KR20170075050A - Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof - Google Patents
Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof Download PDFInfo
- Publication number
- KR20170075050A KR20170075050A KR1020150183528A KR20150183528A KR20170075050A KR 20170075050 A KR20170075050 A KR 20170075050A KR 1020150183528 A KR1020150183528 A KR 1020150183528A KR 20150183528 A KR20150183528 A KR 20150183528A KR 20170075050 A KR20170075050 A KR 20170075050A
- Authority
- KR
- South Korea
- Prior art keywords
- steel
- steel sheet
- pwht
- less
- hot
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
본 발명은, 중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W : 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지며, 미세조직이 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어지고 인장강도 600MPa 이상인 저온인성과 PWHT 저항성이 우수한 저온용 압력용기 강판 및 그 제조 방법에 관한 것이다.The present invention relates to a ferritic stainless steel comprising, by weight, 0.07 to 0.17% of C, 0.15 to 0.40% of Si, 0.3 to 0.7% of Mn, 0.012% or less of P, 0.015% or less of S, 3.0 to 4.0% 0.03 to 0.25% of Fe, unavoidable impurities, tempered bainite having a microstructure of 25 to 80% by area and residual tempered martensite, a low-temperature toughness having a tensile strength of 600 MPa or more and a low- To a container steel sheet and a manufacturing method thereof.
Description
본 발명은 저온용 압력용기, 선박, 저장탱크, 구조용강 등에 사용되는 후강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 PWHT 저항성과 저온인성이 우수한 인장강도 600MPa 이상인 저온용 압력용기용 강판 및 그 제조 방법에 관한 것이다.
More particularly, the present invention relates to a steel sheet for low-temperature pressure vessels having a tensile strength of 600 MPa or more and excellent PWHT resistance and low-temperature toughness, and to a steel sheet for low- And a manufacturing method thereof.
저온용 고강도 후판강재로는 페라이트(ferrite), 마르텐사이트 (martensite)조직, 베이나이트 조직으로 이루어진 혼합조직, 혹은 베이나이트, 페라이트가 주체인 거의 단상조직에 가까운 것 등이 널리 알려져 있다.As a high strength steel plate for low temperature, ferrite, martensite structure, mixed structure composed of bainite structure, or bainite, which is almost a single phase structure mainly composed of ferrite, are widely known.
시공 시 그 자체가 구조재로 이용될 수 있어야 하므로 고강도일 것이 요구된다. 한편 이러한 고강도 구조용 강재는 우수한 PWHT 저항성이 요구된다. 통상의 NOMALIZING처리을 통하여 제조된 고강도 열연강재는 페라이트와 퍼얼라이트의 혼합조직을 가질 수 있다. 그런데 이러한 조직을 갖는 강재를 후속하는 공정에서 PWHT처리를 행하면, 입계를 따라 탄화물이 형성되고, 이에 따라 강재의 강도와 인성이 저하되어 PWHT에서 요구되는 물성을 보증할 수 없게 되는 문제가 있으며, 이에 대한 종래기술의 일예로 대한민국 특허공개공보 2012-0011289호에 기재된 발명을 들 수 있다.It is required to have high strength since it should be able to be used as a structural material at the time of construction. On the other hand, such a high strength structural steel is required to have excellent PWHT resistance. The high-strength hot-rolled steel produced through the normal NOMALIZING treatment may have a mixed structure of ferrite and pearlite. However, when a PWHT treatment is performed in a subsequent step of a steel material having such a structure, a carbide is formed along the grain boundary, whereby the strength and toughness of the steel are lowered, and the physical properties required in PWHT can not be guaranteed. An example of the prior art is disclosed in Korean Patent Publication No. 2012-0011289.
상기 특허공개공보에는, 중량%로, C: 0.08 ~ 0.15%, Si : 0.2 ~ 0.3%, Mn : 0.5 ~ 1.2%, P : 0.01 ~ 0.02%, S : 0.004 ~ 0.006%, Ti : 0% 초과 내지 0.01% 이하, Mo : 0.05 ~ 0.1%, Ni : 3.0 ~ 5.0% 및 나머지 Fe과 기타 불가피한 불순물로 조성되는 것을 특징으로 하는 500MPa 이상의 LPG용 고강도 강재를 제시하고 있으며, 그 강 조성성분에서 Ni과 Mo를 첨가함을 특징으로 하고 있다. The above-mentioned patent publication discloses a steel containing 0.08 to 0.15% of C, 0.2 to 0.3% of Si, 0.5 to 1.2% of Mn, 0.01 to 0.02% of P, 0.004 to 0.006% of S, 0% To 0.01% or less, Mo: 0.05 to 0.1%, Ni: 3.0 to 5.0%, and the balance of Fe and other unavoidable impurities. The high strength steel for LPG of 500 MPa or more is characterized in that Ni Mo is added.
그런데 상기 공개공보에 기재된 발명은 통상의 NOMALIZING을 통하여 제조된 강재이므로 비록 Ni등을 첨가하여도 PWHT 처리후 강재의 강도와 인성의 저하를 피할 수 없다는 문제가 있다. However, since the invention disclosed in the above-mentioned publication is a steel material produced through conventional Nomalizing, there is a problem that strength and toughness of the steel after PWHT treatment can not be lowered even if Ni or the like is added.
그러므로 저온용 압력용기, 선박, 저장탱크, 구조용강 등에 사용되는 고강도 후강판에 있어서, 장시간 PWHT 저항성이 우수한 고강도 강재의 개발에 대한 요구가 대두되고 있다.
Therefore, there is a growing demand for the development of a high-strength steel excellent in PWHT resistance for a long time in a high-strength steel sheet used in low-temperature pressure vessels, ships, storage tanks, structural steels,
따라서 본 발명은 상기 종래기술의 문제점을 해결하기 위한 것으로, 강 조성, 냉각 및 열처리 공정을 제어하여 미세조직을 템퍼드 베이나이트와 템퍼드 마르텐사이트의 혼합조직으로 함으로써 장시간 PWHT 저항성이 우수한 고강도 저온용 압력용기 강판 및 그 제조방법을 제공함에 그 목적이 있다.
SUMMARY OF THE INVENTION Accordingly, the present invention has been made in order to solve the problems of the prior art described above, and it is an object of the present invention to provide a method of manufacturing a high strength and low temperature And a method of manufacturing the same.
그러나 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
However, the problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.
상기 목적을 달성하기 위한 본 발명은,According to an aspect of the present invention,
중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W: 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지며, 미세조직이 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어진 PWHT 저항성이 우수한 저온용 압력용기 강판에 관한 것이다.
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.07 to 0.17% of C, 0.15 to 0.40% of Si, 0.3 to 0.7% of Mn, 0.012% or less of P, 0.015% or less of S, 3.0 to 4.0% of Ni, , Residual Fe, and unavoidable impurities, and having a microstructure of 25 to 80% by area of tempered bainite and residual tempered martensite.
상기 강판은 580~640℃ 구간에서 최대 20시간 동안 PWHT를 실시하여도 인장강도를 600MPa 이상으로 유지할 수 있다. The steel sheet can maintain a tensile strength of 600 MPa or more even when PWHT is applied for a maximum of 20 hours at 580 to 640 ° C.
상기 강판은 580~640℃ 구간에서 최대 20시간 동안 PWHT를 실시하여도 -110℃에서의 샤르피 충격에너지값이 200J 이상일 수 있다.
The steel sheet may have a Charpy impact energy value at -110 DEG C of 200 J or more even if PWHT is performed for 5 to 640 DEG C for a maximum of 20 hours.
또한 본 발명은, Further, according to the present invention,
중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W : 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지는 강 슬라브를 1050 ~ 1250℃에서 재가열하는 공정;The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.07 to 0.17% of C, 0.15 to 0.40% of Si, 0.3 to 0.7% of Mn, 0.012% or less of P, 0.015% or less of S, 3.0 to 4.0% of Ni, , The remainder Fe and unavoidable impurities at a temperature of 1050 to 1250 占 폚;
상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료하여 열연강판을 얻는 열간압연 공정;A hot rolling step of hot-rolling the reheated steel slab and completing the rolling at a temperature of 800 캜 or more to obtain a hot-rolled steel sheet;
상기 열연강판을 800 ~ 950℃에서 가열 후 2.5~30℃/sec의 냉각 속도로 수냉하는 공정; 및 Cooling the hot-rolled steel sheet at a cooling rate of 2.5 to 30 DEG C / sec after heating at 800 to 950 DEG C; And
상기 수냉된 강판을 550 ~ 660℃에서 {1.5× + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링 처리하는 공정;을 포함하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법에 관한 것이다.
And a step of tempering the water-cooled steel sheet at 550 to 660 DEG C for {1.5 x + (10 to 30)} minutes (t is the thickness (mm) of the steel material) To a method of manufacturing a steel sheet for a pressure vessel.
본 발명에서는 상기 템퍼링 공정 이후에, 580~640℃구간에서 최대 20시간 PWHT하는 공정을 추가로 포함할 수 있다.
In the present invention, after the tempering process, a PWHT process may be further performed for a maximum of 20 hours at 580 to 640 ° C.
상기 템퍼링 공정으로 얻이진 강 미세조직은 25~80 면적분율(%)의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어질 수 있다.
The steel microstructure obtained by the tempering process may be composed of 25 to 80 area percent (%) of tempered bainite and residual tempered martensite.
상술한 바와 같은 구성의 본 발명은, 인장 강도 600MPa 이상을 만족하면서 -110℃ 정도의 저온에서 안정적으로 사용이 가능한 PWHT 저항성이 우수한 저온용 압력용기 강판을 효과적으로 제공할 수 있다.
INDUSTRIAL APPLICABILITY The present invention having the above-described constitution can effectively provide a low-temperature pressure vessel steel sheet excellent in PWHT resistance that can be stably used at a low temperature of about -110 DEG C while satisfying a tensile strength of 600 MPa or more.
이하, 본 발명에 대하여 상세히 설명한다.Hereinafter, the present invention will be described in detail.
먼저, 본 발명의 PWHT 저항성이 우수한 저온용 압력용기 강판을 설명한다.First, a low temperature pressure vessel steel sheet excellent in PWHT resistance of the present invention will be described.
본 발명의 강판은, 중량%로, C: 0.07 ~ 0.17%, Si: 0.15 ~ 0.40%, Mn: 0.3 ~ 0.7%, P: 0.012% 이하, S: 0.015%이하, Ni: 3.0 ~ 4.0%, W : 0.03~0.25%, 잔부 Fe 및 불가피한 불순물로 이루어지며, 그 구체적인 강조성성분 및 그 성분 제한사유는 아래와 같다.
The steel sheet according to the present invention comprises 0.07 to 0.17% of C, 0.15 to 0.40% of Si, 0.3 to 0.7% of Mn, 0.012% or less of P, 0.015% or less of S, 3.0 to 4.0% W: 0.03 to 0.25%, the remainder Fe and unavoidable impurities. Specific emphasizing components and reasons for limiting the components are as follows.
본 발명에서 C는 0.07 ~ 0.17%로 한정하는 것이 바람직하다. 상기 함량이 0.07% 미만인 경우에는 기지 상의 자체 강도가 저하되고, 0.17%를 초과하는 경우에는 강판의 용접성을 크게 해치기 때문이다.
In the present invention, C is preferably limited to 0.07 to 0.17%. When the content is less than 0.07%, the self-strength of the matrix is deteriorated. When the content is more than 0.17%, the weldability of the steel sheet is greatly deteriorated.
Si은 탈산 효과, 고용 강화 효과 및 충격 천이 온도 상승 효과를 위하여 첨가되는 성분으로서, 이러한 첨가 효과를 달성하기 위해서는 0.15%이상 첨가하는 것이 바람직하다. 하지만, 0.40%를 초과하여 첨가되면 용접성이 저하되고 강판 표면에 산화 피막이 심하게 형성되므로 그 함량을 0.15 ~ 0.40%로 제한함이 바람직하다.
Si is added for the deoxidation effect, the solid solution strengthening effect and the impact transition temperature increasing effect, and it is preferable that Si is added in an amount of 0.15% or more to attain such an additive effect. However, if it is added in excess of 0.40%, it is preferable to limit the content to 0.15 to 0.40% because the weldability is lowered and the oxide film is formed on the surface of the steel sheet.
Mn은 S와 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 0.7%이하로 관리하는 것이 바람직하다. 그러나, 본 발명의 성분 특성상 Mn이 0.3%미만이 되면 적절한 강도를 확보하기 어려우므로 Mn의 첨가량은 0.3 ~ 0.7%로 제한함이 바람직하다.
Mn forms MnS, which is a non-metallic inclusion drawn together with S, to lower the room temperature elongation and low-temperature toughness, so that it is preferable to control the Mn to 0.7% or less. However, when the content of Mn is less than 0.3%, it is difficult to ensure adequate strength, and therefore, the addition amount of Mn is preferably limited to 0.3 to 0.7%.
P는 저온인성을 해치는 원소로서, 가능한 그 함량을 억제하는 것이 바람직하지만, 제강 공정에서 제거하는데 과다한 비용이 소요되므로 0.012%이하의 범위 내에서 관리함이 소망스럽다.
P is an element which deteriorates low-temperature toughness, but it is desirable to suppress the content thereof. However, since it takes a great deal of cost to remove it in the steelmaking process, it is desirable to control it within a range of 0.012% or less.
S 역시 P와 더불어 저온인성에 악영향을 주는 원소이지만 P와 마찬가지로 제강 공정에서 제거하는데 과다한 비용이 소요될 수 있으므로 0.015% 이하의 범위 내에서 관리함이 적절하다.
S is also an element that adversely affects low temperature toughness with P, but it may be necessary to manage it within the range of 0.015% or less because it may take a lot of cost to remove it from the steelmaking process.
Ni은 저온 인성의 향상에 가장 효과적인 원소이다. 그러나 그 첨가량이 3.0% 미만이면 저온인성의 저하를 초래하고, 4.0%를 초과하여 첨가하면 제조비용의 상승을 가져오므로 3.0 ~ 4.0%의 범위 내에서 첨가함이 바람직하다.
Ni is the most effective element for improving low-temperature toughness. However, if the addition amount is less than 3.0%, the low-temperature toughness is deteriorated. If the addition amount is more than 4.0%, the production cost is increased. Therefore, the addition is preferably in the range of 3.0 to 4.0%.
본 발명에서 W은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Matrix)와 정합을 이루는 탄화물(W2C)로 석출함으로써 강의 강도를 증가시키는 중요한 원소이다. 0.03% 미만의 첨가는 그 효과를 기대할 수 없고 0.25% 초과하여 첨가 시 연주 과정에서 조대한 석출물로 나타나 저온인성을 해칠 수 있으므로 0.03~0.25%로 제한하는 것이 바람직하다.
In the present invention, W is an important element that increases the strength of austenite by being dissolved in austenite and precipitates into a carbide (W 2 C) matched with the matrix, thereby increasing the strength of the steel. The addition of less than 0.03% can not be expected to produce the effect, and it is preferable to limit it to 0.03 to 0.25% because it may exceed the content of 0.25% and may deteriorate the low temperature toughness by appearing as coarse precipitate during the performance.
한편 본 발명의 강판은 그 미세조직이 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어져 있다. 만일 템퍼드 베이나이트 분율이 25% 미만이면 템퍼드 마르텐사이트의 량이 과대해져서 강판의 저온인성이 열화될 수 있다. 반면에 80%를 초과하면 목표로 하는 강판의 강도를 확보할 수가 어려울 수 있다. On the other hand, the steel sheet of the present invention is composed of tempered bainite having a microstructure of 25 to 80% by area and residual tempered martensite. If the tempered bainite fraction is less than 25%, the amount of tempered martensite becomes excessive and the low temperature toughness of the steel sheet may be deteriorated. On the other hand, if it exceeds 80%, it may be difficult to secure the strength of the target steel sheet.
더 바람직하게는 30~70 면적분율(%)의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어질 수 있다
More preferably from 30 to 70 area percent (%) of tempered bainite and residual tempered martensite
상술한 바와 같은 강조성성분과 미세조직을 갖는 강판은, 580~640℃ 구간에서 최대 20시간 동안 PWHT를 실시하여도 인장강도를 600MPa 이상으로 효과적으로 유지할 수 있을 뿐만 아니라 우수한 저온인성을 가질 수 있다.
The steel sheet having the above-described stress-inducing component and microstructure can effectively maintain the tensile strength at 600 MPa or more and have excellent low-temperature toughness even when PWHT is applied for a maximum of 20 hours at 580 to 640 ° C.
다음으로, 본 발명의 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법을 설명한다. Next, a method for producing a low-temperature pressure vessel steel sheet excellent in PWHT resistance of the present invention will be described.
본 발명의 강판 제조방법은, 상술한 바와 같은 강 조성성분을 갖는 강슬라브를 1050 ~ 1250℃에서 재가열하는 공정; 상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료하여 열연강판을 얻는 열간압연 공정; 상기 열간 압연된 강판을 800 ~ 950℃에서 가열 후 2.5~30℃/sec의 냉각 속도로 수냉하는 공정; 및 상기 수냉된 강재를 550 ~ 660℃에서 {1.5× + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링 처리하는 공정;을 포함한다.
The method for manufacturing a steel sheet of the present invention comprises a step of reheating a steel slab having a steel composition component as described above at 1050 to 1250 占 폚; A hot rolling step of hot-rolling the reheated steel slab and completing the rolling at a temperature of 800 캜 or more to obtain a hot-rolled steel sheet; Cooling the hot-rolled steel sheet at a cooling rate of 2.5 to 30 DEG C / sec after heating at 800 to 950 DEG C; And a step of tempering the water-cooled steel material at 550 to 660 DEG C for {1.5 x + (10 to 30)} minutes (t is the thickness (mm) of the steel material).
먼저, 본 발명에서는 상기 강 조성성분을 갖는 강슬라브를 1050 ~ 1250℃에서 재가열한다. 만일 재가열 온도가 1050℃보다 낮을 경우 용질원자의 고용이 어렵고, 재가열온도가 1250℃를 초과하면 오스테나이트 결정립 크기가 너무 조대하게 되어 강판의 물성을 저하시키기 때문이다.
First, in the present invention, the steel slab having the steel composition component is reheated at 1050 to 1250 ° C. If the reheating temperature is lower than 1050 占 폚, solute atoms hardly solidify, and if the reheating temperature exceeds 1250 占 폚, the austenite grain size becomes too coarse, thereby deteriorating the physical properties of the steel sheet.
이어, 본 발명에서는 상기 재가열된 강 슬라브를 열간압연한다. 구체적으로, 본 발명에서는 상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료한다. 상기 열간 압연 온도가 800℃ 미만일 경우에는 압연시 열간변형저항이 증대되어 압연기의 부하를 초래할 수 있다.
In the present invention, the reheated steel slab is hot-rolled. Specifically, in the present invention, the reheated steel slab is hot-rolled, and the rolling is finished at a temperature of 800 ° C or higher. If the hot rolling temperature is lower than 800 ° C, the hot deformation resistance during rolling may be increased, resulting in a load on the rolling mill.
상기 열간 압연 시 패스당 압하율은 5 ~ 30%가 바람직하다.
The reduction ratio per pass in the hot rolling is preferably 5 to 30%.
그리고 본 발명에서는 상기 열간 압연된 강판을 800 ~ 950℃에서 가열 후 2.5~30℃/sec의 냉각 속도로 수냉한다. In the present invention, the hot-rolled steel sheet is heated at 800 to 950 占 폚 and then cooled to a cooling rate of 2.5 to 30 占 폚 / sec.
상기 가열온도가 800℃ 미만이면 합금성분의 충분한 고용이 어렵고, 950℃를 초과하면 결정립이 조대화 되어 인성을 해칠 수 있다. If the heating temperature is less than 800 ° C, sufficient solubility of the alloy component is difficult, and if it exceeds 950 ° C, the crystal grains may coarsen and deteriorate toughness.
또한 상기 냉각 속도가 2.5℃/sec 미만인 경우에는 마르텐사이트 조직을 얻을 수 없는 반면에, 냉각 속도가 30℃/sec를 초과하면 냉각수가 다량 필요하므로 추가적인 냉각설비가 요구되는 경제적 부담이 있으므로 냉각 속도는 2.5~30℃/sec로 한정하는 것이 바람직하다
When the cooling rate is less than 2.5 DEG C / sec, the martensite structure can not be obtained. However, when the cooling rate exceeds 30 DEG C / sec, a large amount of cooling water is required. It is preferably limited to 2.5 to 30 DEG C / sec
이어, 본 발명에서는 상기 수냉된 강판를 템퍼링처리한다.In the present invention, the water-cooled steel sheet is tempered.
구체적으로, 본 발명에서는 상기 수냉된 강판을 550 ~ 660℃에서 {1.5× + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링한다. 상기 템퍼링온도가 550℃ 미만이면 강도 초과에 의하여 인성이 저하될 수 있으며, 660℃를 초과하면 지나친 강도의 저하를 가져올 수 있다. Specifically, in the present invention, the water-cooled steel sheet is tempered at 550 to 660 ° C for {1.5 × + (10 to 30)} minutes, where t is the thickness (mm) of the steel. If the tempering temperature is less than 550 캜, the toughness may be lowered by exceeding the strength, and if the tempering temperature is higher than 660 캜, excessive strength may be deteriorated.
또한 본 발명에서는 템퍼링 시간을 {1.5× + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 실시하는데, 그 구체적인 제한이유는 다음과 같다. Further, in the present invention, the tempering time is set to {1.5 x + (10 to 30)} minutes (where t denotes the thickness of the steel (mm)).
즉, 만일 템퍼링 시간이 상기 기준보다 짧으면 템퍼드 마르텐사이트 조직을 얻기 어렵고, 반면에 기준 시간을 초과하여 템퍼링을 한다면 전체적인 생산성을 해치기 때문이다. That is, if the tempering time is shorter than the above criteria, it is difficult to obtain a tempered martensite structure, whereas if tempering is performed beyond the reference time, the overall productivity is deteriorated.
상술한 바와 같은 조건의 템퍼링 열처리에 의해 25~80 면적%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어진 강 미세조직을 얻을 수 있다.
By the tempering heat treatment under the above-mentioned conditions, a steel microstructure composed of tempered bainite of 25 to 80% by area and residual tempered martensite can be obtained.
더 바람직하게는 30~70 면적분율(%)의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트로 이루어질 수 있다
More preferably from 30 to 70 area percent (%) of tempered bainite and residual tempered martensite
후속하여, 본 발명에서는 상기 템퍼링 처리된 강판에 대하여 압력 용기 제조를 위한 용접 후의 용접부 응력 제거를 위하여 PWHT 열처리를 실시할 수 있다. 즉, 580~640℃구간에서 최대 20시간 PWHT하는 공정을 추가로 포함할 수 있다. Subsequently, in the present invention, the PWHT heat treatment may be performed on the tempered steel sheet to remove the stress of the welded portion after welding for manufacturing the pressure vessel. That is, it may further include a PWHT process for a maximum of 20 hours at 580 to 640 ° C.
만일 PWHT 온도가 580℃ 보다 낮으면 용접부 등의 잔류 응력 제거가 어렵고, 640℃ 초과하면 강재의 강도를 크게 저하시키기 때문이다. 또한 상기 PWHT시간이 20시간을 초과하면 과도한 강도의 하락을 가져올 수 있기 때문이다.
If the PWHT temperature is lower than 580 캜, it is difficult to remove the residual stress from the welded part, and if the PWHT temperature exceeds 640 캜, the strength of the steel material is greatly lowered. Also, if the PWHT time exceeds 20 hours, excessive strength may be deteriorated.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.
Hereinafter, the present invention will be described in more detail by way of examples.
(실시예)
(Example)
하기 표 1과 같은 조성성분을 갖는 강슬라브를 각각 마련한 후, 이들 강슬라브를 1100℃에서 재가열하였다. 그리고 상기 재가열된 강 슬라브를 패스당 15%의 압하율로 열간 압연하고, 900℃에서 열간 압연을 종료하여 소정의 두께를 갖는 열간압연 강판들을 제조하였다. Steel slabs having compositional compositions as shown in Table 1 were prepared, and these steel slabs were reheated at 1100 ° C. Then, the reheated steel slab was hot-rolled at a reduction ratio of 15% per pass, and hot-rolled at 900 ° C was terminated to produce hot-rolled steel sheets having a predetermined thickness.
상기 열간압연 강판들을 하기 표 2와 같은 조건으로 오스테나이트화 온도에서 가열, 수냉 처리하였으며, 이어, 하기 표 2와 같은 온도 및 시간으로 템퍼링 처리하였다. 그리고 상기 탬퍼링처리된 강판은 또한 하기 표 2의 조건으로 PWHT처리를 수행하였다.
The hot-rolled steel sheets were heated at austenitizing temperature and water-cooled under the conditions shown in Table 2, followed by tempering at the temperature and time shown in Table 2 below. The steel sheet subjected to the tempering treatment was also subjected to PWHT treatment under the conditions shown in Table 2 below.
상기와 같이, PWHT처리된 강판들에 대하여 항복 강도, 인장강도 및 저온 인성을 평가하여 그 결과를 하기 표 2에 또한 나타내었다. 한편 하기 표 2에서 저온 인성은 -110℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격에너지 값으로 평가한 결과이다.
As described above, the PWHT-treated steel sheets were evaluated for yield strength, tensile strength and low-temperature toughness, and the results are also shown in Table 2 below. On the other hand, in Table 2, the low-temperature toughness is a result of evaluating the specimen having the V notch at -110 DEG C by the Charpy impact energy value obtained by performing the Charpy impact test.
온도
(℃)heating
Temperature
(° C)
속도
(℃/s)Water cooling
speed
(° C / s)
온도
(℃)Tempering
Temperature
(° C)
시간(분)Tempering
Time (minutes)
온도
(℃)PWHT
Temperature
(° C)
시간
(hr)PWHT
time
(hr)
(Mpa)YS
(Mpa)
(Mpa)TS
(Mpa)
충격
인성
(J)-110 ° C
Shock
tenacity
(J)
상기 표 1 및 2에 나타난 바와 같이, 강조성성분 및 제조공정 조건이 본 발명의 범위를 만족하는 발명예 1-6의 경우, 템퍼링처리후 면적분율로 25-80%의 템퍼드 베이나이트와 잔부 템퍼드 마르텐사이트 조직을 얻을 수 있어, 후속하는 PWHT후 항복강도 및 인장강도가 비교예에 비해 각각 약 100MPa 및 80MPa 정도 우수하면서도 -110℃ 저온 인성 역시 70J 이상 우수함을 알 수 있다. As shown in Tables 1 and 2, in Examples 1-6 in which the reinforcing component and the manufacturing process conditions satisfy the range of the present invention, 25-80% of the tempered bainite and the remaining portion Tempered martensite structure can be obtained. It can be seen that the subsequent yield strength and tensile strength after PWHT are about 100 MPa and 80 MPa, respectively, as compared with the comparative example, and -110 ° C. and low temperature toughness are also 70 J or more.
한편, 비교강 d는 W를 함유하지 않으므로, 강의 강도가 상대적으로 낮게 나타났고, 비교예 1 및 2의 경우에는 수냉을 행하지 않았고 공냉을 수행했기 때문에 템퍼드 베이나이트가 생성되지 않아 후속하는 PWHT후 항복강도 및 인장강도가 발명예에 비해 낮게 나타났고, -110℃ 저온 인성도 역시 낮은 수치로 나타났다.
On the other hand, since the comparative steel d contained no W, the strength of the steel was relatively low. In the case of Comparative Examples 1 and 2, no tempered bainite was produced because water cooling was not performed and air cooling was performed. Yield strength and tensile strength were lower than those of the inventive case, and -110 ° C low temperature toughness was also low.
Claims (10)
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.07 to 0.17% of C, 0.15 to 0.40% of Si, 0.3 to 0.7% of Mn, 0.012% or less of P, 0.015% or less of S, 3.0 to 4.0% of Ni, , The remainder Fe, and unavoidable impurities, the tempered bainite having a steel microstructure of 25 to 80% by area and the residual tempered martensite, and having excellent PWHT resistance.
The steel plate according to claim 1, wherein the steel sheet has a tensile strength of 600 MPa or higher even when PWHT is conducted for 5 to 640 ° C for a maximum of 20 hours.
The method according to claim 1, wherein the steel microstructure is composed of tempered bainite of 30 to 70 area% and residual tempered martensite.
The steel plate according to claim 1, wherein the steel sheet has a Charpy impact energy value of at least 200 J at -110 캜 even when PWHT is performed for 5 to 640 캜 for a maximum of 20 hours.
상기 재가열된 강 슬라브를 열간 압연하고, 800℃ 이상의 온도에서 압연을 종료하여 열연강판을 얻는 열간압연 공정;
상기 열간 압연된 강판을 800 ~ 950℃로 가열 후 수냉하는 공정; 및
상기 수냉된 강재를 550 ~ 660℃에서 {1.5× + (10~30)}분 [여기서 t는 강재의 두께(mm)를 의미한다] 동안 템퍼링 처리하는 공정;을
포함하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.07 to 0.17% of C, 0.15 to 0.40% of Si, 0.3 to 0.7% of Mn, 0.012% or less of P, 0.015% or less of S, 3.0 to 4.0% of Ni, , The remainder Fe and inevitable impurities at 1050 to 1250 캜;
A hot rolling step of hot-rolling the reheated steel slab and completing the rolling at a temperature of 800 캜 or more to obtain a hot-rolled steel sheet;
A step of heating the hot-rolled steel sheet to 800 to 950 캜 and water cooling; And
Tempering the water-cooled steel material at 550 to 660 DEG C for {1.5 x + (10 to 30)} minutes (t is the thickness of the steel material in mm);
A method for producing a low-temperature pressure vessel steel sheet excellent in resistance to PWHT.
The method according to claim 5, further comprising a step of PWHT for a maximum of 20 hours at 580 to 640 ° C after the tempering step.
6. The method according to claim 5, wherein the steel microstructure obtained by the tempering step comprises 25 to 80% by area of tempered bainite and residual tempered martensite. .
6. The method according to claim 5, wherein the steel microstructure obtained by the tempering step is composed of 30 to 70 area% of tempered bainite and residual tempered martensite. .
상기 열간 압연 공정에서 패스당 압하율은 5 ~ 30%인 것을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
6. The method of claim 5,
Wherein the reduction rate per pass in the hot rolling step is 5 to 30%.
상기 수냉공정에서 냉각속도는 2.5~30℃/sec인 것을 특징으로 하는 PWHT 저항성이 우수한 저온용 압력용기 강판의 제조방법.
6. The method of claim 5,
Wherein the cooling rate in the water-cooling step is 2.5 to 30 占 폚 / sec.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150183528A KR101758497B1 (en) | 2015-12-22 | 2015-12-22 | Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof |
US16/063,990 US20180371568A1 (en) | 2015-12-22 | 2016-11-03 | Steel plate having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same |
PCT/KR2016/012566 WO2017111290A1 (en) | 2015-12-22 | 2016-11-03 | Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same |
CN201680075744.7A CN108431272B (en) | 2015-12-22 | 2016-11-03 | Steel sheet for low-temperature pressure vessel having excellent resistance to PWHT and method for producing same |
EP16879157.2A EP3395984B1 (en) | 2015-12-22 | 2016-11-03 | Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same |
JP2018532673A JP6700400B2 (en) | 2015-12-22 | 2016-11-03 | Steel plate for low temperature pressure vessel having excellent PWHT resistance and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150183528A KR101758497B1 (en) | 2015-12-22 | 2015-12-22 | Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170075050A true KR20170075050A (en) | 2017-07-03 |
KR101758497B1 KR101758497B1 (en) | 2017-07-27 |
Family
ID=59090737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150183528A KR101758497B1 (en) | 2015-12-22 | 2015-12-22 | Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof |
Country Status (6)
Country | Link |
---|---|
US (1) | US20180371568A1 (en) |
EP (1) | EP3395984B1 (en) |
JP (1) | JP6700400B2 (en) |
KR (1) | KR101758497B1 (en) |
CN (1) | CN108431272B (en) |
WO (1) | WO2017111290A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190072362A (en) * | 2017-12-15 | 2019-06-25 | 주식회사 포스코 | Steel plate for pressure vessel having excellent tensile strength and low temperature impact toughness and method of manufacturing the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102031499B1 (en) | 2018-08-07 | 2019-10-11 | 주식회사 포스코 | Steel plate for pressure vessel having excellent strength and impact toughness after post weld heat treatment and method for manufacturing thereof |
KR102065276B1 (en) * | 2018-10-26 | 2020-02-17 | 주식회사 포스코 | Steel Plate For Pressure Vessel With Excellent Toughness and Elongation Resistance And Manufacturing Method Thereof |
KR102200225B1 (en) * | 2019-09-03 | 2021-01-07 | 주식회사 포스코 | Steel Plate For Pressure Vessel With Excellent Lateral Expansion And Manufacturing Method Thereof |
KR102280641B1 (en) * | 2019-10-22 | 2021-07-22 | 주식회사 포스코 | Steel plate for pressure vessel having excellent resistance for high-temperature post weld heat treatment, and method for manufacturing thereof |
CN112626417A (en) * | 2020-12-14 | 2021-04-09 | 南阳汉冶特钢有限公司 | Production method of low-cost 690 MPa-grade low-temperature anti-seismic steel |
CN113088807A (en) * | 2021-02-25 | 2021-07-09 | 舞阳钢铁有限责任公司 | High-toughness steel plate for low-temperature pressure container and production method thereof |
CN113549815B (en) * | 2021-06-25 | 2022-09-16 | 鞍钢股份有限公司 | Low-alloy steel plate for pressure vessel for low temperature and production method thereof |
CN115341152A (en) * | 2022-08-31 | 2022-11-15 | 鞍钢股份有限公司 | Nickel-saving type-100 ℃ low-temperature steel and manufacturing method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126727A (en) * | 1984-07-18 | 1986-02-06 | Nippon Kokan Kk <Nkk> | Manufacture of refined and thick-walled steel plate having >=80kgf/mm2 high tensile |
JP3526576B2 (en) * | 1993-08-04 | 2004-05-17 | 新日本製鐵株式会社 | Manufacturing method of high-strength steel with excellent weld strength and weld strength |
JP4267367B2 (en) | 2002-06-19 | 2009-05-27 | 新日本製鐵株式会社 | Crude oil tank steel and its manufacturing method, crude oil tank and its anticorrosion method |
JP5028760B2 (en) * | 2004-07-07 | 2012-09-19 | Jfeスチール株式会社 | Method for producing high-tensile steel plate and high-tensile steel plate |
FR2886314B1 (en) * | 2005-05-26 | 2007-07-20 | Industeel France | STEEL FOR SUBMARINE CASES WITH REINFORCED WELDABILITY |
KR100833071B1 (en) | 2006-12-13 | 2008-05-27 | 주식회사 포스코 | Steel plate for pressure vessel with ts 600mpa grade and excellent hic resistance and manufacturing method thereof |
EP2128288B1 (en) * | 2007-01-31 | 2013-10-09 | JFE Steel Corporation | High tensile steel products excellent in the resistance to delayed fracture and process for production of the same |
RU2493287C2 (en) * | 2008-12-26 | 2013-09-20 | ДжФЕ СТИЛ КОРПОРЕЙШН | Steel material with high resistance to initiation of ductile cracks from zone subjected to welding heat impact, and basic material, and their production method |
KR101322067B1 (en) * | 2009-12-28 | 2013-10-25 | 주식회사 포스코 | High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same |
EP2580357A1 (en) * | 2010-06-10 | 2013-04-17 | Tata Steel Nederland Technology B.V. | A method for producing a tempered martensitic heat resistant steel for high temperature applications |
JP6253974B2 (en) * | 2013-12-27 | 2017-12-27 | Jfeスチール株式会社 | Thick steel plate for reactor containment vessel with excellent brittle crack propagation stopping characteristics |
KR20150101734A (en) * | 2014-02-27 | 2015-09-04 | 현대제철 주식회사 | Steel for pressure vessel and method of manufacturing the steel |
-
2015
- 2015-12-22 KR KR1020150183528A patent/KR101758497B1/en active IP Right Grant
-
2016
- 2016-11-03 JP JP2018532673A patent/JP6700400B2/en active Active
- 2016-11-03 CN CN201680075744.7A patent/CN108431272B/en active Active
- 2016-11-03 US US16/063,990 patent/US20180371568A1/en not_active Abandoned
- 2016-11-03 WO PCT/KR2016/012566 patent/WO2017111290A1/en active Application Filing
- 2016-11-03 EP EP16879157.2A patent/EP3395984B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190072362A (en) * | 2017-12-15 | 2019-06-25 | 주식회사 포스코 | Steel plate for pressure vessel having excellent tensile strength and low temperature impact toughness and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP6700400B2 (en) | 2020-05-27 |
EP3395984A1 (en) | 2018-10-31 |
JP2019505672A (en) | 2019-02-28 |
CN108431272B (en) | 2020-07-28 |
KR101758497B1 (en) | 2017-07-27 |
WO2017111290A8 (en) | 2017-12-21 |
CN108431272A (en) | 2018-08-21 |
US20180371568A1 (en) | 2018-12-27 |
EP3395984B1 (en) | 2020-01-29 |
WO2017111290A1 (en) | 2017-06-29 |
EP3395984A4 (en) | 2018-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101758497B1 (en) | Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof | |
KR101657828B1 (en) | Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same | |
KR20090070484A (en) | High-strength and high-toughness thick steel plate and method for producing the same | |
CN108368591B (en) | Pressure vessel steel sheet having excellent resistance to post-weld heat treatment and method for manufacturing same | |
KR20180073074A (en) | Steel plate having excellent ultra low-temperature toughness and method for manufacturing same | |
KR20160063532A (en) | Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof | |
KR20200064510A (en) | The steel plate having excellent heat affected zone toughness and method for manufacturing thereof | |
CN108474089B (en) | Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same | |
KR101917444B1 (en) | Steel plate for pressure vessel having excellent resistance for high-temperature tempering and post weld heat treatment, and method for manufacturing same | |
KR102065276B1 (en) | Steel Plate For Pressure Vessel With Excellent Toughness and Elongation Resistance And Manufacturing Method Thereof | |
KR101546154B1 (en) | Oil tubular country goods and method of manufacturing the same | |
KR101568504B1 (en) | Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same | |
KR20160138771A (en) | Tmcp typed steel and method of manufacturing the same | |
KR101455458B1 (en) | Steel plate and method for manufacturing of the same | |
KR101166967B1 (en) | Steel plate with high strength and low temperature toughness and method of manufacturing the steel | |
KR101808440B1 (en) | Steel for inverted angle and method of manufacturing the same | |
US20190382865A1 (en) | Heavy-wall steel plate having 450mpa-grade tensile strength and excellent resistance to hydrogen induced cracking and method for manufacturing same | |
KR20150101735A (en) | Steel sheet and method of manufacturing the same | |
KR102200225B1 (en) | Steel Plate For Pressure Vessel With Excellent Lateral Expansion And Manufacturing Method Thereof | |
KR101482341B1 (en) | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same | |
KR101246466B1 (en) | METHOD OF MANUFACTURING EXCELLENT FORMABILITY HOT ROLLED STEEL SHEET HAVING 1000MPa GRADE AND HOT ROLLED STEEL SHEET FABRICATED USING THEREOF | |
US11692251B2 (en) | Pressure vessel steel sheet having excellent PWHT resistance, and manufacturing method therefor | |
KR101928153B1 (en) | High-strength steel sheet having superior toughness at cryogenic temperatures, and method for manufacturing same | |
KR101149251B1 (en) | HIGH STRENGTH STRUCTURAL STEEL OF TENSILE STRENGTH OF 650MPa GRADE WITH LOW YIELD RATIO AND METHOD OF MANUFACTURING THE HIGH STRENGTH STRUCTURAL STEEL | |
KR101715485B1 (en) | Steel plate with high strength and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |