충전 파이버는 전계 방사법에 의해 제조된 미세섬유인 것이 바람직하다. 본 발명의 열전도성 입자 충전 파이버는 수지, 열전도성 입자 및 용매를 함유하는 폴리머 용액을 사용하여 전계 방사법에 의해 방사하는 공정을 가지는, 열전도성 입자 충전 파이버의 제조 방법에 의해 제조할 수 있다. The thermally conductive particle-filled fiber of the present invention preferably has at least a portion of the thermally conductive particles present inside the fiber. That is, the thermally conductive particle-filled fiber of the present invention is a fine fiber in which thermally conductive particles are dispersed. In order to obtain such a state, it is preferable that the thermally conductive particle-filled fiber of the present invention is a microfiber produced by an electrospinning method. The thermally conductive particle-filled fiber of the present invention can be produced by a method for producing a thermally-conductive particle-filled fiber having a process of spinning by an electric field spinning method using a polymer solution containing a resin, thermally conductive particles and a solvent.

수지, 열전도성 입자는 상기한 것이 사용된다. 수지는 열경화성 수지, UV 경화성 수지 등의 경화성 수지가 바람직하다. 수지는 에폭시기와 같은 경화성의 기를 가지는 것이어도 된다. 수지가 경화성 수지인 경우는 경화제를 폴리머 용액에 함유시킬 수 있다. The resin and the thermally conductive particles are used as described above. The resin is preferably a curable resin such as a thermosetting resin or UV curable resin. The resin may have a curable group such as an epoxy group. When the resin is a curable resin, a curing agent may be included in the polymer solution.

폴리머 용액의 용매는 수지를 용해시키는 것이 사용된다. 용매로서는 유기 용매, 또한 메틸에틸케톤, 메틸이소부틸케톤, 아세톤, 시클로헥산온 등의 케톤, 벤젠, 톨루엔, 크실렌, 에틸벤젠 등의 방향족 탄화수소, 메탄올, 에탄올, 이소프로필알코올, n-부탄올, 이소부틸알코올 등의 알코올, 에틸렌글리콜모노메틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노부틸에테르, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜모노에틸에테르 등의 에테르, 아세트산에틸, 아세트산부틸, 락트산에틸, γ-부티로락톤, 프로필렌글리콜모노메틸에테르아세테이트, 프로필렌글리콜모노에틸에테르아세테이트 등의 에스테르, 디메틸포름아미드, N,N-디메틸아세토아세토아미드, N-메틸피롤리돈 등의 아미드를 들 수 있다. 본 발명에서는 열전도성 입자와 용매의 혼합물을 수지와 혼합하여 폴리머 용액을 조제하는 것이 바람직하다. 폴리머 용액을 사용한 전계 방사법은 공지의 방법에 준하여 행할 수 있다. As the solvent of the polymer solution, one that dissolves the resin is used. As a solvent, an organic solvent, and also ketones, such as methyl ethyl ketone, methyl isobutyl ketone, acetone, and cyclohexanone, aromatic hydrocarbons, such as benzene, toluene, xylene, ethylbenzene, methanol, ethanol, isopropyl alcohol, n-butanol, iso Alcohols such as butyl alcohol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, ethers such as ethyl acetate, ethyl acetate, butyl lactate, ethyl lactate, and esters such as γ-butyrolactone, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate, amides such as dimethylformamide, N, N-dimethylacetoacetoamide, and N-methylpyrrolidone. In the present invention, it is preferable to prepare a polymer solution by mixing a mixture of thermally conductive particles and a solvent with a resin. The electrospinning method using a polymer solution can be performed according to a known method.

폴리머 용액은 분산제를 함유해도 된다. 분산제로서는 다가 카르복실산을 포함하는 지방산이나 불포화 지방산 등을 포함하는 아니온계 분산제, 고분자계 이온성 분산제, 인산에스테르계 화합물 등을 들 수 있다. 분산제는 열전도성 입자에 대하여, 1~25질량%의 비율로 사용되는 것이 바람직하다. The polymer solution may contain a dispersant. Examples of the dispersing agent include anionic dispersing agents containing polyhydric carboxylic acids, unsaturated fatty acids and the like, polymer-based ionic dispersing agents, and phosphate-based compounds. The dispersant is preferably used in a ratio of 1 to 25% by mass relative to the thermally conductive particles.

본 발명에서는 수지가 에폭시기를 포함하는 폴리머이며, 그 경화제를 사용하는 것이 바람직하다. 구체적으로는 글리시딜기를 가지는 폴리머와, 경화제인 아민 화합물과의 조합을 수지로서 사용할 수 있다. 보다 구체적으로는 폴리글리시딜메타크릴레이트 및 폴리-비스페놀A디글리시딜에테르로부터 선택되는 폴리머와, 쇄상 지방족 폴리아민, 예를 들면 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 디프로프렌디아민, 디에틸아미노프로필아민 등과의 조합을 들 수 있다. 경화제인 아민 화합물은 폴리머에 대하여, 1~10질량%의 비율로 사용되는 것이 바람직하다. In the present invention, the resin is a polymer containing an epoxy group, and it is preferable to use a curing agent. Specifically, a combination of a polymer having a glycidyl group and an amine compound as a curing agent can be used as the resin. More specifically, polymers selected from polyglycidyl methacrylate and poly-bisphenol A diglycidyl ether, and chain aliphatic polyamines such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, dip And combinations of loprendiamine, diethylaminopropylamine, and the like. It is preferable that the amine compound which is a curing agent is used in a ratio of 1 to 10% by mass relative to the polymer.

본 발명에서는 폴리글리시딜메타크릴레이트 및 폴리-비스페놀A디글리시딜에테르로부터 선택되는 폴리머, 이 폴리머의 경화제인 쇄상 지방족 폴리아민, 열전도성 입자, 예를 들면 산화마그네슘 입자, 및 상기 폴리머의 용매를 함유하는 폴리머 용액을 열전도성 입자 충전 파이버의 제조에 사용하는 것이 바람직하다. In the present invention, a polymer selected from polyglycidyl methacrylate and poly-bisphenol A diglycidyl ether, a linear aliphatic polyamine that is a curing agent of the polymer, thermally conductive particles, such as magnesium oxide particles, and a solvent of the polymer It is preferable to use a polymer solution containing a for the production of a thermally conductive particle-filled fiber.

<수지 조성물 및 그 제조 방법> <Resin composition and its manufacturing method>

본 발명의 수지 조성물은 본 발명의 열전도성 입자 충전 파이버와 수지(이하, 매트릭스 수지라고 함)를 함유한다. The resin composition of the present invention contains the thermally conductive particle-filled fiber and resin (hereinafter referred to as matrix resin) of the present invention.

수지 조성물에 있어서의 매트릭스 수지는 열전도성 입자 충전 파이버를 구성하는 수지와 동일해도 되고 상이해도 된다. 수지 조성물에 있어서의 매트릭스 수지로서는 에폭시 수지, 아크릴 수지, 아미드·이미드 수지, 페놀 수지, 실리콘 수지 등으로부터 선택되는 1종 이상의 수지를 들 수 있다. 수지는 에폭시기와 같은 경화성의 기를 가지는 것이어도 된다. The matrix resin in the resin composition may be the same as or different from the resin constituting the thermally conductive particle-filled fiber. Examples of the matrix resin in the resin composition include one or more resins selected from epoxy resins, acrylic resins, amide-imide resins, phenol resins, and silicone resins. The resin may have a curable group such as an epoxy group.

본 발명의 수지 조성물은 1개의 측면에 있어서 매트릭스 수지 중에 열전도성 입자(이하, 매트릭스 수지용 입자라고 함)를 함유하는 것이 바람직하다. 즉, 본 발명의 수지 조성물은 1개의 측면에 있어서 매트릭스 수지 중에 분산된 열전도성 입자를 포함하는 것이 바람직하다. 매트릭스 수지용 입자로서는 금속 산화물 입자, 금속 질화물 입자 및 탄소 입자로부터 선택되는 1종 이상을 들 수 있다. 매트릭스 수지용 입자로서는 산화알루미늄 입자, 산화마그네슘 입자 및 결정성 실리카 입자로부터 선택되는 1종 이상이 바람직하다. 매트릭스 수지용 입자는 열전도성 입자 충전 파이버 중의 열전도성 입자(이하, 파이버용 입자라고 함)와 동일한 종류의 것이어도 되고 상이한 종류의 것이어도 된다. 매트릭스 수지용 입자의 평균 입경이나 함유량은 첨가 목적에 따라 선정할 수 있다. In one aspect, the resin composition of the present invention preferably contains thermally conductive particles (hereinafter referred to as matrix resin particles) in the matrix resin. That is, it is preferable that the resin composition of the present invention contains thermally conductive particles dispersed in a matrix resin in one aspect. Examples of the particles for the matrix resin include one or more selected from metal oxide particles, metal nitride particles and carbon particles. The particles for the matrix resin are preferably one or more selected from aluminum oxide particles, magnesium oxide particles and crystalline silica particles. The particles for the matrix resin may be of the same kind as the thermally conductive particles (hereinafter referred to as particles for fibers) in the thermally conductive particle-filled fibers, or may be of different types. The average particle diameter and content of the particles for the matrix resin can be selected depending on the purpose of the addition.

본 발명의 수지 조성물은 매트릭스 수지 100질량부에 대하여, 본 발명의 열전도성 입자 충전 파이버를 바람직하게는 1~90질량부, 보다 바람직하게는 25~80질량부, 더욱 바람직하게는 30~75질량부 함유한다. The resin composition of the present invention is preferably from 1 to 90 parts by mass, more preferably from 25 to 80 parts by mass, even more preferably from 30 to 75 parts by mass, based on 100 parts by mass of the matrix resin. Contains.

일례로서, 열전도성을 향상시킨 수지 조성물의 경우, 이하와 같은 조성을 들 수 있다. As an example, in the case of a resin composition having improved thermal conductivity, the following composition may be mentioned.

매트릭스 수지 5~99질량부 Matrix resin 5 to 99 parts by mass

매트릭스 수지용 입자 0~95질량부 Matrix resin particles 0 to 95 parts by mass

본 발명의 열전도성 입자 충전 파이버 1~90질량부 Thermally conductive particle-filled fiber of the present invention 1 to 90 parts by mass

이 수지 조성물에서는 수지는 비스페놀A디글리시딜에테르를 구성 모노머로서 포함하는 수지가 바람직하다. 또 매트릭스 수지용 입자의 평균 입경은 0.1~10μm가 바람직하다. 또 매트릭스 수지용 입자를 사용하는 경우, 열전도성 입자 충전 파이버는 당해 열전도성 입자 충전 파이버 중의 파이버용 입자가 매트릭스 수지용 입자에 대하여 1~75질량%가 되도록 사용하는 것이 바람직하다. 즉, 파이버용 입자/매트릭스 수지용 입자의 질량비는 0.01~0.75가 바람직하다. In this resin composition, the resin is preferably a resin containing bisphenol A diglycidyl ether as a constituent monomer. Further, the average particle diameter of the particles for the matrix resin is preferably 0.1 to 10 μm. Moreover, when using the particle | grains for matrix resin, it is preferable to use the thermally conductive particle-filled fiber so that the particle | grains for fibers in the said thermally conductive particle-filled fiber become 1 to 75 mass% with respect to the particle | grains for matrix resin. That is, the mass ratio of the particles for fibers / particles for the matrix resin is preferably 0.01 to 0.75.

본 발명의 수지 조성물이 매트릭스 수지와 매트릭스 수지용 입자를 함유하는 경우, 본 발명의 수지 조성물은 매트릭스 수지와 매트릭스 수지용 입자의 합계 100질량부에 대하여, 본 발명의 열전도성 입자 충전 파이버를 바람직하게는 1~90질량부, 보다 바람직하게는 1~50질량부, 더욱 바람직하게는 1~25질량부 함유한다. When the resin composition of the present invention contains the matrix resin and the particles for the matrix resin, the resin composition of the present invention preferably contains the thermally conductive particle-filled fiber of the present invention with respect to 100 parts by mass of the matrix resin and the particles for the matrix resin. Contains 1 to 90 parts by mass, more preferably 1 to 50 parts by mass, still more preferably 1 to 25 parts by mass.

산화마그네슘 등의 입자는 수지의 열전도성을 향상시키는 첨가제로서 알려져 있는데, 본 발명에서는 열전도성 입자를 미세섬유 중에 함유시켜 열전도성 입자 충전 파이버로 하고, 당해 열전도성 입자 충전 파이버를 수지 조성물 중에 배합함으로써, 동일한 양의 열전도성 입자를 직접 수지 조성물 중에 배합한 경우에 비해, 현격히 열전도성이 향상된다. Particles such as magnesium oxide are known as additives for improving the thermal conductivity of the resin. In the present invention, the thermally conductive particles are contained in microfibers to form the thermally conductive particle-filled fibers, and the thermally-conductive particle-filled fibers are blended in the resin composition. , Compared to the case where the same amount of thermally conductive particles are directly blended in the resin composition, the thermal conductivity is significantly improved.

본 발명의 수지 조성물의 용도로서, 예를 들면 각종 전자 디바이스의 방열 재료, 열교환 재료 등을 들 수 있다. As the use of the resin composition of the present invention, for example, heat dissipation materials, heat exchange materials, etc. of various electronic devices are mentioned.

본 발명의 수지 조성물은 투과율이 바람직하게는 80%T 이상, 보다 바람직하게는 85%T 이상, 더욱 바람직하게는 90%T 이상이다. 이 투과율은 분광 광도계를 사용하여, 입사광 파장역 λ380~780nm에서 측정한 분광 투과율로서 얻을 수 있다. 분광 광도계는 예를 들면 레이시오 빔 분광 광도계(가부시키가이샤 히타치하이테크사이언스제:U-5100)를 사용할 수 있다. 본 발명의 본 발명의 열전도성 입자 충전 파이버를 사용함으로써, 투명성을 유지하면서, 열전도성이 향상된 수지 조성물을 얻을 수 있다. The resin composition of the present invention has a transmittance of preferably 80% T or more, more preferably 85% T or more, and even more preferably 90% T or more. This transmittance can be obtained as a spectral transmittance measured in the incident light wavelength range λ380 to 780nm using a spectrophotometer. As the spectrophotometer, for example, a Raysio beam spectrophotometer (manufactured by Hitachi Hi-Tech Science: U-5100) can be used. By using the thermally conductive particle-filled fiber of the present invention of the present invention, a resin composition with improved thermal conductivity can be obtained while maintaining transparency.

본 발명의 수지 조성물은 본 발명의 열전도성 입자 충전 파이버를 제조하는 공정(I)과, 상기 공정(I)에서 얻어진 열전도성 입자 충전 파이버를 수지에 배합하는 공정(II)을 가지는 수지 조성물의 제조 방법으로서, 공정(I)이 수지, 산화마그네슘 입자 및 용매를 함유하는 폴리머 용액을 사용하여 전계 방사법에 의해 방사하는 공정을 가지는, 수지 조성물의 제조 방법에 의해 제조할 수 있다. The resin composition of the present invention is the production of a resin composition having a step (I) of manufacturing the thermally conductive particle-filled fiber of the present invention and a step (II) of blending the thermally-conductive particle-filled fiber obtained in the step (I) with a resin. As a method, the process (I) can be produced by a method for producing a resin composition having a process of spinning by an electric field spinning method using a polymer solution containing a resin, magnesium oxide particles and a solvent.

공정(I)은 상기한 본 발명의 열전도성 입자 충전 파이버의 제조 방법과 동일하다. Step (I) is the same as the method for manufacturing the thermally conductive particle-filled fiber of the present invention described above.

공정(II)에서는 열전도성 입자 충전 파이버를 매트릭스 수지의 구성 모노머와 혼합하고, 이 구성 모노머를 중합시킴으로써, 열전도성 입자 충전 파이버를 매트릭스 수지에 배합할 수 있다. 또 공정(II)에서는 공정(I)에서 얻어진 열전도성 입자 충전 파이버와 매트릭스 수지를 혼련하여, 열전도성 입자 충전 파이버를 매트릭스 수지에 배합할 수 있다. In step (II), the thermally conductive particle-filled fiber can be blended with the matrix resin by mixing the thermally-conductive particle-filled fiber with a constituent monomer of the matrix resin and polymerizing the constituent monomer. In the step (II), the thermally conductive particle-filled fiber and the matrix resin obtained in the step (I) can be kneaded to mix the thermally-conductive particle-filled fiber with the matrix resin.

또 공정(II)에서는 매트릭스용 입자를 매트릭스 수지에 배합할 수 있다. Further, in the step (II), the particles for the matrix can be blended with the matrix resin.

공정(II)에서는 예를 들면 공정(I)에서 얻어진 열전도성 입자 충전 파이버, 및 매트릭스 수지의 구성 모노머, 임의로 매트릭스용 입자를 혼합하고, 이 구성 모노머를 중합시킴으로써, 열전도성 입자 충전 파이버와 임의로 매트릭스용 입자를 매트릭스 수지에 배합할 수 있다. In the step (II), for example, the thermally conductive particle-filled fiber obtained in the step (I), and the constituent monomers of the matrix resin, optionally matrix particles, are mixed, and the constituent monomers are polymerized, whereby the thermally-conductive particle-filled fibers and the optional matrix are polymerized. The molten particles can be blended with the matrix resin.

또한 공정(II) 후에, 공정(II)에서 얻어진 혼합물을 성형하는 공정(III)을 마련할 수 있다. 즉, 본 발명에 의해, 공정(I), 공정(II) 및 공정(III)을 가지는 수지 성형품의 제조 방법이 제공된다. 공정(II)에 있어서, 매트릭스 수지의 구성 모노머를 중합시키는 방법을 채용하는 경우는, 중합용의 혼합물을 형 프레임에 충전하거나 지지체에 도포하거나 한 후, 경화시켜, 수지 조성물의 제조와 성형을 동시에 행해도 된다. 예를 들면, 공정(I)에서 얻어진 열전도성 입자 충전 파이버, 매트릭스용 입자, 및 매트릭스 수지의 구성 모노머를 혼합하고, 얻어진 혼합물을 형 프레임에 충전하고, 이 형 프레임 중에서 상기 구성 모노머를 중합시킴으로써, 열전도성 입자 충전 파이버와 매트릭스용 입자를 함유하는 수지 조성물을 성형할 수 있다. 또 공정(II)에서 얻어진 상기 혼합물의 도막을 경화시켜 박막을 형성할 수 있다. In addition, after the step (II), a step (III) for molding the mixture obtained in the step (II) can be provided. That is, according to the present invention, a method for producing a resin molded article having steps (I), (II) and (III) is provided. In the step (II), when the method of polymerizing the constituent monomers of the matrix resin is employed, the mixture for polymerization is filled into a mold frame or applied to a support, and then cured to simultaneously prepare and mold the resin composition. You may do it. For example, by mixing the thermally conductive particle-filled fibers obtained in step (I), the particles for the matrix, and the constituent monomers of the matrix resin, filling the resulting mixture into a mold frame, and polymerizing the constituent monomers in the mold frame, A resin composition containing a thermally conductive particle-filled fiber and particles for a matrix can be molded. Further, the coating film of the mixture obtained in step (II) can be cured to form a thin film.

또 본 발명의 열전도성 입자 충전 파이버 또는 본 발명의 수지 조성물과, 다른 부재를 복합시킨 복합 물품을 얻을 수도 있다. 예를 들면, 본 발명의 열전도성 입자 충전 파이버와, 시트, 밀착성 필름 등을 복합시킨 물품을 들 수 있다. In addition, a composite article obtained by combining the thermally conductive particle-filled fiber of the present invention or the resin composition of the present invention with another member can also be obtained. For example, the article which combined the thermally conductive particle filling fiber of this invention with a sheet, an adhesive film, etc. is mentioned.

본 발명의 수지 조성물은 용도 등을 고려하여, 적당한 형상으로 성형하여 사용할 수 있다. 본 발명에 의해, 본 발명의 수지 조성물로 이루어지는 박막이 제공된다. 본 발명의 박막은 투과율이 바람직하게는 80%T 이상, 보다 바람직하게는 85%T 이상, 더욱 바람직하게는 90%T 이상이다. 이 투과율은 분광 광도계를 사용하여, 입사광 파장역 λ380~780nm에서 측정한 분광 투과율로서 얻을 수 있다. 분광 광도계는 예를 들면 레이시오 빔 분광 광도계(가부시키가이샤 히타치하이테크사이언스제:U-5100)를 사용할 수 있다. 본 발명의 박막은 두께 160μm, 입사광 파장 λ400nm의 조건에서, 상기 범위의 투과율을 가지는 것이 바람직하다. 본 발명의 본 발명의 열전도성 입자 충전 파이버를 사용함으로써, 투명성을 유지하면서, 열전도성이 향상된 박막을 얻을 수 있다. The resin composition of the present invention can be used by molding into an appropriate shape in consideration of uses and the like. According to the present invention, a thin film made of the resin composition of the present invention is provided. The thin film of the present invention preferably has a transmittance of 80% T or more, more preferably 85% T or more, and even more preferably 90% T or more. This transmittance can be obtained as a spectral transmittance measured in the incident light wavelength range λ380 to 780nm using a spectrophotometer. As the spectrophotometer, for example, a Raysio beam spectrophotometer (manufactured by Hitachi Hi-Tech Science: U-5100) can be used. It is preferable that the thin film of the present invention has a transmittance in the above range under a condition of 160 μm in thickness and an incident light wavelength of λ 400 nm. By using the thermally conductive particle-filled fiber of the present invention of the present invention, a thin film with improved thermal conductivity can be obtained while maintaining transparency.

본 발명에 의해, 본 발명의 열전도성 입자 충전 파이버와 매트릭스 수지용의 구성 모노머와 혼합하고, 이 혼합물 중의 상기 모노머를 경화시키는, 성형품의 제조 방법이 제공된다. According to the present invention, there is provided a method for producing a molded article that is mixed with the thermally conductive particle-filled fiber of the present invention and a constituent monomer for a matrix resin, and cures the monomer in the mixture.

또한 본 발명에 의해, 본 발명의 열전도성 입자 충전 파이버와 매트릭스 수지용의 구성 모노머와 혼합하고, 이 혼합물을 박막으로 한 후, 이 박막 중의 상기 모노머를 경화시키는, 경화 박막의 제조 방법이 제공된다. 상기 혼합물을 박막으로 하는 방법은 예를 들면 지지체에 상기 혼합물을 도포하는 방법을 들 수 있다. Further, according to the present invention, a method for producing a cured thin film is provided in which the thermally conductive particle-filled fiber of the present invention is mixed with a constituent monomer for a matrix resin, and after this mixture is made into a thin film, the monomer in the thin film is cured. . The method of forming the mixture into a thin film may include, for example, a method of applying the mixture to a support.

(실시예) (Example)

〔실시예 1 및 비교예 1〕 [Example 1 and Comparative Example 1]

<열전도성 입자 충전 파이버의 제조> <Production of thermally conductive particle-filled fibers>

(1) 폴리머 용액의 조제 (1) Preparation of polymer solution

산화마그네슘 입자(평균 입경 35nm)와 용매인 메틸에틸케톤을 하이플렉스호모지나이저를 사용하여 혼합하여 분산액을 조제했다. 분산액 중의 산화마그네슘 입자의 농도는 30질량%였다. The dispersion was prepared by mixing magnesium oxide particles (average particle diameter 35 nm) and methyl ethyl ketone as a solvent using a high-flex homogenizer. The concentration of the magnesium oxide particles in the dispersion was 30% by mass.

열전도성 입자 충전 파이버용의 수지로서, 플레이크상의 폴리글리시딜메타크릴레이트(PGMA)를 사용했다. 또 PGMA용의 경화제로서, 트리에틸렌테트라민(TETA)을 사용했다. As a resin for the thermally conductive particle-filled fiber, flake-like polyglycidyl methacrylate (PGMA) was used. In addition, triethylenetetramine (TETA) was used as a curing agent for PGMA.

상기 분산액에 PGMA를 용해시키고, TETA를 첨가하여, 전계 방사법에 사용하는 폴리머 용액을 조제했다. 폴리머 용액의 조성은 산화마그네슘 입자 21질량%, 메틸에틸케톤 52질량%, PGMA 25질량%, TETA 2질량%였다. PGMA was dissolved in the dispersion, and TETA was added to prepare a polymer solution used for the electrospinning method. The composition of the polymer solution was 21 mass% of magnesium oxide particles, 52 mass% of methyl ethyl ketone, 25 mass% of PGMA, and 2 mass% of TETA.

(2) 전계 방사법에 의한 열전도성 입자 충전 파이버의 제조 (2) Preparation of thermally conductive particle-filled fibers by electrospinning

상기 (1)에서 조제한 폴리머 용액을 사용하여, 전계 방사용 장치(NEU 나노 파이버 일렉트로스피닝 유닛, 가토테크 가부시키가이샤)로 전계 방사하고, 용매인 메틸에틸케톤을 휘발시켜, 평균 섬유 직경이 497nm인 열전도성 입자 충전 파이버를 제조했다. 전계 방사용 장치의 조건은 실린지 속도:0.05mm/분, 노즐 내경:1.20mm, 회전식 타겟(포집체):스테인레스제 드럼(직경 10cm), 회전식 타겟 속도:3.00m/분, 노즐로의 인가 전압:+15kV, 노즐 선단으로부터 회전식 타겟까지의 거리:10cm로 했다. Using the polymer solution prepared in the above (1), electrospinning with an electrospinning device (NEU nanofiber electrospinning unit, Gatotech Co., Ltd.) volatilizes the solvent methyl ethyl ketone to give an average fiber diameter of 497 nm. A thermally conductive particle-filled fiber was prepared. The conditions for the field emission device are syringe speed: 0.05 mm / min, nozzle inner diameter: 1.20 mm, rotary target (collector): stainless steel drum (diameter 10 cm), rotary target speed: 3.00 m / min, application to nozzle Voltage: +15 kV, distance from nozzle tip to rotary target: 10 cm.

이 열전도성 입자 충전 파이버에서는 산화마그네슘 입자의 적어도 일부가 섬유 내부에 존재하고 있었다. 전해 방사법 후의 열전도성 입자 충전 파이버의 조성은 산화마그네슘 입자 40질량%, PGMA의 가교 수지 60질량%(PGMA 55.7질량%와 TETA 4.3질량%에 상당)였다. In this thermally conductive particle-filled fiber, at least a part of the magnesium oxide particles were present inside the fiber. The composition of the thermally conductive particle-filled fiber after electrospinning was 40 mass% of magnesium oxide particles and 60 mass% of PGMA crosslinked resin (equivalent to 55.7 mass% of PGMA and 4.3 mass% of TETA).

<평가용 필름의 제조> <Production of evaluation film>

얻어진 열전도성 입자 충전 파이버와, 매트릭스 수지용 모노머인 비스페놀A디글리시딜에테르(BPADGE)와, 매트릭스용 입자인 산화알루미늄(평균 입경 3μm)을 초음파 호모지나이저로 혼합하여, 모노머 용액을 조제했다. 조제한 모노머 용액에 트리에틸렌테트라민을 첨가하여, 테프론(등록상표) 프레임에 흘려넣고, 120℃에서 3시간 가열함으로써 평가용 필름을 제조했다. The obtained thermally conductive particle-filled fiber, bisphenol A diglycidyl ether (BPADGE) as a monomer for the matrix resin, and aluminum oxide (average particle diameter 3 µm) as the matrix particle were mixed with an ultrasonic homogenizer to prepare a monomer solution. . Triethylenetetramine was added to the prepared monomer solution, poured into a Teflon (registered trademark) frame, and heated for 3 hours at 120 ° C to prepare an evaluation film.

표 1에서는 BPADGE와 산화알루미늄(Al2O3)의 합계 중, 산화알루미늄의 양이 50질량% 또는 90질량%인 조성을 채용했다. 또 열전도성 입자 충전 파이버는 산화마그네슘 입자의 함유량이 40질량%인 것을 채용했다. 그리고, BPADGE와 산화알루미늄의 합계 100질량부에 대하여, 열전도성 입자 충전 파이버 중의 산화마그네슘의 첨가량이 표 1과 같아지도록 열전도성 입자 충전 파이버의 첨가량을 조정하여 필름을 제조했다. 실시예의 필름에서는 매트릭스 수지 중에 열전도성 입자 충전 파이버와 산화마그네슘 입자가 분산되어 있었다. In Table 1, a composition in which the amount of aluminum oxide was 50% by mass or 90% by mass was employed among the sum of BPADGE and aluminum oxide (Al 2 O 3 ). In addition, the thermally conductive particle-filled fiber employed a content of magnesium oxide particles of 40% by mass. Then, with respect to 100 parts by mass of BPADGE and aluminum oxide, a film was prepared by adjusting the addition amount of the thermally conductive particle-filled fiber so that the addition amount of magnesium oxide in the thermally-conductive particle-filled fiber was shown in Table 1. In the film of the example, the thermally conductive particle-filled fiber and the magnesium oxide particles were dispersed in the matrix resin.

또 비교의 필름에서는 열전도성 입자 충전 파이버 대신에, 이 열전도성 입자 충전 파이버에 배합한 산화마그네슘 입자를 그대로 표 1의 첨가량으로 사용하여 모노머 용액을 조제하여 필름을 제조했다. In the comparative film, instead of the heat-conductive particle-filled fiber, a monomer solution was prepared using the magnesium oxide particles blended in the heat-conductive particle-filled fiber as it is in the amount shown in Table 1 to prepare a film.

또한 편의적으로 BPADGE와 산화알루미늄을 합쳐, 표에서는 매트릭스 수지라고 표기했다. In addition, BPADGE and aluminum oxide were conveniently combined and indicated as a matrix resin in the table.

<필름의 평가> <Evaluation of film>

얻어진 평가용 필름의 열확산율, 비열, 밀도를 측정하고, 열전도율(W/m·K)을 하기의 식에 따라 산출했다. The thermal diffusivity, specific heat and density of the obtained evaluation film were measured, and the thermal conductivity (W / m · K) was calculated according to the following equation.

열전도율=열확산율×비열×밀도 Thermal conductivity = thermal diffusivity × specific heat × density

열확산율은 열물성 측정 장치(베델허드슨켄큐쇼:서모웨이브애널라이저 TA3)를 사용하여 측정했다. 필름의 수직 방향에 대하여 중심과, 그로부터 좌측 앞쪽, 우측 앞쪽, 좌측 안쪽, 우측 안쪽으로 1mm씩 어긋나게 한 합계 5개소를 측정하여, 수직 평균을 산출했다. The thermal diffusivity was measured using a thermal property measuring device (Bedel Hudson Kenkyusho: Thermowave Analyzer TA3). The vertical average of the film was measured by measuring the total of 5 positions shifted by 1 mm from the center to the left front, right front, left inside, and right inside.

비열은 시차 주사 열량계(가부시키가이샤 시마즈세이사쿠쇼제:DSC-60)를 사용하여 측정했다. Specific heat was measured using a differential scanning calorimeter (manufactured by Shimadzu Corporation, DSC-60).

비중은 전자 비중계(알파미라지 가부시키가이샤제:EW-300SG)를 사용하여 측정했다. The specific gravity was measured using an electronic hydrometer (EW-300SG manufactured by Alpha Mirage Co., Ltd.).

결과를 표 1에 나타냈다. 또한 표 1에는 열전도성 입자 충전 파이버를 첨가하지 않고 제조한 필름의 열전도율도 나타냈다. Table 1 shows the results. In addition, Table 1 also shows the thermal conductivity of the film produced without adding the thermally conductive particle-filled fiber.

또 도 1에, 표 1의 실시예, 비교예에 대해서, 필름의 열전도율과 산화마그네슘 입자의 첨가량과의 관계를 그래프로 나타냈다. 시료는 BPADGE와 산화알루미늄(50질량%와 90질량%의 2종류)을 매트릭스 수지로 하고, 표 1에 나타내는 바와 같이, 참고예는 산화마그네슘(MgO) 입자가 무첨가인 필름이며, 비교예는 MgO 입자를 단순히 첨가한 것이며, 실시예는 MgO 입자 충전 파이버를 사용한 것이다. 1, the relationship between the thermal conductivity of the film and the addition amount of the magnesium oxide particles is shown graphically in Examples and Comparative Examples in Table 1. As a sample, BPADGE and aluminum oxide (50 mass% and 90 mass% of two types) were used as the matrix resin, and as shown in Table 1, a reference example is a film without magnesium oxide (MgO) particles added, and a comparative example is MgO. The particles are simply added, and the example uses MgO particle-filled fibers.

MgOMgO 매트릭스 수지Matrix resin 구분division 첨가 방법Method of addition 첨가량*1 Addition amount * 1 Al2O3 함유량(질량%)Al 2 O 3 content (% by mass) 5050 9090 열전도율
(W/m·K)
Thermal conductivity
(W / mK)
무첨가No additives 0.360.36 1.111.11 참고예Reference example
MgO 40질량% 함유 파이버Fiber containing 40% by mass of MgO 2질량부2 parts by mass 0.670.67 1.461.46 실시예 1-1Example 1-1 MgO 입자MgO particles 2질량부2 parts by mass 0.440.44 1.311.31 비교예 1-1Comparative Example 1-1 MgO 40질량% 함유 파이버Fiber containing 40% by mass of MgO 4질량부4 parts by mass 0.820.82 1.531.53 실시예 1-2Example 1-2 MgO 입자MgO particles 4질량부4 parts by mass 0.480.48 1.321.32 비교예 1-2Comparative Example 1-2

*1 첨가량 : 매트릭스 수지 100질량부(BPADGE와 산화알루미늄의 합계 100질량부)에 대한 산화마그네슘 입자의 첨가량(질량부) * 1 Addition amount: Addition amount of magnesium oxide particles (parts by mass) to 100 parts by mass of matrix resin (100 parts by mass of BPADGE and aluminum oxide)

표 1 및 도 1의 결과로부터, 동일한 양의 산화마그네슘 입자를 매트릭스 수지에 배합하는 경우, 본 발명의 열전도성 입자 충전 파이버의 형태로 배합함으로써, 열전도율이 높아지는 것을 알 수 있다. 표 1 및 도 1의 결과는 본 발명의 하나의 구체예이며, MgO 함유 파이버의 MgO 함유량을 증가시키면, 또 MgO 함유 파이버의 첨가량을 증가시키면, 보다 열전도율은 높아진다. 덧붙여서, 본 실시예에서는 MgO 입자를 파이버에 함유시키고 있지만, 일부를 파이버에 함유시키고, 일부를 매트릭스 수지에 첨가할 수도 있다. From the results of Table 1 and FIG. 1, it can be seen that when the same amount of magnesium oxide particles is blended into the matrix resin, the thermal conductivity is increased by blending in the form of the thermally conductive particle-filled fiber of the present invention. The results of Table 1 and FIG. 1 are one specific example of the present invention, and when the MgO content of the MgO-containing fiber is increased, and the addition amount of the MgO-containing fiber is increased, the thermal conductivity becomes higher. Incidentally, in the present embodiment, MgO particles are contained in the fiber, but some may be contained in the fiber and some may be added to the matrix resin.

〔실시예 2〕 [Example 2]

<평가용 투명 도막의 제조> <Production of a transparent coating film for evaluation>

상기한 열전도성 입자 충전 파이버의 제조와 마찬가지로, 단, 폴리머 용액의 조성을 변경하여, 산화마그네슘 입자 45질량%, PGMA의 가교 수지 55질량%의 열전도성 입자 충전 파이버(평균 섬유 직경 497nm)를 제조했다. 이 열전도성 입자 충전 파이버에서는 산화마그네슘 입자의 적어도 일부가 섬유 내부에 존재하고 있었다. Similar to the production of the above-mentioned thermally conductive particle-filled fiber, however, the composition of the polymer solution was changed to prepare 45% by mass of magnesium oxide particles and 55% by mass of PGMA cross-linked resin (average fiber diameter 497nm). . In this thermally conductive particle-filled fiber, at least a part of the magnesium oxide particles were present inside the fiber.

얻어진 열전도성 입자 충전 파이버와, 매트릭스 수지용 모노머인 폴리글리시딜메타크릴레이트(PGMA)를 메틸에틸케톤(MEK)에 60질량% 용해한 폴리머 용액을 막자사발 혼련하여, 파이버 첨가 폴리머 용액을 얻었다. 조제한 파이버 첨가 폴리머 용액을 애플리케이터로 커버 글라스 상에 도막하고, 100℃에서 1시간 가열함으로써 평가용 투명 도막을 얻었다. 그 때, 투명 도막에 있어서의 PGMA와 열전도성 입자 충전 파이버의 함유량이 표 2와 같이 되도록, 열전도성 입자 충전 파이버의 첨가량을 조정하여 투명 도막을 제조했다. 실시예의 투명 도막에서는 매트릭스 수지 중에 열전도성 입자 충전 파이버가 분산되어 있었다. A polymer solution obtained by dissolving 60 mass% of the obtained thermally conductive particle-filled fiber and polyglycidyl methacrylate (PGMA), which is a monomer for a matrix resin, in methyl ethyl ketone (MEK) was kneaded in a mortar, to obtain a fiber-added polymer solution. The prepared fiber-added polymer solution was coated on a cover glass with an applicator, and heated at 100 ° C for 1 hour to obtain a transparent coating film for evaluation. At that time, the amount of PGMA and the thermally conductive particle-filled fiber in the transparent coating film was adjusted to the amount shown in Table 2, and the amount of the thermally conductive particle-filled fiber was adjusted to prepare a transparent coating film. In the transparent coating film of the Example, the thermally conductive particle-filled fibers were dispersed in the matrix resin.

<투명 도막의 평가> <Evaluation of transparent coating film>

얻어진 평가용 투명 도막의 분광 투과율을 레이시오 빔 분광 광도계(가부시키가이샤 히타치하이테크사이언스제:U-5100, 입사광 파장 λ400nm)를 사용하여 측정했다. 또 얻어진 투명 도막의 열전도율을 실시예 1과 마찬가지로 산출했다. 이들의 결과를 표 2에 나타냈다. 또한 참고예는 열전도성 입자 충전 파이버를 첨가하지 않고 제조한 투명 도막이다. The spectral transmittance of the obtained transparent coating film for evaluation was measured using a Raysio beam spectrophotometer (manufactured by Hitachi Hi-Tech Science: U-5100, incident light wavelength λ400nm). Moreover, the thermal conductivity of the obtained transparent coating film was computed similarly to Example 1. Table 2 shows the results. In addition, a reference example is a transparent coating film prepared without adding a thermally conductive particle-filled fiber.

투명 도막Transparent film 평가evaluation 조성Furtherance 막두께
(μm)
Film thickness
(μm)
투과율
(%T)
Transmittance
(% T)
열전도율
(W/m·K)
Thermal conductivity
(W / mK)
매트릭스 수지
(PGMA)
(질량%)
Matrix resin
(PGMA)
(mass%)
MgO 45질량%
함유 파이버
(질량%)
MgO 45 mass%
Containing fiber
(mass%)
MgO 환산의
함유량
(질량%)
MgO equivalent
content
(mass%)
참고예Reference example 100100 00 00 120120 9595 0.140.14 실시예Example 2-12-1 9090 1010 4.54.5 106106 8888 0.330.33 2-22-2 8080 2020 99 159159 8080 0.460.46

표 2의 결과로부터, 본 발명의 열전도성 입자 충전 파이버를 사용하면, 투명 도막의 투과율을 유지하면서, 열전도율을 향상시킬 수 있는 것을 알 수 있다. 실시예 2-1, 2-2의 투명 도막의 막두께를 보다 작게 한 경우는 더욱 투과율이 커진다고 생각된다. From the results of Table 2, it can be seen that when the thermally conductive particle-filled fiber of the present invention is used, the thermal conductivity can be improved while maintaining the transmittance of the transparent coating film. When the film thickness of the transparent coating films of Examples 2-1 and 2-2 is made smaller, it is considered that the transmittance becomes larger.

Claims (16)

수지와 평균 입경이 10~1000nm인 열전도성 입자를 함유하고, 평균 섬유 직경이 50~10000nm인 열전도성 입자 충전 파이버. A heat-conductive particle-filled fiber containing a resin and heat-conductive particles having an average particle diameter of 10 to 1000 nm, and an average fiber diameter of 50 to 10000 nm. 제 1 항에 있어서, 수지가 에폭시 수지, 아크릴 수지, 아미드·이미드 수지, 페놀 수지, 실리콘 수지 등으로부터 선택되는 1종 이상의 수지인 것을 특징으로 하는 열전도성 입자 충전 파이버. The thermally conductive particle-filled fiber according to claim 1, wherein the resin is at least one resin selected from epoxy resins, acrylic resins, amide-imide resins, phenol resins, and silicone resins. 제 1 항 또는 제 2 항에 있어서, 열전도성 입자를 20~90질량% 함유하는 것을 특징으로 하는 열전도성 입자 충전 파이버. The thermally conductive particle-filled fiber according to claim 1 or 2, comprising 20 to 90% by mass of the thermally conductive particles. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 평균 섬유 길이가 100μm 이상인 것을 특징으로 하는 열전도성 입자 충전 파이버. The heat-conductive particle-filled fiber according to any one of claims 1 to 3, wherein the average fiber length is 100 µm or more. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 열전도성 입자가 금속 산화물 입자, 금속 질화물 입자 및 탄소 입자로부터 선택되는 1종 이상인 것을 특징으로 하는 열전도성 입자 충전 파이버. The thermally conductive particle-filled fiber according to any one of claims 1 to 4, wherein the thermally conductive particles are at least one selected from metal oxide particles, metal nitride particles, and carbon particles. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 열전도성 입자가 산화마그네슘 입자, 산화알루미늄 입자, 질화붕소 입자, 질화알루미늄 입자, 질화규소 입자, 나노다이아, 카본나노튜브 및 그래핀 입자로부터 선택되는 1종 이상인 것을 특징으로 하는 열전도성 입자 충전 파이버. The method according to any one of claims 1 to 5, wherein the thermally conductive particles are selected from magnesium oxide particles, aluminum oxide particles, boron nitride particles, aluminum nitride particles, silicon nitride particles, nanodia, carbon nanotubes and graphene particles. A thermally conductive particle-filled fiber, characterized in that it is one or more. 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 열전도성 입자 충전 파이버와, 수지(이하, 매트릭스 수지라고 함)를 함유하는 수지 조성물. The resin composition containing the thermally conductive particle-filled fiber according to any one of claims 1 to 6, and a resin (hereinafter referred to as matrix resin). 제 7 항에 있어서, 매트릭스 수지 중에 열전도성 입자를 함유하는 것을 특징으로 하는 수지 조성물. The resin composition according to claim 7, wherein the matrix resin contains thermally conductive particles. 제 7 항 또는 제 8 항에 있어서, 매트릭스 수지 중의 열전도성 입자가 금속 산화물 입자, 금속 질화물 입자 및 탄소 입자로부터 선택되는 1종 이상인 것을 특징으로 하는 수지 조성물. The resin composition according to claim 7 or 8, wherein the thermally conductive particles in the matrix resin are at least one selected from metal oxide particles, metal nitride particles and carbon particles. 제 7 항 내지 제 9 항 중 어느 한 항에 있어서, 매트릭스 수지 중의 열전도성 입자가 산화알루미늄 입자, 산화마그네슘 입자 및 결정성 실리카 입자로부터 선택되는 1종 이상인 것을 특징으로 하는 수지 조성물. The resin composition according to any one of claims 7 to 9, wherein the thermally conductive particles in the matrix resin are at least one selected from aluminum oxide particles, magnesium oxide particles and crystalline silica particles. 제 7 항 내지 제 10 항 중 어느 한 항에 있어서, 투과율이 80%T 이상인 것을 특징으로 하는 수지 조성물. The resin composition according to any one of claims 7 to 10, wherein the transmittance is 80% T or more. 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 열전도성 입자 충전 파이버의 제조 방법으로서, 수지, 열전도성 입자 및 용매를 함유하는 폴리머 용액을 사용하여 전계 방사법에 의해 방사하는 공정을 가지는 열전도성 입자 충전 파이버의 제조 방법. A method for producing the heat-conductive particle-filled fiber according to any one of claims 1 to 6, wherein the heat-conductive particle has a step of spinning by an electric field spinning method using a polymer solution containing a resin, a heat-conductive particle and a solvent. Method of manufacturing filled fiber. 제 1 항 내지 제 6 항 중 어느 한 항에 기재된 열전도성 입자 충전 파이버를 제조하는 공정(I)과, 상기 공정(I)에서 얻어진 열전도성 입자 충전 파이버를 수지에 배합하는 공정(II)을 가지는 수지 조성물의 제조 방법으로서, 공정(I)이 수지, 열전도성 입자 및 용매를 함유하는 폴리머 용액을 사용하여 전계 방사법에 의해 방사하는 공정을 가지는 수지 조성물의 제조 방법. The process (I) of manufacturing the thermally conductive particle-filled fiber according to any one of claims 1 to 6, and the process (II) of blending the thermally-conductive particle-filled fiber obtained in the step (I) into a resin. As a method for producing a resin composition, a method for producing a resin composition in which step (I) has a step of spinning by an electric field spinning method using a polymer solution containing a resin, thermally conductive particles and a solvent. 제 13 항에 있어서, 공정(II)에서, 열전도성 입자 충전 파이버를 수지의 구성 모노머와 혼합하고, 이 구성 모노머를 중합시킴으로써, 열전도성 입자 충전 파이버를 수지에 배합하는 것을 특징으로 하는 수지 조성물의 제조 방법. 14. The resin composition according to claim 13, wherein in the step (II), the thermally conductive particle-filled fibers are blended with the resin by mixing the thermally-conductive particle-filled fibers with the constituent monomers of the resin and polymerizing the constituent monomers. Manufacturing method. 제 7 항 내지 제 11 항 중 어느 한 항에 기재된 수지 조성물로 이루어지는 박막. A thin film made of the resin composition according to any one of claims 7 to 11. 제 15 항에 있어서, 투과율이 80%T 이상인 것을 특징으로 하는 박막. The thin film according to claim 15, wherein the transmittance is 80% T or more.
KR1020207001351A 2017-08-28 2018-05-10 Thermally conductive particle-filled fiber KR20200034711A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2017-163218 2017-08-28
JP2017163218 2017-08-28
PCT/JP2018/018068 WO2019044045A1 (en) 2017-08-28 2018-05-10 Thermally conductive particle-filled fiber

Publications (1)

Publication Number Publication Date
KR20200034711A true KR20200034711A (en) 2020-03-31

Family

ID=65527573

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207001351A KR20200034711A (en) 2017-08-28 2018-05-10 Thermally conductive particle-filled fiber

Country Status (7)

Country Link
US (1) US20200239759A1 (en)
EP (1) EP3650589A4 (en)
JP (1) JPWO2019044045A1 (en)
KR (1) KR20200034711A (en)
CN (1) CN111051583A (en)
TW (1) TW201912695A (en)
WO (1) WO2019044045A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7352406B2 (en) * 2019-08-06 2023-09-28 関東電化工業株式会社 thermally conductive particle filled fiber
KR20230004443A (en) * 2020-04-30 2023-01-06 다이요 홀딩스 가부시키가이샤 Resin composition and film using the same
JP7440650B2 (en) * 2020-09-14 2024-02-28 富士フイルム株式会社 Nonwoven fabric, nonwoven fabric manufacturing method, liquid filter
CN114808183A (en) * 2022-03-11 2022-07-29 纳电(深圳)材料科技有限公司 Electrostatic spinning ink, high-thermal-conductivity fiber membrane and preparation method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4300006B2 (en) 2001-09-06 2009-07-22 日本バイリーン株式会社 Production method and production apparatus for solid particle carrying fiber and solid particle carrying fiber sheet
JP4612476B2 (en) 2005-05-31 2011-01-12 帝人株式会社 Method for producing zirconia fiber
JP2007154007A (en) * 2005-12-02 2007-06-21 Seiko Epson Corp Method for producing filler, filler and resin molded product
JP2008075010A (en) * 2006-09-22 2008-04-03 Mitsubishi Chemicals Corp Resin composite
ATE542932T1 (en) 2007-04-11 2012-02-15 Univ Singapore FIBERS FOR DECONTAMINATION OF CHEMICAL AND BIOLOGICAL MATERIALS
US20100028674A1 (en) 2008-07-31 2010-02-04 Fredrick O Ochanda Nanofibers And Methods For Making The Same
JP5967002B2 (en) * 2013-04-08 2016-08-10 東洋インキScホールディングス株式会社 Easily deformable aggregate, heat conductive resin composition, heat conductive member, and heat conductive adhesive sheet
JP2014118429A (en) * 2012-12-13 2014-06-30 Sumitomo Bakelite Co Ltd Resin sheet and film
JP2014162921A (en) * 2013-02-28 2014-09-08 Sumitomo Bakelite Co Ltd Resin sheet and film
JP6336262B2 (en) * 2013-10-29 2018-06-06 日本バイリーン株式会社 Filler-dispersed organic resin composite
JP6164130B2 (en) * 2014-03-25 2017-07-19 トヨタ自動車株式会社 Manufacturing method of heat conduction material
JP2016011474A (en) 2014-06-27 2016-01-21 日本バイリーン株式会社 Non-woven fabric for cleaning of mouth such as tooth surface
US10753022B2 (en) * 2014-07-25 2020-08-25 Illinois Tool Works, Inc. Particle-filled fiber and articles formed from the same
JP6470539B2 (en) 2014-10-10 2019-02-13 株式会社Kri Heat dissipation material

Also Published As

Publication number Publication date
TW201912695A (en) 2019-04-01
JPWO2019044045A1 (en) 2020-11-05
WO2019044045A1 (en) 2019-03-07
EP3650589A4 (en) 2021-04-21
US20200239759A1 (en) 2020-07-30
CN111051583A (en) 2020-04-21
EP3650589A1 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
KR20200034711A (en) Thermally conductive particle-filled fiber
Odom et al. Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites
Morimune et al. Poly (vinyl alcohol) nanocomposites with nanodiamond
CN103756252B (en) A kind of thermosetting resin base heat-conductive composite material and its preparation method and application
Gouzman et al. 3D printing of bismaleimides: from new ink formulation to printed thermosetting polymer objects
JP5168445B2 (en) CONNECTED BODY AND METHOD FOR PRODUCING THE SAME
CN103756298B (en) A kind of thermoplastic polymer based thermal conductive composite and its preparation method and application
JP6576345B2 (en) Submicron silver particle ink compositions, processes and applications
US8815144B2 (en) Carbon nanotube/polymer composites resistant to ionizing radiation
US20050245667A1 (en) Polymer/carbon nanotube composites, methods of use and methods of synthesis thereof
CN109266187A (en) A kind of heat radiation coating and preparation method containing isocyanate-modified graphene
KR101742863B1 (en) Coating solutions for thermally conductive composite with dispersion stability, preparation method thereof, and thermal conductive and heat dissipative coating layer using the same
CN109943075A (en) A kind of preparation method of the graphene thermally conductive silicone rubber composite material of magnetic aligning
CN107033294A (en) It is a kind of for conductive UV-cured resin composite of laser 3D printing and preparation method thereof
CN102190900A (en) Thermal conductive sheet
JP2014089818A (en) Heat curable conductive paste
CN105255154A (en) Method for preparing thermosetting-resin-based heat conduction composite
KR101898234B1 (en) Resin composition, article prepared by using the same and method of preparing the same
EP3176224B1 (en) Three-dimensional display grating, and display device
CN101528816A (en) Composite carbon fiber sheet
KR101433575B1 (en) Grphene encapsulated microparticle and its use in thermal conductive adhesive
JP7352406B2 (en) thermally conductive particle filled fiber
KR101778011B1 (en) Method for manufacturing exothermic ink composition and exothermic ink composition manufactured by using the same and method for manufacturing exothermic apparatus using exothermic ink composition
JP2005068241A (en) Transparent plastic composite sheet and display element using the same
JP2012007024A (en) Light absorption resin composition for laser welding, light absorption resin molded article, and method for producing light absorption resin molded article

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E601 Decision to refuse application