[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6164130B2 - Manufacturing method of heat conduction material - Google Patents

Manufacturing method of heat conduction material Download PDF

Info

Publication number
JP6164130B2
JP6164130B2 JP2014061055A JP2014061055A JP6164130B2 JP 6164130 B2 JP6164130 B2 JP 6164130B2 JP 2014061055 A JP2014061055 A JP 2014061055A JP 2014061055 A JP2014061055 A JP 2014061055A JP 6164130 B2 JP6164130 B2 JP 6164130B2
Authority
JP
Japan
Prior art keywords
filler
heat conductive
thermally conductive
particle size
maximum particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014061055A
Other languages
Japanese (ja)
Other versions
JP2015183100A (en
Inventor
浩二 中西
浩二 中西
浩昭 杉田
浩昭 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014061055A priority Critical patent/JP6164130B2/en
Publication of JP2015183100A publication Critical patent/JP2015183100A/en
Application granted granted Critical
Publication of JP6164130B2 publication Critical patent/JP6164130B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、マトリクス樹脂に複合フィラーを配合した熱伝導材及びその製造方法に関する。   The present invention relates to a heat conductive material in which a composite filler is blended in a matrix resin and a method for producing the same.

電子部品では、発熱した部位やその周辺部位を保護するため、熱伝導性を高めた放熱材料にて封止したり、それらを放熱材料と接触させて冷却媒体へ伝熱させている。   In an electronic component, in order to protect the part which generate | occur | produced heat | fever and its peripheral part, it seals with the thermal radiation material which improved thermal conductivity, or makes them contact with a thermal radiation material and is transferred to a cooling medium.

放熱材料としては、マトリクス樹脂に熱伝導性が高いフィラーを配合した熱伝導材が知られている。しかし、熱伝導材の熱伝導性を高めるためには、フィラーを多量にマトリクス樹脂に配合することが必要である。また、配合されるフィラーが球形又はほぼ均一な形状である場合、フィラー同士の接触点を増加させて熱伝導パスを形成するために、フィラーの配合量を増加させなければならない。しかし、フィラーを多量にマトリクス樹脂に配合すると熱伝導材の流動性が大きく低下してしまう。そのため、フィラーを多量にマトリクス樹脂に配合した熱伝導材は、プリプレグなどの流動性を持たない材料に用いることはできるが、形状自由度の大きなトランスファー成形や射出成形などの注型用途に用いることは困難であった。   As a heat radiating material, a heat conductive material in which a filler having high heat conductivity is mixed with a matrix resin is known. However, in order to increase the thermal conductivity of the thermal conductive material, it is necessary to add a large amount of filler to the matrix resin. In addition, when the filler to be blended has a spherical shape or a substantially uniform shape, the blending amount of the filler must be increased in order to increase the contact point between the fillers to form a heat conduction path. However, if a large amount of filler is added to the matrix resin, the fluidity of the heat conducting material is greatly reduced. For this reason, a heat conductive material with a large amount of filler mixed in a matrix resin can be used for non-fluid materials such as prepregs, but it should be used for casting applications such as transfer molding and injection molding with a large degree of freedom in shape. Was difficult.

マトリクス樹脂に熱伝導性が高いフィラーを配合した材料として、特許文献1には、ポリ−p−フェニレンベンゾビスオキサゾール繊維と、該ポリ−p−フェニレンベンゾビスオキサゾール繊維の表面の一部又は全部に結着された窒化ホウ素粉末とからなる熱伝導繊維であって、前記窒化ホウ素粉末の結着が熱硬化性樹脂によりなされることを特徴とする熱伝導繊維が記載されている。   As a material in which a filler having high thermal conductivity is blended in a matrix resin, Patent Document 1 discloses poly-p-phenylene benzobisoxazole fibers and a part or all of the surfaces of the poly-p-phenylene benzobisoxazole fibers. There is described a heat conductive fiber comprising a bonded boron nitride powder, wherein the boron nitride powder is bound by a thermosetting resin.

また、特許文献2には、繊維径0.01〜0.5μmの気相法炭素繊維の表面の一部又は全部が電気絶縁体で被覆された電気絶縁体被覆気相法炭素繊維が記載されている。   Patent Document 2 describes an electrical insulator-coated vapor grown carbon fiber in which part or all of the surface of a vapor grown carbon fiber having a fiber diameter of 0.01 to 0.5 μm is coated with an electrical insulator. ing.

しかし、特許文献1の方法では、280℃の高温に加熱した表面処理剤をディッピングにより繊維に付与し、これを冷却し、得られた繊維に窒化ホウ素を含有するコーティング剤を塗布し、370℃で焼成した後、所定の長さに繊維を切断することにより、熱伝導材に配合するための熱伝導繊維を得ており、その方法は煩雑である。   However, in the method of Patent Document 1, a surface treatment agent heated to a high temperature of 280 ° C. is applied to the fiber by dipping, this is cooled, a coating agent containing boron nitride is applied to the obtained fiber, and 370 ° C. After firing, the fiber is cut into a predetermined length to obtain a heat conducting fiber for blending with the heat conducting material, and the method is complicated.

また、特許文献2では、炭素繊維を窒化ホウ素で被覆するために2000℃以上での熱処理が必要であり、熱伝導材を製造するために多量のエネルギーが必要である。   Moreover, in patent document 2, in order to coat | cover carbon fiber with boron nitride, the heat processing above 2000 degreeC is required, and in order to manufacture a heat conductive material, a lot of energy is required.

特開2012−162817号公報JP 2012-162817 A 特開2002−235279号公報JP 2002-235279 A

前記のように、従来のマトリクス樹脂にフィラーを配合した熱伝導材では、熱伝導材の熱伝導性を高くするためには、フィラーの含有量を増加させる必要があるが、これにより、熱伝導材の流動性が大きく低下してしまう。また、従来の熱伝導材を製造するための方法の中には、煩雑な工程を経たり、多量のエネルギーが必要となる方法もある。それ故、本発明は、熱電導性及び流動性の向上した熱伝導材を、より少ないフィラー含有量で、かつ簡便な方法で提供することを目的とする。   As described above, in the heat conduction material in which the filler is mixed with the conventional matrix resin, it is necessary to increase the filler content in order to increase the heat conductivity of the heat conduction material. The fluidity of the material is greatly reduced. In addition, among conventional methods for producing a heat conductive material, there are methods that require complicated steps and require a large amount of energy. Therefore, an object of the present invention is to provide a heat conductive material having improved thermal conductivity and fluidity with a smaller filler content and a simple method.

本発明者らは、前記課題を解決するための手段を種々検討した結果、熱伝導性繊維状フィラーと、特定の最大粒径の熱伝導性粒子と、表面処理剤とを回転混合することにより得られる複合フィラーを用いることにより、より少ないフィラー含有量、かつ簡便な方法で熱伝導材の熱電導性及び流動性を向上させることができることを見出し、本発明を完成した。   As a result of various studies on means for solving the above-mentioned problems, the present inventors have carried out rotational mixing of a thermally conductive fibrous filler, a thermally conductive particle having a specific maximum particle diameter, and a surface treatment agent. It has been found that by using the obtained composite filler, the thermal conductivity and fluidity of the heat conductive material can be improved by a simpler method with a smaller filler content, and the present invention has been completed.

すなわち、本発明の要旨は以下の通りである。
(1)熱伝導性繊維状フィラーと、前記熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の熱伝導性粒子と、表面処理剤とを回転混合して複合フィラーを得る工程と、前記複合フィラーとマトリクス樹脂とを混合して熱伝導材を得る工程とを含む熱伝導材の製造方法。
(2)熱伝導性粒子の最大粒径が熱伝導性繊維状フィラーの最大粒径の50%以下である(1)の製造方法。
(3)熱伝導性繊維状フィラーが炭素繊維であり、熱伝導性粒子が窒化ホウ素であり、表面処理剤がアクリル樹脂である(1)又は(2)の製造方法。
(4)(1)〜(3)のいずれかの製造方法で得られた熱伝導材。
That is, the gist of the present invention is as follows.
(1) a step of rotating and mixing a thermally conductive fibrous filler, a thermally conductive particle having a maximum particle size smaller than the maximum particle size of the thermally conductive fibrous filler, and a surface treatment agent to obtain a composite filler; And a step of mixing the composite filler and the matrix resin to obtain a heat conductive material.
(2) The production method of (1), wherein the maximum particle size of the thermally conductive particles is 50% or less of the maximum particle size of the thermally conductive fibrous filler.
(3) The production method of (1) or (2), wherein the thermally conductive fibrous filler is carbon fiber, the thermally conductive particles are boron nitride, and the surface treatment agent is an acrylic resin.
(4) The heat conductive material obtained by the manufacturing method in any one of (1)-(3).

本発明により、より少ないフィラー含有量で熱電導率及び流動性の向上した熱伝導材を提供することが可能となる。   According to the present invention, it is possible to provide a heat conductive material with improved thermal conductivity and fluidity with a smaller filler content.

以下、本発明の好ましい実施形態について詳細に説明する。
本発明は、マトリクス樹脂に複合フィラーを配合した熱伝導材及びその製造方法に関する。本発明の熱伝導材は、熱伝導性繊維状フィラーと、熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の熱伝導性粒子と、表面処理剤とを回転混合して得られる複合フィラーがマトリクス樹脂に配合されたものである。
Hereinafter, preferred embodiments of the present invention will be described in detail.
The present invention relates to a heat conductive material in which a composite filler is blended in a matrix resin and a method for producing the same. The heat conductive material of the present invention is obtained by rotating and mixing a heat conductive fibrous filler, a heat conductive particle having a maximum particle size smaller than the maximum particle size of the heat conductive fibrous filler, and a surface treatment agent. A composite filler is blended in a matrix resin.

I.材料
1.熱伝導性繊維状フィラー
本発明で用いられる熱伝導性繊維状フィラーは、繊維状であり、かつその最大粒径(繊維長)が下記の熱伝導性粒子の最大粒径よりも大きいものであれば特に限定されずに用いることができる。ここで、本発明の熱伝導性繊維状フィラーは、複合化設備内にて粉砕された後も最大粒径が熱伝導性粒子の最大粒径よりも大きいものを選択する。本発明において、最大粒径とは粒子の長径の最大となるところをいう。
I. Material 1. Thermally conductive fibrous filler The thermally conductive fibrous filler used in the present invention is fibrous and has a maximum particle size (fiber length) larger than the maximum particle size of the following thermally conductive particles. If it does not specifically limit, it can be used. Here, the thermally conductive fibrous filler of the present invention is selected so that the maximum particle size is larger than the maximum particle size of the thermally conductive particles even after being pulverized in the composite facility. In the present invention, the maximum particle diameter means the maximum of the major axis of the particles.

本発明で用いられる熱伝導性繊維状フィラーの最大粒径は、例えば、1mm〜20mmであり、得られる熱伝導材の機械的な特性の観点から、好ましくは2mm〜10mmである。   The maximum particle size of the thermally conductive fibrous filler used in the present invention is, for example, 1 mm to 20 mm, and preferably 2 mm to 10 mm from the viewpoint of mechanical properties of the obtained thermal conductive material.

本発明で用いられる熱伝導性繊維状フィラーは、好ましくは、アスペクト比(最大粒径に対する繊維径の比)が2以上である。   The thermally conductive fibrous filler used in the present invention preferably has an aspect ratio (ratio of fiber diameter to maximum particle diameter) of 2 or more.

本発明で用いられる熱伝導性繊維状フィラーとしては、特に限定されずに、例えば、ガラス繊維、炭素繊維、PBO繊維、アルミナ繊維、針状ワラストなどを挙げることができ、好ましくはガラス繊維、炭素繊維、PBO繊維であり、炭素繊維が特に好ましい。   The thermally conductive fibrous filler used in the present invention is not particularly limited, and examples thereof include glass fiber, carbon fiber, PBO fiber, alumina fiber, and needle-shaped wallast, preferably glass fiber and carbon. Fiber and PBO fiber, and carbon fiber is particularly preferable.

炭素繊維としては、例えば、ポリアクリロニトリル系、ピッチ系、レーヨン系、ポリビニルアルコール系等の炭素繊維を挙げることができるが、好ましくはピッチ系炭素繊維が用いられる。炭素繊維としては、市販品としては、例えば、帝人(株)製Raheama(ラヒーマ)(登録商標)、東レ(株)製トレカ(登録商標)、東邦テナックス(株)製テナックス(登録商標)、三菱レイヨン(株)製パイロフィル(登録商標)、三菱樹脂(株)製ダイアリード(登録商標)、日本グラファイトファイバー(株)製GRANOC(登録商標)等を挙げることができる。   Examples of the carbon fiber include polyacrylonitrile-based, pitch-based, rayon-based, and polyvinyl alcohol-based carbon fibers, and pitch-based carbon fibers are preferably used. As carbon fiber, commercially available products include, for example, Raheama (registered trademark) manufactured by Teijin Ltd., Torayca (registered trademark) manufactured by Toray Industries, Inc., Tenax (registered trademark) manufactured by Toho Tenax Co., Ltd., and Mitsubishi. Examples include Pyrofil (registered trademark) manufactured by Rayon Co., Ltd., DIALEAD (registered trademark) manufactured by Mitsubishi Plastics Co., Ltd., and GRANOC (registered trademark) manufactured by Nippon Graphite Fiber Co., Ltd.

本発明において、熱伝導性繊維状フィラーとして炭素繊維を用いる場合、その表面が表面処理剤で処理された炭素繊維を用いることもできる。   In this invention, when using carbon fiber as a heat conductive fibrous filler, the carbon fiber by which the surface was processed with the surface treating agent can also be used.

本発明において、熱伝導性繊維状フィラーは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。   In this invention, a heat conductive fibrous filler may be used independently and may be used in combination of 2 or more type.

2.熱伝導性粒子
本発明で用いられる熱伝導性粒子は、その最大粒径が熱伝導性繊維状フィラーの最大粒径よりも小さいものであれば特に限定されずに用いることができる。
2. Thermally Conductive Particles The thermally conductive particles used in the present invention can be used without particular limitation as long as the maximum particle size is smaller than the maximum particle size of the thermally conductive fibrous filler.

熱伝導性粒子の最大粒径は、好ましくは、熱伝導性繊維状フィラーの最大粒径に対して、50%以下であり、さらに好ましくは30%以下であり、最も好ましくは10%以下である。熱伝導性粒子の最大粒径がこの範囲であると、少量のフィラーで効率的な熱伝導パスを形成することが可能な異形状の複合フィラーを得ることができる。   The maximum particle size of the thermally conductive particles is preferably 50% or less, more preferably 30% or less, and most preferably 10% or less with respect to the maximum particle size of the thermally conductive fibrous filler. . When the maximum particle size of the heat conductive particles is within this range, an irregular shaped composite filler capable of forming an efficient heat conduction path with a small amount of filler can be obtained.

熱伝導性粒子の最大粒径は、例えば0.05μm〜300μm、繊維状フィラーへ結着させる観点から、好ましくは0.1μm〜40μmである。熱伝導性粒子の最大粒径はレーザ回折/散乱式の粒度計などによって測定することができる。   The maximum particle size of the thermally conductive particles is, for example, 0.05 μm to 300 μm, and preferably 0.1 μm to 40 μm from the viewpoint of binding to the fibrous filler. The maximum particle size of the thermally conductive particles can be measured by a laser diffraction / scattering particle size meter.

熱伝導性粒子の形状は、例えば、平板状、針状、球状、繊維状又は鱗片状等、様々な形態をとることが可能である。
本発明で用いられる熱伝導性粒子の熱伝導率は、例えば、1〜200W/m・Kである。
The shape of the heat conductive particles can take various forms such as a flat plate shape, a needle shape, a spherical shape, a fiber shape, and a scale shape.
The thermal conductivity of the thermally conductive particles used in the present invention is, for example, 1 to 200 W / m · K.

本発明で用いられる熱伝導性粒子としては、特に限定されずに、例えば、窒化ホウ素、アルミナ、シリカ、水酸化アルミニウム、酸化マグネシウム、炭酸カルシウム、タルク及びマイカを挙げることができ、得られる熱伝導材の熱伝導性の観点から、好ましくは窒化ホウ素、アルミナ、酸化マグネシウムであり、特に好ましくは窒化ホウ素である。熱伝導性粒子は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。熱伝導性粒子としては、好ましくは、絶縁性を有するものを選択するが、特性に限定されるものではない。   The heat conductive particles used in the present invention are not particularly limited, and examples thereof include boron nitride, alumina, silica, aluminum hydroxide, magnesium oxide, calcium carbonate, talc, and mica, and the obtained heat conduction. From the viewpoint of thermal conductivity of the material, boron nitride, alumina, and magnesium oxide are preferable, and boron nitride is particularly preferable. Thermally conductive particles may be used alone or in combination of two or more. As the heat conductive particles, those having insulating properties are preferably selected, but are not limited to the characteristics.

3.表面処理剤
本発明で用いられる表面処理剤は、前記の熱伝導性繊維状フィラーと熱伝導性粒子とを結着するために用いられる。本発明で用いられる表面処理剤としては、特に限定されずに、例えばシランカップリング剤、アクリル樹脂、ポリウレタン、ポリオレフィン、ポリエステル、エポキシ樹脂、澱粉類(例えば、デキストリン、アミロース)、カルボキシセルロース、ポリビニルアルコール、植物油等を挙げることができるが、熱伝導性繊維状フィラーと熱伝導性粒子との結着性の観点から、好ましくはアクリル樹脂である。
3. Surface Treatment Agent The surface treatment agent used in the present invention is used for binding the thermally conductive fibrous filler and the thermally conductive particles. The surface treatment agent used in the present invention is not particularly limited, and examples thereof include silane coupling agents, acrylic resins, polyurethanes, polyolefins, polyesters, epoxy resins, starches (for example, dextrin and amylose), carboxycellulose, and polyvinyl alcohol. , Vegetable oils and the like can be mentioned. From the viewpoint of the binding property between the thermally conductive fibrous filler and the thermally conductive particles, an acrylic resin is preferable.

4.マトリクス樹脂
本発明において、マトリクス樹脂は、熱伝導性繊維状フィラーと、熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の熱伝導性粒子と、表面処理剤とを回転混合して得られる複合フィラーを分散させるために用いる。本発明で用いられるマトリクス樹脂としては、絶縁性を有するものであれば特に限定されずに熱硬化性樹脂及び熱可塑性樹脂から選択することができる。本発明で用いられるマトリクス樹脂としては、例えば、エポキシ、ウレタン、シリコーンなどの熱硬化性材料、及びポリフェニレンサルファイド、ポリアミド、ポリエステルなどの熱可塑性樹脂を挙げることができる。
4). Matrix resin In the present invention, the matrix resin is obtained by rotating and mixing a thermally conductive fibrous filler, a thermally conductive particle having a maximum particle size smaller than the maximum particle size of the thermally conductive fibrous filler, and a surface treatment agent. Used to disperse the resulting composite filler. As matrix resin used by this invention, if it has insulation, it will not specifically limit, It can select from a thermosetting resin and a thermoplastic resin. Examples of the matrix resin used in the present invention include thermosetting materials such as epoxy, urethane, and silicone, and thermoplastic resins such as polyphenylene sulfide, polyamide, and polyester.

II.熱伝導材の製造方法
本発明の熱伝導材は、(1)熱伝導性繊維状フィラーと、熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の熱伝導性粒子と、表面処理剤とを回転混合して複合フィラーを得る工程と、(2)複合フィラーとマトリクス樹脂とを混合して熱伝導材を得る工程とを含む方法によって得られる。本発明の方法によると、異形状の複合フィラーを得ることができ、この複合フィラーは熱伝導材中でランダム配向した熱伝導パスを形成するため、厚さ方向への確実な放熱経路が少量のフィラーで確保できるようになり、熱伝導性が向上し、かつ良好な流動性を有する熱伝導材を得ることができる。
II. Manufacturing method of heat conductive material The heat conductive material of the present invention includes (1) a heat conductive fibrous filler, a heat conductive particle having a maximum particle size smaller than the maximum particle size of the heat conductive fibrous filler, and a surface treatment. It is obtained by a method including a step of rotating and mixing an agent to obtain a composite filler, and (2) a step of mixing a composite filler and a matrix resin to obtain a heat conductive material. According to the method of the present invention, a composite filler having an irregular shape can be obtained. Since this composite filler forms a heat conduction path randomly oriented in the heat conduction material, a reliable heat dissipation path in the thickness direction is small. It becomes possible to secure with a filler, and it is possible to obtain a heat conductive material having improved heat conductivity and good fluidity.

1.工程(1)について
本発明の熱伝導材の製造方法の工程(1)において、熱伝導性繊維状フィラーと、熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の熱伝導性粒子と、表面処理剤とを回転混合して複合フィラーを得る。本発明の製造方法は、熱伝導性繊維状フィラーと、前記の熱伝導性粒子と、表面処理剤とから簡易な方法で複合フィラーを得ることができるため、簡便な方法で熱伝導材を提供することが可能である。
1. Step (1) In step (1) of the method for producing a heat conductive material of the present invention, the heat conductive fibrous filler and the heat conductive particles having a maximum particle size smaller than the maximum particle size of the heat conductive fibrous filler. And a surface treatment agent are mixed by rotation to obtain a composite filler. The production method of the present invention can provide a composite filler from a heat conductive fibrous filler, the above heat conductive particles, and a surface treatment agent by a simple method, and thus provides a heat conductive material by a simple method. Is possible.

本発明の工程(1)において、熱伝導性繊維状フィラーと、前記の最大粒径の熱伝導性粒子と、表面処理剤とは、好ましくは、事前に混合して回転混合を行う。熱伝導性繊維状フィラーと表面処理剤は、熱伝導性繊維状フィラーの表面を表面処理剤で前もって処理して用いてもよい。   In the step (1) of the present invention, the thermally conductive fibrous filler, the thermally conductive particles having the maximum particle diameter, and the surface treatment agent are preferably mixed in advance and rotationally mixed. The heat conductive fibrous filler and the surface treatment agent may be used by previously treating the surface of the heat conductive fibrous filler with the surface treatment agent.

複合フィラー中の熱伝導性繊維状フィラーの含有量は、例えば1重量%〜79.9重量%であり、得られる熱伝導材の機械的特性の観点から、好ましくは5重量%〜69.5重量%である。   The content of the heat conductive fibrous filler in the composite filler is, for example, 1% by weight to 79.9% by weight, and preferably 5% by weight to 69.5% from the viewpoint of the mechanical properties of the obtained heat conductive material. % By weight.

複合フィラー中の熱伝導性粒子の含有量は、例えば20重量%〜98.9重量%であり、得られる熱伝導材の熱伝導率の観点から、好ましくは30重量%〜94.5重量%である。   The content of the heat conductive particles in the composite filler is, for example, 20% by weight to 98.9% by weight, and preferably 30% by weight to 94.5% by weight from the viewpoint of the thermal conductivity of the obtained heat conductive material. It is.

複合フィラー中の表面処理剤の含有量は、例えば0.1重量%〜20重量%であり、熱伝導性繊維状フィラーと熱伝導性粒子との結着性の観点から、好ましくは0.5重量%〜10重量%である。   The content of the surface treatment agent in the composite filler is, for example, 0.1% by weight to 20% by weight, and preferably 0.5 from the viewpoint of the binding property between the thermally conductive fibrous filler and the thermally conductive particles. % By weight to 10% by weight.

本発明の工程(1)において、回転混合に用いる混合機としては、例えば、連続又は回分式混合機、気流型混合機及び回転攪拌型混合機を用いることができ、特に回転攪拌型混合機を用いることが好ましい。これら混合機としては、例えば、コニカルブレンダー、ナウターミキサー、ニーダー、V型混合機、流動式混合機、タービュラーザー、レィデゲミキサー、スクリューミキサー、リボンブレンダー、モルタルミキサーなどの機械的混合機を挙げることができる。本発明において、回転混合は、通常、10〜10000rpm、好ましくは1000〜9000rpm、さらに好ましくは2000〜8000rpm、特に好ましくは4000〜6000rpmで行われる。この範囲の回転数で回転混合することにより、少量のフィラーで効率的な熱伝導パスの形成が可能になる異形状の複合フィラーを得ることができ、この複合フィラーを用いて得られる熱伝導材の熱伝導性を向上させることができ、同時に、熱伝導材の流動性も確保することができる。本発明の工程(1)において、回転混合は、例えば10秒〜900秒、好ましくは30秒〜300秒行う。本発明の工程(1)において、回転混合は、例えば0〜85℃、好ましくは室温(約25℃)で行うことができる。   In the step (1) of the present invention, as the mixer used for the rotary mixing, for example, a continuous or batch-type mixer, an airflow type mixer, and a rotary stirring type mixer can be used. It is preferable to use it. Examples of these mixers include mechanical mixers such as conical blenders, nauter mixers, kneaders, V-type mixers, fluidized mixers, turbulers, Leidege mixers, screw mixers, ribbon blenders, and mortar mixers. be able to. In the present invention, the rotational mixing is usually performed at 10 to 10,000 rpm, preferably 1000 to 9000 rpm, more preferably 2000 to 8000 rpm, and particularly preferably 4000 to 6000 rpm. By rotating and mixing at a rotational speed in this range, it is possible to obtain an irregularly shaped composite filler that can form an efficient heat conduction path with a small amount of filler, and a heat conducting material obtained by using this composite filler. The thermal conductivity of the thermal conductive material can be improved, and at the same time, the fluidity of the thermal conductive material can be secured. In the step (1) of the present invention, the rotary mixing is performed, for example, for 10 seconds to 900 seconds, preferably 30 seconds to 300 seconds. In the step (1) of the present invention, the rotary mixing can be performed, for example, at 0 to 85 ° C., preferably at room temperature (about 25 ° C.).

2.工程(2)について
本発明の熱伝導材の製造方法の工程(2)において、工程(1)で得られた複合フィラーとマトリクス樹脂とを混合して熱伝導材を得る。
2. Step (2) In step (2) of the method for producing a heat conductive material of the present invention, the composite filler obtained in step (1) and the matrix resin are mixed to obtain a heat conductive material.

熱伝導材中の複合フィラーの含有量は、例えば、10重量%〜60重量%であり、得られる熱伝導材の熱伝導性及び流動性の観点から、好ましくは20重量%〜55重量%である。   The content of the composite filler in the heat conductive material is, for example, 10% by weight to 60% by weight, and preferably 20% by weight to 55% by weight from the viewpoint of thermal conductivity and fluidity of the obtained heat conductive material. is there.

複合フィラーとマトリクス樹脂の混合の方法としては、溶融混練、溶媒キャストブレンド、ラテックスブレンド、又は、ポリマーコンプレックスなどの物理的ブレンドを用いることができるが、特に溶融混練法が好ましい。混合する装置としては、タンブラー、ヘンシェルミキサー、ロータリーミキサー、スパーミキサー、リボンタンブラー、又は、Vブレンダー等を用いることができ、溶融混練した上でペレット化する。ペレット化には単軸又は多軸押出機を用いるのが一般的であるが、前記押出機以外にはバンバリーミキサー、ローラー、コ・ニーダー、プラストミル、又は、プラベンダーブラウトグラフなどを用いることもできる。これらを回分的、又は連続的に運転する。   As a method of mixing the composite filler and the matrix resin, physical blending such as melt kneading, solvent cast blending, latex blending, or polymer complex can be used, and melt kneading method is particularly preferable. As a mixing device, a tumbler, a Henschel mixer, a rotary mixer, a spar mixer, a ribbon tumbler, a V blender, or the like can be used, which is melt-kneaded and then pelletized. In general, a single-screw or multi-screw extruder is used for pelletization, but a Banbury mixer, a roller, a co-kneader, a plast mill, or a Prabender brow graph may be used in addition to the extruder. . These are operated batchwise or continuously.

本発明は、前記の製造方法で得られた熱伝導材にも関する。
本発明の一つの実施形態において、本発明の熱伝導材は、熱伝導性繊維状フィラーと、熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の熱伝導性粒子と、表面処理剤とを回転混合して複合フィラーを得る工程と、前記複合フィラーとマトリクス樹脂とを混合して熱伝導材を得る工程とを含む方法によって得られる。
The present invention also relates to a heat conductive material obtained by the above production method.
In one embodiment of the present invention, the heat conductive material of the present invention includes a heat conductive fibrous filler, a heat conductive particle having a maximum particle size smaller than the maximum particle size of the heat conductive fibrous filler, and a surface treatment. It is obtained by a method including a step of rotating and mixing an agent to obtain a composite filler, and a step of mixing the composite filler and a matrix resin to obtain a heat conductive material.

本発明の好ましい一つの実施形態において、本発明の熱伝導材は、熱伝導性繊維状フィラーと、前記熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の熱伝導性粒子と、表面処理剤とを、例えば10〜10000rpm、好ましくは1000〜9000rpm、さらに好ましくは2000〜8000rpm、特に好ましくは4000〜6000rpmで回転混合して複合フィラーを得る工程と、前記複合フィラーとマトリクス樹脂とを混合して熱伝導材を得る工程とを含む方法によって得られる。   In a preferred embodiment of the present invention, the heat conductive material of the present invention includes a heat conductive fibrous filler, a heat conductive particle having a maximum particle size smaller than the maximum particle size of the heat conductive fibrous filler, A step of, for example, rotating and mixing the surface treatment agent at 10 to 10000 rpm, preferably 1000 to 9000 rpm, more preferably 2000 to 8000 rpm, and particularly preferably 4000 to 6000 rpm, to obtain a composite filler, and the composite filler and the matrix resin And obtaining a heat conducting material by mixing.

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited to these examples.

(実施例1)
100重量部のピッチ系炭素繊維A−1(三菱樹脂製:ダイアリード(登録商標)K6371T、繊維長:6mm、繊維径:11μm、1〜3重量部のアクリル樹脂で表面処理されている)及び100重量部の窒化ホウ素C−1(水島合金鉄製:HP−40J2、平均粒径:10μm)を粉体表面改質装置(奈良機械製作所製)にて、室温で、4800rpmで1分間回転混合して複合フィラーを得た。
Example 1
100 parts by weight of pitch-based carbon fiber A-1 (Mitsubishi Resin: DIALEAD (registered trademark) K6331T, fiber length: 6 mm, fiber diameter: 11 μm, surface-treated with 1 to 3 parts by weight of acrylic resin) and 100 parts by weight of boron nitride C-1 (manufactured by Mizushima Alloy Iron: HP-40J2, average particle size: 10 μm) was rotated and mixed at room temperature at 4800 rpm for 1 minute in a powder surface reformer (manufactured by Nara Machinery Co., Ltd.). Thus, a composite filler was obtained.

(実施例2)
100重量部のピッチ系炭素繊維A−1の代わりに67重量部のピッチ系炭素繊維A−1を用い、100重量部の窒化ホウ素C−1の代わりに133重量部の窒化ホウ素C−1を用いた以外は、実施例1と同様の方法で複合フィラーを得た。
(Example 2)
Instead of 100 parts by weight of pitch-based carbon fiber A-1, 67 parts by weight of pitch-based carbon fiber A-1 was used, and instead of 100 parts by weight of boron nitride C-1, 133 parts by weight of boron nitride C-1 was used. A composite filler was obtained in the same manner as in Example 1 except that it was used.

(実施例3)
100重量部のピッチ系炭素繊維A−1の代わりに33重量部のピッチ系炭素繊維A−1を用い、100重量部の窒化ホウ素C−1の代わりに167重量部の窒化ホウ素C−1を用いた以外は、実施例1と同様の方法で複合フィラーを得た。
(Example 3)
Instead of 100 parts by weight of pitch-based carbon fiber A-1, 33 parts by weight of pitch-based carbon fiber A-1 was used, and instead of 100 parts by weight of boron nitride C-1, 167 parts by weight of boron nitride C-1 was used. A composite filler was obtained in the same manner as in Example 1 except that it was used.

(実施例4)
100重量部のピッチ系炭素繊維A−1の代わりに18重量部のピッチ系炭素繊維A−1を用い、100重量部の窒化ホウ素C−1の代わりに182重量部の窒化ホウ素C−1を用いた以外は、実施例1と同様の方法で複合フィラーを得た。
Example 4
Instead of 100 parts by weight of pitch-based carbon fiber A-1, 18 parts by weight of pitch-based carbon fiber A-1 was used, and instead of 100 parts by weight of boron nitride C-1, 182 parts by weight of boron nitride C-1 was used. A composite filler was obtained in the same manner as in Example 1 except that it was used.

(実施例5)
1重量部のシランカップリング剤(信越化学製:KBM−403)を、100重量部のピッチ系炭素繊維A−1及び100重量部の窒化ホウ素C−1に加えて用いた以外は、実施例1と同様の方法で複合フィラーを得た。
(Example 5)
Example 1 except that 1 part by weight of a silane coupling agent (manufactured by Shin-Etsu Chemical: KBM-403) was used in addition to 100 parts by weight of pitch-based carbon fiber A-1 and 100 parts by weight of boron nitride C-1. 1 was used to obtain a composite filler.

(実施例6)
1重量部のシランカップリング剤の代わりに3重量部のシランカップリング剤を用いた以外は、実施例5と同様の方法で複合フィラーを得た。
(Example 6)
A composite filler was obtained in the same manner as in Example 5 except that 3 parts by weight of the silane coupling agent was used instead of 1 part by weight of the silane coupling agent.

(実施例7)
1重量部のシランカップリング剤の代わりに5重量部のシランカップリング剤を用いた以外は、実施例5と同様の方法で複合フィラーを得た。
(Example 7)
A composite filler was obtained in the same manner as in Example 5 except that 5 parts by weight of the silane coupling agent was used instead of 1 part by weight of the silane coupling agent.

(比較例1)
ピッチ系炭素繊維A−1の代わりに、ピッチ系炭素繊維A−2(三菱樹脂製:ダイアリード(登録商標)K223HE、繊維長:6mm、繊維径:11μm、表面処理剤で処理されていない)を用いた以外は、実施例1と同様の方法で実施したが、複合フィラーを得ることができなかった。
(Comparative Example 1)
Instead of pitch-based carbon fiber A-1, pitch-based carbon fiber A-2 (Mitsubishi Resin: DIALEAD (registered trademark) K223HE, fiber length: 6 mm, fiber diameter: 11 μm, not treated with a surface treatment agent) The composite filler was not obtained, although it was carried out by the same method as in Example 1 except that was used.

(比較例2)
窒化ホウ素C−1の代わりに窒化ホウ素C−2(水島合金鉄製:HP−40MF100:平均粒径45μm)を用いた以外は、比較例1と同様の方法で実施したが、複合フィラーを得ることができなかった。
(Comparative Example 2)
Although it implemented by the method similar to the comparative example 1 except having used boron nitride C-2 (product made from Mizushima alloy iron: HP-40MF100: average particle diameter of 45 micrometers) instead of boron nitride C-1, it obtains a composite filler. I could not.

表1に実施例1−7及び比較例1、2の複合フィラーの組成及び複合化の可否を示す。表1より、表面処理剤で処理された炭素繊維を用いた実施例1−7では複合フィラーが得られたが、表面処理剤で処理された炭素繊維を用いていない比較例1及び2では、複合フィラーは得られなかった。   Table 1 shows the composition of the composite fillers of Example 1-7 and Comparative Examples 1 and 2 and whether or not they can be combined. From Table 1, although the composite filler was obtained in Example 1-7 using the carbon fiber treated with the surface treatment agent, in Comparative Examples 1 and 2 not using the carbon fiber treated with the surface treatment agent, A composite filler was not obtained.

Figure 0006164130
Figure 0006164130

(実施例8)
45重量%の実施例1で得られた複合フィラー及び55重量%のポリエステル系ワニス(日立化成製;WP2008)を混合して熱伝導材を得た。
(Example 8)
45% by weight of the composite filler obtained in Example 1 and 55% by weight of a polyester varnish (manufactured by Hitachi Chemical; WP2008) were mixed to obtain a heat conductive material.

(比較例3)
42重量%のピッチ系炭素繊維A−1及び58重量%のポリエステル系ワニスを混合して熱伝導材を得た。
(Comparative Example 3)
A heat conductive material was obtained by mixing 42% by weight of pitch-based carbon fiber A-1 and 58% by weight of polyester-based varnish.

(比較例4)
18重量%のピッチ系炭素繊維A−1、18重量%の窒化ホウ素C−1及び64重量%のポリエステル系ワニスを混合して熱伝導材を得た。
(Comparative Example 4)
18 wt% pitch-based carbon fiber A-1, 18 wt% boron nitride C-1 and 64 wt% polyester varnish were mixed to obtain a heat conductive material.

実施例8及び比較例3、4で得られた熱伝導材の熱伝導率、及び実施例8の熱伝導材を100とした熱伝導材の流動性を表2に示す。   Table 2 shows the thermal conductivity of the thermal conductive material obtained in Example 8 and Comparative Examples 3 and 4 and the fluidity of the thermal conductive material with 100 as the thermal conductive material of Example 8.

熱伝導材の流動性は以下の通り測定した:
直径1mmのキャピラリを有する高化式フローテスターを用い、所定の温度にて流下粘度を測定、比較することで流動性の指標とした。粘度的に厳しければ(高粘度で流下が困難)、トランスファー成形機を用いてスパイラルフロー長を比較することで流動性の指標とした。
The fluidity of the heat transfer material was measured as follows:
Using a Koka flow tester having a capillary with a diameter of 1 mm, the flowing-down viscosity was measured and compared at a predetermined temperature to obtain an index of fluidity. If the viscosity was severe (high viscosity and difficult to flow down), a spiral flow length was compared using a transfer molding machine to obtain an index of fluidity.

Figure 0006164130
Figure 0006164130

表2より、実施例8と比較例3を比較すると、複合フィラーを用いた実施例8の熱伝導材は、炭素繊維のみを用いた比較例3の熱伝導材よりも熱伝導率が高く、また、熱伝導材の流動性が著しく高かった。また、実施例8と比較例4を比較すると、複合フィラーを用いた実施例8の熱伝導材は、複合化されていない炭素繊維と窒化ホウ素を用いた比較例4の熱伝導材よりも熱伝導率が著しく高く、また、熱伝導材の流動性は同等であった。従って、炭素繊維と窒化ホウ素の複合化フィラーを用いることにより、熱電導性及び流動性の向上した熱伝導材を得ることができることが示された。   From Table 2, comparing Example 8 and Comparative Example 3, the thermal conductivity of Example 8 using the composite filler is higher in thermal conductivity than the thermal conductive material of Comparative Example 3 using only carbon fibers. Further, the fluidity of the heat conducting material was remarkably high. Moreover, when Example 8 and Comparative Example 4 are compared, the heat conductive material of Example 8 using the composite filler is more heat-resistant than the heat conductive material of Comparative Example 4 using carbon fiber and boron nitride that are not combined. The conductivity was remarkably high, and the fluidity of the heat conducting material was equivalent. Therefore, it was shown that a heat conductive material with improved thermal conductivity and fluidity can be obtained by using a composite filler of carbon fiber and boron nitride.

Claims (2)

熱伝導性繊維状フィラーと、前記熱伝導性繊維状フィラーとは異なるものであり、前記熱伝導性繊維状フィラーの最大粒径よりも小さい最大粒径の絶縁性の熱伝導性粒子と、表面処理剤とを回転混合して複合フィラーを得る工程と、前記複合フィラーとマトリクス樹脂とを混合して熱伝導材を得る工程とを含む熱伝導材の製造方法であって、熱伝導性繊維状フィラーが炭素繊維であり、熱伝導性粒子が窒化ホウ素であり、表面処理剤がアクリル樹脂を含む、前記方法The thermally conductive fibrous filler is different from the thermally conductive fibrous filler, and the insulating thermally conductive particles having a maximum particle size smaller than the maximum particle size of the thermally conductive fibrous filler, and the surface A method for producing a heat conductive material comprising a step of rotating and mixing a treating agent to obtain a composite filler, and a step of mixing the composite filler and a matrix resin to obtain a heat conductive material, wherein the heat conductive fibrous material The method, wherein the filler is carbon fiber, the thermally conductive particles are boron nitride, and the surface treatment agent includes an acrylic resin . 熱伝導性粒子の最大粒径が熱伝導性繊維状フィラーの最大粒径の50%以下である請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the maximum particle size of the thermally conductive particles is 50% or less of the maximum particle size of the thermally conductive fibrous filler.
JP2014061055A 2014-03-25 2014-03-25 Manufacturing method of heat conduction material Expired - Fee Related JP6164130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014061055A JP6164130B2 (en) 2014-03-25 2014-03-25 Manufacturing method of heat conduction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014061055A JP6164130B2 (en) 2014-03-25 2014-03-25 Manufacturing method of heat conduction material

Publications (2)

Publication Number Publication Date
JP2015183100A JP2015183100A (en) 2015-10-22
JP6164130B2 true JP6164130B2 (en) 2017-07-19

Family

ID=54350023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014061055A Expired - Fee Related JP6164130B2 (en) 2014-03-25 2014-03-25 Manufacturing method of heat conduction material

Country Status (1)

Country Link
JP (1) JP6164130B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3211018B1 (en) * 2014-08-27 2020-07-15 JNC Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
JP7139571B2 (en) * 2015-11-04 2022-09-21 Dic株式会社 Polyarylene sulfide resin composition and molded article
EP3425004A4 (en) * 2016-03-02 2019-10-16 JNC Corporation Composition for low thermal expansion members, low thermal expansion member, electronic device, and method for producing low thermal expansion member
KR20200034711A (en) * 2017-08-28 2020-03-31 칸토 덴카 코교 가부시키가이샤 Thermally conductive particle-filled fiber
JP2020097685A (en) * 2018-12-18 2020-06-25 オムロン株式会社 Resin composition and resin molded article

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802644B2 (en) * 2005-08-12 2011-10-26 東ソー株式会社 Polyarylene sulfide resin composition
JP2007182990A (en) * 2005-12-08 2007-07-19 Toray Ind Inc Resin composition for torque limiter part and torque limiter part composed of its composition
JP2008189867A (en) * 2007-02-07 2008-08-21 Teijin Ltd Composite material of carbon fiber-reinforced thermoplastic resin
JP2012171999A (en) * 2011-02-18 2012-09-10 Shin-Etsu Chemical Co Ltd Addition reaction curable silicone rubber composition and semiconductor device sealed by cured material of the same
KR101969613B1 (en) * 2011-11-29 2019-04-16 도레이 카부시키가이샤 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
JP2014024959A (en) * 2012-07-26 2014-02-06 Kaneka Corp Metal resin composite having excellent heat radiation effect
US20140080951A1 (en) * 2012-09-19 2014-03-20 Chandrashekar Raman Thermally conductive plastic compositions, extrusion apparatus and methods for making thermally conductive plastics
WO2014052256A1 (en) * 2012-09-25 2014-04-03 Promerus, Llc Maleimide containing cycloolefinic polymers and applications thereof
CN103333463A (en) * 2013-06-26 2013-10-02 苏州天脉导热科技有限公司 Preparation method of heat conductive masterbatch

Also Published As

Publication number Publication date
JP2015183100A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6164130B2 (en) Manufacturing method of heat conduction material
US20200243414A1 (en) Thermally conductive sheet
TWI388656B (en) Thermal conductive polymer composite and article using the same
JP6034876B2 (en) Highly filled high thermal conductivity material, method for producing the same, composition, coating liquid, and molded article
CN109486155B (en) Graphene modified halogen-free flame-retardant PC/ABS material and preparation method thereof
CN105026474B (en) The method of composition as the composition of boron nitride containing stripping and formation
JP5309989B2 (en) Thermally conductive resin material and molded body thereof
CN108250747B (en) Thermoplastic polyetherimide insulating and heat-conducting composite material and preparation method thereof
Chen et al. Properties and application of polyimide‐based composites by blending surface functionalized boron nitride nanoplates
WO2013177850A1 (en) Resin composition with laser direct structuring function, preparation method thereof, and application of resin composition
Yang et al. Solid‐state shear milling method to prepare PA12/boron nitride thermal conductive composite powders and their selective laser sintering 3D‐printing
Nayak et al. Mechanical properties and thermal conductivity of epoxy composites enhanced by h-BN/RGO and mh-BN/GO hybrid filler for microelectronics packaging application
KR102135844B1 (en) Graphite-based composition with increased volume resistivity
JP2006328352A (en) Insulating thermally-conductive resin composition, molded product, and method for producing the same
Ryu et al. Silane surface modification of boron nitride for high thermal conductivity with polyphenylene sulfide via melt mixing method
CN105542447A (en) Thermal conductive insulation plastic with low viscosity and high thermal conductivity and preparation method thereof
JP2008222955A (en) Thermoconductive resin composition and thermoconductive resin molded article
CN111087790B (en) Graphene-metal powder composite electric and heat conducting plastic and preparation method thereof
Chung et al. Thermal conductivity of epoxy resin composites filled with combustion‐synthesized AlN powder
JP5082304B2 (en) Thermally conductive resin material and molded body thereof
Anoop et al. Enhanced mechanical, thermal and adhesion properties of polysilsesquioxane spheres reinforced epoxy nanocomposite adhesives
Xie et al. Spherical boron nitride/pitch‐based carbon fiber/silicone rubber composites for high thermal conductivity and excellent electromagnetic interference shielding performance
CN106147155A (en) A kind of heater Flame-retardant PET Heat Conduction Material and preparation method thereof
JP2019131669A (en) Resin composition and insulation heat conductive sheet
KR102175291B1 (en) Polyester resin composition, and molded artice manufactured therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170605

R151 Written notification of patent or utility model registration

Ref document number: 6164130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees