KR101482341B1 - Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same - Google Patents
Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same Download PDFInfo
- Publication number
- KR101482341B1 KR101482341B1 KR20120153910A KR20120153910A KR101482341B1 KR 101482341 B1 KR101482341 B1 KR 101482341B1 KR 20120153910 A KR20120153910 A KR 20120153910A KR 20120153910 A KR20120153910 A KR 20120153910A KR 101482341 B1 KR101482341 B1 KR 101482341B1
- Authority
- KR
- South Korea
- Prior art keywords
- less
- steel sheet
- heat treatment
- post
- weld heat
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 64
- 239000010959 steel Substances 0.000 title claims abstract description 64
- 238000010438 heat treatment Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title description 18
- 238000003466 welding Methods 0.000 claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 229910052804 chromium Inorganic materials 0.000 claims description 16
- 238000001816 cooling Methods 0.000 claims description 16
- 238000005496 tempering Methods 0.000 claims description 12
- 229910052720 vanadium Inorganic materials 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 9
- 229910000734 martensite Inorganic materials 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 11
- 238000005245 sintering Methods 0.000 abstract description 3
- 239000011651 chromium Substances 0.000 description 28
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 25
- 239000010955 niobium Substances 0.000 description 18
- 239000010949 copper Substances 0.000 description 17
- 230000000694 effects Effects 0.000 description 13
- 239000010936 titanium Substances 0.000 description 13
- 229910052759 nickel Inorganic materials 0.000 description 11
- 239000011572 manganese Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 9
- 229910052750 molybdenum Inorganic materials 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- 229910052758 niobium Inorganic materials 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 229910000859 α-Fe Inorganic materials 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011733 molybdenum Substances 0.000 description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- 229910001563 bainite Inorganic materials 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000005275 alloying Methods 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
본 발명은 강재의 후물화 및 용접부 조건의 가혹화 환경에도, 강도와 인성이 저하되지 않는 용접 후 열처리(Post Weld Heat Treatment, PWHT) 저항성이 우수한 강판을 제공하고자 하는 것이다.An object of the present invention is to provide a steel sheet excellent in resistance to post-weld heat treatment (PWHT) that does not deteriorate strength and toughness even in a severe environment of post-sintering of a steel material and a severe welding condition.
Description
본 발명은 용접후 열처리 저항성이 우수한 압력용기용 강판 및 그 제조방법에 관한 것이다.
The present invention relates to a steel sheet for a pressure vessel excellent in resistance to heat treatment after welding, and a method of manufacturing the same.
최근 석유의 품귀 현상 및 고유가 시대를 맞이하여 열악한 환경의 유전이 활발하게 개발되는 추세에 따라 원유의 정제 및 저장용 강재에 대하여 후물화가 이루어지고 있다.
In recent years, due to the scarcity of petroleum and the trend of active development of harsh environment oilfields in response to the era of high oil prices, the refining and storage steel of crude oil are being refined.
상기와 같은 강재의 후물화 이외에도 강재를 용접한 경우에 용접 후 구조물의 변형을 방지하고, 형상 및 치수를 안정시키기 위한 목적으로, 용접시 발생된 응력을 제거하기 위하여, 용접 후 열처리(PWHT, Post Weld Heat Treatment)를 행하게 된다. 그러나 장시간의 PWHT 공정을 행한 강판은 그 조직의 조대화로 인하여 강판의 인장강도가 저하되는 문제가 있다.
In order to prevent the deformation of the post-weld structure and to stabilize the shape and the dimension in the case of welding the steel material in addition to the post-welding of the steel material as described above, post-welding heat treatment (PWHT, Post Weld Heat Treatment). However, the steel sheet subjected to the PWHT process for a long time has a problem that the tensile strength of the steel sheet is lowered due to the coarsening of the structure.
즉, 장시간 PWHT 후에는 기지조직(Matrix) 및 결정립계의 연화, 결정립 성장, 탄화물의 조대화 등에 따라 강도 및 인성이 동시에 저하되는 현상을 초래하게 된다.
That is, after the PWHT for a long time, strength and toughness are simultaneously lowered due to softening of matrix and grain boundaries, grain growth, coarsening of carbide, and the like.
상기 장시간 PWHT 열처리에 따른 물성의 저하를 방지하기 위한 수단으로 특허문헌 1은 중량%로,C: 0.05∼0.20%,Si: 0.02∼0.5%,Mn: 0.2∼2.0%,Al: 0.005∼0.10%,필요에 따라 Cu,Ni,Cr,Mo,V,Nb,Ti,B,Ca,희토류 원소 중 1 종 또는 2종 이상을 함유하고,잔부가 철 및 불가피한 불순물로 된 슬래브를 가열 및 열간 압연을 행한 후,실온에서 공냉하고,Ac1∼Ac3 변태점에서 가열하고 서냉하는 공정에 의해, PWHT 보증시간을 16시간까지 가능하게 하였다.
As a means for preventing the deterioration of physical properties due to the long-time PWHT heat treatment, Patent Document 1 discloses a steel containing 0.05 to 0.20% of C, 0.02 to 0.5% of Si, 0.2 to 2.0% of Mn, 0.005 to 0.10% , A slab containing at least one of Cu, Ni, Cr, Mo, V, Nb, Ti, B, Ca and rare earth elements and at least one of iron and unavoidable impurities is heated and hot rolled After air cooling at room temperature, heating at the Ac1 to Ac3 transformation point and gradual cooling, the PWHT assurance time was made possible up to 16 hours.
그러나, 상기 기술에 나타난 PWHT 보증 시간은 후물화 및 용접부 조건이 가혹한 경우에는 매우 부족하며, 그 이상의 장시간 PWHT의 적용은 불가능한 문제점을 갖고 있다.
However, the PWHT guarantee time shown in the above-mentioned technique is very insufficient when the post-welding and welding conditions are severe, and it is impossible to apply the PWHT for a longer period of time.
따라서, 강재의 후물화 및 용접부 조건의 가혹화에 동반되어, 장시간의 PWHT 후에도 강도와 인성이 저하되지 않는 PWHT에 대한 저항성이 큰 강재가 요구되고 있다.
Therefore, there is a demand for a steel material having high resistance to PWHT which does not deteriorate in strength and toughness even after PWHT for a long time, accompanied by post-sintering of the steel material and severe welding conditions.
본 발명은 강재의 후물화 및 용접부 조건의 가혹화 환경에도, 강도와 인성이 저하되지 않는 용접 후 열처리(Post Weld Heat Treatment, PWHT) 저항성이 우수한 강판을 제공하고자 하는 것이다.
An object of the present invention is to provide a steel sheet excellent in resistance to post-weld heat treatment (PWHT) that does not deteriorate strength and toughness even in a severe environment of post-sintering of steel materials and welding conditions.
본 발명의 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 템퍼드 마르텐사이트를 주상으로 포함하는 미세조직을 가지는 것을 특징으로 한다.
A steel sheet for a pressure vessel excellent in post-weld heat treatment resistance, which is one aspect of the present invention, comprises 0.05 to 0.15% of C, 0.15 to 0.5% of Si, 1.0 to 1.6% of Mn, 0.001 to 0.03% of Ti, 0.001 to 0.05% of Ti, 0.001 to 0.03% of Al, 0.0015 to 0.05% of Al, 0.01 to 0.25% of Cr, 0.005 to 0.3% of Mo, 0.005 to 0.06% of V, And the balance Fe and inevitable impurities, and the tempered martensite containing 0.6% Cu, 0.01-0.35% Cu + Ni + Cr + Mo 1.0% or less, Cr + Mo 0.4% or less, V + And has a microstructure containing a site as a column.
본 발명의 다른 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃의 온도범위로 가열하는 단계, 상기 가열된 강 슬라브를 800~900℃에서 압연을 종료하는 열간압연하는 단계, 상기 열간압연된 열연강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 3~60℃/sec의 냉각속도로 냉각하는 단계 및 상기 냉각된 강판을 10~30분 동안 템퍼링 하는 단계를 포함한다.
A method for producing a steel sheet for a pressure vessel excellent in post-weld heat treatment resistance, which is another aspect of the present invention, comprises 0.05 to 0.15% of C, 0.15 to 0.5% of Si, 1.0 to 1.6% of Mn, 0.03% 0.005 to 0.06% of Mo, 0.005 to 0.06% of Nb, 0.005 to 0.03% of Nb, 0.001 to 0.05% of Ti, 0.005 to 0.06% of Cr, 0.01 to 0.25% of Cr, Ni: 0.05 to 0.6%, Cu: 0.01 to 0.35%, Cu + Ni + Cr + Mo: not more than 1.0%, Cr + Mo: not more than 0.4%, V + Nb: not more than 0.1% Heating the steel slab to a temperature range of 1050 to 1250 占 폚, hot rolling the hot slab to finish rolling at 800 to 900 占 폚, heating the hot-rolled steel sheet to 1 / 4T (T: Thickness) at a cooling rate of 3 to 60 DEG C / sec, and tempering the cooled steel sheet for 10 to 30 minutes.
덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.
In addition, the solution of the above-mentioned problems does not list all the features of the present invention. The various features of the present invention and the advantages and effects thereof will be more fully understood by reference to the following specific embodiments.
본 발명에 따르면, 600MPa급 이상의 강도를 가지면서, 장시간이 흐른 뒤에도 PWHT의 강도 및 인성이 열화되지 않는 열처리 저항성이 우수한 압력용기용 강판을 제공하는 효과가 있다. According to the present invention, it is possible to provide a steel sheet for a pressure vessel excellent in heat treatment resistance that does not deteriorate the strength and toughness of PWHT even after a long period of time while having a strength of 600 MPa or more.
본 발명자들은 용접 후 열처리 저항성이 우수한 강판을 도출해내기 위하여 연구를 행한 결과, 강판의 성분계와 제조조건을 적절히 제어하여, 강판의 미세조직을 템퍼드 마르텐사이트의 혼합조직으로 제어함으로써, 강판의 후물화 및 장시간의 PWHT 후에도 강도와 인성이 저하되지 않는 PWHT에 대한 저항성이 큰 강판을 생산할 수 있음을 확인하고 본 발명에 이르게 되었다.
The inventors of the present invention conducted research to derive a steel sheet excellent in post-weld heat treatment resistance. As a result, it was found that by controlling the microstructure of the steel sheet to a mixed structure of tempered martensite by appropriately controlling the composition system and the manufacturing conditions of the steel sheet, And a steel sheet with high resistance to PWHT which does not deteriorate in strength and toughness even after prolonged PWHT can be produced, leading to the present invention.
이하, 본 발명의 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판에 대하여 상세히 설명한다.
Hereinafter, a steel sheet for a pressure vessel excellent in post-weld heat treatment resistance, which is one aspect of the present invention, will be described in detail.
본 발명의 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고, 템퍼드 마르텐사이트를 주상으로 포함하는 미세조직을 가지는 것을 특징으로 한다.
A steel sheet for a pressure vessel excellent in post-weld heat treatment resistance, which is one aspect of the present invention, comprises 0.05 to 0.15% of C, 0.15 to 0.5% of Si, 1.0 to 1.6% of Mn, 0.001 to 0.03% of Ti, 0.001 to 0.05% of Ti, 0.001 to 0.03% of Al, 0.0015 to 0.05% of Al, 0.01 to 0.25% of Cr, 0.005 to 0.3% of Mo, 0.005 to 0.06% of V, And the balance Fe and inevitable impurities, and the tempered martensite containing 0.6% Cu, 0.01-0.35% Cu + Ni + Cr + Mo 1.0% or less, Cr + Mo 0.4% or less, V + And has a microstructure containing a site as a column.
탄소(C): 0.05~0.15중량%Carbon (C): 0.05 to 0.15 wt%
탄소는 강을 강화시키는데 가장 효과적인 원소이나, 다량 첨가되는 경우 용접성 및 저온인성을 저하시키는 원소이다. C의 함량이 0.05중량%미만인 경우에는 기지 상의 자체적인 강도가 저하된다. 반면에, C의 함량이 0.15중량%를 초과하는 경우에는 용접성 및 저온인성이 열화되기 때문에 바람직하지 않다. 따라서, 상기 탄소는 0.05~0.15중량%로 포함되는 것이 바람직하다.
Carbon is the most effective element for strengthening the steel, but it is an element that reduces the weldability and low-temperature toughness when added in large amounts. When the content of C is less than 0.05% by weight, the strength of the matrix itself decreases. On the other hand, when the content of C exceeds 0.15% by weight, the weldability and low-temperature toughness deteriorate, which is not preferable. Therefore, it is preferable that the carbon is contained in an amount of 0.05 to 0.15% by weight.
실리콘(Si): 0.15~0.5 중량%Silicon (Si): 0.15-0.5 wt%
실리콘은 탈산제로 사용되고, 고용강화에 의한 강도 향상 및 충격 천이 온도 상승효과를 위하여 첨가되는 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여, 0.15중량%이상 포함되는 것이 바람직하다. 그러나, 실리콘의 함량이 0.5중량%를 초과하는 경우에는 용접성이 저하되고, 강판 표면에 산화 피막이 심하게 형성되는 문제점이 있다. 따라서, 상기 실리콘은 0.15~0.5중량%로 포함되는 것이 바람직하다.
Silicon is used as a deoxidizing agent and is an element added for strength enhancement by solid solution strengthening and effect of increasing impact transition temperature. In order to exhibit such an effect in the present invention, it is preferable that 0.15% by weight or more is contained. However, when the content of silicon exceeds 0.5% by weight, the weldability is deteriorated, and there is a problem that an oxide film is formed on the surface of the steel sheet. Accordingly, it is preferable that the silicon is contained in an amount of 0.15 to 0.5% by weight.
망간(Mn): 1.0~1.6 중량%Manganese (Mn): 1.0 to 1.6 wt%
망간은 강을 고용강화시키는데 효과적인 원소이다. 따라서, 적절한 강도 확보를 위해서는 1.0중량% 이상 첨가하는 것이 바람직하다. 그러나, 다량 첨가할 경우에는 황(S)과 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 1.6중량%이하로 관리하는 것이 바람직하다. 따라서, 상기 망간은 1.0~1.6중량%로 포함되는 것이 바람직하다.
Manganese is an effective element in enhancing the employment of steel. Therefore, it is preferable to add 1.0 wt% or more to ensure adequate strength. However, when a large amount is added, MnS, which is a non-metallic inclusion drawn with sulfur (S), is formed to lower the room temperature elongation and low temperature toughness. Accordingly, it is preferable that the manganese is contained in an amount of 1.0 to 1.6% by weight.
알루미늄(Al): 0.015~0.05중량%,Aluminum (Al): 0.015 to 0.05% by weight,
알루미늄은 제강시 Si과 함께 탈산제로 첨가되며, 고용강화 효과가 있다. 상기 알루미늄의 함량이 0.015중량% 미만인 경우에는 본 발명에서 의도하고자 하는 탈산효과를 확보할 수 없다. 반면에, 0.05중량%를 초과하는 경우에는 탈산효과가 포화되고, 제조원가가 상승하는 문제점이 있다. 따라서, 상기 알루미늄은 0.015~0.05중량%로 포함되는 것이 바람직하다.
Aluminum is added as a deoxidizer together with Si during steelmaking, and has an effect of strengthening the solid solution. If the content of aluminum is less than 0.015 wt%, the deoxidation effect to be intended in the present invention can not be secured. On the other hand, if it exceeds 0.05% by weight, the effect of deoxidation is saturated and the production cost increases. Accordingly, it is preferable that the aluminum is contained in an amount of 0.015 to 0.05% by weight.
크롬(Cr): 0.01~0.25중량%Cr (Cr): 0.01 to 0.25 wt%
크롬은 강도를 증가시키는 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여 0.01중량% 이상 포함되는 것이 바람직하다. 그러나, 고가의 원소인 크롬이 0.25중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 크롬은 0.01~0.25중량%로 포함되는 것이 바람직하다.Chromium is an element that increases strength. In order to exhibit such an effect in the present invention, it is preferable that it is contained in an amount of 0.01 wt% or more. However, when chromium, which is an expensive element, is added in an amount exceeding 0.25 wt%, the manufacturing cost is increased. Therefore, it is preferable that the chromium is contained in an amount of 0.01 to 0.25% by weight.
몰리브덴(Mo): 0.005~0.3중량%Molybdenum (Mo): 0.005 to 0.3 wt%
몰리브덴은 Cr과 마찬가지로, 소재의 강도를 강화시키는 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여 0.005중량% 이상 포함되는 것이 바람직하다. 그러나, 고가의 원소인 몰리브덴이 0.3중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 몰리브덴은 0.005~0.3중량%로 포함되는 것이 바람직하다.
Molybdenum, like Cr, is an element that strengthens the strength of the material. In order to exhibit such an effect in the present invention, it is preferable that it is contained in an amount of 0.005% by weight or more. However, when molybdenum, which is an expensive element, is added in an amount exceeding 0.3% by weight, the manufacturing cost increases. Accordingly, it is preferable that the molybdenum is included in an amount of 0.005 to 0.3% by weight.
바나듐(V): 0.005~0.06중량%Vanadium (V): 0.005 to 0.06 wt%
바나듐은 Cr 및 Mo과 같이 강도의 증대에 효과적인 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여 0.005중량% 이상 포함되는 것이 바람직하다. 그러나 고가의 원소인 바나듐이 0.06중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 바나듐은 0.005~0.06중량%로 포함되는 것이 바람직하다.
Vanadium is an effective element for increasing the strength such as Cr and Mo. In order to exhibit such an effect in the present invention, it is preferable that it is contained in an amount of 0.005% by weight or more. However, when vanadium, which is an expensive element, is added in an amount exceeding 0.06 wt%, the manufacturing cost is increased. Accordingly, it is preferable that the vanadium is contained in an amount of 0.005 to 0.06% by weight.
니오븀(Nb): 0.005~0.03중량%Niobium (Nb): 0.005 to 0.03 wt%
니오븀은 열간압연시 오스테나이트 결정립을 미세화시키는데 아주 효과적이며 동시에 기지(Matrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출됨으로써, 강도를 증가시키는 중요한 원소이다. 본 발명에서 의도하고자 하는 효과를 나타내기 위하여 0.005중량% 이상 포함되는 것이 바람직하다. 니오븀은 함량이 증대할수록 연주 과정에서 조대한 석출물로 나타나 인성저하를 가져올 수 있으므로, 그 상한은 0.03중량%로 한정하는 것이 바람직하다. 따라서, 상기 니오븀은 0.005~0.03중량%로 포함되는 것이 바람직하다.
Niobium is an effective element for finely austenitic grain refinement during hot rolling, and it is an important element for increasing strength by precipitating into carbonitride (Nb (C, N)) which matches the matrix. It is preferable that the content is 0.005% by weight or more in order to exhibit the intended effect of the present invention. As the content of niobium increases, it may appear as a coarse precipitate in the performance process, resulting in deterioration of toughness. Therefore, the upper limit is preferably limited to 0.03 wt%. Accordingly, it is preferable that the niobium is contained in an amount of 0.005 to 0.03% by weight.
티타늄(Ti): 0.001~0.05중량%Titanium (Ti): 0.001 to 0.05 wt%
티타늄은 Nb과 같이 탄질화물(Ti(C,N))을 형성하여 슬라브의 가열 및 열간압연 과정에서 오스케나이트 결정립 성장을 억제하여 최종 조직 입도를 미세화시킴으로써 강의 인성을 향상시키는데 큰 역할을 하는 원소이다. 이러한 효과를 나타내기 위하여, 0.001중량% 이상 포함하는게 바람직하다. 그러나, 티타늄의 함량이 증대할수록 연주 과정에서 조대한 석출물로 나타나 인성저하를 가져올 수 있으므로, 그 상한은 0.05중량%로 한정하는 것이 바람직하다. 따라서, 상기 티타늄은 0.001~0.05중량%로 포함되는 것이 바람직하다.
Titanium plays an important role in improving the toughness of steel by forming carbonitride (Ti (C, N)) like Nb and refining os- kenite crystal grain growth during heating and hot rolling of the slab, . In order to exhibit such an effect, it is preferable to contain 0.001 wt% or more. However, as the content of titanium increases, the toughness may appear as a coarse precipitate during the performance process, and therefore, the upper limit is preferably limited to 0.05 wt%. Accordingly, the titanium is preferably contained in an amount of 0.001 to 0.05 wt%.
니켈(Ni): 0.05~0.6중량%Nickel (Ni): 0.05 to 0.6 wt%
니켈은 강도와 인성을 동시에 향상시키는 원소로서, 본 발명에서도 후물재의 강도 확보 및 취성파괴 정지 특성을 향상시키는데 중요한 역할을 할 수 있다. 이러한 효과를 나타내기 위하여, 0.05중량% 이상 포함하는게 바람직하다. 니켈은 첨가량이 증대할수록 강도와 인성이 향상되나, 고가이며 첨가량 증대에 따라 강도와 인성이 비례적으로 증가하지는 않으므로 그 상한은 0.6중량%로 한정하는 것이 바람직하다. 따라서, 상기 니켈은 0.05~0.6중량%로 포함되는 것이 바람직하다.
Nickel is an element that simultaneously improves strength and toughness. In the present invention, nickel can play an important role in securing strength of a post material and improving brittle fracture stopping properties. In order to exhibit such an effect, it is preferable to contain 0.05 wt% or more. The strength and toughness of nickel are increased as the amount of nickel is increased. However, since the strength and toughness do not increase proportionally as the amount of nickel is increased, the upper limit is preferably limited to 0.6 wt%. Therefore, it is preferable that the nickel is included in an amount of 0.05 to 0.6% by weight.
구리(Cu): 0.01~0.35중량%Copper (Cu): 0.01 to 0.35 wt%
구리는 고용강화 원소로 작용하여 강도상승에 기여한다. 본 발명에서 이러한 효과를 나타내기 위하여 0.01중량% 이상 포함하는게 바람직하다. 그러나, 고가의 원소인 구리가 0.35중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 구리는 0.01~0.35중량%로 포함되는 것이 바람직하다.
Copper serves as an employment strengthening element and contributes to the strength increase. In order to exhibit such effects in the present invention, it is preferable to contain 0.01 wt% or more. However, when copper, which is an expensive element, is added in an amount exceeding 0.35% by weight, the manufacturing cost is increased. Accordingly, the copper is preferably contained in an amount of 0.01 to 0.35% by weight.
본 발명의 강재는 압력용기용 강재로 사용할 수 있으므로 이를 고려할 경우 하기 Cu, Ni, Cr, Mo, V, Nb 등의 원소들의 함량은 다음의 관계를 만족하는 것이 바람직하다.
The steel material of the present invention can be used as a steel material for a pressure vessel. Therefore, it is preferable that the content of elements such as Cu, Ni, Cr, Mo, V, and Nb satisfy the following relationship.
Cu + Ni + Cr + Mo: 1.0중량% 이하Cu + Ni + Cr + Mo: 1.0% or less
Cr + Mo: 0.4중량% 이하Cr + Mo: 0.4% or less
V + Nb: 0.1중량% 이하V + Nb: 0.1% by weight or less
즉, Cu + Ni + Cr + Mo, Cr + Mo 및 V + Nb의 관계는 압력용기용 강재의 기본 규격(ASTM A20)에서 각각 제한하고 있는 수치로서, 이에 따라 Cu + Ni + Cr + Mo함량은 1.0중량% 이하로, Cr + Mo함량은 0.4중량% 이하로, 그리고 V +Nb함량은 0.1중량% 이하로 제한한다. 다만, 본 발명의 실시태양에 따라 포함되지 않은 합금 원소는 0으로 계산할 수 있다.
That is, the relationship between Cu + Ni + Cr + Mo, Cr + Mo and V + Nb is a numerical value limited by the basic standard (ASTM A20) 1.0 wt% or less, Cr + Mo content is 0.4 wt% or less, and V + Nb content is 0.1 wt% or less. However, alloying elements not included according to embodiments of the present invention may be calculated as zero.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
The remainder of the present invention is iron (Fe). However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.
다만, 그 중 인 및 황은 일반적으로 많이 언급되는 불순물이기 때문에 이에 대하여 간략히 설명하면 다음과 같다.
However, since phosphorus and sulfur are generally referred to as impurities, a brief description thereof is as follows.
인(P): 0.03중량% 이하Phosphorus (P): 0.03% by weight or less
상기 인은 불가피하게 함유되는 불순물로써, 주로 강판의 중심부에 편석되어 인성을 저하하기 때문에 후물재의 중심부 저온충격인성을 확보하기 위해서는 가능한 한 낮게 제어하는 것이 바람직하다. 이론상 인의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 인 함량의 상한은 0.03중량%로 한정하는 것이 바람직하다.
The phosphorus is an impurity inevitably contained and is mainly segregated at the center of the steel sheet to lower the toughness. Therefore, it is preferable to control the phosphorus content as low as possible in order to secure the low-temperature impact toughness at the center of the post-material. Theoretically, it is preferable to limit the phosphorus content to 0%, but it is inevitably contained inevitably in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is preferably limited to 0.03 wt%.
황(S): 0.03중량% 이하 Sulfur (S): 0.03 wt% or less
황은 불가피하게 함유되는 불순물로써, Mn등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 저온충격인성에 크게 손상시키기 때문에 그 함량을 최대한 억제하는 것이 바람직하다. 이론상 황의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서 상기 황 함량의 상한은 0.03중량%로 한정하는 것이 바람직하다.
Sulfur is an inevitably contained impurity, which is combined with Mn or the like to form a nonmetallic inclusion, thereby greatly impairing the low-temperature impact toughness of the steel. Therefore, it is desirable to suppress the content to the maximum. Theoretically, it is advantageous to limit the content of sulfur to 0%, but it is inevitably contained inevitably in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the sulfur content is preferably limited to 0.03% by weight.
또한, 강판의 미세조직은 주상으로 템퍼드 마르텐사이트 조직을 포함할 수 있다. 상기 템퍼드 마르텐사이트는 면적분율%로, 50% 이상인 것이 바람직하다. 상기 템퍼드 마르텐사이트의 면적분율이 50% 이상 포함되는 경우에는 높은 인장강도를 확보할 수 있다.
Further, the microstructure of the steel sheet may include a tempered martensite structure as a main phase. Preferably, the tempered martensite has an area fraction percentage of 50% or more. When the area fraction of the tempered martensite is 50% or more, a high tensile strength can be secured.
조직을 상술한 형태로 제어하는 이유는 본 발명에서 대상으로 하는 용접 후 열처리 저항성이 우수하고 적절한 강도와 인성을 가지도록 하기 위함이다.
The reason why the structure is controlled in the above-described manner is that the post-weld heat treatment resistance of the present invention is excellent and the steel has appropriate strength and toughness.
상기 강판은 50시간 용접후 열처리(Post Weld Heat Treatment, PWHT)에도 인장강도가 600MPa 이상이고, -60℃에서의 샤르피 충격 에너지 값이 100J이상인 것이 바람직하다.
It is preferable that the steel sheet has a tensile strength of 600 MPa or more and a Charpy impact energy value at -60 캜 of 100 J or more even after heat treatment (Post Weld Heat Treatment, PWHT) for 50 hours.
이하, 본 발명의 다른 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법에 대하여 상세히 설명한다.
Hereinafter, a method for manufacturing a steel sheet for a pressure vessel excellent in post-weld heat treatment resistance, which is another aspect of the present invention, will be described in detail.
본 발명의 다른 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃의 온도범위로 가열하는 단계, 상기 가열된 강 슬라브를 800~900℃에서 압연을 종료하는 열간압연하는 단계, 상기 열간압연된 열연강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 3~60℃/sec의 냉각속도로 냉각하는 단계 및 상기 냉각된 강판을 10~30분 동안 템퍼링 하는 단계를 포함한다.
A method for producing a steel sheet for a pressure vessel excellent in post-weld heat treatment resistance, which is another aspect of the present invention, comprises 0.05 to 0.15% of C, 0.15 to 0.5% of Si, 1.0 to 1.6% of Mn, 0.03% 0.005 to 0.06% of Mo, 0.005 to 0.06% of Nb, 0.005 to 0.03% of Nb, 0.001 to 0.05% of Ti, 0.005 to 0.06% of Cr, 0.01 to 0.25% of Cr, Ni: 0.05 to 0.6%, Cu: 0.01 to 0.35%, Cu + Ni + Cr + Mo: not more than 1.0%, Cr + Mo: not more than 0.4%, V + Nb: not more than 0.1% Heating the steel slab to a temperature range of 1050 to 1250 占 폚, hot rolling the hot slab to finish rolling at 800 to 900 占 폚, heating the hot-rolled steel sheet to 1 / 4T (T: Thickness) at a cooling rate of 3 to 60 DEG C / sec, and tempering the cooled steel sheet for 10 to 30 minutes.
가열단계Heating step
상술한 성분계를 만족하는 슬라브를 1050~1250℃에서 가열하는 것이 바람직하다. 본 발명은 용접 후 열처리 저항성이 우수하면서 높은 강도 및 인성을 갖는 페라이트와 베이나이틱 페라이트 혼합조직강을 구현하는 것이다. 가열온도가 1050℃미만인 경우에는 용질원자의 고용이 어렵다. 반면에, 가열온도가 1250℃를 초과하는 경우에는 조대 TiN 석출로 인하여 오스케나이트가 조대화되거나 혼립 오스테나이트 조직이 생성될 수 있으며, 이러한 조대 오스테나이트는 조압연시 재결정되기 어려우며, 주로 연신된 상태로 남아있게 되어, 강판의 성질을 해친다. 그러므로 슬라브의 가열온도는 1050~1250℃로 한정하는 것이 바람직하다.
It is preferable to heat the slab satisfying the above-mentioned component system at 1050 to 1250 占 폚. The present invention is to realize a ferritic and bainite ferrite mixed structure steel having high strength and toughness with excellent heat treatment resistance after welding. When the heating temperature is lower than 1050 占 폚, solid solute hardness is difficult. On the other hand, when the heating temperature exceeds 1250 DEG C, coarse austenite structure may be formed due to coarse TiN precipitation due to coarse TiN precipitation, and such coarse austenite is difficult to recrystallize during rough rolling, , Thereby deteriorating the properties of the steel sheet. Therefore, the heating temperature of the slab is preferably limited to 1050 to 1250 ° C.
열간압연단계Hot rolling step
상기와 같이 가열된 슬라브를 열간압연을 실시할 수 있다. 상기 열간압연은 800~900℃온도범위에서 종료하는 것이 바람직하다. 상기 열간압연의 종료온도가 800℃미만인 경우에는 소입성의 부족으로 본 발명이 확보하고자 하는 강도를 확보하지 못한다. 반면에, 압연 종료온도가 900℃를 초과하는 경우에는 결정립의 크기가 조대하여 인성을 저하시킨다.
The heated slab may be subjected to hot rolling. It is preferable that the hot rolling is finished within a temperature range of 800 to 900 占 폚. If the finish temperature of the hot rolling is less than 800 ° C., the strength to be secured by the present invention can not be secured due to the lack of incombustibility. On the other hand, when the rolling finish temperature exceeds 900 DEG C, the grain size deteriorates the toughness.
또한, 압하율은 패스당 5~30%로 제어하는 것이 바람직하다. 미재결정 압연은 압연방향으로 오스테나이트 조직을 연신시키면서 내부에 변형대를 형성하여 미세 페라이트와 베이나이틱 페라이트를 형성하기 위하여 실시한다. 이에, 본 발명이 확보하고자 하는 미세조직을 확보하기 위해서는 패스당 5~30%의 압하율로 제어하는 것이 바람직하다.
It is preferable that the reduction rate is controlled to 5 to 30% per pass. The non-recrystallized rolling is carried out in order to form micro-ferrite and bainite ferrite by forming a deformation band inside while stretching the austenite structure in the rolling direction. Therefore, in order to secure the microstructure to be secured by the present invention, it is preferable to control the reduction rate by 5 to 30% per pass.
냉각단계Cooling step
상기와 같이 압연된 강판은 냉각하는 것이 바람직하다. 상기 압연된 강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 3~60℃/sec의 냉각속도로 200℃ 이하의 온도범위까지 냉각하는 것이 바람직하다. 상기 냉각속도가 3℃/sec미만인 경우에는 냉각능이 부족하여 과다한 페라이트 조직이 형성될 수 있다. 반면에, 60℃/sec를 초과하는 경우에는 부가적인 설비가 필요하여 생산성이 저하된다.
The rolled steel sheet is preferably cooled. It is preferable to cool the rolled steel sheet to a temperature range of 200 DEG C or less at a cooling rate of 3 to 60 DEG C / sec on the basis of a cooling rate of 1 / 4T (T: thickness of the steel sheet). If the cooling rate is less than 3 DEG C / sec, the cooling ability is insufficient and an excessive ferrite structure may be formed. On the other hand, when it exceeds 60 ° C / sec, additional equipment is required and the productivity is lowered.
템퍼링Tempering 단계 step
상기와 같이 냉각된 강판을 템퍼링 열처리 하는 것이 바람직하다. 또한, 상기 템퍼링은 10~30분 동안 행하는 것이 바람직하다. 상기 템퍼링을 10분 미만으로 행하는 경우에는 조직의 균질화가 어렵다. 반면에, 30분을 초과하는 경우에는 생산성이 저하되는 문제가 있다. 상기 템퍼링은 600~700℃의 온도범위에서 행하는 것이 보다 바람직하다. 상기 템퍼링 온도가 600℃ 미만인 경우에는 인성확보가 어렵다. 반면에, 700℃를 초과하는 경우에는 석출의 성장이 일어나 강도 및 저온 인성을 해치게 된다.
The steel sheet thus cooled is preferably subjected to a tempering heat treatment. The tempering is preferably performed for 10 to 30 minutes. When the above tempering is performed for less than 10 minutes, homogenization of the structure is difficult. On the other hand, if it exceeds 30 minutes, there is a problem that the productivity is lowered. More preferably, the tempering is performed in a temperature range of 600 to 700 占 폚. When the tempering temperature is less than 600 ° C, it is difficult to secure toughness. On the other hand, if it exceeds 700 ° C, precipitation grows and the strength and low-temperature toughness are deteriorated.
상기 강판은 이후 아래와 같은 조건으로 용접 및 용접후 열처리를 행할 수 있다.
The steel sheet can be subjected to heat treatment after welding and welding under the following conditions.
상기와 같이 냉각된 강판은 압력용기의 제작시 부가되는 용접공정에 의해 잔류응력의 제거 등을 위하여 PWHT 처리가 필요하다. 일반적으로 장시간 PWHT 열처리 이후에는 강도 및 인성의 열화가 발생되는데, 상기 본 발명에 의해 제조된 강판은 통상적인 PWHT 온도 조건인 590~640℃에서 장시간(50시간 이하) 실시하여도 강도 및 인성의 큰 저하 없이 용접시공이 가능하다는 장점을 가지고 있다. 특히, 본 발명의 강판은 50시간의 PWHT 후에도 550MPa 이상의 인장강도를 갖고, -60℃에서의 샤르피 충격 에너지 값이 100J 이상을 만족한다.
The PWHT treatment is required to remove the residual stress by the welding process added at the time of manufacturing the pressure vessel. Generally, after the PWHT heat treatment for a long time, the strength and toughness deteriorate. The steel sheet produced by the present invention has a high strength and toughness even when it is subjected to a long PWHT temperature condition (590 to 640 ° C) And can be welded without deterioration. In particular, the steel sheet of the present invention has a tensile strength of 550 MPa or more even after 50 hours of PWHT, and satisfies a Charpy impact energy value of-100 C or more at -60 캜.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.
(실시예)(Example)
하기 표 1에는 발명예 1 내지 4와 비교예1 및 2의 성분을 각각 나타낸 것이다. 표 1과 같은 조성을 갖는 강 슬라브를 1100℃에서 가열을 행한 후, 하기 표 2에 기재되어 있는 조건으로 열간압연, 냉각, 템퍼링 및 PWHT를 실시하였다. 상기 제조된 시편을 항복강도(YS), 인장강도(TS) 및 -60℃에서의 충격인성을 평가하여 하기 표 2에 함께 나타내었다.
Table 1 shows the components of Inventive Examples 1 to 4 and Comparative Examples 1 and 2, respectively. Steel slabs having compositions as shown in Table 1 were heated at 1100 占 폚 and subjected to hot rolling, cooling, tempering and PWHT under the conditions shown in Table 2 below. The yield strength (YS), tensile strength (TS) and impact toughness at -60 캜 of the prepared specimens were evaluated together in Table 2 below.
이때, 강도 및 인성은 강판의 두께방향 1/4T(T: Thickness, ㎜)지점에서 인장 및 충격 시편을 채취하여 평가한 것이다. 또한, -60℃에서의 충격인성은 -60℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격 에너지값으로 평가한 것이다.In this case, the strength and toughness were evaluated by taking tensile and impact specimens at a thickness of 1 / 4T (T: Thickness, mm) in the steel sheet. The impact toughness at -60 캜 was evaluated by the Charpy impact energy value obtained by performing the Charpy impact test on the specimen having the V notch at -60 캜.
두께
(mm)Steel plate
thickness
(mm)
(℃)Rolling end temperature
(° C)
(℃)Cooling end temperature
(° C)
(℃/초)Cooling rate
(° C / sec)
(℃)Tempering temperature
(° C)
(℃)PWHT temperature
(° C)
(Hr)PWHT time
(Hr)
(MPa)YS
(MPa)
(MPa)TS
(MPa)
(J)Impact toughness at -60 ° C
(J)
상기 표 1 및 표 2의 결과에서 알 수 있는 바와 같이, 본 발명의 조성 및 제조조건을 만족하는 발명예 1 내지 3은 PWHT 시간이 25시간 이상 50시간에 이르게 되어도, 강도와 인성이 크게 저하되지 않는 것에 비해, 비교예 1 및 2는 조성은 미세조직이 상이하고, 제조조건을 벗어나는 것으로서, 발명예1 내지 4와 비교할 때, 강도와 인성이 현저히 열화되는 것을 확인할 수 있었다.
As can be seen from the results of Table 1 and Table 2, Examples 1 to 3 satisfying the composition and production conditions of the present invention showed that even if the PWHT time was from 25 hours to 50 hours, Comparative Examples 1 and 2 are different from each other in the composition of the microstructure and deviate from the production conditions. As a result, it is confirmed that the strength and toughness are markedly deteriorated as compared with Inventive Examples 1 to 4.
특히, 발명예 1 내지 3에서는 50시간의 PWHT후에도 저온 인성값의 저하가 크지 않음에 비해, 비교에 1 및 2에서는 저온인성 값의 저하가 심한 것을 알 수 있다.
Particularly, in Examples 1 to 3, lowering of the low temperature toughness value is not significant even after 50 hours of PWHT, whereas in Comparative Examples 1 and 2, the lowering of the low temperature toughness value is significant.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. It will be possible.
Claims (8)
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.05 to 0.15% of C, 0.15 to 0.5% of Si, 1.0 to 1.6% of Mn, 0.03% or less of P, 0.03% or less of S, 0.005 to 0.3% of Mo, 0.005 to 0.06% of V, 0.005 to 0.03% of Nb, 0.001 to 0.05% of Ti, 0.05 to 0.6% of Ni, 0.01 to 0.35% of Cu, Cu + Ni + Cr + Mo : 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, the balance Fe and unavoidable impurities and having a microstructure containing 50% or more of tempered martensite in area fraction% A welded steel plate for a pressure vessel having a tensile strength of 600 MPa or more and a Charpy impact energy value of-100 J or more at 25 to 50 hours of post-weld heat treatment (PWHT).
상기 가열된 강 슬라브를 800~900℃에서 압연을 종료하는 열간압연하는 단계;
상기 열간압연된 열연강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 3~60℃/sec의 냉각속도로 냉각하는 단계;
상기 냉각된 강판을 10~30분 동안 템퍼링 하는 단계; 및
상기 템퍼링된 강판을 590~640℃의 온도범위에서 25~50시간 동안 유지하는 용접 후 열처리 단계를 포함하는 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법.
The steel sheet according to any one of claims 1 to 3, wherein the steel sheet contains 0.05 to 0.15% of C, 0.15 to 0.5% of Si, 1.0 to 1.6% of Mn, 0.03% or less of P, 0.03% or less of S, 0.005 to 0.3% of Mo, 0.005 to 0.06% of V, 0.005 to 0.03% of Nb, 0.001 to 0.05% of Ti, 0.05 to 0.6% of Ni, 0.01 to 0.35% of Cu, Cu + Ni + Cr + Mo : 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, the balance Fe and unavoidable impurities to a temperature range of 1050 to 1250 캜;
Hot rolling the heated steel slab to finish rolling at 800 to 900 占 폚;
Cooling the hot-rolled steel sheet at a cooling rate of 3 to 60 DEG C / sec on the basis of a cooling rate of 1 / 4T (T: thickness of the steel sheet);
Tempering the cooled steel sheet for 10 to 30 minutes; And
And a post-welding heat treatment step of maintaining the tempered steel sheet at a temperature range of 590 to 640 ° C for 25 to 50 hours.
상기 열간압연 하는 단계는 각 압연 패스당 5~30%의 압하율 조건으로 행하는 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법.
5. The method of claim 4,
Wherein the step of hot rolling is performed at a reduction ratio of 5 to 30% per each rolling pass.
상기 냉각 하는 단계에서 냉각은 200℃ 이하의 온도까지 행하는 것을 특징으로 하는 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법.
5. The method of claim 4,
Wherein the cooling is carried out at a temperature of 200 DEG C or less. ≪ RTI ID = 0.0 > 11. < / RTI >
상기 템퍼링 하는 단계는 600~750℃의 온도범위에서 행하는 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법.5. The method of claim 4,
Wherein the tempering step is performed in a temperature range of 600 to 750 占 폚 and is excellent in post-weld heat treatment resistance.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120153910A KR101482341B1 (en) | 2012-12-26 | 2012-12-26 | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20120153910A KR101482341B1 (en) | 2012-12-26 | 2012-12-26 | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20140090730A KR20140090730A (en) | 2014-07-18 |
KR101482341B1 true KR101482341B1 (en) | 2015-01-13 |
Family
ID=51738187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR20120153910A KR101482341B1 (en) | 2012-12-26 | 2012-12-26 | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101482341B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101977489B1 (en) | 2017-11-03 | 2019-05-10 | 주식회사 포스코 | Steel plate for welded steel pipe having excellent low-temperature toughness, post weld heat treated steel plate and manufacturing method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0873983A (en) * | 1994-08-31 | 1996-03-19 | Nippon Steel Corp | Steel plate for welded structure excellent in fatigue strength of welded joint and manufacturing method thereof |
KR20000011781A (en) * | 1998-07-21 | 2000-02-25 | 므나르 쟝-가브리엘 | Process and steel for the manufacture of a pressure vessel working in the presence of hydrogen sulphide |
KR20070027715A (en) * | 2004-07-21 | 2007-03-09 | 신닛뽄세이테쯔 카부시키카이샤 | Welded structural steel with excellent low temperature toughness in welded heat affected zone and its manufacturing method |
JP2009041073A (en) | 2007-08-09 | 2009-02-26 | Sumitomo Metal Ind Ltd | High strength steel welded joint with excellent resistance to ductile crack initiation from weld and its manufacturing method |
-
2012
- 2012-12-26 KR KR20120153910A patent/KR101482341B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0873983A (en) * | 1994-08-31 | 1996-03-19 | Nippon Steel Corp | Steel plate for welded structure excellent in fatigue strength of welded joint and manufacturing method thereof |
KR20000011781A (en) * | 1998-07-21 | 2000-02-25 | 므나르 쟝-가브리엘 | Process and steel for the manufacture of a pressure vessel working in the presence of hydrogen sulphide |
KR20070027715A (en) * | 2004-07-21 | 2007-03-09 | 신닛뽄세이테쯔 카부시키카이샤 | Welded structural steel with excellent low temperature toughness in welded heat affected zone and its manufacturing method |
JP2009041073A (en) | 2007-08-09 | 2009-02-26 | Sumitomo Metal Ind Ltd | High strength steel welded joint with excellent resistance to ductile crack initiation from weld and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
KR20140090730A (en) | 2014-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101417231B1 (en) | Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same | |
KR101657828B1 (en) | Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same | |
KR101322067B1 (en) | High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same | |
KR101758497B1 (en) | Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof | |
KR101998991B1 (en) | Steel plate for pressure vessel having excellent tensile strength and low temperature impact toughness and method of manufacturing the same | |
KR101778398B1 (en) | Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same | |
KR101568523B1 (en) | Pressure vessel steel plate having excellent resistance of temper embrittlement and manufacturing method of the same | |
EP3395997B1 (en) | Low-yield-ratio type high-strength steel, and manufacturing method therefor | |
CN108474089B (en) | Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same | |
KR101253888B1 (en) | High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same | |
KR20160063532A (en) | Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof | |
KR101271968B1 (en) | Steel sheet for high temperature applications having excellent property after post weld heat treatment and method for manufacturing the same | |
KR101353858B1 (en) | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same | |
KR101568504B1 (en) | Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same | |
EP3730655B1 (en) | High strength steel plate and manufacturing method therefor | |
KR101382906B1 (en) | METHOD FOR PRODUCING THICK STEEL PLATE HAVING EXCELLENT WELDED ZONE TOUGHNESS AND DUCTiLITY AND WELD STRUCTURE USING THE SAME MATHOD | |
KR101482341B1 (en) | Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same | |
KR20160014998A (en) | Steel sheet and method of manufacturing the same | |
KR101795882B1 (en) | Steel sheet for pipe having excellent strength and toughness, method for manufacturing the same, and method for manufacturing welded steel pipe using the same | |
KR101797369B1 (en) | Steel for pressure vessel and method for manufacturing the same | |
KR101536422B1 (en) | High strength hot-rolled steel having excellent bending formability and method for manufacturing the same | |
KR101568532B1 (en) | Thick steel sheet having excellent high temperature yield strength and low-temperature toughness, and method for manufacturing the same | |
KR20160078650A (en) | The steel sheet having excellent toughness and ductility of butt weld joint and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20121226 |
|
PA0201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20140604 Patent event code: PE09021S01D |
|
PG1501 | Laying open of application | ||
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20141127 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20150107 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20150107 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20180104 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20180104 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20200107 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20200107 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20210107 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20230106 Start annual number: 9 End annual number: 9 |