[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20160085217A - 표준 품질 관리 기술을 이용한 왕복운동 장치 이상 검출 시스템 및 방법 - Google Patents

표준 품질 관리 기술을 이용한 왕복운동 장치 이상 검출 시스템 및 방법 Download PDF

Info

Publication number
KR20160085217A
KR20160085217A KR1020160000845A KR20160000845A KR20160085217A KR 20160085217 A KR20160085217 A KR 20160085217A KR 1020160000845 A KR1020160000845 A KR 1020160000845A KR 20160000845 A KR20160000845 A KR 20160000845A KR 20160085217 A KR20160085217 A KR 20160085217A
Authority
KR
South Korea
Prior art keywords
time
reciprocating device
signal
sigma
spectral
Prior art date
Application number
KR1020160000845A
Other languages
English (en)
Other versions
KR102245696B1 (ko
Inventor
제프리 제이콥 비접
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20160085217A publication Critical patent/KR20160085217A/ko
Application granted granted Critical
Publication of KR102245696B1 publication Critical patent/KR102245696B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/042Testing internal-combustion engines by monitoring a single specific parameter not covered by groups G01M15/06 - G01M15/12
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

시스템은, 왕복운동 장치에 결합된 하나 이상의 노크 센서에 의해 취득된 신호를 수신하고, 수신된 신호를 샘플링하며, 샘플링된 신호를 분석하고, 표준 품질 관리(SQC) 기술을 사용하여 분석된 신호에 기초한 왕복운동 장치에 대한 실시간 진단을 수행하도록 구성된 컨트롤러를 구비한다.

Description

표준 품질 관리 기술을 이용한 왕복운동 장치 이상 검출 시스템 및 방법{SYSTEM AND METHOD FOR DETECTING RECIPROCATING DEVICE ABNORMALITIES UTILIZING STANDARD QUALITY CONTROL TECHNIQUES}
본 발명은 노크 센서에 관한 것이며, 보다 구체적으로는 대형, 다중-실린더 왕복운동 장치(예를 들면, 연소 엔진, 압축기 등)에 장착되는 노크 센서를 표준 품질 관리 기술과 함께 사용하여 왕복운동 장치 이상을 검출하기 위한 것이다.
연소 엔진은 통상적으로 천연 가스, 가솔린, 디젤 등과 같은 탄소질 연료를 연소시키며, 예를 들어 실린더 내에 배치된 피스톤과 같은 엔진의 특정 부품에 힘을 가하여 일정 거리 이동시키기 위해 고온 고압 가스의 대응 팽창을 이용한다. 각각의 실린더는 탄소질 연료의 연소와 상관하여 개폐되는 하나 이상의 밸브를 구비할 수 있다. 예를 들어, 흡입 밸브는 공기와 같은 산화제를 실린더 내로 인도할 수 있으며, 산화제는 이후 연료와 혼합되어 연소된다. 예를 들어 고온 가스와 같은 연소 유체는 이후 배기 밸브를 거쳐서 실린더를 빠져나가도록 인도될 수 있다. 따라서, 탄소질 연료는 부하를 구동하는데 유용한 기계적 운동으로 변형된다. 예를 들어, 부하는 전력을 생산하는 발전기일 수 있다. 사용 중에, 연소 엔진은 검출 및/또는 예측하기 어려울 수 있는 다양한 노이즈, 기계적 결함, 또는 상태 변화를 겪을 수 있다.
본 발명의 목적은 대형, 다중-실린더 왕복운동 장치에 장착되는 노크 센서를 표준 품질 관리 기술과 함께 사용하여 왕복운동 장치 이상을 검출하기 위한 것이다.
최초 청구된 발명에 상응하는 특정 실시예를 이하에서 약술한다. 이들 실시예는 청구된 발명의 범위를 한정하도록 의도되지 않으며, 오히려 이들 실시예는 본 발명의 가능한 형태의 개요를 제공하도록 의도될 뿐이다. 실제로, 본 발명은 후술하는 실시예와 유사하거나 상이할 수 있는 다양한 형태를 망라할 수 있다.
제 1 실시예에 따르면, 시스템은, 왕복운동 장치에 결합된 하나 이상의 노크 센서에 의해 취득된 신호를 수신하고, 수신된 신호를 샘플링하며, 샘플링된 신호를 분석하고, 표준 품질 관리(standard quality control: SQC) 기술을 사용하여 분석된 신호에 기초한 왕복운동 장치에 대한 실시간 진단을 수행하도록 구성된 컨트롤러를 구비한다.
제 2 실시예에 따르면, 시스템은 왕복운동 장치에 대한 실시간 진단을 수행하기 위한 방법을 포함한다. 이 방법은 왕복운동 장치에 결합된 하나 이상의 노크 센서로부터 신호를 수신하고, 수신된 신호를 샘플링하며, 샘플링된 신호를 분석하고, SQC 기술을 사용하여 분석된 신호에 기초한 왕복운동 장치에 대한 실시간 진단을 수행하기 위해, 왕복운동 장치에 통신적으로 결합된 컨트롤러를 사용하는 단계를 포함한다.
제 3 실시예에 따르면, 시스템은 왕복운동 장치에 대한 실시간 진단을 수행하기 위한 방법을 포함한다. 이 방법은 왕복운동 장치에 결합된 하나 이상의 노크 센서로부터 수신된 신호를 샘플링하며, 샘플링된 신호에 시간 필터를 적용시켜 시간 필터링된 신호를 발생시키고, 시간 필터링된 신호에 고속 푸리에 변환(fast Fourier transform)을 적용시켜 푸리에 변환된 신호를 발생시키기 위해, 왕복운동 장치에 통신적으로 결합된 컨트롤러를 사용하는 단계를 포함한다. 이 방법은 또한, 푸리에 변환된 신호로부터 파워 스펙트럼 밀도를 발생시키기 위해 컨트롤러를 사용하는 단계, 및 SQC 기술을 사용하여 파워 스펙트럼 밀도에 기초한 왕복운동 장치에 대한 실시간 진단을 수행하는 단계를 포함한다.
본 발명에 의하면, 대형, 다중-실린더 왕복운동 장치에 장착되는 노크 센서를 표준 품질 관리 기술과 함께 사용함으로써 왕복운동 장치 이상이 검출된다.
본 발명의 상기 및 기타 특징, 양태, 장점은 하기 상세한 설명을 첨부 도면을 참조하여 숙독할 때 보다 양호하게 이해될 것이며, 도면에서 유사한 참조부호는 도면 전체에 걸쳐서 유사한 부분을 나타낸다.
도 1은 본 발명의 양태에 따른 엔진 구동식 발전 시스템의 일부의 실시예의 블록선도이다.
도 2는 본 발명의 양태에 따른 도 1에 도시된 왕복 엔진의 실린더 내의 피스톤 조립체의 실시예의 측단면도이다.
도 3은 본 발명의 양태에 따른 엔진 건강을 모니터링하기 위한 공정의 실시예를 도시하는 흐름도이다.
도 4는 고속 푸리에 변환(FFT)과 파워 스펙트럼 밀도(PSD)를 사용하여 엔진 건강을 모니터링하기 위한 공정의 실시예를 도시하는 흐름도이다.
도 5는 FFT, PSD, 및 상이한 시그마 임계치(threshold level)를 사용하여 엔진 건강을 모니터링하기 위한 공정의 실시예를 도시하는 흐름도이다.
도 6은 본 발명의 양태에 따른 SQC 차트(예를 들면, q-q 플롯)의 실시예이다.
도 7은 본 발명의 양태에 따른 SQC 차트(예를 들면, I-차트)와 관련 그래픽 특징의 실시예이다.
본 발명의 하나 이상의 특정 실시예를 후술할 것이다. 이들 실시예의 구체적인 설명을 제공하기 위한 일환으로, 실제 실시의 특징 전부가 명세서에 설명되지 않을 수도 있다. 임의의 이러한 실제 실시의 개발에서는, 임의의 공학 또는 디자인 프로젝트에서와 같이, 실시마다 달라질 수 있는, 시스템-관련 제약 및 비즈니스-관련 제약의 준수와 같은 개발자의 특정 목표를 달성하기 위해 수많은 실시-고유한 판정이 이루어져야 함을 알아야 한다. 또한, 이러한 개발 노력은 복잡하고 시간소모적일 수 있지만, 그럼에도 불구하고 본 발명의 이점을 갖는 통상의 기술자에게는 설계, 제작 및 제조의 루틴한 작업이 될 것임을 알아야 한다.
본 발명의 다양한 실시예의 요소들을 소개할 때, 관사, 정관사 및 "상기"는 이들 요소가 하나 이상 존재함을 의미하도록 의도된다. 용어 "포함하는", "구비하는" 및 "갖는"은 포괄적이도록 의도되며, 열거된 요소들 이외의 추가 요소가 존재할 수 있음을 의미한다.
사용 중에, 연소 엔진(또는 압축기와 같은 기타 왕복운동 장치)은 검출 및/또는 예측하기 어려울 수 있는 기계적 결함 또는 상태 변화로 인한 다양한 노이즈를 겪을 수 있다. 연소 엔진을 모니터링하기 위해 노크 센서가 사용될 수 있다. 가끔, 노크 센서 시스템은 이상하거나 바람직하지 않은 노이즈와 같은 노이즈를 기록한다. 정체불명의 노이즈를 무시하고 버리는 대신에, 일체의 잠재 결함(예를 들면, 엔진 결함) 또는 이상 상태를 확인하기 위해 노이즈 오버타임을 모니터링하는 것이 유리할 수 있다. 이들 결함 또는 상태는 정상 마모 보수 항목 및/또는 이상 부품 고장을 포함할 수 있다. (예를 들어 비가우스(non-Gaussian) 거동을 모니터링하기 위한) 진단 및 진전된 예측을 위해 SQC 기술(예를 들면, SQC 차트화 기술)을 사용하는 것도 유리할 수 있다. 노크 센서 시스템에 의해 검출되는 특정 노이즈의 추세를 모니터링함으로써, 잠재적 고장 발생이 더 일찍 검출될 수 있으며, 일체의 엔진 고장, 결함 및/또는 바람직하지 않은 상태 변화에 의해 초래되는 연소 엔진에 대한 일체의 잠재적인 부대 손상을 감소시키기 위해 시정 조치가 취해질 수 있다. 이하에서 더 상세히 설명하듯이, 보다 상세히 후술되는 SQC 기술을 이용한 노크 센서를 사용하여 연소 엔진(또는 기타 왕복운동 장치) 내의 이상 노이즈를 모니터링 및 분석하기 위한 시스템 및 방법이 제공된다.
도면을 참조하면, 도 1은 엔진 구동식 발전 시스템(8)의 일부의 실시예의 블록선도이다. 이하에서 상세히 설명하듯이, 시스템(8)은 하나 이상의 연소실(12)[예를 들면, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 18, 20개 또는 그 이상의 연소실(12)]을 갖는 엔진(10)(예를 들면, 왕복 내연기관)을 구비한다. 공기 공급부(14)는 공기, 산소, 산소-농후 공기, 산소-희박 공기, 또는 그 임의의 조합과 같은 가압 산화제(16)를 각각의 연소실(12)에 제공하도록 구성된다. 연소실(12)은 또한 연료 공급부(19)로부터 연료(18)(예를 들면, 액체 및/또는 기체 연료)를 수용하도록 구성되며, 연료-공기 혼합물은 각각의 연소실(12) 내에서 점화 및 연소된다. 고온의 가압된 연소 가스는 각각의 연소실(12)에 인접한 피스톤(20)이 실린더(26) 내에서 직선으로 이동하게 만들고 가스에 의해 발휘되는 압력을 회전 운동으로 변환시키며, 이 회전 운동은 샤프트(22)가 회전하게 만든다. 또한, 샤프트(22)는 부하(24)에 결합될 수 있으며, 부하는 샤프트(22)의 회전을 통해서 구동된다. 예를 들어, 부하(24)는 전기 발전기와 같은, 시스템(8)의 회전 출력을 거쳐서 전력을 발생시킬 수 있는 임의의 적합한 장치일 수 있다. 또한, 하기 논의에서는 산화제(16)로서 공기가 언급되지만, 임의의 적합한 산화제가 개시된 실시예에 사용될 수도 있다. 마찬가지로, 연료(18)는 예를 들어 천연 가스, 관련 석유 가스, 프로판, 바이오가스, 하수 가스, 매립지 가스, 탄광 가스와 같은 임의의 적합한 기체상 연료일 수 있다.
본 명세서에 개시된 시스템(8)은 정지된 용도에(예를 들면, 산업용 발전 엔진에) 또는 모바일 용도에(예를 들면, 차량 또는 비행기에) 사용하기에 적합할 수 있다. 엔진(10)은 2-행정 엔진, 3-행정 엔진, 4-행정 엔진, 5-행정 엔진, 또는 6-행정 엔진일 수 있다. 엔진(10)은 또한 임의 개수의 연소실(12), 피스톤(20) 및 관련 실린더(예를 들면, 1개 내지 24개)를 구비할 수 있다. 예를 들어, 특정 실시예에서, 시스템(8)은 실린더 내에서 왕복운동하는 4, 6, 8, 10, 16, 24개 또는 그 이상의 피스톤(20)을 갖는 대규모 산업용 왕복 엔진을 구비할 수 있다. 일부 이러한 경우에, 실린더 및/또는 피스톤(20)은 대략 13.5 내지 34 센티미터(cm)의 직경을 가질 수 있다. 일부 실시예에서, 실린더 및/또는 피스톤(20)은 대략 10-40 cm, 15-25 cm, 또는 약 15 cm의 직경을 가질 수 있다. 시스템(8)은 10 kW 내지 10 MW에 달하는 전력을 발생시킬 수 있다. 일부 실시예에서, 엔진(10)은 대략 1800 RPM 미만으로 작동할 수 있다. 일부 실시예에서, 엔진(10)은 대략 2000 RPM, 1900 RPM, 1700 RPM, 1600 RPM, 1500 RPM, 1400 RPM, 1300 RPM, 1200 RPM, 1000 RPM, 900 RPM, 또는 750 RPM 미만으로 작동할 수 있다. 일부 실시예에서, 엔진(10)은 대략 750 내지 2000 RPM, 900 내지 1800 RPM, 또는 1000 내지 1600 RPM으로 작동할 수 있다. 일부 실시예에서, 엔진(10)은 대략 1800 RPM, 1500 RPM, 1200 RPM, 1000 RPM, 또는 900 RPM으로 작동할 수 있다. 예시적 엔진(10)은 예를 들어 General Electric Company의 Jenbacher Engine(예를 들면, Jenbacher Type 2, Type 3, Type 4, Type 6 또는 J920 FleXtra) 또는 Waukesha Engine(예를 들면, Waukesha VGF, VHP, APG, 275GL)을 구비할 수 있다.
엔진 구동식 발전 시스템(8)은 엔진 "노크"를 검출하기에 적합한 하나 이상의 노크 센서(23)를 구비할 수 있다. 노크 센서(23)는 폭발, 예비-점화, 및/또는 핑잉(pinging)으로 인한 진동과 같은, 엔진에 의해 초래되는 진동을 감지할 수 있다. 또한, 엔진 구동식 발전 시스템은 하나 이상의 노크 센서(23)가 결합되는 매체(예를 들면, 주철)의 다른 작동 조건[예를 들면, 온도(예를 들면, 전체 온도 및/또는 온도 구배)]을 검출하기 위해 다른 센서(27)(예를 들면, 하나 이상의 온도 변환기)를 구비할 수 있다. 노크 센서(23)는 엔진 제어 유닛(engine control unit: ECU)(25)에 통신적으로 결합되는 것으로 도시되어 있다. 작동 중에, 노크 센서(23)로부터의 신호는 노킹 조건(예를 들면, 핑잉)이 존재하는지를 판정하기 위해 ECU(25)에 통신된다. ECU(25)는 이후 노킹 조건을 개선 또는 제거하기 위해 특정 엔진(10) 파라미터를 조절할 수 있다. 예를 들어, ECU(25)는 노킹을 제거하기 위해 점화 타이밍을 조절하거나 및/또는 부스트 압력을 조절할 수 있다. 여기에서 더 설명하듯이, 노크 센서(23)는 또한 예를 들어 잠재적으로 바람직하지 않은 엔진 조건을 모니터링하기 위해 특정 진동이 추가로 분석 및 카테고리화되어야 함을 도출할 수 있다. 하기 기술은 연소 엔진과 관련하여 논의되지만, 동일 기술은 압축기와 같은 다른 왕복운동 장치에 적용될 수도 있다.
도 2는 왕복 엔진(10)의 실린더(26)(예를 들면 엔진 실린더) 내에 배치되는 피스톤(20)을 갖는 피스톤 조립체(25)의 실시예의 측단면도이다. 실린더(26)는 원통형 공동(30)(예를 들면, 보어)이 형성되는 내부 환형 벽(28)을 갖는다. 피스톤(20)은 축방향 축선 또는 방향(34), 반경방향 축선 또는 방향(36), 및 원주방향 축선 또는 방향(38)에 의해 규정될 수 있다. 피스톤(20)은 상측 부분(40)(예를 들면, 상부 랜드)을 구비한다. 상측 부분(40)은 일반적으로 피스톤(20)의 왕복 운동 중에 연료(18)와 공기(16), 또는 연료-공기 혼합물(32)이 연소실(12)에서 빠져나가는 것을 방지한다.
도시하듯이, 피스톤(20)은 커넥팅 로드(56)와 핀(58)을 거쳐서 크랭크샤프트(54)에 부착된다. 크랭크샤프트(54)는 피스톤(24)의 왕복 직선 운동을 회전 운동으로 변환한다. 피스톤(20)이 운동함에 따라, 크랭크샤프트(54)는 전술했듯이 부하(24)(도 1에 도시됨)에 파워를 제공하기 위해 회전한다. 도시하듯이, 연소실(12)은 피스톤(24)의 상부 랜드(40) 근처에 배치된다. 연료 분사기(60)는 연소실(12)에 연료(18)를 제공하며, 흡입 밸브(62)는 연소실(12)로의 공기(16) 송출을 제어한다. 배기 밸브(64)는 엔진(10)으로부터의 배기 토출을 제어한다. 그러나, 연료(18)와 공기(16)를 연소실(12)에 제공하고 및/또는 배기를 토출하기 위한 임의의 적합한 요소 및/또는 기술이 사용될 수 있고, 일부 실시예에서는 연료 분사가 전혀 사용되지 않음을 알아야 한다. 작동 시에, 연소실(12) 내에서의 공기(16)와 연료(18)의 연소는 피스톤(20)이 실린더(26)의 공동(30) 내에서 축방향(34)으로 왕복적으로(예를 들면, 전후로) 이동하게 만든다.
작동 중에, 피스톤(20)이 실린더(26) 내의 최고 지점에 있을 때, 이것은 상사점(top dead center: TDC)으로 지칭되는 위치에 있다. 피스톤(20)이 실린더(26) 내의 그 최저 지점에 있을 때, 이것은 하사점(bottom dead center: BDC)으로 지칭되는 위치에 있다. 피스톤(20)이 위에서 아래로 또는 아래에서 위로 이동할 때, 크랭크샤프트(54)는 반바퀴 회전한다. 피스톤(20)의 위에서 아래로 또는 아래에서 위로의 각각의 이동은 행정으로 지칭되며, 엔진(10) 실시예는 2-행정 엔진, 3-행정 엔진, 4-행정 엔진, 5-행정 엔진, 6-행정 엔진, 또는 그 이상을 구비할 수 있다.
엔진(10) 작동 중에, 흡입 공정, 압축 공정, 파워 공정, 및 배기 공정을 포함하는 시퀀스가 통상적으로 발생한다. 흡입 공정은 연료 및 공기와 같은 가연성 혼합물이 실린더(26) 내로 흡인될 수 있게 하며, 따라서 흡입 밸브(62)가 개방되고 배기 밸브(64)가 폐쇄된다. 압축 공정은 가연성 혼합물을 작은 공간 내로 압축하고, 따라서 흡입 밸브(62)와 배기 밸브(64)는 폐쇄된다. 파워 공정은 압축된 연료-공기 혼합물을 점화시키며, 이는 점화 플러그 시스템을 통한 불꽃 점화, 및/또는 압축 가열을 통한 압축 점화를 포함할 수 있다. 연소에 의한 결과적 압력은 이후 피스톤(20)을 하사점(BDC)으로 강요한다. 배기 공정은 통상적으로 배기 밸브(64)를 개방 유지하는 동안 피스톤(20)을 상사점(TDC)으로 복귀시킨다. 배기 공정은 따라서 소비된 연료-공기 혼합물을 배기 밸브(64)를 통해서 추방한다. 실린더(26)마다 하나 초과의 흡입 밸브(62)와 배기 밸브(64)가 사용될 수 있음을 알아야 한다.
도시된 엔진(10)은 또한 크랭크샤프트 센서(66), 노크 센서(23), 및 프로세서(72)와 메모리(74)를 구비하는 엔진 제어 유닛(ECU)(25)을 구비한다. 크랭크샤프트 센서(66)는 크랭크샤프트(54)의 위치 및/또는 회전 속도를 감지한다. 따라서, 크랭크 각도 또는 크랭크 타이밍 정보가 도출될 수 있다. 즉, 연소 엔진을 모니터링할 때, 타이밍은 흔히 크랭크샤프트(54) 각도의 관점에서 표현된다. 예를 들어, 4 행정 엔진(10)의 전체 사이클은 720° 사이클로서 측정될 수 있다. 노크 센서(23)는 압전 가속도계, 마이크로전기기계 시스템(MEMS) 센서, 홀 효과(Hall effect) 센서, 자왜 센서, 및/또는 진동, 가속도, 사운드 및/또는 운동을 감지하도록 설계된 임의의 기타 센서일 수 있다. 다른 실시예에서, 센서(23)는 노크 센서가 아닐 수도 있으며, 진동, 압력, 가속도, 편차 또는 운동을 감지할 수 있는 임의의 센서일 수 있다.
엔진(10)의 충격 속성 때문에, 노크 센서(23)는 실린더(26)의 외부에 장착될 때도 시그니처를 검출할 수 있다. 그러나, 노크 센서(23)는 실린더(26) 내부 또는 주위의 다양한 위치에 배치될 수도 있다. 또한, 일부 실시예에서는, 단일의 노크 센서(23)가 예를 들어 하나 이상의 인접한 실린더(26)에 의해 공유될 수 있다. 다른 실시예에서는, 각각의 실린더(26)가 하나 이상의 노크 센서(23)[예를 들면, 엔진(10)을 통한 하나 이상의 평면을 따라서 배치되는 노크 센서(23)의 하나 이상의 어레이]를 구비할 수 있다. 크랭크샤프트 센서(66)와 노크 센서(23)는 엔진 제어 유닛(ECU)(25)과 전자 통신되는 것으로 도시되어 있다. ECU(25)는 프로세서(72)와 메모리(74)(예를 들면, 기계-판독 가능한 매체)를 구비한다. 메모리(74)는 프로세서(72)에 의해 실행될 수 있는 비일과성(non-transitory) 코드 또는 컴퓨터 지령을 저장할 수 있다. ECU(25)는 예를 들어 연소 타이밍, 밸브(62, 64) 타이밍, 연료와 산화제(예를 들면, 공기)의 송출 등을 조절함으로써 엔진(10)의 작동을 모니터링 및 제어한다.
유리하게, 본 명세서에 기재된 기술은 하나 이상의 크랭크샤프트 센서(66) 및/또는 하나 이상의 노크 센서(23)로부터 데이터(예를 들면, 노이즈 신호)를 수신, 취득 또는 샘플링하기 위해 ECU(25)를 사용할 수 있다. 엔진(10) 내의 임의의 동시 노이즈를 검출 및/또는 발견하기 위해, 센서[예를 들면, 노크 센서 및/또는 크랭크샤프트 센서(66)]로부터의 데이터가 동일한 속도로 샘플링될 수 있고 동시에 취해질 수 있다. 특정 실시예에서, 동시 노이즈를 검출 및/또는 발견하기 위해 사용되는 노이즈 신호는 하나 이상의 노크 센서(23)로부터만 수용될 수 있다. 다른 실시예에서, 동시 노이즈를 검출 및/또는 발견하기 위해 사용되는 노이즈 신호는 크랭크샤프트 센서(66)와 노크 센서(23) 양자로부터 수용될 수도 있다. 각각의 노이즈 신호는 각각의 노크 센서(23)에서 검출되는 엔진(10)의 노이즈 시그니처를 나타낸다. 특정 실시예에서, ECU(25)는 크랭크샤프트(54) 위치에 대해 노크 센서(23) 데이터를 플로팅함으로써 "노이즈" 시그니처를 생성한다. ECU(25)는 이후 데이터를 분석하여 정상 시그니처(예를 들면, 공지되고 예상되는 노이즈) 및/또는 이상 시그니처(예를 들면, 미지의 또는 예기치 못한 노이즈)를 도출하는 공정으로 진행될 수 있다. ECU(25)는 이후, 이하에서 보다 상세히 설명하듯이, 이상 시그니처를 특징부여(예를 들면, 동시 노이즈를 검출 및/또는 발견)할 수 있다. 시그니처 분석을 제공함으로써, 본 명세서에 기재된 기술은 엔진(10)의 보다 최적하고 보다 효과적인 작동 및 보수를 가능하게 할 수 있다.
도 3은 엔진 건강[예를 들면, 도 2에서의 엔진(10)]을 모니터링하기 위한 공정(76)의 실시예를 도시하는 흐름도이다. 왕복운동 장치(예를 들면, 압축기)의 건강을 모니터링하는데 있어서 유사한 공정이 사용될 수 있다. 공정(76)은, 메모리(74)에 저장되어 있고 ECU(25) 또는 임의의 왕복운동 장치 컨트롤러의 프로세서(72)에 의해 실행될 수 있는 컴퓨터 지령 또는 실행 가능한 코드로서 실시될 수 있다. 공정(76)은 엔진(10)에 결합된 하나 이상의 노크 센서(23)로부터 하나 이상의 신호를 수신하는 단계(블록 78)를 포함한다. 공정(76)은 또한 하나 이상의 노크 센서(23)로부터 수신되는 하나 이상의 신호를 샘플링 및 분석하는 단계(블록 80)를 포함한다. 특정 실시예에서는, 단일 노크 센서(23)로부터의 단일 신호가 연속하여 샘플링 및 분석될 수 있다. 다른 실시예에서는, 다수의 노크 센서(23)로부터의 신호가 개별적으로 및/또는 조합적으로, 연속하여 샘플링 및 분석될 수 있다. 노크 센서(23)는 동일한 크기의 8분의(octant) 또는 6-10분의(hexa-decant)의 타임 버킷에서 샘플링될 수 있다. 예를 들어, 엔진(10)이 4-행정 엔진인 경우에는, 매 연소 사이클마다 크랭크의 2회전이 발생한다. 노크 센서(23)는 각각의 연소 이벤트 마다 총 8 내지 16회 동안 4행정 사이클 중에 모든 45 또는 90도의 크랭크 각도를 샘플링할 것이다. 특정 실시예에서는, 수신된 신호의 샘플링 중에 최소 필터[예를 들면, 안티-앨리어싱(anti-aliasing) 필터]가 적용될 수 있다.
보다 상세히 기술하듯이, 샘플링된 신호의 분석은 샘플링된 신호를 예를 들어 시간 필터링을 거쳐서 처리하는 단계를 포함할 수 있다. 시간 필터링은 신호의 작은 창이 샘플링되기 때문에(예를 들면, 연소 사이클 도중의 비압축 이벤트) 신호를 분석하는데 도움이 된다. 시간 필터링은 고속 푸리에 변환(FFT)을 적용하기 전에 샘플링된 신호에 창 함수를 적용하는 단계를 포함할 수 있다. 창 함수는 해밍 창(Hamming window), 편평 상부 창, 블랙맨(Blackman) 창, 또는 샘플링된 신호의 소정 부분의 분석이 가능하도록 신호를 시간적으로 필터링할 수 있는 임의의 기타 형태 창 함수를 구비할 수 있다. 엔진(10)(또는 압축기와 같은 왕복운동 장치) 내의 특정한 기계적 고장 또는 이벤트는 특정 대역(예를 들면, 버킷 또는 빈의 스펙트럼 내의 특정 주파수) 및/또는 특정 비압축 창(windowed) 이벤트와 연관된다. 이들 이벤트의 비포괄적 리스트에는 피크 연소 압력의 이상, 개방 또는 폐쇄 고착된 흡입 또는 배기 밸브, 손상된 흡입 또는 배기 밸브, 손상된 밸브 트레인, 마모되거나 손상된 피스톤, 마모되거나 손상된 피스톤 핀 및/또는 부싱, 마모되거나 손상된 커넥팅 로드 및/또는 베어링, 느슨한 커넥팅 로드 볼트, 느슨한 평형추 및/또는 볼트, 손상된 메인 베어링, 캠 샤프트 로브(lobe) 마모, 파괴되거나 손상된 피스톤 링, 연소 실린더 내의 과도한 블로-바이, 심하게 침식된 실린더 라이너, 및/또는 심하게 갈라진 실린더 라이너가 포함될 수 있다. 샘플링된 신호를 시간 필터링함으로써, 특정 이벤트와 연관된 특정 주파수 및 진폭 빈(magnitude bin)이 (FFT 후에) 분석될 수 있다. 시간 필터링 이후에, 샘플링된 신호의 분석은 또한 FFT를 적용하고 이후 샘플링된 신호로부터 파워 스펙트럼 밀도(PSD)(진폭)를 취득하는 단계를 포함할 수 있다. 파워 스펙트럼 밀도는 여러 개의 스펙트럼 빈 또는 버킷을 포함한다. 다중 연소 사이클(또는 압축기와 같은 왕복운동 장치의 경우에는 행정 사이클)로부터 취득되는 스펙트럼 빈 또는 버킷(예를 들면, 피크 연소 압력과 같은 관심있는 특정 이벤트와 연관)의 어레이는 각각의 빈 또는 버킷에 대한 기준선을 얻기 위해 평균화될 수 있다. 특정 실시예에서, 각각의 이벤트(연소 사이클 또는 연소 이벤트)는 각각의 기준선에 대한 가중 평균을 발생시키기 위해 적용되는 가중 계수를 가질 수 있다.
엔진이 마모될수록, 특정 이벤트(예를 들면, 엔진 고장, 결함, 또는 이상 상태)와 연관된 특정 주파수 빈이 증가할 수 있지만, 다른 것들은 기준선에 대해 감소된다. 공정(76)은 (예를 들면, 통계적 공정 관리가 가능하도록) SQC 차트화(charting) 통계와 같은 SQC 기술을 사용하여 엔진 건강을 모니터링하는 단계(블록 82)를 추가로 포함한다. 엔진 건강을 모니터링하는 것은 진단 또는 진전된 예측의 수행이 가능하도록 특정 스펙트럼 빈 또는 버킷에 있어서 변화를 실시간으로 모니터링하는[즉, 노크 센서(23)로부터 데이터를 수신 및 처리하고 그 결과를 충분히 신속하게 복귀시켜 그 시기에 엔진에 영향을 미침으로써 엔진을 제어하는] 단계를 포함할 수 있다. 데이터[노크 센서(23)로부터의 데이터]의 샘플이 보편적이거나 정상적인 변동 범위 내에 드는지를 판정하는 제어 차트(예를 들면, 공정 차트 또는 품질 관리 차트)를 발생시키기 위해 다양한 SQC 차트화 기술이 사용될 수 있다. 다양한 제어 차트(예를 들면, I-차트, q-q 플롯 등)가 사용될 수 있다. 제어 차트와 더불어 추가적인 그래픽 기술(예를 들면, 히스토그램과 같은) 또한 사용될 수 있다. 특정 실시예에서는, 스펙트럼 빈의 다차원 어레이에 대한 차트가 표시될 수 있으며, 각각의 빈은 특정 빈의 진폭의 추세를 나타내는 인디케이터(예를 들면, 진폭 증가에 대해서는 상승 화살표, 진폭 감소에 대해서는 하강 화살표, 진폭 변화 없음에 대해서는 수평 화살표)를 포함한다. 특정 실시예에서, 인디케이터는 추세의 심각성을 나타내기 위해 컬러 코팅될 수 있다(예를 들어, 기준선으로부터 3-σ 편차에 대해서는 적색, 기준선으로부터 2-σ 편차에 대해서는 황색 또는 오렌지색, 등). 전술한 상이한 이벤트에 대해서는 다수의 제어 차트 및/또는 그래픽 특징이 발생될 수 있다.
특정 실시예에서, 엔진 건강(예를 들면, 장기 엔진 건강)을 모니터링하는 것은 각각의 기준선에 대해 시그마(σ) 임계치(예를 들면, 3-σ 임계치, 2-σ 임계치 등)를 설정하는 단계 및 현재 샘플링된 신호로부터 도출된 정보를 비교하여 노크 센서(23)로부터 취득한 정보에서의 추세 및/또는 비가우스 거동을 탐색하는 단계를 포함할 수 있다. 특정 실시예에서, 기준선은 노크 센서(23)로부터 신규 정보가 수집됨에 따라 연속적으로 변화하고 있다. 즉, 기준선은 추세를 가지며 리셋되지 않는다(즉, 바닥 노이즈가 엔진 마모의 함수로서 성장한다).
엔진 건강을 모니터링하는 동안, 공정(76)은 노크 센서와 그 후속 분석으로부터 수집된 데이터를 로깅 및/또는 저장하는 단계(블록 84)를 포함한다. 데이터는 ECU(25)의 메모리(74)에 저장되거나 및/또는 원격 장치의 메모리에 저장될 수 있다. 저장된 데이터는 스펙트럼 빈에서의 편차(예를 들면, 각각의 기준선에 대한 2-σ 이상의 하나 이상의 스펙트럼 빈의 진폭 편차)와 연관된 플래그드(flagged) 이벤트 및/또는 에러를 포함할 수 있다. 공정(76)은 또한 엔진 건강의 징후를 제공하는 단계(블록 86)를 포함한다. 이것은 특정 주파수 대역(즉, 스펙트럼 빈)이 비가우스 거동(예를 들면, 기준선에 대한 2-σ 내지 3-σ 미만의 편차)을 향해서 추세 변화한다는 경고(예를 들면, 경고 플래그)를 제공하는 단계를 포함할 수 있다. 특정 주파수 대역이 비가우스 레벨(예를 들면, 기준선에 대해 3-σ 이상)에 있다는 경고(예를 들면, 경고 플래그) 또한 제공될 수 있다. 경고는 ECU(25)에 결합된 디스플레이 상에 또는 네트워크(예를 들면, 컨트롤러 지역 네트워크)를 거쳐서 ECU(25)와 연관된 원격 장치 상에 시각적 경고 또는 문자 경고를 제공하는 단계를 포함할 수 있다. 경고는 에러 코드(예를 들면, 전술한 것과 같은 특정 이벤트와 연관됨)를 전용 소프트웨어를 통해서 통신하는 단계를 포함할 수 있다. 엔진 건강의 징후를 제공하는 것은 또한 SQC 차트화 기술 뿐만 아니라 기타 그래픽 특징(예를 들면, 히스토그램)을 이용하여 발생된 제어 차트를 표시하는 단계를 포함할 수 있다.
공정(76)은, 특정 실시예에서, 엔진(10)에 영향을 미치는 제어 액션을 출력하는 단계(블록 88)를 추가로 포함한다. 제어 액션의 예로는 엔진내 상태(예를 들면, 속도, 부하, 밸브 위치 등)의 조절, 엔진의 셧다운, 및 기타 액션이 포함된다. 엔진(10)에 영향을 미치는 제어를 출력하는 것은 노크 센서(23)로부터 취득한 정보에 응답하여 엔진(10)을 폐루프 제어할 수 있게 한다. 특정 실시예에서, 제어 액션은 특정 주파수 대역이 비가우스 레벨(예를 들면, 기준선에 대해 3-σ 이상)에 도달했을 때만 출력될 수 있다. 다른 실시예에서, 제어 액션은 비가우스 레벨(예를 들면, 기준선에 대해 2-σ 내지 3-σ 미만의 편차)을 향해서 추세 변화하는 특정 주파수 대역뿐 아니라 비가우스 레벨(예를 들면, 기준선에 대해 3-σ 이상)에 도달하는 주파수 대역에 대해서 출력될 수 있다.
도 4는 FFT 및 PSD를 사용하여 엔진 건강[예를 들면 도 2에서의 엔진(10)]을 모니터링하기 위한 공정(90)의 실시예를 도시하는 흐름도이다. 왕복운동 장치(예를 들면, 압축기)의 건강을 모니터링하는데 있어서 유사한 공정이 사용될 수 있다. 공정(90)은, 메모리(74)에 저장되어 있고 ECU(25) 또는 임의의 왕복운동 장치 컨트롤러의 프로세서(72)에 의해 실행될 수 있는 컴퓨터 지령 또는 실행 가능한 코드로서 실시될 수 있다. 공정(90)은 엔진(10)에 결합된 하나 이상의 노크 센서(23)로부터 하나 이상의 신호를 수신하는 단계(블록 92)를 포함한다. 공정(76)은 또한 도 3에서 전술했듯이 하나 이상의 노크 센서(23)로부터 수신되는 하나 이상의 신호를 샘플링하는 단계(블록 92)를 포함한다. 특정 실시예에서는, 수신된 신호를 샘플링할 때 최소한의 필터링이 적용될 수 있다. 예를 들어, 수신된 신호를 샘플링할 때는 (예를 들어, 샘플링 정리를 만족시키도록 신호의 대역폭을 제한하기 위해) 안티-앨리어싱 필터가 적용될 수 있다.
또한, 공정(90)은 샘플링된 신호를 예를 들어 시간 필터링을 거쳐서 처리하는 단계(블록 96)를 포함한다. 시간 필터링은 신호의 작은 창이 샘플링되기 때문에(예를 들면, 연소 사이클 도중의 비압축 이벤트) 신호를 분석하는데 도움이 된다. 시간 필터링은 FFT를 적용하기 전에 샘플링된 신호에 창 함수를 적용하는 단계를 포함할 수 있다. 창 함수는 해밍 창, 편평 상부 창, 블랙맨 창, 또는 샘플링된 신호의 소정 부분의 분석이 가능하도록 신호를 시간적으로 필터링할 수 있는 임의의 기타 형태 창 함수를 구비할 수 있다. 전술한 엔진(10) 내의 특정한 기계적 고장 또는 이벤트는 특정 대역(예를 들면, 버킷 또는 빈의 스펙트럼 내의 특정 주파수) 및/또는 특정 비압축 창(windowed) 이벤트와 연관된다. 샘플링된 신호를 시간 필터링함으로써, 특정 이벤트와 연관된 특정 주파수 및 진폭 빈이 (FFT 후에) 분석될 수 있다.
시간 필터링 이후에, 공정(90)은 시간적으로 필터링된 샘플링된 신호에 FFT를 적용하여(블록 98) 푸리에 변환된 신호를 발생시키는 단계를 포함한다. 공정(90)은 푸리에 변환된 신호의 각각으로부터 PSD(진폭)를 취득 또는 발생시키는 단계(블록 100)를 포함한다. 파워 스펙트럼 밀도는 여러 개의 스펙트럼 빈 또는 버킷을 포함한다. 다중 연소 사이클(또는 압축기와 같은 왕복운동 장치의 경우에는 행정 사이클)로부터 취득되는 스펙트럼 빈 또는 버킷(예를 들면, 피크 연소 압력과 같은 관심있는 특정 이벤트와 연관)의 어레이는 각각의 빈 또는 버킷에 대한 기준선(102)을 얻기 위해 평균화될 수 있다(블록 104). 특정 실시예에서, 각각의 이벤트(연소 사이클 또는 연소 이벤트)는 각각의 기준선에 대한 가중 평균을 발생시키기 위해 적용되는 가중 계수를 가질 수 있다.
엔진이 마모될수록, 특정 이벤트(예를 들면, 엔진 고장, 결함, 또는 이상 상태)와 연관된 특정 주파수 빈이 증가할 수 있지만, 다른 것들은 기준선에 대해 감소된다. 공정(90)은 (예를 들면, 통계적 공정 관리가 가능하도록) SQC 차트화 통계와 같은 SQC 기술을 사용하여 엔진 건강을 모니터링하는 단계(블록 106)를 추가로 포함한다. 엔진 건강을 모니터링하는 것은 진단 또는 진전된 예측의 수행이 가능하도록 특정 스펙트럼 빈 또는 버킷에 있어서 변화를 실시간으로 모니터링하는[즉, 노크 센서(23)로부터 데이터를 수신 및 처리하고 그 결과를 충분히 신속하게 복귀시켜 그 시기에 엔진에 영향을 미침으로써 엔진을 제어하는] 단계를 포함할 수 있다. 데이터[노크 센서(23)로부터의 데이터]의 샘플이 보편적이거나 정상적인 변동 범위 내에 드는지를 판정하는 제어 차트(예를 들면, 공정 차트 또는 품질 관리 차트)를 발생시키기 위해 다양한 SQC 차트화 기술이 사용될 수 있다. 다양한 제어 차트(예를 들면, I-차트, q-q 플롯 등)가 사용될 수 있다. 제어 차트와 더불어 추가적인 그래픽 기술(예를 들면, 히스토그램과 같은) 또한 사용될 수 있다. 특정 실시예에서는, 스펙트럼 빈의 다차원 어레이에 대한 차트가 표시될 수 있으며, 각각의 빈은 특정 빈의 진폭의 추세를 나타내는 인디케이터(예를 들면, 진폭 증가에 대해서는 상승 화살표, 진폭 감소에 대해서는 하강 화살표, 진폭 변화 없음에 대해서는 수평 화살표)를 포함한다. 특정 실시예에서, 인디케이터는 추세의 심각성을 나타내기 위해 컬러 코팅될 수 있다(예를 들어, 기준선으로부터 3-σ 편차에 대해서는 적색, 기준선으로부터 2-σ 편차에 대해서는 황색 또는 오렌지색, 등). 전술한 상이한 이벤트에 대해서는 다수의 제어 차트 및/또는 그래픽 특징이 발생될 수 있다.
특정 실시예에서, 엔진 건강(예를 들면, 장기 엔진 건강)을 모니터링하는 것은 SQC 차트화 통계를 사용하여 특정 이벤트와 연관된 특정 주파수 대역의 변화에 기초하여 엔진 건강에서의 잠재적 문제[예를 들면, 기준선(102)에 대한 비가우스 거동을 향한 추세]를 확인하는 단계(블록 108)를 포함할 수 있다. 잠재적 문제가 확인되면, 공정(90)은 노크 센서와 잠재적 문제에 관한 그 후속 분석으로부터 수집된 데이터를 로깅 및/또는 저장하는 단계(블록 110)를 포함한다. 데이터는 ECU(25)의 메모리(74)에 저장되거나 및/또는 원격 장치의 메모리에 저장될 수 있다. 저장된 데이터는 스펙트럼 빈에서의 편차(예를 들면, 각각의 기준선에 대한 2-σ 내지 3-σ의 하나 이상의 스펙트럼 빈의 진폭 편차)와 연관된 플래그드 이벤트 및/또는 에러를 포함할 수 있다. 잠재적 문제가 확인되면, 공정(90)은 또한 잠재적 문제의 징후를 엔진에 제공하는 단계(블록 112)를 포함한다. 이것은 특정 주파수 대역(즉, 스펙트럼 빈)이 비가우스 거동(예를 들면, 기준선에 대한 2-σ 내지 3-σ 미만의 편차)을 향해서 추세 변화한다는 경고(예를 들면, 경고 플래그)를 제공하는 단계를 포함할 수 있다. 경고는 ECU(25)에 결합된 디스플레이 상에 또는 네트워크(예를 들면, 컨트롤러 지역 네트워크)를 거쳐서 ECU(25)와 연관된 원격 장치 상에 시각적 경고 또는 문자 경고를 제공하는 단계를 포함할 수 있다. 엔진 건강의 징후를 엔진에 제공하는 것은 또한 SQC 차트화 기술 뿐만 아니라 기타 그래픽 특징(예를 들면, 히스토그램)을 이용하여 발생된 제어 차트를 표시하는 단계를 포함할 수 있다.
특정 실시예에서, 엔진 건강(예를 들면, 장기 엔진 건강)을 모니터링하는 것은 SQC 차트화 통계를 사용하여 특정 이벤트와 연관된 특정 주파수 대역의 변화에 기초하여 엔진 건강에서의 현재 또는 실제 문제(예를 들면, 긴박한)[예를 들면, 기준선(102)에 대한 비가우스 거동을 표시하는 데이터]를 확인하는 단계(블록 114)를 포함할 수 있다. 잠재적 문제가 확인되면, 공정(90)은 노크 센서와 현재 또는 실제 문제에 관한 그 후속 분석으로부터 수집된 데이터를 로깅 및/또는 저장하는 단계(블록 116)를 포함한다. 데이터는 ECU(25)의 메모리(74)에 저장되거나 및/또는 원격 장치의 메모리에 저장될 수 있다. 저장된 데이터는 스펙트럼 빈에서의 편차(예를 들면, 각각의 기준선에 대한 3-σ 초과의 하나 이상의 스펙트럼 빈의 진폭 편차)와 연관된 플래그드 이벤트 및/또는 에러를 포함할 수 있다. 현재 또는 실제 문제가 확인되면, 공정(90)은 또한 현재 또는 실제 문제의 징후를 엔진에 제공하는 단계(블록 118)를 포함한다. 이것은 특정 주파수 대역(즉, 스펙트럼 빈)이 비가우스 거동(예를 들면, 기준선에 대한 3-σ 이상의 편차)을 표시하고 있다는 경고(예를 들면, 경고 플래그)를 제공하는 단계를 포함할 수 있다. 경고는 ECU(25)에 결합된 디스플레이 상에 또는 네트워크(예를 들면, 컨트롤러 지역 네트워크)를 거쳐서 ECU(25)와 연관된 원격 장치 상에 시각적 경고 또는 문자 경고를 제공하는 단계를 포함할 수 있다. 경고는 에러 코드(예를 들면, 전술한 것과 같은 특정 이벤트와 연관됨)를 전용 소프트웨어를 통해서 통신하는 단계를 포함할 수 있다. 잠재적 문제의 징후를 엔진에 제공하는 것은 또한 SQC 차트화 기술 뿐만 아니라 기타 그래픽 특징(예를 들면, 히스토그램)을 이용하여 발생된 제어 차트를 표시하는 단계를 포함할 수 있다.
공정(90)은, 특정 실시예에서, SQC 차트화 통계에 기초한 엔진 건강에서의 현재 또는 실제 문제의 확인에 응답하여 엔진(10)에 영향을 미치는 제어 액션을 출력하는 단계(블록 120)를 추가로 포함한다. 제어 액션의 예로는 엔진내 상태(예를 들면, 속도, 부하, 밸브 위치 등)의 조절, 엔진의 셧다운, 및 기타 액션이 포함된다. 엔진(10)에 영향을 미치는 제어를 출력하는 것은 노크 센서(23)로부터 취득한 정보에 응답하여 엔진(10)을 폐루프 제어할 수 있게 한다.
도 5는 FFT, PSD, 및 상이한 시그마(σ) 임계치를 사용하여 엔진 건강[예를 들면, 도 2에서의 엔진(10)]을 모니터링하기 위한 공정(122)의 실시예를 도시하는 흐름도이다. 왕복운동 장치(예를 들면, 압축기)의 건강을 모니터링하는데 있어서 유사한 공정이 사용될 수 있다. 공정(122)은, 메모리(74)에 저장되어 있고 ECU(25) 또는 왕복운동 장치 컨트롤러의 프로세서(72)에 의해 실행될 수 있는 컴퓨터 지령 또는 실행 가능한 코드로서 실시될 수 있다. 공정(122)은 엔진(10)에 결합된 하나 이상의 노크 센서(23)로부터 하나 이상의 신호를 수신하는 단계(블록 124), 하나 이상의 노크 센서(23)로부터 수신되는 하나 이상의 신호를 샘플링하는 단계(블록 126), 및 샘플링된 신호를 도 4에서 전술했듯이 처리하는 단계(블록 128)를 포함한다. 또한, 공정(122)은 FFT를 적용하여 푸리에 변환된 신호를 발생시키는 단계(블록 130) 및 도 4에서 전술했듯이 푸리에 변환된 신호의 각각에 대해 PSD를 취득하거나 발생시키는 단계(블록 132)를 포함한다.
파워 스펙트럼 밀도는 여러 개의 스펙트럼 빈 또는 버킷을 포함한다. 다중 연소 사이클(또는 압축기와 같은 왕복운동 장치의 경우에는 행정 사이클)로부터 취득되는 스펙트럼 빈 또는 버킷(예를 들면, 피크 연소 압력과 같은 관심있는 특정 이벤트와 연관)의 어레이는 각각의 빈 또는 버킷에 대한 기준선(134)을 얻기 위해 평균화될 수 있다(블록 136). 특정 실시예에서, 각각의 이벤트(연소 사이클 또는 연소 이벤트)는 각각의 기준선에 대한 가중 평균을 발생시키기 위해 적용되는 가중 계수를 가질 수 있다.
공정(122)은 각각의 기준선에 대해 2-σ 및 3-σ 임계치를 설정하는 단계(블록 138)를 포함한다. 특정 실시예에서는, 추가 임계치가 설정될 수 있다(예를 들면, 1-σ, 1.5-σ, 등). 공정(122)은 또한 비가우스 거동을 모니터링하기 위해 특정 빈 또는 버킷을 그 대응 기준선에 비교하는 단계(블록 140)를 포함한다. 공정(122)은 특정 빈 또는 버킷이 그 각각의 기준선으로부터 각각 2-σ 임계치 이상 벗어나는지를 판정하는 단계를 포함한다(블록 142). 특정 빈 또는 버킷이 그 각각의 기준선으로부터 2-σ 이상 벗어나지 않으면, 공정(122)은 특정 빈 또는 버킷을 그 대응 기준선에 계속 비교하는 단계(블록 140)를 포함한다. 그러나, 특정 빈 또는 버킷이 그 각각의 기준선으로부터 2-σ 이상 벗어나면, 공정(122)은 특정 빈 또는 버킷이 그 각각의 기준선으로부터 각각의 3-σ 임계치 이상 벗어나는지를 판정하는 단계(블록 144)를 포함한다. 블록(142, 144)은 순차적으로 또는 동시적으로 발생할 수 있다. 특정 빈 또는 버킷이 그 각각의 기준선으로부터 3-σ 이상 벗어나지 않으면, 공정(122)은 문제를 로깅 또는 저장하는 단계(블록 146) 및/또는 도 3 및 도 4에서 전술한 비가우스 거동을 향한 추세에 관한 징후 또는 경고를 제공하는 단계(블록 148)를 포함한다. 특정 빈 또는 버킷이 그 각각의 기준선으로부터 3-σ 이상 벗어나면, 공정(122)은 문제를 로깅 또는 저장하는 단계(블록 150), 비가우스 거동에 관한 징후 또는 경고를 제공하는 단계(블록 152), 및/또는 도 3 및 도 4에서 전술한 엔진(왕복운동 장치)에 관한 제어 액션을 출력하는 단계를 포함한다.
도 6은 전술한 SQC 차트화 기술에 사용되는 SQC 차트의 일 예의 실시예이다. 도 6에 도시된 SQC 차트는 q-q 플롯[분위수(quantile)-분위수 플롯 또는 분위수 플롯으로도 알려져 있음](156)이다. q-q 플롯(156)은 각각의 연소 이벤트[펄스(158)로 표현됨]에 있어서 노크 센서(23)로부터 수신된 관측 피크값(예를 들면, 피크 연소 압력에 대응)을 직선(160)에 대해 도시한다. 직선(160)은 선형화된 경험적 누적 분포 함수의 와이블 분포도(Weibull plot)를 나타낸다. y-축(162)은 피크값에 대한 수치를 나타내고, x-축(164)은 이론 분위 또는 표준 기대치를 나타낸다. 피크 연소 압력을 구체적으로 분석하기 위해 데이터에는 시간 필터(예를 들면, 창 함수)가 적용된다. 다른 이벤트(예를 들면, 전술한 흡입 밸브 또는 기타 이벤트)를 탐색하기 위해 노크 센서로부터의 데이터에는 상이한 시간 필터가 적용될 수 있다.
도 7은 전술한 SQC 차트화 기술에 사용되는 SQC 차트 및 관련 그래픽 특징(예를 들면, 히스토그램)의 실시예이다. 도 7에 도시된 SQC 차트는 I-차트(166)이다. y-축(168)은 피크값(예를 들면, 피크 연소 압력에 대응)에 대한 수치를 나타낸다. x-축(170)은 이벤트 또는 데이터 지점의 개수를 시간에 대해 나타낸다. I-차트(166)는 각각의 연소 이벤트[펄스(172)로 표현됨]에 있어서 노크 센서(23)로부터 수신된 관측 피크값(예를 들면, 피크 연소 압력에 대응)을 도시한다. 관측 피크값(172)은 좌에서 우로 시간 순서로 배열된다. I-차트(166)는 참조 번호 174로 표시되는 연속 관측점 사이의 이동 범위(예를 들면, 단기 변동성)(즉, 수치 172)를 도시한다. I-차트(166)는 또한 라인(176)으로 표시되는 수치에 대한 평균 또는 기준선을 도시한다. I-차트(166)는 또한 기준선(176)에 대한 다양한 σ임계치를 도시한다. 예를 들어, 1σ, -1σ, 1.5σ(바이어스 라인), -1.5σ(바이어스 라인), 2σ(경고 라인), -2σ(경고 라인), 3σ(액션 라인), -3σ(액션 라인)은 라인 178, 180, 182, 184, 186, 188, 190, 192로 각각 표시하듯이 도시된다. σ임계치는 도 3 내지 도 5에서 전술했듯이 사용될 수 있다. 도 7은 또한 그 값[I-차트(166)에 도시됨]이 특정 σ임계치 내에 포함되는 이벤트의 개수를 그래프로 나타내는 히스토그램(194)을 도시한다. 피크 연소 압력을 구체적으로 분석하기 위해 데이터에는 시간 필터(예를 들면, 창 함수)가 적용된다. 다른 이벤트(예를 들면, 전술한 흡입 밸브 또는 기타 이벤트)를 탐색하기 위해 노크 센서로부터의 데이터에는 상이한 시간 필터가 적용될 수 있다.
개시된 실시예의 기술적 효과는 왕복운동 장치(예를 들면, 연소 엔진, 압축기 등)의 건강을 모니터링하기 위한 시스템 및 방법을 제공하는 단계를 포함한다. 노크 센서로부터 수집된 정보 또는 데이터를 사용하여, SQC 통계 기술(예를 들면, SQC 차트화 기술)은 정상 마모 보수 항목 및/또는 이상 부품 고장의 발생 또는 장래 발생을 미리 판정하기 위해 (예를 들면, 비가우스 거동 또는 비가우스 거동을 향한 추세를 위한) 분석된 신호의 특정 빈 또는 버킷을 분석하기 위해 사용될 수 있다. 상기 시스템 및 방법은 왕복운동 장치에 대한 손상뿐 아니라 설비에 대한 일체의 고장시간을 최소화 또는 회피하기 위해 진단 및 진전된 예측을 위해 사용될 수 있다.
본 명세서는 최선의 모드를 포함하는 본 발명을 개시하기 위해서 또한 통상의 기술자가 임의의 장치 또는 시스템의 제조 및 사용과 임의의 통합된 방법의 수행을 포함하는 발명을 실시할 수 있도록 예를 사용한다. 본 발명의 특허 가능한 범위는 청구범위에 의해 한정되며, 통상의 기술자에게 발생하는 다른 예들을 포함할 수 있다. 이러한 다른 예들은 청구범위의 문언과 다르지 않은 구성 요소를 갖거나 청구범위의 문언과 별차이가 없는 등가의 구성 요소를 구비할 경우에 청구범위에 포함되도록 의도된다.
8: 엔진 구동식 발전 시스템 10: 엔진
12: 연소실 16: 공기
18: 연료 20: 피스톤
22: 샤프트 23: 노크 센서
24: 부하 25: ECU
26: 실린더 27: 센서
54: 크랭크샤프트 56: 커넥팅 로드
58: 핀 60: 연료 분사기
62: 흡입 밸브 64: 배기 밸브
66: 크랭크샤프트 센서 72: 프로세서
74: 메모리 102, 134: 기준선

Claims (20)

  1. 왕복운동 장치에 결합된 하나 이상의 노크 센서에 의해 취득된 신호를 수신하고, 수신된 신호를 샘플링하며, 샘플링된 신호를 분석하고, 표준 품질 관리(SQC) 기술을 사용하여 분석된 신호에 기초한 왕복운동 장치에 대한 실시간 진단을 수행하도록 구성된 컨트롤러를 포함하는 시스템.
  2. 제 1 항에 있어서,
    상기 SQC 기술은 SQC 차트화 통계를 포함하는 것을 특징으로 하는
    시스템.
  3. 제 1 항에 있어서,
    상기 컨트롤러는 샘플링된 신호를 시간 필터링하여 시간 필터링된 신호를 발생시킴으로써 샘플링된 신호를 분석하도록 구성되는 것을 특징으로 하는
    시스템.
  4. 제 3 항에 있어서,
    상기 컨트롤러는 샘플링된 신호를 창 함수를 사용하여 시간 필터링하도록 구성되는 것을 특징으로 하는
    시스템.
  5. 제 3 항에 있어서,
    상기 컨트롤러는 시간 필터링된 신호에 고속 푸리에 변환을 적용시켜 푸리에 변환된 신호를 발생시키도록 구성되는 것을 특징으로 하는
    시스템.
  6. 제 5 항에 있어서,
    상기 컨트롤러는 푸리에 변환된 신호로부터 복수의 스펙트럼 빈을 갖는 파워 스펙트럼 밀도를 발생시키도록 구성되는 것을 특징으로 하는
    시스템.
  7. 제 6 항에 있어서,
    상기 컨트롤러는 복수의 사이클에 걸쳐서 복수의 스펙트럼 빈의 각각의 스펙트럼 빈을 평균화하여 각각의 스펙트럼 빈에 대한 각각의 기준선을 발생시키도록 구성되는 것을 특징으로 하는
    시스템.
  8. 제 7 항에 있어서,
    상기 컨트롤러는 각각의 스펙트럼 빈에 대한 2 시그마 및 3 시그마 임계치를 각각의 기준선에 대해 설정하도록 구성되는 것을 특징으로 하는
    시스템.
  9. 제 8 항에 있어서,
    상기 컨트롤러는 공지된 왕복운동 장치 또는 복수의 스펙트럼 빈으로부터의 왕복운동 장치 고장과 연관된 하나 이상의 스펙트럼 빈을 그 각각의 기준선 및 관련 2 시그마 및 3 시그마 임계치와 비교하도록 구성되는 것을 특징으로 하는
    시스템.
  10. 제 9 항에 있어서,
    상기 컨트롤러는 하나 이상의 스펙트럼 빈이 그 각각의 기준선으로부터 2 시그마 임계치 이상 벗어나는지에 대한 징후를 제공하도록 구성되는 것을 특징으로 하는
    시스템.
  11. 제 10 항에 있어서,
    상기 컨트롤러는 하나 이상의 스펙트럼 빈이 그 각각의 기준선으로부터 3 시그마 임계치 이상 벗어나면 왕복운동 장치에 대해 제어 액션을 출력하도록 구성되는 것을 특징으로 하는
    시스템.
  12. 왕복운동 장치에 대한 실시간 진단을 수행하기 위한 방법에 있어서,
    왕복운동 장치에 결합된 하나 이상의 노크 센서로부터 신호를 수신하고,
    수신된 신호를 샘플링하며,
    샘플링된 신호를 분석하고,
    표준 품질 관리(SQC) 기술을 사용하여 분석된 신호에 기초한 왕복운동 장치에 대한 실시간 진단을 수행하기 위해,
    왕복운동 장치에 통신적으로 결합된 컨트롤러를 사용하는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  13. 제 12 항에 있어서,
    샘플링된 신호를 분석하는 것은 샘플링된 신호를 시간 필터링하여 시간 필터링된 신호를 발생시키는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  14. 제 13 항에 있어서,
    샘플링된 신호를 시간 필터링하는 것은 샘플링된 신호에 창 함수를 적용하는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  15. 제 13 항에 있어서,
    샘플링된 신호를 분석하는 것은 시간 필터링된 신호에 고속 푸리에 변환을 적용시켜 푸리에 변환된 신호를 발생시키는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  16. 제 15 항에 있어서,
    샘플링된 신호를 분석하는 것은 푸리에 변환된 신호로부터 복수의 스펙트럼 빈을 갖는 파워 스펙트럼 밀도를 발생시키는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  17. 제 16 항에 있어서,
    복수의 스펙트럼 빈의 각각의 스펙트럼 빈을 복수의 사이클에 걸쳐서 평균화하여 각각의 스펙트럼 빈에 대한 각각의 기준선을 발생시키고, 각각의 스펙트럼 빈에 대한 2 시그마 및 3 시그마 임계치를 각각의 기준선에 대해 설정하는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  18. 제 17 항에 있어서,
    공지된 왕복운동 장치 또는 복수의 스펙트럼 빈으로부터의 왕복운동 장치 부품 고장과 연관된 하나 이상의 스펙트럼 빈을 그 각각의 기준선 및 관련 2 시그마 및 3 시그마 임계치와 비교하는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  19. 제 18 항에 있어서,
    하나 이상의 스펙트럼 빈이 그 각각의 기준선으로부터 2 시그마 임계치 이상 벗어나면 징후를 제공하는 단계, 및 하나 이상의 스펙트럼 빈이 그 각각의 기준선으로부터 3 시그마 임계치 이상 벗어나면 왕복운동 장치에 대한 제어 액션을 출력하는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
  20. 왕복운동 장치에 대한 실시간 진단을 수행하기 위한 방법에 있어서,
    왕복운동 장치에 결합된 하나 이상의 노크 센서로부터 수신된 신호를 샘플링하며,
    샘플링된 신호에 시간 필터를 적용시켜 시간 필터링된 신호를 발생시키고,
    시간 필터링된 신호에 고속 푸리에 변환을 적용시켜 푸리에 변환된 신호를 발생시키며,
    푸리에 변환된 신호로부터 파워 스펙트럼 밀도를 발생시키고,
    표준 품질 관리(SQC) 기술을 사용하여 파워 스펙트럼 밀도에 기초한 왕복운동 장치에 대한 실시간 진단을 수행하기 위해,
    왕복운동 장치에 통신적으로 결합된 컨트롤러를 사용하는 단계를 포함하는 것을 특징으로 하는
    왕복운동 장치에 대한 실시간 진단 수행 방법.
KR1020160000845A 2015-01-07 2016-01-05 표준 품질 관리 기술을 이용한 왕복운동 장치 이상 검출 시스템 및 방법 KR102245696B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/591,192 2015-01-07
US14/591,192 US9803567B2 (en) 2015-01-07 2015-01-07 System and method for detecting reciprocating device abnormalities utilizing standard quality control techniques

Publications (2)

Publication Number Publication Date
KR20160085217A true KR20160085217A (ko) 2016-07-15
KR102245696B1 KR102245696B1 (ko) 2021-04-28

Family

ID=55085555

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160000845A KR102245696B1 (ko) 2015-01-07 2016-01-05 표준 품질 관리 기술을 이용한 왕복운동 장치 이상 검출 시스템 및 방법

Country Status (7)

Country Link
US (1) US9803567B2 (ko)
EP (1) EP3043053B1 (ko)
JP (1) JP6671955B2 (ko)
KR (1) KR102245696B1 (ko)
CN (1) CN105937459B (ko)
BR (1) BR102016000207B1 (ko)
CA (1) CA2916466C (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10054043B2 (en) * 2015-04-07 2018-08-21 General Electric Company Systems and methods for estimating a time of an engine event
US9989004B2 (en) * 2016-07-29 2018-06-05 Caterpillar Inc. System for determining piston pin bore wear
WO2018044294A1 (en) * 2016-08-31 2018-03-08 General Electric Company System and method for determining the timing of an engine event
KR102586917B1 (ko) * 2018-08-27 2023-10-10 현대자동차주식회사 노킹센서를 이용한 베어링 소착 방지 시스템 및 방법
US11506570B2 (en) * 2018-08-27 2022-11-22 Hyundai Motor Company Method for sensing damage of bearing of engine using vibration signal
DE102018126501B3 (de) * 2018-10-24 2019-12-19 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Wartungsvorhersage von Komponenten einer Brennkraftmaschine mittels Körperschallsensor
CA3144520A1 (en) * 2019-07-01 2021-01-07 FW Murphy Production Controls, LLC Intuitive natural gas compressor monitoring system
US12061971B2 (en) * 2019-08-12 2024-08-13 Micron Technology, Inc. Predictive maintenance of automotive engines
KR20220112071A (ko) * 2021-02-03 2022-08-10 현대자동차주식회사 노킹센서를 이용한 엔진의 베어링 손상 감지 시스템 및 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058467A (ja) * 2007-09-03 2009-03-19 Toyota Motor Corp 内燃機関のノッキング判定装置、ノッキング判定方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体
JP2009115011A (ja) * 2007-11-08 2009-05-28 Denso Corp 内燃機関のノック判定装置
US20090276147A1 (en) * 2008-05-01 2009-11-05 Gm Global Technology Operations, Inc. Engine knock diagnostic

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0293573B1 (en) * 1987-04-06 1991-04-24 Mazda Motor Corporation Engine knock detecting and control system
KR930009907B1 (ko) 1988-10-04 1993-10-13 미쯔비시 덴끼 가부시끼가이샤 내연기관 제어장치
GB8910319D0 (en) 1989-05-05 1989-06-21 Austin Rover Group A spark ignited internal combustion engine and a control system therefor
EP0437057B1 (en) 1990-01-08 1993-11-03 Hitachi, Ltd. Method and apparatus for detecting combustion conditions in a multicylinder internal combustion engine
JP2792633B2 (ja) 1990-02-09 1998-09-03 株式会社日立製作所 制御装置
EP0443708A2 (en) 1990-02-21 1991-08-28 Stresswave Technology Limited An apparatus for controlling an internal combustion engine
DE4006273A1 (de) 1990-02-28 1991-09-26 Forsch Kraftfahrwesen Und Fahr Verfahren und vorrichtung zur ermittlung des verlaufs des innendrucks eines zylinders einer kolbenmaschine
US5337240A (en) 1990-09-20 1994-08-09 Mitsubishi Denki Kabushiki Kaisha Misfiring sensing apparatus
US5111790A (en) 1990-09-28 1992-05-12 Prestolite Wire Corporation Direct fire ignition system having individual knock detection sensor
JPH04198731A (ja) 1990-11-28 1992-07-20 Mitsubishi Electric Corp 内燃機関の失火検出装置
JPH04224260A (ja) 1990-12-26 1992-08-13 Nippondenso Co Ltd 内燃機関の燃焼状態検出装置
FR2682718A1 (fr) 1991-10-16 1993-04-23 Siemens Automotive Sa Procede et dispositif de detection de rates d'allumage du melange air/carburant d'alimentation d'un moteur a combustion interne propulsant un vehicule automobile et leurs applications.
US5996398A (en) 1992-01-22 1999-12-07 Robert Bosch Gmbh Device for knock detection in internal combustion engine
DE4211645A1 (de) 1992-04-07 1993-10-14 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erkennung des Klopfens einer Brennkraftmaschine
JPH06307953A (ja) 1993-04-27 1994-11-04 Hitachi Ltd 物理量検出装置
US5392642A (en) 1993-06-30 1995-02-28 Cummins Engine Company, Inc. System for detection of low power in at least one cylinder of a multi-cylinder engine
JPH07280637A (ja) 1994-04-01 1995-10-27 Ngk Insulators Ltd 失火センサ
US5594649A (en) 1994-12-19 1997-01-14 Delco Electronics Corporation Digitally reconfigurable engine knock detecting system
EP0731349A1 (en) 1995-03-10 1996-09-11 Motorola, Inc. Spectral knock detection method and system therefor
US6104195A (en) 1995-05-10 2000-08-15 Denso Corporation Apparatus for detecting a condition of burning in an internal combustion engine
US5763769A (en) 1995-10-16 1998-06-09 Kluzner; Michael Fiber optic misfire, knock and LPP detector for internal combustion engines
JP3116826B2 (ja) 1996-07-15 2000-12-11 トヨタ自動車株式会社 プレイグニッション検出装置
US5934256A (en) 1997-03-04 1999-08-10 Siemens Aktiengesellschaft Method for detecting irregular combustion processes in a multicylinder diesel internal combustion engine
JPH1137898A (ja) 1997-05-23 1999-02-12 Daifuku Co Ltd エンジン良否判定設備
CN1292153C (zh) 1998-02-23 2006-12-27 卡明斯发动机公司 带有优化燃烧控制的预混合充量压缩点火发动机
DE10015162B4 (de) 1998-11-24 2019-08-01 Scania Cv Ab Anordnung und Verfahren zum Kalibrieren und/oder Überwachen des Verbrennungsablaufes in einem Verbrennungsmotor
DE19920016A1 (de) 1999-05-03 2000-11-16 Bosch Gmbh Robert Verfahren und Vorrichtung zur Klopfregelung bei Ausfall des Phasengebers
JP3474810B2 (ja) 1999-08-30 2003-12-08 三菱電機株式会社 内燃機関の燃焼状態検出装置
US6273064B1 (en) 2000-01-13 2001-08-14 Ford Global Technologies, Inc. Controller and control method for an internal combustion engine using an engine-mounted accelerometer
DE10021913A1 (de) 2000-05-05 2001-11-08 Bosch Gmbh Robert Verfahren zur Fehlererkennung bei der Auswertung von Sensorsignalen
DE10043498A1 (de) 2000-09-01 2002-03-14 Bosch Gmbh Robert Verfahren zur klopferkennung bei Brennkraftmaschinen
DE10043693A1 (de) 2000-09-04 2002-03-14 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine und entsprechende Vorrichtung
JP4370338B2 (ja) * 2001-03-30 2009-11-25 三菱重工業株式会社 内燃機関の燃焼診断・制御装置及び燃焼診断・制御方法
IL144010A (en) 2001-06-26 2006-04-10 Engines Pdm Ltd Universal diagnostic method and system for engines
US6598468B2 (en) 2001-07-11 2003-07-29 Cummins Inc. Apparatus and methods for determining start of combustion for an internal combustion engine
DE10201073A1 (de) 2002-01-14 2003-07-31 Siemens Ag Verfahren zur Verarbeitung eines Sensorsignals eines Klopf-Sensors für eine Brennkraftmaschine
MXPA04007987A (es) 2002-02-15 2005-06-17 Dana Corp Aparato para la medicion de presiones en cilindros de motor.
US7021128B2 (en) 2002-04-29 2006-04-04 Avl North America, Inc. Misfire detection using acoustic sensors
JP3975936B2 (ja) 2003-02-17 2007-09-12 日産自動車株式会社 ノッキング指標値算出装置
JP4134797B2 (ja) 2003-04-14 2008-08-20 株式会社デンソー ノッキング検出装置
FR2854693B1 (fr) 2003-05-09 2005-07-01 Siemens Vdo Automotive Procede de determination de l'energie d'un signal de cliquetis pour moteur a combustion interne
JP4165751B2 (ja) 2003-07-03 2008-10-15 株式会社デンソー 内燃機関のノック検出装置
US6885932B2 (en) 2003-08-08 2005-04-26 Motorola, Inc. Misfire detection in an internal combustion engine
CA2444163C (en) 2003-10-01 2007-01-09 Westport Research Inc. Method and apparatus for controlling combustion quality of a gaseous-fuelled internal combustion engine
DE10350180B4 (de) 2003-10-28 2008-03-27 Siemens Ag Verfahren und Vorrichtung zur Analyse des Verbrennungsgeräusches bei der Kraftstoffeinspritzung in einen Zylinder einer Brennkraftmaschine
GB0401053D0 (en) 2004-01-17 2004-02-18 Qinetiq Ltd Improvements in and relating to accelerometers
DE602005021837D1 (de) 2004-02-20 2010-07-29 Nissan Motor Zündsteuerungssystem für eine Brennkraftmaschine
JP2005307759A (ja) 2004-04-16 2005-11-04 Toyota Industries Corp 予混合圧縮自着火機関の運転方法及び予混合圧縮自着火機関
JP4281610B2 (ja) 2004-04-27 2009-06-17 株式会社豊田自動織機 予混合圧縮自着火機関の運転方法及び予混合圧縮自着火機関
US7191658B2 (en) 2004-06-11 2007-03-20 Denso Corporation Pressure-detecting device and method of manufacturing the same
DE102004054711A1 (de) 2004-11-12 2006-05-18 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
US7444231B2 (en) 2004-11-18 2008-10-28 Westport Power Inc. Method of mounting an accelerometer on an internal combustion engine and increasing signal-to-noise ratio
JP4605642B2 (ja) 2004-12-14 2011-01-05 株式会社デンソー 内燃機関のノック判定装置
JP2006183548A (ja) 2004-12-27 2006-07-13 Nippon Soken Inc 内燃機関の制御装置
DE502005002989D1 (de) 2005-03-03 2008-04-10 Ford Global Tech Llc Vorrichtung und Verfahren zur Regelung des Verbrennungsverhaltens einer Brennkraftmaschine
US7181339B2 (en) * 2005-03-14 2007-02-20 Spectral Dynamics, Inc. Real-time spectral analysis of internal combustion engine knock
JP4452660B2 (ja) 2005-06-28 2010-04-21 トヨタ自動車株式会社 ノッキング状態判定装置
DE102005039757A1 (de) 2005-08-23 2007-03-01 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP4756968B2 (ja) 2005-09-16 2011-08-24 株式会社デンソー 内燃機関のノック判定装置
DE102005058820B4 (de) 2005-12-09 2016-11-17 Daimler Ag Verfahren zur Regelung einer Brennkraftmaschine, insbesondere einer selbstzündenden Brennkraftmaschine
JP4314240B2 (ja) 2005-12-09 2009-08-12 トヨタ自動車株式会社 内燃機関の点火時期制御装置
US7383816B2 (en) 2006-01-09 2008-06-10 Dresser, Inc. Virtual fuel quality sensor
US7448254B2 (en) 2006-02-14 2008-11-11 Kulite Semiconductor Products, Inc. Method and apparatus for measuring knocking in internal combustion engines
FR2898411B1 (fr) 2006-03-08 2008-05-16 Inst Francais Du Petrole Methode d'estimation en temps reel de parametres de combustion moteur a partir de signaux vibratoires
JP2007270808A (ja) 2006-03-31 2007-10-18 Mazda Motor Corp 多気筒4サイクルエンジンの制御装置
DE102006029279B3 (de) 2006-06-26 2007-10-25 Siemens Ag Verfahren zur zylinderindividuellen Klopfregelung sowie zugehörige Vorrichtung
US7546198B2 (en) 2006-08-03 2009-06-09 Spectral Dynamics, Inc. Dynamic noise-reduction baselining for real-time spectral analysis of internal combustion engine knock
US7810469B2 (en) 2006-09-06 2010-10-12 Ford Global Technologies, Llc Combustion control based on a signal from an engine vibration sensor
US7444236B2 (en) 2006-09-26 2008-10-28 Gm Global Technology Operations, Inc. Discrete variable valve lift diagnostic control system
EP1923556A1 (en) 2006-11-14 2008-05-21 Delphi Technologies, Inc. Improvements to engine control system
US7526943B2 (en) 2007-03-23 2009-05-05 Gm Global Technology Operations, Inc. Knock system with detection zones
US7571640B2 (en) 2007-03-28 2009-08-11 Cummins, Inc. Misfire detection in engines for on-board-diagnostics
EP1988378A1 (en) 2007-05-02 2008-11-05 Ford Global Technologies, LLC On-Cylinder Combustion Sensor
JP4367529B2 (ja) 2007-05-29 2009-11-18 トヨタ自動車株式会社 内燃機関の点火時期制御装置
EP2036746B1 (en) 2007-09-17 2014-07-23 S & T Daewoo Co., Ltd. Sensor module comprising acceleration sensor and relative displacement sensor, damper and electronically controllable suspension system comprising the same, and method of controlling vehicle movement using the same
FR2924219B1 (fr) 2007-11-22 2009-12-25 Siemens Vdo Automotive Procede de determination d'une valeur representative de la pression dans une chambre de combustion d'un moteur a combustion interne.
CA2609718C (en) 2007-11-27 2010-03-23 Westport Power Inc. Method and apparatus for determining a normal combustion characteristic for an internal combustion engine from an accelerometer signal
CA2610388C (en) 2007-11-29 2009-09-15 Westport Power Inc. Method and apparatus for using an accelerometer signal to detect misfiring in an internal combustion engine
JP4785204B2 (ja) 2007-12-17 2011-10-05 本田技研工業株式会社 エンジン点火制御装置
DE102008011614B4 (de) 2008-02-28 2011-06-01 Continental Automotive Gmbh Vorrichtung zur Verarbeitung eines Klopfsensorsignals
DE102008001081B4 (de) 2008-04-09 2021-11-04 Robert Bosch Gmbh Verfahren und Motorsteuergerät zum Steuern eines Verbrennungsmotors
FR2931881A1 (fr) 2008-05-29 2009-12-04 Peugeot Citroen Automobiles Sa Methode de detection du cliquetis dans un moteur a allumage commande
FR2931882A1 (fr) 2008-05-29 2009-12-04 Peugeot Citroen Automobiles Sa Methode de detection du cliquetis dans un moteur a allumage commande
GB0816721D0 (en) 2008-09-13 2008-10-22 Daniel Simon R Systems,devices and methods for electricity provision,usage monitoring,analysis and enabling improvements in efficiency
FR2936019B1 (fr) 2008-09-18 2010-09-10 Inst Francais Du Petrole Procede de detection de combustion anormale pour moteurs a combustion interne
FR2937086B1 (fr) 2008-10-09 2013-05-24 Inst Francais Du Petrole Procede de detection de combustion anormale pour moteurs a combustion interne
JP5023039B2 (ja) 2008-10-30 2012-09-12 日立オートモティブシステムズ株式会社 筒内圧測定装置
CN102171434B (zh) 2008-11-19 2012-10-17 丰田自动车株式会社 汽缸内压力传感器异常检测装置、汽缸内压力传感器异常检测方法、内燃机控制装置
US7769536B2 (en) * 2008-12-31 2010-08-03 Gm Global Technology Operations, Inc. Diagnostic systems and methods for engine knock sensors
JP4703731B2 (ja) 2009-01-06 2011-06-15 三菱電機株式会社 内燃機関の制御装置
US8670894B2 (en) * 2009-04-28 2014-03-11 GM Global Technology Operations LLC Control system and method for sensor signal out of range detection
CN102460950B (zh) 2009-05-20 2015-08-19 康明斯发电Ip公司 用于处理电气负载瞬变、电气故障和电网瘫痪的装置、系统和方法
CA2673216C (en) 2009-07-31 2011-05-03 Westport Power Inc. Method and apparatus for reconstructing in-cylinder pressure and correcting for signal decay
GB2473438B (en) 2009-09-09 2013-07-31 Gm Global Tech Operations Inc Method and device for closed-loop combustion control for an internal combustion engine
US8640545B2 (en) 2009-10-05 2014-02-04 Pcb Piezotronics, Inc. Vibration sensor with mechanical isolation member
DK2312744T3 (da) 2009-10-13 2012-10-01 Converteam Technology Ltd Effektfordelingssystemer
JP5334791B2 (ja) 2009-10-19 2013-11-06 三菱電機株式会社 内燃機関の制御装置
FR2952678B1 (fr) 2009-11-13 2012-07-13 Inst Francais Du Petrole Procede de detection de combustion anormale pour moteurs a combustion interne a partir de plusieurs indicateurs de la combustion
FR2952679B1 (fr) 2009-11-13 2012-02-24 Inst Francais Du Petrole Procede de detection de combustion anormale pour moteurs a combustion interne a partir de modelisations de distributions d'indicateurs de combustion
DE102011012722B4 (de) 2010-03-31 2019-09-12 Mazda Motor Corp. Verfahren zur Detektion anomaler Verbrennung für einen Fremdzündungsmotor und Fremdzündungsmotor
US8463533B2 (en) 2010-08-05 2013-06-11 Ford Global Technologies, Llc Method and system for pre-ignition control
US8245692B2 (en) 2010-12-03 2012-08-21 Ford Global Technologies, Llc Method and system for pre-ignition control
EP2500705A1 (en) 2011-03-15 2012-09-19 Wärtsilä Schweiz AG Method for the determination of the pressure in the combustion chamber of a large diesel engine and large diesel engine
US8538666B2 (en) 2011-06-13 2013-09-17 GM Global Technology Operations LLC CPS knock detection system
JP5554295B2 (ja) 2011-07-28 2014-07-23 日立オートモティブシステムズ株式会社 内燃機関の燃焼騒音検出方法及び燃焼騒音検出装置並びに内燃機関の制御装置
FI123044B (fi) 2011-08-25 2012-10-15 Waertsilae Finland Oy Menetelmä ja järjestely sytytyskatkon ohjaamiseksi
JP5814101B2 (ja) * 2011-12-12 2015-11-17 三菱電機株式会社 内燃機関の制御装置
JP5839972B2 (ja) 2011-12-12 2016-01-06 三菱電機株式会社 内燃機関の制御装置
WO2013118151A2 (en) 2012-02-09 2013-08-15 Sedemac Mechatronics Pvt Ltd A system and method for controlling the ignition timing of an internal combustion engine
JP5395201B2 (ja) * 2012-03-14 2014-01-22 三菱電機株式会社 内燃機関のノック制御装置
US8973429B2 (en) * 2013-02-25 2015-03-10 GM Global Technology Operations LLC System and method for detecting stochastic pre-ignition
CN203480037U (zh) 2013-10-10 2014-03-12 国家电网公司 铁塔螺栓松动的快速检测用振动频率接收装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009058467A (ja) * 2007-09-03 2009-03-19 Toyota Motor Corp 内燃機関のノッキング判定装置、ノッキング判定方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体
JP2009115011A (ja) * 2007-11-08 2009-05-28 Denso Corp 内燃機関のノック判定装置
US20090276147A1 (en) * 2008-05-01 2009-11-05 Gm Global Technology Operations, Inc. Engine knock diagnostic

Also Published As

Publication number Publication date
CA2916466C (en) 2023-04-18
US20160195029A1 (en) 2016-07-07
BR102016000207A2 (pt) 2016-08-16
CN105937459B (zh) 2021-03-12
JP6671955B2 (ja) 2020-03-25
CN105937459A (zh) 2016-09-14
EP3043053B1 (en) 2019-07-31
JP2016136019A (ja) 2016-07-28
KR102245696B1 (ko) 2021-04-28
CA2916466A1 (en) 2016-07-07
BR102016000207B1 (pt) 2021-01-26
EP3043053A1 (en) 2016-07-13
US9803567B2 (en) 2017-10-31

Similar Documents

Publication Publication Date Title
KR102245696B1 (ko) 표준 품질 관리 기술을 이용한 왕복운동 장치 이상 검출 시스템 및 방법
KR102271210B1 (ko) 엔진 이벤트의 시간을 추정하기 위한 시스템 및 방법
US9752949B2 (en) System and method for locating engine noise
EP3086106A1 (en) Knock sensor systems and methods for detection of component conditions
US20170175661A1 (en) Real time detection and diagnosis of change in peak firing pressure
EP3059568A1 (en) Signal recording of knocking conditions using a knock sensor
US20200256275A1 (en) Knock sensor systems and methods for valve recession conditions
EP3067538B1 (en) Systems and methods to distinguish engine knock from piston slap
KR20160099487A (ko) 노크 센서 신호에서의 총 고조파 왜곡을 이용하여 기관 부품의 건전도를 유추하는 방법 및 시스템
CN105863863B (zh) 得出爆震传感器条件的方法和系统
EP3043051A1 (en) Sensor for determining engine characteristics
WO2017011206A1 (en) Panoramic knock sensor systems and methods for engine component health detection
US9869257B2 (en) System and method for predicting peak pressure values using knock sensor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant