KR20160060659A - Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물 - Google Patents
Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물 Download PDFInfo
- Publication number
- KR20160060659A KR20160060659A KR1020167008253A KR20167008253A KR20160060659A KR 20160060659 A KR20160060659 A KR 20160060659A KR 1020167008253 A KR1020167008253 A KR 1020167008253A KR 20167008253 A KR20167008253 A KR 20167008253A KR 20160060659 A KR20160060659 A KR 20160060659A
- Authority
- KR
- South Korea
- Prior art keywords
- sequence
- immunodeficiency virus
- dna
- human immunodeficiency
- ltr
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/465—Hydrolases (3) acting on ester bonds (3.1), e.g. lipases, ribonucleases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0034—Urogenital system, e.g. vagina, uterus, cervix, penis, scrotum, urethra, bladder; Personal lubricants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/18—Antivirals for RNA viruses for HIV
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2320/00—Applications; Uses
- C12N2320/30—Special therapeutic applications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16061—Methods of inactivation or attenuation
- C12N2740/16063—Methods of inactivation or attenuation by chemical treatment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y301/00—Hydrolases acting on ester bonds (3.1)
- C12Y301/21—Endodeoxyribonucleases producing 5'-phosphomonoesters (3.1.21)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Immunology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Urology & Nephrology (AREA)
- Developmental Biology & Embryology (AREA)
- Cell Biology (AREA)
- Reproductive Health (AREA)
- Gynecology & Obstetrics (AREA)
- AIDS & HIV (AREA)
Abstract
본 발명은 면역결핍 바이러스 감염증의 치료를 위한 방법 및 조성물에 관한 것이다. 조성물은 CRISPR-연관 엔도뉴클레아제 및 가이드 RNA를 포함하는 단리된 핵산 서열을 포함하고, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적이다.
Description
관련 출원에 대한 상호 참조
본 출원은 2013년 8월 29일에 출원된 미국 가출원 특허 제61/871,626호; 2014년 6월 27일에 출원된 미국 가출원 특허 제62/018,441호; 및 2014년 7월 18일에 출원된 미국 가출원 특허 제62/026,103호의 우선일 이익을 주장한다. 미국 가출원 특허 제61/871,626호, 미국 가출원 특허 제62/018,441호, 및 미국 가출원 특허 제62/026,103호의 이익을 주장할 수 있는 임의 출원의 목적에 있어서, 이들 선행 출원된 출원의 내용은 본 명세서에 그 전체가 참고로서 포함된다.
서열 목록
본 출원은 ASCII 형태의 전자 파일로 제출되었고 그 전체가 본 명세서에 참고로서 포함된 서열 목록을 포함한다. 2014년 8월 26일에 생성된 상기 ASCII 파일의 제목은 F5129-00031_SL.txt이며 크기는 74,547 바이트이다.
연방 후원 연구에 관한 선언
본 발명은 미 국립보건원이 수여한 인가 번호 제R01MH093271호, 제R01NS087971호, 및 제P30MH092177호 하의 정부지원으로 이루어졌다. 미국 정부가 본 발명의 특정한 권리를 가질 수 있다.
발명의 분야
본 발명은 레트로바이러스, 예를 들면 인간 면역결핍 바이러스 (HIV)에서 표적 서열을 특이적으로 절단하는 조성물에 관한 것이다. CRISPR (일정 간격으로 규칙성있게 집합된 짧은 팔린드롬 반복, Clustered Regularly Interspace Short Palindromic Repeat) 연관 엔도뉴클레아제 및 인간 면역결핍 바이러스 내 표적 서열에 상보적인 가이드 RNA 서열을 인코딩하는 핵산을 포함할 수 있는 그러한 조성물이 HIV 감염증에 걸렸거나 걸릴 위험이 있는 개체에 투여될 수 있다.
발명의 배경
HIV-1가 발견된 지 삼십 년이 넘는 기간 동안, AIDS는 전세계 삼천오백삼십만명이 넘는 사람들에게 발생한 중요한 공공 보건 문제가 되었다. AIDS는 숙주 유전체로의 HIV-1의 계속되는 통합 때문에 불치로 남아있다. HIV-1 감염증을 제어하고 AIDS 발달을 지연시키려는 현재의 치료 (고도로 활성인 항레트로바이러스 요법 또는 HAART)는 HIV-1 감염을 유지시키는 세포 내 바이러스 복제를 크게 줄이고 혈장 바이러스혈증을 최소 수준까지 낮춘다. 하지만 HAART는 낮은 수준의 바이러스 유전체 발현 및 조직 내 복제를 억제하지 못하며 잠복성으로-감염된 세포, 예를 들면, 휴지기 기억 T 세포, 뇌 대식 세포, 미소아교세포, 및 성상아교세포, HIV-1의 저장소로서 기능하는 장관-연관 림프양 세포을 표적하지 못한다. 지속적인 HIV-1 감염은 또한 심장 및 신장 질환, 골감소증, 및 신경학적 장애를 비롯한 동반질환(comorbidity)으로 이어진다. 지속되는 바이러스 저장소를 표적하는 치료 요법 전략에 대한 끊임없는 수요가 존재한다.
요약
본 명세서에 제공된 것은 레트로바이러스 감염의 치료 및 예방과 관련한 조성물 및 방법이다. 레트로바이러스는 렌티바이러스, 예를 들면, 인간 면역결핍 바이러스; 원숭이 면역결핍 바이러스; 고양이 면역결핍 바이러스; 및 소 면역결핍 바이러스일 수 있다. 인간 면역결핍 바이러스는 HIV-1 또는 HIV-2일 수 있다. 한 구체예에서, 조성물은 CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 인코딩하는 서열을 포함하는 핵산 서열을 포함하고, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적이다. 일부 구체예에서 핵산은 발현 벡터 내에 내포된다. 한 구체예에서, 조성물은 CRISPR-연관 엔도뉴클레아제 폴리펩티드 및 하나 이상의 가이드 RNA를 포함하고, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적이다. 또한 본 명세서에 개시된 핵산, 발현 벡터, 또는 폴리펩티드를 포함하는 약제학적 조성물이 제공된다. 또한 본 명세서에 제공된 것은 인간 면역결핍 바이러스 감염을 가지거나 가질 위험이 있는 개체의 치료 방법이며, 여기서 치료 방법은 치료적으로 효과적인 양의 CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 인코딩하는 벡터를 포함하는 조성물을 개체에 투여하는 단계를 포함하며, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적이다. 또한 CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 포함하는 유전자 편집 복합체(gene editing complex)를 인코딩하는 단리된 핵산을 포함하는 조성물에 세포를 노출시킴으로써 인간 세포에서 레트로바이러스를 비활성화시키는 방법이 제공되며, 여기서 가이드 RNA는 레트로바이러스 내 표적 핵산 서열에 상보적이다. 유전자 편집 복합체는 하나 이상의 돌연변이를 프로바이러스 DNA에 도입시킨다. 일부 구체예에서 돌연변이는 프로바이러스 DNA 전체 또는 실질적으로 전체를 포함할 수 있는 결실을 포함할 수 있다. 또다른 양태에서, 또다른 양태에서본 명세서에 개시된 소정량의 조성물을 포함하는 키트가 또한 제공된다.
본 발명의 하나 이상의 구체예의 상세한 사항이 첨부된 도면 및 하기 상세한 설명에 제시된다. 본 발명의 다른 특징, 목적, 및 장점이 명세서 및 도면, 및 청구범위로부터 명백할 것이다.
도면의 간단한 설명
도 1은 Cas9/LTR-gRNA가 HIV-1로 잠복성으로 감염된 CHME5 미소아교 세포에서 HIV-1 리포터 바이러스 생산을 억제함을 나타낸다. (A) EGFP 유세포 분석의 대표적인 게이팅(gating) 다이어그램은 안정하게 발현되는 Cas9 더하기 LTR-A 또는 -B, vs. 텅빈 U6-유발 gRNA발현 벡터 (U6-CAG)에 의해 잠복성 pNL4-3-ΔGag-d2EGFP 리포터 바이러스의 TSA-유도 재활성화가 극적으로 감소했음을 나타낸다. (B) 선택된 LTR-A- 또는 -B-을 발현하는 안정한(stable) 클론으로부터의 PCR 산물 (LTR 내 -453 내지 +43)의 SURVEYOR Cel-I 뉴클레아제 어세이는 극적인 삽입결실 돌연변이 패턴 (화살표)을 나타낸다. (C, D) PCR 단편 분석은 정확히 LTR A 및 B 절단 부위 (D 내 화살표머리 및 화살표) 사이의 190-bp 부위의 결실을 나타내며, TA-클로닝 및 서열분석 결과에 의해 입증된 306-bp 단편 (C 내 화살표)을 남긴다. 도 1D는 보이는 순서에 따라 각각 SEQ ID NO 1-3을 보여준다. (E-G) LTR-A/B 안정한 클론의 서브클로닝은 EGFP 유세포 분석기로 측정하여 리포터 재활성화의 완전한 손실 (E) 및 EGFP 및 HIV-1 Rev 반응 요소 (RRE)에 대한 유전체 DNA의 표준 (F) 및 실-시간 (G) PCR 증폭에 의해 검출하여 pNL4-3-ΔGag-d2EGFP 프로바이러스 유전체의 제거를 나타내고; β-액틴은 DNA 정제 및 로딩 대조이다. (H) HIV-1 LTR U3/R/U5 부위 (-411 내지 +129)를 포괄하는 DNA 단편을 증폭하기 위해 프라이머를 이용한 LTR-A/B 서브클론 (#8, 13)의 PCR 유전형검증은 삽입결실(indel) (a, 결실; c, 삽입) 및 "온전한" 또는 혼합 LTR (b)을 나타낸다.
도 2는 Cas9/LTR-gRNA가 U1 단세포성 세포에서 잠복성 HIV-1 바이러스를 효율적으로 제거함을 나타낸다. (A) 우측, 염색체 Xp11.4. HIV-1 통합 부위에서 HIV-1 전체 유전체의 절제를 나타내는 다이어그램은 Genome-Walker 연결 PCR 키트를 이용하여 확인하였다. 좌측, 염색체 X 통합 부위-측면부착 서열을 표적하는 프라이머 쌍 (P1/P2)을 이용한 PCR 증폭절(amplicon) 길이의 분석은 전체 HIV-1 유전체 (9709-bp)가 제거되고, 두 개의 단편 (833- 및 670-bp)이 잔여함을 나타낸다. (B) 숙주 유전체 서열을 나타내는 LTR 단편 (833-bp)의 TA 클로닝 및 서열분석 (소문자, 226-bp) 및 5'-LTR의 부분 서열 (634-27=607 bp) (파선 밑줄) 및 LTR-A 표적화 부위 (두 번째 밑줄친 부분) 주변에 27-bp 결실을 갖는 3'-LTR (첫 번째 밑줄친 부분). 하단, 15개 서열 클론 증폭절로부터 규명된 두 가지 삽입결실 알릴(allele). 670-bp 단편은 숙주 서열 (226-bp) 및 LTR-A 및 B 표적 부위를 동시에 절단하여 190-bp를 절제한 후에 잔여한 LTR 서열 (634-190=444 bp)로 이루어진다. 밑줄치고 강조된 서열은 gRNA LTR-A 표적 부위와 PAM을 표시한다. 도 2B는 보이는 순서에 따라 각각 SEQ ID NO 4-13을 보여준다. (C) TSA/PMA 재활성화-유도성 p24 바이러스입자 방출이 실질적으로 차단됨을 나타내는, HIV-1 유전체의 LTR-A/B-유도 제거의 기능 분석. U1 세포를 pX260-LTR-A, -B, 또는 -A/B로 형질주입시켰다. 2-주의 퓨로마이신 선별 후에, 세포를 2일 동안 TSA (250 nM)/PMA로 처리한 후에 p24 Gag ELISA를 수행하였다.
도 3은 Cas9 더하기 LTR-A/B의 안정적인 발현이 새로운 HIV-1 감염으로부터 TZM-bI 세포를 면역화함을 나타낸다. (A) 항-Flag 항체를 이용한 면역세포화학 (ICC) 및 웨스턴 블롯 (WB) 분석은 2주 동안 퓨로마이신 (2 μg/ml)-선별된 TZM-bI 안정한 클론에서 Flag-Cas9의 발현을 확인해 준다. (B) Cas9/LTR-A/B 안정한 클론 (c1-c7)의 PCR 유전형검증은 LTR 루시페라아제 리포터 활성화의 억제와 LTR 절제의 밀접한 상관관계를 보여준다. 배수 변화는 상응하는 비-유도 수준을 넘는 TSA/PMA-유도 수준을 나타낸다. (C) 안정한 Cas9/LTR-A/B-발현 세포 (c4)를 표시된 다중감염도 (MOI)의 위형(pseudotyped)-pNL4-3-Nef-EGFP 렌티바이러스로 감염시키고 감염 2일 후, 감염 효율을 EGFP 유세포 분석기로 측정하였다. (D) 대표적인 위상차/형광 현미경은 LTR-A/B 안정한 세포가 pNL4-3-ΔE-EGFP HIV-1 리포터 바이러스 (회색)에 의한 신규한 감염 (우측 패널)에 저항성이 있지만 대조 (U6-CAG; 흑색) 세포는 없음을 나타낸다.
도 4는 인간 유전체에 대한 Cas9/LTR-A/B의 표적-이탈 효과를 나타낸다. (A) SURVEYOR 어세이는 인간 TZM-bI 및 U1 세포 내 예상/잠재 표적-이탈 부위에 삽입결실 돌연변이가 없음을 보여준다. LTR-A 적중-표적 부위 (A)를 양성 대조로서 및 텅빈 U6-CAG 벡터 (U6)를 음성 대조로서 사용하였다. (B-D) U6-CAG 대조 및 LTR-A/B 샘플에서 지칭된 삽입결실의 수를 나타내는 LTR-A/B 안정한 TZM-bI 서브클론의 전체-유전체 서열분석 (B), 양쪽 샘플에서 gRNA 표적 부위 부근 10개의 지칭된 삽입결실에 대한 상세한 정보 (C), 및 표적-이탈 지칭된 삽입결실의 분포 (D). 도 4C는 보이는 순서에 따라 각각 SEQ ID NO 14-15를 보여준다.
도 5는 인간 TZM-bI 세포의 유전체 DNA로부터 TA-클로닝 및 PCR 산물 (-411 내지 -10) 서열분석에 의해 규명된 통합된 렌티바이러스 LTR-반딧불 루시페라아제 리포터의 LTR U3 서열을 보여준다. 4가지 gRNA (LTR-A 내지 D)의 프로토스페이서(protospacer) 및 PAM (NGG) 서열 및 표시된 전사 인자의 예정 결합 부위가 강조된다. 정확한 절단 부위가 가위로 표시된다. +1은 전사 시작 부위를 표시한다. 도 5는 SEQ ID NO: 16를 보여준다.
도 6은 LTR-C 및 LTR-D가 CHME5 미소아교세포 세포에서 잠복성 pNL4-3-ΔGag-d2EGFP 바이러스의 TSA-유도 비활성화를 현저하게 억제함을 나타낸다. (A) Tat, Rev, Env, Vpu, 및 Nef를 리포터 유전자 d2EGFP와 함께 함유하는 pNL4-3-ΔGag-d2EGFP 벡터를 도식적으로 나타내는 다이어그램. (B) Cas9/LTR-D의 표적-적중 LTR 유전체에서 삽입결실 돌연변이를 나타내는 SURVEYOR 어세이, Cas9/LTR-C 형질주입된 세포는 나타내지 않음. (C) 텅빈 U6-유발 gRNA 발현 벡터 (U6-CAG)에 비교하여 Cas9/LTR-C 또는 LTR-D의 안정한 발현에 의해 잠복성 pNL4-3-ΔGag-d2EGFP 리포터 바이러스의 TSA-유도 비활성화가 극적으로 감소됨을 나타내는 EGFP 유세포 분석의 대표적인 게이팅 다이어그램.
도 7은 양쪽 LTR-C 및 LTR-D이 HIV-1 LTR-반딧불 루시페라아제 리포터 유전자와 안정하게 통합된 TZM-bI 세포에서 삽입결실 돌연변이를 유도했고 구성적 및 TSA/PMA-유도 루시페라아제 활성을 상당하게 감소시켰음을 보여준다. (A) LTR-C, LTR-D 또는 둘다에 의한 LTR 비활성화의 상당한 감소를 나타내는 기능적 루시페라아제 리포터 어세이. (B) LTR-C 및 LTR-D (상단 화살표)에 의해 유도된 LTR DNA (-453 내지 +43) 내 삽입결실 돌연변이를 나타내는 SURVEYOR 어세이. LTR-C 및 LTR-D의 조합은 LTR-C 및 LTR-D 사이의 302 bp 부위의 결실로부터 야기된 194 bp 단편 (하단 화살표)를 생성한다. (C, D) LTR-C에 있어서 23% 및 LTR-D에 있어서 13%로 삽입결실 효율을 나타내는 30개 클론의 Sanger 서열분석 및 삽입/결실을 나타내는 예시 크로마토그램. 도 7C는 보이는 순서에 따라 각각 SEQ ID NO 17-25를 보여준다. 도 7D는 보이는 순서에 따라 각각 SEQ ID NO 26-30를 보여준다. (E) U6-CAG 대조 샘플에서 두 개의 주요 밴드 (96 bp 및 270 bp)를 나타내지만, 96/102 부위의 LTR-C-유도 삽입결실 돌연변이 후 추가적인 372 bp 밴드 (상단 화살표), 372 부위의 LTR-D-유도 돌연변이 후 290 bp 밴드 (중간 화살표) 및 LTR-C/D-유도 절제 후 180 bp 단편 (하단 화살표)를 나타내는 LTR의 -453 내지 +43를 포괄하는 PCR 산물의 5 부위 (96, 102, 372, 386, 482)를 절단하기 위해 BsaJI를 이용하는 PCR-제한 단편 길이 다형성 (RFLP) 분석. (F) LTR-C 및 LTR-D 사이의 302 bp 단편의 결실(상단) 및 추가적인 17 bp 결실(하단)을 나타내는 예시 크로마토그램. 붉은 화살표는 연결 부위를 표시한다. *P<0.05는 U6-CAG 대조에 비하여 LTR-C 또는 LTR-D-매개 루시페라아제 활성화의 상당한 감소를 나타낸다. 도 7F는 보이는 순서에 따라 각각 SEQ ID NO 31-32를 보여준다.
도 8은 HIV-1 LTR U3/R/U5 부위 (-411 내지 +129)를 포괄하는 프라이머를 이용한 LTR-A/B 및 텅빈 U6-CAG 대조의 CHME5 서브클론으로부터의 PCR 산물의 TA 클로닝 및 Sanger 서열분석을 나타낸다. (A) 표시된 바와 같은 잠재 단편 a-c를 생성하는 5'- 및 3'- LTR 양쪽에 대한 LTR-A 및 LTR-B 절단의 가능한 조합. (B) LTR-A 및 LTR-B 절단 부위 사이에 190 bp 결실을 나타내는 절편 (351 bp)의 블라스트(Blast) 처리 결과. (C) LTR-A 절단 부위의 175 bp 삽입 및 LTR-B 절단 부위의 27 bp 결실을 나타내는 단편 c (682 bp)의 블라스트 결과. 도 8C는 보이는 순서에 따라 각각 SEQ ID NO 33-34를 보여준다.
도 9는 Cas9/LTR-gRNA가 U1 단세포성 세포에서 잠복성 HIV-1 바이러스를 효율적으로 제거함을 보여준다. (A) 염색체 2 통합 부위-측면부착 서열 (소문자, 467-bp)을 표적하는 프라이머 쌍 (T492/T493)을 이용한 긴-범위 PCR로부터의 1.1 kb 단편의 Sanger 서열분석은 전체 HIV-1 유전체 (9709-bp)이 제거되고, PAM (TGG) LTR-A 표적화 부위 (밑줄) 및 4-bp 결실 (nnnn)로부터 조합된 5'-LTR (파선 밑줄) 및 정확히 세 번째 뉴클레오티드에 6-bp 삽입(박스)을 갖는 3'-LTR 이 잔여함을 보여준다. 도 9A는 SEQ ID NO: 35를 보여준다. (B) 대표적인 DNA 겔 사진은 HIV-1 유전체의 특이적인 소거를 보여준다. NS, 비-특이적 밴드. (C, D) Gag 유전자 (T457/T458)를 표적하는 프라이머 쌍을 이용한 정량적 PCR 분석은 Cas9/LTR-A/B-발현 U1 세포에서 85% 효율로 전체 HIV-1 유전체 소거를 나타낸다. U1 세포를 pX260 텅빈 벡터 (U6-CAG) 또는 LTR-A/B-인코딩 벡터로 형질주입시켰다. 2-주 퓨로마이신 선별 후에, 세포 유전체 DNA를 기준화된(spiked) pNL4-3-ΔE-EGFP 인간 유전체 DNA를 표준으로서 이용하여 절대 정량 qPCR 분석을 위해 사용하였다. **P<0.01은 U6-CAG 대조에 비하여 상당한 감소를 나타낸다.
도 10은 Cas9/LTR gRNA이 J-Lat 잠복성으로 감염된 T 세포에서 HIV-1 촉진 바이러스를 효과적으로 소거함을 나타낸다. (A) EGFP 유세포 분석에 의한 기능적 분석은 PMA의 대략 50% 감소 및 EGFP 리포터 바이러스의 TNFα-유도 비활성화를 보여준다. (B) SURVEYOR 어세이는 Cas9/LTR-A/B 형질주입된 세포의 표적-적중 LTR 유전체에서 삽입결실 돌연변이(화살표)를 나타낸다. J-Lat 세포를 pX260 텅빈 벡터 또는 LTR-A 및 -B로 형질주입시켰다. 2-주의 퓨로마이신 선별 후에, 세포를 24시간 동안 PMA 또는 TNFα로 처리하였다. 유전체 DNA를 HIV-1 LTR U3/R/U5 부위 (-411 내지 +129)를 포괄하는 프라이머를 이용하여 PCR 처리하였고 따라서 SURVEYOR 어세이를 수행하였다. **P<0.01은 U6-CAG 대조에 비하여 상당한 감소를 나타낸다. (C) HIV-1 LTR (-374 내지 +43)를 포괄하는 프라이머를 이용한 PCR 단편 분석은 LTR A 및 B 절단 부위 사이의 190-bp 부위가 정확히 결실되어, 227-bp 단편 (화살표)이 잔여함을 나타낸다. 항존(House-keeping) 유전자 β-액틴은 DNA 정제 및 로딩 대조로서 기능한다.
도 11은 유전체 편집 효율이 Cas9 및 gRNA의 존재에 의존함을 나타낸다, (A, B) PCR 유전형검증은 퓨로마이신-선별된 TZM-bI 서브클론에서 유전체 편집의 어떠한 흔적도 없이 U6-유발 LTR-A 또는 LTR-B 발현 카세트 (A)의 부재 및 CMV-유발 Cas9 DNA (B)의 부재/감소를 보인다. 지정된 서브클론으로부터의 유전체 DNA를 U6 프로모터 (T351) 및 LTR-A (T354) 또는 -B (T356)를 포괄하고, Cas9 (T477/T491)를 표적하는 프라이머 쌍을 이용하여 통상적인 (A) 또는 실시간 (B) PCR 분석으로 처리하였다. (C, D) Cas9 단백질 발현은 비효과적인 TZM-bI 서브클론에서 부재한다. Flag-태그된 Cas9 융합 단백질은 항-Flag 단클론 항체를 이용한 웨스턴 블롯 (WB) 및 면역세포화학 (ICC)으로 검출하였다. 안정적으로 Flag-Cas9를 발현하는 HEK293T 세포주를 WB를 위한 양성 대조로 사용하였다 (C). GAPDH는 단백질 로딩 대조로서 기능한다. 클론 c6는 Cas9 DNA는 보유하나 Cas9 단백질 발현이 없기 때문에, 퓨로마이신 선별 후 후성적 억제의 가능한 메커니즘을 시사한다. 클론 c5 및 c3은 말단이 잘린 Flag-Cas9 (tCas9)를 나타낼 수 있다. 핵을 Hoechst 33258 (D)로 염색하였다.
도 12는 TZM-bI 세포에서의 Cas9/LTR-A/B gRNA의 안정한 발현이 위형 또는 자연적인 HIV-1 바이러스에 대한 면역성을 일으켰음을 보여준다. (A) 유세포 분석은 TZM-bI 서브클론을 발현하는 Cas9/LTR-A/B에서 자연적인 pNL4-3-ΔE-EGFP 리포터 바이러스 감염 효율이 상당히 감소했음을 나타낸다. (B, C) 실시간 PCR 분석은 Cas9/LTR-A/B gRNA에 의한 바이러스 RNA (B) 및 DNA (C)의 억제 또는 제거를 나타낸다. (D) 반딧불-루시페라아제 발광 어세이는 Cas9/LTR-A/B gRNA에 의한 바이러스 감염-촉진된 LTR 프로모터 활성의 극적인 저해를 보여준다. 안정한 Cas9/LTR-A/B gRNA-발현 TZM-bI 세포를 지정된 자연적인 HIV-1 바이러스로 2 시간 동안 감염시키고, PBS로 두 차례 세척하였다. 감염 2일 후에, 세포를 수집하고, 고정하고 유세포 분석에 의해 EGFP 발현 (A)을 측정하고, 또는 총 RNA 추출 및 RT-qPCR (B), qPCR을 위한 유전체 DNA 정제 (C) 및 형광 측정 (D)을 위해 용리하였다. *P<0.05 및 **P<0.01은 U6-CAG 대조에 비하여 상당한 감소를 나타낸다.
도 13은 예측된 LTR gRNA 및 이들의 표적-이탈 수(100% 일치)를 나타낸다. pHR'-CMV-LacZ 렌티바이러스 벡터 (AF 105229)의 5'-LTR 센스 및 안티센스 서열 (각각 SEQ ID NO 79-111 및 112-141) (634 bp)를 활용하여 20-bp 가이드 서열 (프로토스페이서)를 내포하는 Cas9/gRNA 표적 부위 더하기 프로토스페이서 인접 모티프 서열 (NGG)을 검색하기 위해 Jack Lin CRISPR/Cas9 gRNA 검색 도구 (http://spot.colorado.edu/~slin/cas9.html)를 사용하였다. 각각의 gRNA 더하기 NGG (AGG, TGG, GGG, CGG)를 이용가능한 인간 유전체 및 전사 서열에 대해 블라스트 처리하였고 1000개의 나열된 서열이 보여진다. Control + F 키를 누른 후, 표적 서열 (1-23부터 9-23까지 뉴클레오티드)를 복사/붙여넣기하고 100% 일치하는 유전체 표적의 수를 찾는다. 반복된 유전체 라이브러리 때문에 각 검색에서 표적-이탈의 수를 3으로 나눴다. 표시된 수는 4회 검색의 합 (NGG)를 나타낸다. 높은 수 (예를 들면, gRNA 서열 (센스)에 있어서: 20, 19, 19, 17, 16, 15, 14, 13, 12)는 NGG로부터 가장 먼 gRNA 표적 서열을 나타낸다. 선택된 LTR-A/B 및 LTR-C/D에 대한 서열 및 표적-이탈 수는 각각 적색과 녹색으로 강조된다.
도 14는 PCR 및 서열분석을 위해 사용된 gRNA 표적화 부위 및 프라이머 (보이는 순서에 따라 각각 SEQ ID NOS 36-78)에 해당하는 올리고뉴클레오티드를 도시한다.
도 15는 LTR-A 및 LTR-B의 예측된 gRNA 표적화 부위의 위치를 나타내고 모두 각각, 보이는 순서에 따라 "검색(query) Seq" 서열을 SEQ ID NO 142-252로서, 및 "응답(ref) Seq" 서열을 SEQ ID NO 253-363로서 나타낸다.
도 16은 양쪽 LTR-C 및 LTR-D이 HIV-1 LTR반딧불 루시페라아제 리포터 유전자와 안정하게 통합된 TZMBI 세포에서 구성적 및 TSA/PMA-유도 루시페라아제 활성을 감소시켰고 조합이 정확한 유전체 절제를 유도했음을 나타낸다. 여섯 개의 gRNA 표적을 HIV-LTR의 프로모터 부위를 위해 설계하였다 (도 16A). 도 16A는 SEQ ID NO: 16를 보여준다. TZMBI 세포를 리포펙타민 2000에 의해 Cas9-EGFP 및 키메라 gRNA 발현 카세트 (PCR 산물)로 동시형질감염시켰다. 3일 후에, EGFP-양성 세포를 FACS를 통해 분류하고 군당 2000 세포를 루시페라아제 어세이를 위해 수집하였다 (도 16B). 도 16B는 SEQ ID: 31를 보여준다. 집단 분류된 세포를 2일 동안 배양하고 루시페라아제 어세이 하루 전에 TSA/PMA로 처리하였다 (도 16C). 단일 세포를 96-웰 플레이트에 분류하고 하루 동안 TSA/PMA의 부재 (도 16D) 또는 존재 (도 1E)에서 루시페라아제 어세이를 위해 합류할 때까지 배양하였다. 집단 분류된 세포로부터의 PCR 산물을 Surveyor Cel-I 뉴클레아제 어세이 (도 1F) 및 BsajI을 이용한 제한 단편 길이 다형성 (도 16G)으로 분석하여 돌연변이 (도 16F) 또는 미절단 (도 16G) 밴드 (적색 화살표)를 나타내었다. 예측한 바와 같은 LTR-C 및 LTR-D 사이의 321 bp 부위의 결실(도 16A, 적색 화살표머리)로부터 생성된 200 bp 단편 (도 16F, 16G, 흑색 화살표)을 TA-클로닝 및 서열분석으로 확인하여 정확한 유전체 절제를 관찰했다 (도 16H). 개별적인 LTR-C 및 -D 규명된 % 및 % 삽입결실 돌연변이 효율 각각으로부터 PCR 산물의 Sanger 서열분석(도 16). * p<0.05는 상응하는 U6-CAG 대조에 비교하여 스튜던트(student)의 t 시험을 이용할 때 통계학적으로 유의한 감소를 표시한다. 프로토스페이스 (E), 프로토스페이스 (C), 프로토스페이스 (A), 프로토스페이스 (B), 프로토스페이스 (D), 및 프로토스페이스 (F)는 보이는 순서에 따라 각각 SEQ ID NO 365, 367, 369, 371, 373, 및 375에 상응한다.
도 17은 Cas9/LTR-gRNA가 HIV-1 잠복성으로 감염된 CHME5 미소아교세포 세포주에서 EGFP 유세포 분석에 의해 측정된 HIV-1 바이러스의 구성적 및 유도성 생산을 저해했음을 나타낸다. 리포트된 유전자 d2EGFP와 함께 Tat, Rev, Env, Vpu, 및 Nef를 함유하는 pHR' 렌티바이러스 벡터를 인간 태아 미소아교세포 세포주 CHME5에 형질도입시켰고 3'-LTR의 U3 부위 내 400 bp 결실이 예시된다(도 17A). Cas9/gRNA의 일시적인 형질감염 후에, 인간 HIV-1 LTR-A, B, C, D 단독 또는 조합은 EGFP의 강도를 감소시켰지만 LTR 프로모터 활성의 억제로 인해 비율은 감소시키지 못했다 (도 17B, 17C). 1-2주 동안의 항생제 선별 후에, EGFP 세포의 비율이 또한 감소했다 (도 17D, 17E). 안정한 선택된 클론으로부터의 PCR 산물을 Surveyor Cel-I 뉴클레아제 어세이로 분석하였고 (도 17F) 이 LTR-A 및 LTR-B에서 극적이지만 LTR-A/B의 조합(적색 화살표)에서 약한 삽입결실 돌연변이를 보여준다. 예측한 바와 같은 LTR-A 및 LTR-B 사이의 190 bp 부위의 결실(도 17H, 적색 화살표머리)로부터 생성된 331 bp 단편 (도 17F, 17G, 흑색 화살표)을 TA-클로닝 및 서열분석으로 확인하여 정확한 유전체 절제를 관찰했다 (도 17H). 도 17H는 보이는 순서에 따라 각각 SEQ ID NO 1-3을 보여준다.
도 18은 대표적인 HIV-1 서열의 LTR을 보여준다 (SEQ ID NO: 376). U3 부위는 뉴클레오티드 1부터 뉴클레오티드 432까지 신장되고 (SEQ ID NO: 377), R 부위는 뉴클레오티드 432부터 뉴클레오티드 559까지 신장되며 (SEQ ID NO: 378), U5 부위는 560부터 뉴클레오티드 644까지 신장된다 (SEQ ID NO: 379).
도 19는 대표적인 SIV 서열의 LTR을 보여준다 (SEQ ID NO: 380). U3 부위는 뉴클레오티드 1부터 뉴클레오티드 517까지 신장되고 (SEQ ID NO: 381), R 부위는 뉴클레오티드 518부터 뉴클레오티드 693까지 신장되며 (SEQ ID NO: 382), U5 부위는 694부터 뉴클레오티드 818까지 신장된다 (SEQ ID NO: 383).
도 1은 Cas9/LTR-gRNA가 HIV-1로 잠복성으로 감염된 CHME5 미소아교 세포에서 HIV-1 리포터 바이러스 생산을 억제함을 나타낸다. (A) EGFP 유세포 분석의 대표적인 게이팅(gating) 다이어그램은 안정하게 발현되는 Cas9 더하기 LTR-A 또는 -B, vs. 텅빈 U6-유발 gRNA발현 벡터 (U6-CAG)에 의해 잠복성 pNL4-3-ΔGag-d2EGFP 리포터 바이러스의 TSA-유도 재활성화가 극적으로 감소했음을 나타낸다. (B) 선택된 LTR-A- 또는 -B-을 발현하는 안정한(stable) 클론으로부터의 PCR 산물 (LTR 내 -453 내지 +43)의 SURVEYOR Cel-I 뉴클레아제 어세이는 극적인 삽입결실 돌연변이 패턴 (화살표)을 나타낸다. (C, D) PCR 단편 분석은 정확히 LTR A 및 B 절단 부위 (D 내 화살표머리 및 화살표) 사이의 190-bp 부위의 결실을 나타내며, TA-클로닝 및 서열분석 결과에 의해 입증된 306-bp 단편 (C 내 화살표)을 남긴다. 도 1D는 보이는 순서에 따라 각각 SEQ ID NO 1-3을 보여준다. (E-G) LTR-A/B 안정한 클론의 서브클로닝은 EGFP 유세포 분석기로 측정하여 리포터 재활성화의 완전한 손실 (E) 및 EGFP 및 HIV-1 Rev 반응 요소 (RRE)에 대한 유전체 DNA의 표준 (F) 및 실-시간 (G) PCR 증폭에 의해 검출하여 pNL4-3-ΔGag-d2EGFP 프로바이러스 유전체의 제거를 나타내고; β-액틴은 DNA 정제 및 로딩 대조이다. (H) HIV-1 LTR U3/R/U5 부위 (-411 내지 +129)를 포괄하는 DNA 단편을 증폭하기 위해 프라이머를 이용한 LTR-A/B 서브클론 (#8, 13)의 PCR 유전형검증은 삽입결실(indel) (a, 결실; c, 삽입) 및 "온전한" 또는 혼합 LTR (b)을 나타낸다.
도 2는 Cas9/LTR-gRNA가 U1 단세포성 세포에서 잠복성 HIV-1 바이러스를 효율적으로 제거함을 나타낸다. (A) 우측, 염색체 Xp11.4. HIV-1 통합 부위에서 HIV-1 전체 유전체의 절제를 나타내는 다이어그램은 Genome-Walker 연결 PCR 키트를 이용하여 확인하였다. 좌측, 염색체 X 통합 부위-측면부착 서열을 표적하는 프라이머 쌍 (P1/P2)을 이용한 PCR 증폭절(amplicon) 길이의 분석은 전체 HIV-1 유전체 (9709-bp)가 제거되고, 두 개의 단편 (833- 및 670-bp)이 잔여함을 나타낸다. (B) 숙주 유전체 서열을 나타내는 LTR 단편 (833-bp)의 TA 클로닝 및 서열분석 (소문자, 226-bp) 및 5'-LTR의 부분 서열 (634-27=607 bp) (파선 밑줄) 및 LTR-A 표적화 부위 (두 번째 밑줄친 부분) 주변에 27-bp 결실을 갖는 3'-LTR (첫 번째 밑줄친 부분). 하단, 15개 서열 클론 증폭절로부터 규명된 두 가지 삽입결실 알릴(allele). 670-bp 단편은 숙주 서열 (226-bp) 및 LTR-A 및 B 표적 부위를 동시에 절단하여 190-bp를 절제한 후에 잔여한 LTR 서열 (634-190=444 bp)로 이루어진다. 밑줄치고 강조된 서열은 gRNA LTR-A 표적 부위와 PAM을 표시한다. 도 2B는 보이는 순서에 따라 각각 SEQ ID NO 4-13을 보여준다. (C) TSA/PMA 재활성화-유도성 p24 바이러스입자 방출이 실질적으로 차단됨을 나타내는, HIV-1 유전체의 LTR-A/B-유도 제거의 기능 분석. U1 세포를 pX260-LTR-A, -B, 또는 -A/B로 형질주입시켰다. 2-주의 퓨로마이신 선별 후에, 세포를 2일 동안 TSA (250 nM)/PMA로 처리한 후에 p24 Gag ELISA를 수행하였다.
도 3은 Cas9 더하기 LTR-A/B의 안정적인 발현이 새로운 HIV-1 감염으로부터 TZM-bI 세포를 면역화함을 나타낸다. (A) 항-Flag 항체를 이용한 면역세포화학 (ICC) 및 웨스턴 블롯 (WB) 분석은 2주 동안 퓨로마이신 (2 μg/ml)-선별된 TZM-bI 안정한 클론에서 Flag-Cas9의 발현을 확인해 준다. (B) Cas9/LTR-A/B 안정한 클론 (c1-c7)의 PCR 유전형검증은 LTR 루시페라아제 리포터 활성화의 억제와 LTR 절제의 밀접한 상관관계를 보여준다. 배수 변화는 상응하는 비-유도 수준을 넘는 TSA/PMA-유도 수준을 나타낸다. (C) 안정한 Cas9/LTR-A/B-발현 세포 (c4)를 표시된 다중감염도 (MOI)의 위형(pseudotyped)-pNL4-3-Nef-EGFP 렌티바이러스로 감염시키고 감염 2일 후, 감염 효율을 EGFP 유세포 분석기로 측정하였다. (D) 대표적인 위상차/형광 현미경은 LTR-A/B 안정한 세포가 pNL4-3-ΔE-EGFP HIV-1 리포터 바이러스 (회색)에 의한 신규한 감염 (우측 패널)에 저항성이 있지만 대조 (U6-CAG; 흑색) 세포는 없음을 나타낸다.
도 4는 인간 유전체에 대한 Cas9/LTR-A/B의 표적-이탈 효과를 나타낸다. (A) SURVEYOR 어세이는 인간 TZM-bI 및 U1 세포 내 예상/잠재 표적-이탈 부위에 삽입결실 돌연변이가 없음을 보여준다. LTR-A 적중-표적 부위 (A)를 양성 대조로서 및 텅빈 U6-CAG 벡터 (U6)를 음성 대조로서 사용하였다. (B-D) U6-CAG 대조 및 LTR-A/B 샘플에서 지칭된 삽입결실의 수를 나타내는 LTR-A/B 안정한 TZM-bI 서브클론의 전체-유전체 서열분석 (B), 양쪽 샘플에서 gRNA 표적 부위 부근 10개의 지칭된 삽입결실에 대한 상세한 정보 (C), 및 표적-이탈 지칭된 삽입결실의 분포 (D). 도 4C는 보이는 순서에 따라 각각 SEQ ID NO 14-15를 보여준다.
도 5는 인간 TZM-bI 세포의 유전체 DNA로부터 TA-클로닝 및 PCR 산물 (-411 내지 -10) 서열분석에 의해 규명된 통합된 렌티바이러스 LTR-반딧불 루시페라아제 리포터의 LTR U3 서열을 보여준다. 4가지 gRNA (LTR-A 내지 D)의 프로토스페이서(protospacer) 및 PAM (NGG) 서열 및 표시된 전사 인자의 예정 결합 부위가 강조된다. 정확한 절단 부위가 가위로 표시된다. +1은 전사 시작 부위를 표시한다. 도 5는 SEQ ID NO: 16를 보여준다.
도 6은 LTR-C 및 LTR-D가 CHME5 미소아교세포 세포에서 잠복성 pNL4-3-ΔGag-d2EGFP 바이러스의 TSA-유도 비활성화를 현저하게 억제함을 나타낸다. (A) Tat, Rev, Env, Vpu, 및 Nef를 리포터 유전자 d2EGFP와 함께 함유하는 pNL4-3-ΔGag-d2EGFP 벡터를 도식적으로 나타내는 다이어그램. (B) Cas9/LTR-D의 표적-적중 LTR 유전체에서 삽입결실 돌연변이를 나타내는 SURVEYOR 어세이, Cas9/LTR-C 형질주입된 세포는 나타내지 않음. (C) 텅빈 U6-유발 gRNA 발현 벡터 (U6-CAG)에 비교하여 Cas9/LTR-C 또는 LTR-D의 안정한 발현에 의해 잠복성 pNL4-3-ΔGag-d2EGFP 리포터 바이러스의 TSA-유도 비활성화가 극적으로 감소됨을 나타내는 EGFP 유세포 분석의 대표적인 게이팅 다이어그램.
도 7은 양쪽 LTR-C 및 LTR-D이 HIV-1 LTR-반딧불 루시페라아제 리포터 유전자와 안정하게 통합된 TZM-bI 세포에서 삽입결실 돌연변이를 유도했고 구성적 및 TSA/PMA-유도 루시페라아제 활성을 상당하게 감소시켰음을 보여준다. (A) LTR-C, LTR-D 또는 둘다에 의한 LTR 비활성화의 상당한 감소를 나타내는 기능적 루시페라아제 리포터 어세이. (B) LTR-C 및 LTR-D (상단 화살표)에 의해 유도된 LTR DNA (-453 내지 +43) 내 삽입결실 돌연변이를 나타내는 SURVEYOR 어세이. LTR-C 및 LTR-D의 조합은 LTR-C 및 LTR-D 사이의 302 bp 부위의 결실로부터 야기된 194 bp 단편 (하단 화살표)를 생성한다. (C, D) LTR-C에 있어서 23% 및 LTR-D에 있어서 13%로 삽입결실 효율을 나타내는 30개 클론의 Sanger 서열분석 및 삽입/결실을 나타내는 예시 크로마토그램. 도 7C는 보이는 순서에 따라 각각 SEQ ID NO 17-25를 보여준다. 도 7D는 보이는 순서에 따라 각각 SEQ ID NO 26-30를 보여준다. (E) U6-CAG 대조 샘플에서 두 개의 주요 밴드 (96 bp 및 270 bp)를 나타내지만, 96/102 부위의 LTR-C-유도 삽입결실 돌연변이 후 추가적인 372 bp 밴드 (상단 화살표), 372 부위의 LTR-D-유도 돌연변이 후 290 bp 밴드 (중간 화살표) 및 LTR-C/D-유도 절제 후 180 bp 단편 (하단 화살표)를 나타내는 LTR의 -453 내지 +43를 포괄하는 PCR 산물의 5 부위 (96, 102, 372, 386, 482)를 절단하기 위해 BsaJI를 이용하는 PCR-제한 단편 길이 다형성 (RFLP) 분석. (F) LTR-C 및 LTR-D 사이의 302 bp 단편의 결실(상단) 및 추가적인 17 bp 결실(하단)을 나타내는 예시 크로마토그램. 붉은 화살표는 연결 부위를 표시한다. *P<0.05는 U6-CAG 대조에 비하여 LTR-C 또는 LTR-D-매개 루시페라아제 활성화의 상당한 감소를 나타낸다. 도 7F는 보이는 순서에 따라 각각 SEQ ID NO 31-32를 보여준다.
도 8은 HIV-1 LTR U3/R/U5 부위 (-411 내지 +129)를 포괄하는 프라이머를 이용한 LTR-A/B 및 텅빈 U6-CAG 대조의 CHME5 서브클론으로부터의 PCR 산물의 TA 클로닝 및 Sanger 서열분석을 나타낸다. (A) 표시된 바와 같은 잠재 단편 a-c를 생성하는 5'- 및 3'- LTR 양쪽에 대한 LTR-A 및 LTR-B 절단의 가능한 조합. (B) LTR-A 및 LTR-B 절단 부위 사이에 190 bp 결실을 나타내는 절편 (351 bp)의 블라스트(Blast) 처리 결과. (C) LTR-A 절단 부위의 175 bp 삽입 및 LTR-B 절단 부위의 27 bp 결실을 나타내는 단편 c (682 bp)의 블라스트 결과. 도 8C는 보이는 순서에 따라 각각 SEQ ID NO 33-34를 보여준다.
도 9는 Cas9/LTR-gRNA가 U1 단세포성 세포에서 잠복성 HIV-1 바이러스를 효율적으로 제거함을 보여준다. (A) 염색체 2 통합 부위-측면부착 서열 (소문자, 467-bp)을 표적하는 프라이머 쌍 (T492/T493)을 이용한 긴-범위 PCR로부터의 1.1 kb 단편의 Sanger 서열분석은 전체 HIV-1 유전체 (9709-bp)이 제거되고, PAM (TGG) LTR-A 표적화 부위 (밑줄) 및 4-bp 결실 (nnnn)로부터 조합된 5'-LTR (파선 밑줄) 및 정확히 세 번째 뉴클레오티드에 6-bp 삽입(박스)을 갖는 3'-LTR 이 잔여함을 보여준다. 도 9A는 SEQ ID NO: 35를 보여준다. (B) 대표적인 DNA 겔 사진은 HIV-1 유전체의 특이적인 소거를 보여준다. NS, 비-특이적 밴드. (C, D) Gag 유전자 (T457/T458)를 표적하는 프라이머 쌍을 이용한 정량적 PCR 분석은 Cas9/LTR-A/B-발현 U1 세포에서 85% 효율로 전체 HIV-1 유전체 소거를 나타낸다. U1 세포를 pX260 텅빈 벡터 (U6-CAG) 또는 LTR-A/B-인코딩 벡터로 형질주입시켰다. 2-주 퓨로마이신 선별 후에, 세포 유전체 DNA를 기준화된(spiked) pNL4-3-ΔE-EGFP 인간 유전체 DNA를 표준으로서 이용하여 절대 정량 qPCR 분석을 위해 사용하였다. **P<0.01은 U6-CAG 대조에 비하여 상당한 감소를 나타낸다.
도 10은 Cas9/LTR gRNA이 J-Lat 잠복성으로 감염된 T 세포에서 HIV-1 촉진 바이러스를 효과적으로 소거함을 나타낸다. (A) EGFP 유세포 분석에 의한 기능적 분석은 PMA의 대략 50% 감소 및 EGFP 리포터 바이러스의 TNFα-유도 비활성화를 보여준다. (B) SURVEYOR 어세이는 Cas9/LTR-A/B 형질주입된 세포의 표적-적중 LTR 유전체에서 삽입결실 돌연변이(화살표)를 나타낸다. J-Lat 세포를 pX260 텅빈 벡터 또는 LTR-A 및 -B로 형질주입시켰다. 2-주의 퓨로마이신 선별 후에, 세포를 24시간 동안 PMA 또는 TNFα로 처리하였다. 유전체 DNA를 HIV-1 LTR U3/R/U5 부위 (-411 내지 +129)를 포괄하는 프라이머를 이용하여 PCR 처리하였고 따라서 SURVEYOR 어세이를 수행하였다. **P<0.01은 U6-CAG 대조에 비하여 상당한 감소를 나타낸다. (C) HIV-1 LTR (-374 내지 +43)를 포괄하는 프라이머를 이용한 PCR 단편 분석은 LTR A 및 B 절단 부위 사이의 190-bp 부위가 정확히 결실되어, 227-bp 단편 (화살표)이 잔여함을 나타낸다. 항존(House-keeping) 유전자 β-액틴은 DNA 정제 및 로딩 대조로서 기능한다.
도 11은 유전체 편집 효율이 Cas9 및 gRNA의 존재에 의존함을 나타낸다, (A, B) PCR 유전형검증은 퓨로마이신-선별된 TZM-bI 서브클론에서 유전체 편집의 어떠한 흔적도 없이 U6-유발 LTR-A 또는 LTR-B 발현 카세트 (A)의 부재 및 CMV-유발 Cas9 DNA (B)의 부재/감소를 보인다. 지정된 서브클론으로부터의 유전체 DNA를 U6 프로모터 (T351) 및 LTR-A (T354) 또는 -B (T356)를 포괄하고, Cas9 (T477/T491)를 표적하는 프라이머 쌍을 이용하여 통상적인 (A) 또는 실시간 (B) PCR 분석으로 처리하였다. (C, D) Cas9 단백질 발현은 비효과적인 TZM-bI 서브클론에서 부재한다. Flag-태그된 Cas9 융합 단백질은 항-Flag 단클론 항체를 이용한 웨스턴 블롯 (WB) 및 면역세포화학 (ICC)으로 검출하였다. 안정적으로 Flag-Cas9를 발현하는 HEK293T 세포주를 WB를 위한 양성 대조로 사용하였다 (C). GAPDH는 단백질 로딩 대조로서 기능한다. 클론 c6는 Cas9 DNA는 보유하나 Cas9 단백질 발현이 없기 때문에, 퓨로마이신 선별 후 후성적 억제의 가능한 메커니즘을 시사한다. 클론 c5 및 c3은 말단이 잘린 Flag-Cas9 (tCas9)를 나타낼 수 있다. 핵을 Hoechst 33258 (D)로 염색하였다.
도 12는 TZM-bI 세포에서의 Cas9/LTR-A/B gRNA의 안정한 발현이 위형 또는 자연적인 HIV-1 바이러스에 대한 면역성을 일으켰음을 보여준다. (A) 유세포 분석은 TZM-bI 서브클론을 발현하는 Cas9/LTR-A/B에서 자연적인 pNL4-3-ΔE-EGFP 리포터 바이러스 감염 효율이 상당히 감소했음을 나타낸다. (B, C) 실시간 PCR 분석은 Cas9/LTR-A/B gRNA에 의한 바이러스 RNA (B) 및 DNA (C)의 억제 또는 제거를 나타낸다. (D) 반딧불-루시페라아제 발광 어세이는 Cas9/LTR-A/B gRNA에 의한 바이러스 감염-촉진된 LTR 프로모터 활성의 극적인 저해를 보여준다. 안정한 Cas9/LTR-A/B gRNA-발현 TZM-bI 세포를 지정된 자연적인 HIV-1 바이러스로 2 시간 동안 감염시키고, PBS로 두 차례 세척하였다. 감염 2일 후에, 세포를 수집하고, 고정하고 유세포 분석에 의해 EGFP 발현 (A)을 측정하고, 또는 총 RNA 추출 및 RT-qPCR (B), qPCR을 위한 유전체 DNA 정제 (C) 및 형광 측정 (D)을 위해 용리하였다. *P<0.05 및 **P<0.01은 U6-CAG 대조에 비하여 상당한 감소를 나타낸다.
도 13은 예측된 LTR gRNA 및 이들의 표적-이탈 수(100% 일치)를 나타낸다. pHR'-CMV-LacZ 렌티바이러스 벡터 (AF 105229)의 5'-LTR 센스 및 안티센스 서열 (각각 SEQ ID NO 79-111 및 112-141) (634 bp)를 활용하여 20-bp 가이드 서열 (프로토스페이서)를 내포하는 Cas9/gRNA 표적 부위 더하기 프로토스페이서 인접 모티프 서열 (NGG)을 검색하기 위해 Jack Lin CRISPR/Cas9 gRNA 검색 도구 (http://spot.colorado.edu/~slin/cas9.html)를 사용하였다. 각각의 gRNA 더하기 NGG (AGG, TGG, GGG, CGG)를 이용가능한 인간 유전체 및 전사 서열에 대해 블라스트 처리하였고 1000개의 나열된 서열이 보여진다. Control + F 키를 누른 후, 표적 서열 (1-23부터 9-23까지 뉴클레오티드)를 복사/붙여넣기하고 100% 일치하는 유전체 표적의 수를 찾는다. 반복된 유전체 라이브러리 때문에 각 검색에서 표적-이탈의 수를 3으로 나눴다. 표시된 수는 4회 검색의 합 (NGG)를 나타낸다. 높은 수 (예를 들면, gRNA 서열 (센스)에 있어서: 20, 19, 19, 17, 16, 15, 14, 13, 12)는 NGG로부터 가장 먼 gRNA 표적 서열을 나타낸다. 선택된 LTR-A/B 및 LTR-C/D에 대한 서열 및 표적-이탈 수는 각각 적색과 녹색으로 강조된다.
도 14는 PCR 및 서열분석을 위해 사용된 gRNA 표적화 부위 및 프라이머 (보이는 순서에 따라 각각 SEQ ID NOS 36-78)에 해당하는 올리고뉴클레오티드를 도시한다.
도 15는 LTR-A 및 LTR-B의 예측된 gRNA 표적화 부위의 위치를 나타내고 모두 각각, 보이는 순서에 따라 "검색(query) Seq" 서열을 SEQ ID NO 142-252로서, 및 "응답(ref) Seq" 서열을 SEQ ID NO 253-363로서 나타낸다.
도 16은 양쪽 LTR-C 및 LTR-D이 HIV-1 LTR반딧불 루시페라아제 리포터 유전자와 안정하게 통합된 TZMBI 세포에서 구성적 및 TSA/PMA-유도 루시페라아제 활성을 감소시켰고 조합이 정확한 유전체 절제를 유도했음을 나타낸다. 여섯 개의 gRNA 표적을 HIV-LTR의 프로모터 부위를 위해 설계하였다 (도 16A). 도 16A는 SEQ ID NO: 16를 보여준다. TZMBI 세포를 리포펙타민 2000에 의해 Cas9-EGFP 및 키메라 gRNA 발현 카세트 (PCR 산물)로 동시형질감염시켰다. 3일 후에, EGFP-양성 세포를 FACS를 통해 분류하고 군당 2000 세포를 루시페라아제 어세이를 위해 수집하였다 (도 16B). 도 16B는 SEQ ID: 31를 보여준다. 집단 분류된 세포를 2일 동안 배양하고 루시페라아제 어세이 하루 전에 TSA/PMA로 처리하였다 (도 16C). 단일 세포를 96-웰 플레이트에 분류하고 하루 동안 TSA/PMA의 부재 (도 16D) 또는 존재 (도 1E)에서 루시페라아제 어세이를 위해 합류할 때까지 배양하였다. 집단 분류된 세포로부터의 PCR 산물을 Surveyor Cel-I 뉴클레아제 어세이 (도 1F) 및 BsajI을 이용한 제한 단편 길이 다형성 (도 16G)으로 분석하여 돌연변이 (도 16F) 또는 미절단 (도 16G) 밴드 (적색 화살표)를 나타내었다. 예측한 바와 같은 LTR-C 및 LTR-D 사이의 321 bp 부위의 결실(도 16A, 적색 화살표머리)로부터 생성된 200 bp 단편 (도 16F, 16G, 흑색 화살표)을 TA-클로닝 및 서열분석으로 확인하여 정확한 유전체 절제를 관찰했다 (도 16H). 개별적인 LTR-C 및 -D 규명된 % 및 % 삽입결실 돌연변이 효율 각각으로부터 PCR 산물의 Sanger 서열분석(도 16). * p<0.05는 상응하는 U6-CAG 대조에 비교하여 스튜던트(student)의 t 시험을 이용할 때 통계학적으로 유의한 감소를 표시한다. 프로토스페이스 (E), 프로토스페이스 (C), 프로토스페이스 (A), 프로토스페이스 (B), 프로토스페이스 (D), 및 프로토스페이스 (F)는 보이는 순서에 따라 각각 SEQ ID NO 365, 367, 369, 371, 373, 및 375에 상응한다.
도 17은 Cas9/LTR-gRNA가 HIV-1 잠복성으로 감염된 CHME5 미소아교세포 세포주에서 EGFP 유세포 분석에 의해 측정된 HIV-1 바이러스의 구성적 및 유도성 생산을 저해했음을 나타낸다. 리포트된 유전자 d2EGFP와 함께 Tat, Rev, Env, Vpu, 및 Nef를 함유하는 pHR' 렌티바이러스 벡터를 인간 태아 미소아교세포 세포주 CHME5에 형질도입시켰고 3'-LTR의 U3 부위 내 400 bp 결실이 예시된다(도 17A). Cas9/gRNA의 일시적인 형질감염 후에, 인간 HIV-1 LTR-A, B, C, D 단독 또는 조합은 EGFP의 강도를 감소시켰지만 LTR 프로모터 활성의 억제로 인해 비율은 감소시키지 못했다 (도 17B, 17C). 1-2주 동안의 항생제 선별 후에, EGFP 세포의 비율이 또한 감소했다 (도 17D, 17E). 안정한 선택된 클론으로부터의 PCR 산물을 Surveyor Cel-I 뉴클레아제 어세이로 분석하였고 (도 17F) 이 LTR-A 및 LTR-B에서 극적이지만 LTR-A/B의 조합(적색 화살표)에서 약한 삽입결실 돌연변이를 보여준다. 예측한 바와 같은 LTR-A 및 LTR-B 사이의 190 bp 부위의 결실(도 17H, 적색 화살표머리)로부터 생성된 331 bp 단편 (도 17F, 17G, 흑색 화살표)을 TA-클로닝 및 서열분석으로 확인하여 정확한 유전체 절제를 관찰했다 (도 17H). 도 17H는 보이는 순서에 따라 각각 SEQ ID NO 1-3을 보여준다.
도 18은 대표적인 HIV-1 서열의 LTR을 보여준다 (SEQ ID NO: 376). U3 부위는 뉴클레오티드 1부터 뉴클레오티드 432까지 신장되고 (SEQ ID NO: 377), R 부위는 뉴클레오티드 432부터 뉴클레오티드 559까지 신장되며 (SEQ ID NO: 378), U5 부위는 560부터 뉴클레오티드 644까지 신장된다 (SEQ ID NO: 379).
도 19는 대표적인 SIV 서열의 LTR을 보여준다 (SEQ ID NO: 380). U3 부위는 뉴클레오티드 1부터 뉴클레오티드 517까지 신장되고 (SEQ ID NO: 381), R 부위는 뉴클레오티드 518부터 뉴클레오티드 693까지 신장되며 (SEQ ID NO: 382), U5 부위는 694부터 뉴클레오티드 818까지 신장된다 (SEQ ID NO: 383).
상세한 설명
본 발명은, 부분적으로, RNA-유도된 일정 간격으로 규칙성있게 집합된 짧은 팔린드롬 반복(CRISPR)-Cas 9 뉴클레아제 시스템 (Cas9/gRNA)을 단일 및 다중 배열로 이용함으로써 통합된 HIV-1 유전체를 HIV-1 감염된 세포로부터 제거할 수 있었다는 본 발명자의 발견을 기초로 한다. 본 발명자는 HIV-1 LTR U3 부위 내부에서 고도로 특이적인 표적을 규명하였고 이는 잠복성으로-감염된 미소아교, 전단구 및 T 세포에서 Cas9/gRNA에 의해 효율적으로 편집되어, 바이러스 유전자 발현 및 복제가 비활성화되었다. Cas9/gRNA는 숙주 세포에게 유전독성이나 표적-이탈 편집을 일으키지 않았고, 5'- 내지 3'-LTR에 걸쳐 통합된 프로바이러스 DNA의 9709-bp 단편을 완전히 절제했다. 게다가, Cas9-발현 세포 내 다중 gRNA의 존재는 HIV-1 감염을 예방하였다. 본 발견의 결과는 Cas9/gRNA가 AIDS에 대한 특이적이고, 효력이 있는 예방 및 치료적 접근법을 제공하기 위해 유전조작될 수 있음을 시사한다.
따라서, 본 발명은 CRISPR-연관 엔도뉴클레아제 및 레트로바이러스, 예컨대, HIV 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산을 포함하는 조성물, 뿐만 아니라 CRISPR-연관 엔도뉴클레아제 및 HIV 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산을 포함하는 약제학적 제형을 특징으로 한다. 또한 CRISPR-연관 엔도뉴클레아제 폴리펩티드 및 HIV 내 표적 서열에 상보적인 가이드 RNA를 포함하는 조성물, 뿐만 아니라 CRISPR-연관 엔도뉴클레아제 폴리펩티드 및 HIV 내 표적 서열에 상보적인 가이드 RNA를 포함하는 약제학적 제형을 특징으로 한다.
또한 레트로바이러스 감염, 예컨대, HIV 감염증을 치료하기 위해 조성물을 투여하는 방법, 바이러스 복제를 제거하는 방법, 및 HIV 감염을 예방하는 방법을 특징으로 한다. 본 명세서에 기술된 치료적 방법은 다른 항레트로바이러스 요법 (예컨대, HAART)과 함께 수행될 수 있다.
HIV 감염의 임상 경로는 다양한 요인, 가령 개체의 유전적 배경, 연령, 일반 건강, 영양, 받은 치료, 및 HIV 아형에 따라 달라질 수 있다. 일반적으로, 대부분의 개체는 감염 후 수 주 또는 수 개월 이내에 감기-유사 증상을 겪는다. 증상은 발열, 두통, 근육통, 발진, 오한, 후두염, 구강 또는 성기 궤양, 림프절 부종, 관절 통증, 도한, 및 설사를 포함할 수 있다. 증상의 강도는 개체에 따라 온화한 정도부터 심각한 정도까지 달라질 수 있다. 급성 단계 도중, HIV 바이러스 입자는 적절한 CD4 수용체 분자를 발현하는 세포에 부착하여 침입한다. 바이러스가 숙주 세포에 침입하면, HIV가 인코딩한 역전사효소가 HIV RNA의 프로바이러스 DNA를 생성시키고 프로바이러스 DNA는 숙주의 유전체 DNA에 통합되게 된다. 숙주 세포에 의해 복제되는 것은 바로 이 HIV 프로바이러스이며, 다른 세포를 이후 감염시킬 수 있는 새로운 HIV 바이러스입자를 방출시킨다. 본 발명의 방법 및 조성물은 통합된 HIV 프로바이러스 DNA의 절제에 있어서 일반적으로 및 다양하게 유용하지만, 이에 본 발명이 제한되지는 않으며, 조성물은 임의의 감염 단계에 있는 개체 또는 HIV 감염의 위험을 가지는 미감염 개체에게 투여될 수 있다.
최초의 HIV 감염은 수 주 내지 수 개월 내에 진정되고, 이후 전형적으로 최대 10년까지 유지될 수 있는 긴 임상적 "잠복" 기간에 들어간다. 잠복기는 또한 무증상 HIV 감염 또는 만성 HIV 감염으로 지칭된다. 개체의 CD4 림프구 수는 회복되지만, 감염-전 수준에 미치지 못하며 대부분의 개체에서 혈전전환이 일어나고, 즉, 이들은 감염 후 2주 내지 4주 이내에 혈액 내에 검출가능한 수준의 항-HIV 항체를 갖는다. 이러한 잠복 기간 도중에, 말초혈 단핵세포에는 검출가능한 바이러스 복제가 존재하지 않고 말초혈에는 배양가능한 바이러스가 없거나 거의 없을 수 있다. 잠복 기간, 또한 임상적 잠복기로 지칭되는 기간 도중에, HIV에 감염된 사람들은 HIV-연관된 증상을 전혀 경험하지 않거나, 온화한 증상만 겪을 수 있다. 하지만, HIV 바이러스는 매우 낮은 수준으로 계속 복제된다. 항-레트로바이러스 요법으로 치료받은 개체에서, 이러한 잠복기는 수십년 또는 그 이후까지 연장될 수 있다. 그러나, 비록 항레트로바이러스 요법이 전염의 위험을 낮추기는 해도 이러한 단계의 개체는 이들이 항레트로바이러스 요법을 받아도 여전히 HIV를 다른 이들에게 전달할 수 있다. 위에서 언급한 바와 같이, 항-레트로바이러스 요법은 낮은 수준의 바이러스 유전체 발현을 억제하거나 잠복성으로 감염된 세포 가령 휴지기 기억 T 세포, 뇌 대식 세포, 미소아교세포, 성상아교세포 및 장관 연관 림프양 세포를 효율적으로 표적하지 못한다.
AIDS(후천성 면역결핍 증후군)의 임상적인 징후 및 증상은 CD4 림프구 수가 감소하여, 면역 시스템에 비가역적인 손상이 일어나면 나타난다. 많은 환자들이 또한 AIDS-연관 합병증, 가령, 예를 들면, 기회 감염 가령 결핵, 살모넬라증, 거대세포바이러스, 칸디다증, 크립토콕쿠스 뇌막염, 톡소플라즈마증, 및 크립토스포리디움증; 뿐만 아니라 특정 종류의 암, 가령 예를 들면, 카포시 육종, 및 림프종; 뿐만 아니라 소모 증후군, 신경학적 합병증, 및 HIV-연관 신장병을 보인다.
조성물
본 발명의 조성물은 CRISPR-연관 엔도뉴클레아제, 예컨대, Cas9, 및 레트로바이러스, 예컨대, HIV 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산을 포함한다. 박테리아에서 CRISPR/Cas 자리(loci)는 이동하는 유전 요소 (바이러스, 전이성 원소 및 접합성 플라스미드)에 대항하는 RNA-유도된 후천성 면역 시스템을 인코딩한다. 세 가지 유형 (I-III)의 CRISPR 시스템이 규명된 바 있다. CRISPR 집합은 선행 이동하는 원소에 상보적인 서열인 스페이서를 내포한다. CRISPR 집합은 전사되고 프로세싱되어 성숙한 CRISPR (일정 간격으로 규칙성있게 집합된 짧은 팔린드롬 반복) RNA (crRNA)가 된다. CRISPR-연관 엔도뉴클레아제인, Cas9는 유형 II CRISPR/Cas 시스템에 속하며 표적 DNA를 절단하는 강력한 엔도뉴클레아제 활성을 가진다. Cas9는 약 20 염기 쌍 (bp)의 고유한 표적 서열 (스페이서로 지칭) 및 전구-crRNA의 리보뉴클레아제 III-보조 과정을 위한 가이드로서 기능하는 전사-활성화된 소형 RNA (tracrRNA)을 보유하는 성숙 crRNA에 의해 유도된다. crRNA:tracrRNA 이중복합체는 crRNA 상의 스페이서와 표적 DNA 상의 상보적 서열 (프로토스페이서로 지칭) 사이의 상보적인 염기 결합을 통해 Cas9를 표적 DNA로 유도한다. Cas9은 절단 부위 (PAM으로부터 3번째 뉴클레오티드)를 지정하기 위해 트리뉴클레이티드 (NGG) 프로토스페이서 인접 모티프 (PAM)를 인식한다. crRNA 및 tracrRNA는 개별적으로 발현되거나 합성 줄기고리 (AGAAAU)을 통해 천연 crRNA/tracrRNA 이중복합체를 모방하도록 인공적인 융합 소형 가이드 RNA (sgRNA) 내로 조작될 수 있다. 그러한 sgRNA, 가령 shRNA는 합성되거나 시험관 내에서 직접 RNA 형질감염을 위해 전사되거나 U6 또는 H1-촉진된 RNA 발현 벡터로부터 발현될 수 있지만, 인공적인 sgRNA의 절단 효율은 개별적으로 발현된 crRNA 및 tracrRNA를 갖는 시스템보다 더 낮다.
본 발명의 조성물은 CRISPR-연관 엔도뉴클레아제를 인코딩하는 핵산을 포함할 수 있다. 일부 구체예에서, CRISPR-연관 엔도뉴클레아제는 Cas9 뉴클레아제일 수 있다. Cas9 뉴클레아제는 야생형 스트렙토코쿠스 피로게네스(Streptococcus pyrogenes) 서열과 동일한 뉴클레오티드 서열을 가질 수 있다. 일부 구체예에서, CRISPR-연관 엔도뉴클레아제는 다른 종, 예를 들면 다른 스트렙토코쿠스 종(Streptococcus species), 가령 써모필러스(thermophilus); 슈도모나 에루기노사(Psuedomona aeruginosa), 에셰리아 콜라이(Escherichia coli), 또는 다른 서열을 가진 박테리아 유전체 및 고세균, 또는 다른 원핵 미생물로부터의 서열일 수 있다. 대안적으로, 야생형 스트렙토코쿠스 피로게네스(Streptococcus pyrogenes) Cas9 서열은 변형될 수 있다. 핵산 서열은 포유류 세포에서 효율적인 발현을 위해 최적화된, 즉, "인간화된" 코돈일 수 있다. 인간화된 Cas9 뉴클레아제 서열은 예를 들면, 유전자은행(Genbank) 접근 번호 KM099231.1 GI:669193757; KM099232.1 GI:669193761; 또는 KM099233.1 GI:669193765에 나열된 발현 벡터 중 어느 하나에 의해 인코딩된 Cas9 뉴클레아제 서열일 수 있다. 대안적으로, Cas9 뉴클레아제 서열은 예를 들면, 시판되는 벡터 가령 Addgene (Cambridge, MA)사로부터의 PX330 또는 PX260 내에 내포된 서열일 수 있다. 일부 구체예에서, Cas9 엔도뉴클레아제는 유전자은행 접근 번호 KM099231.1 GI:669193757; KM099232.1 GI:669193761; 또는 KM099233.1 GI:669193765의 Cas9 엔도뉴클레아제 서열 중 어느 하나의 변이체 또는 단편인 아미노산 서열 또는 PX330 또는 PX260 (Addgene, Cambridge, MA)사의 Cas9 아미노산 서열을 가질 수 있다. Cas9 뉴클레오티드 서열은 생물학적으로 활성인 Cas9의 변이체를 인코딩하도록 변형될 수 있고, 이들 변이체는, 예를 들면, 하나 이상의 돌연변이 (예컨대, 부가, 결실, 또는 치환 돌연변이 또는 그러한 돌연변이의 조합)를 내포하는 점에서 야생형 Cas9로부터 차이나는 아미노산 서열을 가질 수 있거나 포함할 수 있다. 하나 이상의 치환 돌연변이가 치환 (예컨대, 보존적 아미노산 치환)일 수 있다. 예를 들면, 생물학적으로 활성인 Cas9 폴리펩티드의 변이체는 야생형 Cas9 폴리펩티드에 대해 적어도 또는 약 50% 서열 동일성 (예컨대, 적어도 또는 약 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 97%, 98%, 또는 99% 서열 동일성)을 가지는 아미노산 서열을 가질 수 있다. 보존적 아미노산 치환은 전형적으로 다음 군에 속하는 치환을 포함한다: 글리신 및 알라닌; 발린, 이소류신, 및 류신; 아스파르트산 및 글루탐산; 아스파라긴, 글루타민, 세린 및 트레오닌; 리신, 히스티딘 및 아르기닌; 및 페닐알라닌 및 티로신. Cas9 아미노산 서열 내 아미노산 잔기는 비-자연발생적 아미노산 잔기일 수 있다. 자연발생적 아미노산 잔기는 유전자 암호에 의해 인코딩되는 자연적인 것들 뿐만 아니라 비-표준 아미노산 (예컨대, L-배열 대신에 D-배열을 가지는 아미노산)을 포함한다. 본 발명의 펩티드는 또한 표준 잔기의 변형된 버전인 아미노산 잔기를 포함할 수 있다 (예컨대 피롤리신은 리신 대신에 사용될 수 있고 셀레노시스테인은 시스테인 대신에 사용될 수 있다). 비-자연발생적 아미노산 잔기는 자연에서 발견되지 않지만, 아미노산의 기본 형태와 일치하며 펩티드 내에 포함될 수 있는 것들이다. 이들은 D-알로이소류신(2R,3S)-2-아미노-3-메틸펜타노산 및 L-사이클로펜틸 글리신 (S)-2-아미노-2-사이클로펜틸 아세트산을 포함한다. 다른 예시에 있어서, 교과서나 인터넷 정보를 참조할 수 있다 (현재 캘리포니아 공대가 사이트를 운영중이며 기능적 단백질에 성공적으로 통합된 비-천연 아미노산의 구조를 공개한다).
Cas9 뉴클레아제 서열은 돌연변이를 일으킨 서열일 수 있다. 예를 들면 Cas9 뉴클레아제는 가닥 특이적 절단에 관여하는 보존된 HNH 및 RuvC 도메인에 돌연변이가 일어날 수 있다. 예를 들면, RuvC 촉매 도메인 내 아스파르테이트-에서-알라닌으로 (D10A) 돌연변이는 Cas9 틈내기효소(nickase) 돌연변이 (Cas9n)가 DNA를 자르는 대신 틈을 내게 하여 수율 단일-가닥 단절을 얻게 하며, 및 이어지는 HDR을 통한 선별적 복구는 잠재적으로 표적을-이탈한 이중-가닥 단절로 인한 원치않는 삽입결실 돌연변이의 빈도를 증가시킬 수 있다.
일부 구체예에서, 본 발명의 조성물은 상기 기술된 핵산 서열 중 어느 하나에 의해 인코딩된 CRISPR-연관 엔도뉴클레아제 폴리펩티드를 포함할 수 있다. 용어 "펩티드", "폴리펩티드", 및 "단백질"은, 비록 이들이 전형적으로 다양한 크기의 펩티드 서열을 지칭함에도, 본 명세서에서 상호교환적으로 사용된다. 본 발명의 아미노산-기반 조성물을 이들이 아미노산 잔기의 선형 중합체임을 암시하고, 전장 단백질과 차별됨을 돕기 위해 "폴리펩티드"로 지칭할 수 있다. 본 발명의 폴리펩티드는 CRISPR-연관 엔도뉴클레아제의 단편을 "구성"하거나 "포함"할 수 있고, 본 발명은 CRISPR-연관 엔도뉴클레아제의 생물학적으로 활성인 변이체를 구성하거나 포함하는 폴리펩티드를 포괄한다. 그러므로 폴리펩티드가 CRISPR-연관 엔도뉴클레아제 (또는 이들의 생물학적으로 활성인 변이체)의 단편만을 포함할 수도 있지만 추가적인 잔기를 역시 포함할 수 있음이 이해될 것이다. 생물학적으로 활성인 변이체는 표적 DNA를 절단하기에 충분한 활성을 보유할 것이다.
아미노산 잔기 사이의 결합은 통상적인 펩티드 결합 또는 또다른 공유 결합 (가령 에스테르 또는 에테르 결합)일 수 있고, 폴리펩티드는 아미드화, 인산화 또는 글리코실화에 의해 변형될 수 있다. 변형은 폴리펩티드 백본 및/또는 하나 이상의 곁사슬에 일어날 수 있다. 화학적 변형은 폴리펩티드를 인코딩하는 mRNA의 번역 이후에 생체 내에서 일어난 자연발생적 변형 (예컨대, 박테리아 숙주 내 글리코실화) 또는 시험관 내에서 일어난 합성적 변형일 수 있다. CRISPR-연관 엔도뉴클레아제의 생물학적으로 활성인 변이체는 하나 이상의 구조적 변형을 포함하여 자연발생적 (즉, 생체 내에서 자연적으로 일어난 것) 및 합성적 변형 (즉, 시험관 내에서 자연발생적 또는 비-자연발생적으로 일어난 변형)의 조합을 만들 수 있다. 변형의 예시는, 아미드화 (예컨대, C-말단에서 유리 카르복실 기가 아미노 기에 의해 교체됨); 비오티닐화 (예컨대, 리신 또는 다른 반응성 아미노산 잔기가 비오틴 분자로 아실화됨); 글리코실화 (예컨대, 글리코실 기가 아스파라긴, 하이드록실, 세린 또는 트레오닌 잔기 중 어느 하나에 부가되어 당단백질 또는 당펩티드가 생성됨); 아세틸화 (예컨대, 아세틸 기가, 전형적으로 폴리펩티드의 N-말단에 부가됨); 알킬화 (예컨대, 알킬 기의 부가); 이소프레닐화 (예컨대, 이소프레노이드 기의 부가); 리포일화 (예컨대 리포에이트 모이어티의 부착); 및 인산화 (예컨대, 포스페이트 기가 세린, 티로신, 트레오닌 또는 히스티딘에 부가됨)를 포함하지만 이에 제한되지 않는다.
생물학적으로 활성인 변이체 내 하나 이상의 아미노산 잔기는 비-자연발생적 아미노산 잔기일 수 있다. 자연발생적 아미노산 잔기는 유전자 암호에 의해 인코딩되는 자연적인 것들 뿐만 아니라 비-표준 아미노산 (예컨대, L-배열 대신에 D-배열을 가지는 아미노산)을 포함한다. 본 발명의 펩티드는 또한 표준 잔기의 변형된 버전인 아미노산 잔기를 포함할 수 있다 (예컨대 피롤리신은 리신 대신에 사용될 수 있고 셀레노시스테인은 시스테인 대신에 사용될 수 있다). 비-자연발생적 아미노산 잔기는 자연에서 발견되지 않지만, 아미노산의 기본 형태와 일치하며 펩티드 내에 포함될 수 있는 것들이다. 이들은 D-알로이소류신(2R,3S)-2-아미노-3-메틸펜타노산 및 L-사이클로펜틸 글리신 (S)-2-아미노- 2-사이클로펜틸 아세트산을 포함한다. 다른 예시에 있어서, 교과서나 인터넷 정보를 참조할 수 있다 (현재 캘리포니아 공대가 사이트를 운영중이며 기능적 단백질에 성공적으로 통합된 비-천연 아미노산의 구조를 공개한다).
대안적으로, 또는 부가적으로, 생물학적으로 활성인 변이체 내 하나 이상의 아미노산 잔기는 야생형 서열의 상응하는 위치에서 발견되는 자연발생적 잔기와 상이한 자연발생적 잔기일 수 있다. 달리 말하면, 생물학적으로 활성인 변이체는 하나 이상의 아미노산 치환을 포함할 수 있다. 아미노산 잔기의 치환, 부가, 또는 결실을 야생형 서열의 돌연변이로서 지칭할 수 있다. 언급한 바와 같이, 치환은 자연발생적 아미노산 잔기를 비-자연발생적 잔기 또는 그저 상이한 자연발생적 잔기로 교체할 수 있다. 추가로 치환은 보존적 또는 비-보존적 치환을 구성할 수 있다. 보존적 아미노산 치환은 전형적으로 다음 군에 속하는 치환을 포함한다: 글리신 및 알라닌; 발린, 이소류신, 및 류신; 아스파르트산 및 글루탐산; 아스파라긴, 글루타민, 세린 및 트레오닌; 리신, 히스티딘 및 아르기닌; 및 페닐알라닌 및 티로신.
CRISPR-연관 엔도뉴클레아제의 생물학적으로 활성인 변이체인 폴리펩티드는 이들의 서열이 상응하는 야생형 폴리펩티드와 어디까지 유사하거나 동일한 정도인지 특징지을 수 있다. 예를 들면, 생물학적으로 활성인 변이체의 서열은 야생형 폴리펩티드 내 상응하는 잔기와 적어도 또는 약 80% 동일할 수 있다. 예를 들면, CRISPR-연관 엔도뉴클레아제의 생물학적으로 활성인 변이체는 CRISPR-연관 엔도뉴클레아제 또는 이들의 동족체 또는 상동체와 적어도 또는 약 80% 서열 동일성 (예컨대, 적어도 또는 약 85%, 90%, 95%, 97%, 98%, 또는 99% 서열 동일성)을 가지는 아미노산 서열을 가질 수 있다.
CRISPR-연관 엔도뉴클레아제의 생물학적으로 활성인 변이체 폴리펩티드는 본 발명의 방법에서 유용하기에 충분한 생물학적 활성을 보유할 것이다. 생물학적으로 활성인 변이체는 표적화된 DNA의 절단에서 기능하기에 충분한 활성을 보유할 것이다. 생물학적 활성은 당해 분야의 숙련가에게 공지된 방식으로 평가될 수 있고 이는 시험관 내 절단 어세이 또는 기능적 어세이를 포함하지만 이에 제한되지 않는다.
폴리펩티드는 예를 들면, 재조합 기술 또는 화학 합성을 비롯한 다양한 방법에 의해 생성될 수 있다. 일단 생성되면, 폴리펩티드는 당해 분야에 널리 공지된 수단에 의해 요망되는 임의의 정도까지 단리되고 정제될 수 있다. 예를 들면, 동결건조 이후, 예를 들면, 역상 (바람직하게는) 또는 정상 HPLC, 또는 다당류 겔 매체 가령 Sephadex G-25에서의 크기 배제 또는 분배 크로마토그래피를 이용할 수 있다. 최종 폴리펩티드의 조성물은 표준 수단, 아미노산 서열분석, 또는 FAB-MS 기술에 의해 펩티드를 분해한 후에 아미노산 분석에 의해 확인될 수 있다. 폴리펩티드의 아미노 기의 염, 가령 산염, 에스테르, 아미드, 및 N-아실 유도체는 당해 분야에 공지된 방법을 이용하여 제조될 수 있고, 그러한 펩티드는 본 발명의 맥락에서 유용하다.
본 발명의 조성물은 레트로바이러스 내 표적 서열에 상보적인 서열을 포함하는 가이드 RNA (gRNA)를 인코딩하는 서열을 포함한다. 레트로바이러스는 렌티바이러스, 예를 들면, 인간 면역결핍 바이러스; 원숭이 면역결핍 바이러스; 고양이 면역결핍 바이러스; 및 소 면역결핍 바이러스일 수 있다. 인간 면역결핍 바이러스는 HIV-1 또는 HIV-2일 수 있다. 표적 서열은 임의의 HIV, 예를 들면, HIV-1 및 HIV-2로부터의 서열, 및 이들의 임의의 순환하는 재조합 형태를 포함할 수 있다. HIV의 유전적 가변성은 기술된 복합적인 군 및 아형에 반영된다. HIV 서열의 목록은 로스 알라모드(Los Alamos) HIV 데이터베이스 및 전서에 따른 것이다 (즉, 서열 데이터베이스 웹 주소는 http://www.hiv.1an1.gov/이다). 본 발명의 방법 및 조성물은 이들의 다양한 군, 아형, 및 순환하는 재조합 형태의 임의의 HIV에 적용될 수 있다. 이들은 예를 들면, HIV-1 주요 군 (흔히 그룹 M으로 지칭) 및 비주요 군, 그룹 N, O, 및 P, 뿐만 아니라 이에 제한되지 않지만, 이하의 아형, A, B, C, D, F, G, H, J 및 K 중 어느 하나 또는 HIV의 군(예를 들면, 이에 제한되지 않지만 이하의 군, N, O 및 P 중 어느 하나)을 포함한다. 본 방법 및 조성물은 또한 HIV-2 및 임의의 A, B, C, F 또는 G 계통 (또한 "아형" 또는 "군"으로도 지칭됨), 뿐만 아니라 HIV-2의 임의의 순환하는 재조합 형태에 적용될 수 있다.
가이드 RNA는 암호화 또는 비-암호화 서열에 상보적인 서열일 수 있다. 예를 들면, 가이드 RNA는 HIV 서열, 가령 긴 말단 반복 (LTR) 서열, 단백질 암호화 서열, 또는 조절 서열일 수 있다. 일부 구체예에서, 가이드 RNA는 HIV 긴 말단 반복 (LTR) 부위에 상보적인 서열을 포함한다. HIV-1 LTR은 대략 640 bp 길이이다. 예시적인 HIV-1 LTR은 SEQ ID NO: 376의 서열이다. 예시적인 SIV LTR은 SEQ ID NO: 380의 서열이다. HIV-1 긴 말단 반복 (LTR)은 U3, R 및 U5 부위로 나뉜다. 예시적인 HIV-1 LTR U3, R 및 U5 부위는 각각 SEQ ID NO: 377, 378 및 379이다. 예시적인 SIV LTR U3, R 및 U5 부위는 각각 SEQ ID NO: 381, 382, 및 383이다. 예시적인 HIV-1 및 SIV 서열에 있어서 U1, R, U5 부위의 배열은 각각 도 18 및 19에 나타난다. LTR은 유전자 발현을 위해 필요한 모든 신호를 보유하며 프로바이러스가 숙주 세포의 유전체로 통합되는데 관여한다. 예를 들면, 기본 또는 핵심 프로모터, 핵심 인핸서 및 조절 부위는 U3 내부에서 발견되는 반면 전사활성화 반응 요소는 R 내부에서 발견된다. HIV-1에서, U5 부위는 전사 활성화에 관여하는 여러가지 하위-부위, 예를 들면, TAR 또는 전사-작용 반응성 요소; 이량체화 및 유전체 패키징에 관여하는 다중 A; PBS 또는 프라이머 결합 부위; Psi 또는 패키징 신호전달; DIS 또는 이량체 개시 부위를 포함한다
유용한 가이드 서열은 LTR의 U3, R, 또는 U5 부위에 상보적이다. HIV-1의 U3 부위를 표적하는 예시적인 가이드 RNA 서열이 도 13에 나타난다. 가이드 RNA 서열은, 예를 들면, 다음의 서열을 포함할 수 있다:
LTR A: ATCAGATATCCACTGACCTTTGG (SEQ ID NO: 96),
LTR B: CAGCAGTTCTTGAAGTACTCCGG (SEQ ID NO: 121),
LTR C GATTGGCAGAACTACACACCAGG (SEQ ID NO: 87), 또는
LTR D: GCGTGGCCTGGGCGGGACTGGGG (SEQ ID NO: 110).
U3 (SEQ ID NO: 16) 부위 내부의 LTR A(SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C(SEQ ID NO: 87) 및 LTR D (SEQ ID NO: 110)의 위치가 도 5에 나타난다. U3 부위를 표적하는 추가적인 예시적인 가이드 RNA 서열은 도 13의 표에 나열되며 SEQ ID NO: 79-111 및 SEQ ID NO: 111-141 중 어느 하나의 서열을 가질 수 있다. 일부 구체예에서, 가이드 서열은 SEQ ID NO: 79-111 및 SEQ ID NO: 111-141 중 어느 하나와 95% 동일성을 가지는 서열을 포함할 수 있다. 따라서, 가이드 RNA 서열은, 예를 들면, 다음의 서열에 95% 동일성을 가지는 서열을 포함할 수 있다:
LTR A: ATCAGATATCCACTGACCTTTGG (SEQ ID NO: 96),
LTR B: CAGCAGTTCTTGAAGTACTCCGG (SEQ ID NO: 121),
LTR C GATTGGCAGAACTACACACCAGG (SEQ ID NO: 87), 또는
LTR D: GCGTGGCCTGGGCGGGACTGGGG (SEQ ID NO: 110).
또한 가이드 RNA 서열을 프로토스페이서, 예컨대, 프로토스페이스 (A), 프로토스페이스 (B), 프로토스페이스 (C), 및 프로토스페이스 (D)로 지칭할 수 있다.
가이드 RNA 서열은 HIV-1 U3, R, 또는 U5 부위 기준 서열 또는 공통 서열 내에서 발견되는 서열일 수 있다. 본 발명은 제한적이지 않으나, 가이드 RNA 서열은 임의의 변이체 또는 돌연변이 HIV 서열을 표적하기 위해 선택될 수 있다. 일부 구체예에서, 가이드 RNA는 변이체 서열 또는 유사(quasi)-종 서열을 포함할 수 있다. 일부 구체예에서, 가이드 RNA는 치료를 받는 개체에 잠복하는 바이러스의 유전체 내 서열에 상응하는 서열일 수 있다. 따라서 예를 들면, 개체에 잠복한 HIV 바이러스 내 특정 U3, R, 또는 U5 부위의 서열을 얻을 수 있고 환자의 특정 서열에 상보적인 가이드 RNA를 사용할 수 있다.
일부 구체예에서, 가이드 RNA는 단백질 암호화 서열, 예를 들면, 하나 이상의 바이러스 구조 단백질, (예컨대, gag, pol, env 및 tat)을 인코딩하는 서열에 상보적인 서열일 수 있다. 따라서, 서열은 gag 다단백질, 예컨대, MA (기질 단백질, p17); CA (캡시드 단백질, p24); SP1 (스페이서 펩티드 1, p2); NC (뉴클레오캡시드 단백질, p7); SP2 (스페이서 펩티드 2, p1) 및 P6 단백질; pol, 예컨대, 역전사효소 (RT) 및 리보뉴클레아제 H, 인테그라제 (IN), 및 HIV 프로테아제 (PR); env, 예컨대, gp160, 또는 gp160의 분해 산물, 예컨대, gp120 또는 SU, 및 gp41 또는 TM; 또는 tat, 예컨대, 72-아미노산 1-엑손 Tat 또는 86-101 아미노산 2-엑손 Tat 내부의 서열에 상보적일 수 있다. 일부 구체예에서, 가이드 RNA는 예를 들면, vif, n willef (음성 인자) vpu (바이러스 단백질 U) 및 tev을 비롯한 부속 단백질을 인코딩하는 서열에 상보적인 서열일 수 있다.
일부 구체예에서, 서열은 구조 또는 조절 요소, 예를 들면, 상기 기술된 바와 같은 LTR; TAR (바이러스 전사활성화를 위한 표적 서열), HIV-1 내 바이러스 mRNA의 대략 첫 번째 45 뉴클레오티드 (또는 HIV-2에서는 첫 번째 100 뉴클레오티드)로 이루어지고 헤어핀 자루-고리 구조를 이루는 Tat 단백질 및 세포 단백질을 위한 결합 부위; RRE (Rev 반응성 원소) 대략 200 뉴클레오티드로 이루어진 HIV-1의 env 부위 내에서 인코딩되는 RNA 원소 (HIV-1에서 전사 시작점부터 gp120 및 gp41의 경계를 이루는 위치 7710 내지 8061); PE (Psi 원소), Gag 출발 코돈에 선행하고 겹치는 4개의 자루-고리 구조의 집합; 자루-고리 구조가 이어지는 SLIP, TTTTTT "미끄러지는 부위"; CRS (Cis-액틴 억제 서열); INS 예를 들면, HIV-1의 gag 부위 내 뉴클레오티드 414 내지 631에서 발견되는 저해/불안정 RNA 서열)에 상보적인 서열일 수 있다.
가이드 RNA 서열은 센스 또는 항-센스 서열일 수 있다. 가이드 RNA 서열은 일반적으로 프로토-스페이서 인접 모티프 (proto-spacer adjacent motif, PAM)를 포함한다. PAM의 서열은 사용된 CRISPR 엔도뉴클레아제의 특이성 요건에 따라 달라질 수 있다. S. pyogenes에서 유도된 CRISPR-Cas 시스템에서, 표적 DNA는 전형적으로 5'-NGG 프로토-스페이서 인접 모티프 (PAM) 바로 앞에 선행한다. 따라서, S. pyogenes Cas9에 있어서, PAM 서열은 AGG, TGG, CGG 또는 GGG일 수 있다. 다른 Cas9 상동체는 상이한 PAM 특이성을 가질 수 있다. 예를 들면, S. thermophilus로부터의 Cas9는 CRISPR 1을 위해 5'-NNAGAA를 및 CRISPR3을 위해 5'-NGGNG를) 그리고 나이제리아 메니기디티스(Neiseria menigiditis)는 5'-NNNNGATT를) 필요로 한다. 가이드 RNA의 특이적 서열은 달라질 수 있지만, 서열과 상관없이, 유용한 가이드 RNA 서열은 표적-이탈 효과를 최소화함과 동시에 유전체에 통합된 HIV-1 프로바이러스를 고효율로 및 완전하게 소모시키는 서열일 것이다. 가이드 RNA 서열의 길이는 약 20 내지 약 60 또는 그 이상의 뉴클레오티드, 예를 들면 약 20, 약 21, 약 22, 약 23, 약 24, 약 25, 약 26, 약 27, 약 28, 약 29, 약 30, 약 31, 약 32, 약 33, 약 34, 약 35, 약 36, 약 37, 약 38, 약 39, 약 40, 약 45, 약 50, 약 55, 약 60 또는 그 이상의 뉴클레오티드로 다양할 수 있다. 외부 바이러스 유전체 및 내인성 레트로바이러스 DNA를 비롯한 숙주 세포 유전체 사이에 극도로 낮은 상동성을 가지는 부위를 규명하기에 유용한 선별 방법은 표적-이탈 인간 전사체 또는 (훨씬 드물게는) 미번역된-유전체 부위를 배제하고; HIV-1 LTR 프로모터 (가능하게는 숙주 유전체 내에 보존된 것) 내부의 전사 인자 결합 부위를 피하기 위해 12-bp+NGG 표적-선별 기준을 이용하는 생물정보학적 선별; LTR-A- 및 -B-공략성, 30-bp gRNA 및 또한 특이성/효율을 증가시키기 위해 본래의 박테리아 면역 메커니즘을 반영하는 전구-crRNA 시스템 vs. 20-bp gRNA-, 키메라 crRNA-tracRNA-기반 시스템 및 WGS의 선별, 가능한 표적-이탈 효과를 규명하고 배제하기 위한 Sanger 서열분석 및 SURVEYOR 어세이를 포함한다.
가이드 RNA 서열은 단일 서열로서 또는 하나 이상의 상이한 서열의 조합, 예컨대, 다중 배열로서 구성될 수 있다. 다중 배열은 둘, 셋, 넷, 다섯, 여섯, 일곱, 여덟, 아홉, 열, 또는 그 이상의 상이한 가이드 RNA의 조합, 예를 들면 U3, R, 또는 U5 내 서열의 임의의 조합을 포함할 수 있다. 일부 구체예에서, LTR A, LTR B, LTR C 및 LTR D의 조합이 사용될 수 있다. 일부 구체예에서, 서열 LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87), 및 LTR D (SEQ ID NO: 110) 중 임의의 조합이 사용될 수 있다. 일부 구체예에서, SEQ ID NO: 79-111 및 SEQ ID NO: 111-141의 서열을 가지는 임의의 서열 조합이 사용될 수 있다. 조성물이 발현 벡터에 투여되는 경우, 가이드 RNA는 단일 벡터에 의해 인코딩될 수 있다. 대안적으로, 다중 벡터가 각각 둘 이상의 상이한 가이드 RNA를 포함하도록 유전조작될 수 있다. 유용한 배열은 절단 부위 사이의 바이러스 서열을 절제하여 HIV 유전체 또는 HIV 단백질 발현의 제거를 야기할 것이다. 따라서, 둘 이상의 상이한 가이드 RNA의 사용은 CRISPR 엔도뉴클레아제에 의해 인식되는 절단 부위 사이의 바이러스 서열의 절제를 촉진한다. 절제되는 부위는 하나의 뉴클레오티드부터 수 천개의 뉴클레오티드까지 다양한 크기일 수 있다. 예시적인 절제 부위가 실시예에 기술된다.
조성물이 핵산으로서 투여되거나 발현 벡터 내에 내포되는 경우, CRISPR 엔도뉴클레아제는 가이드 RNA 서열과 동일한 핵산 또는 벡터에 의해 인코딩될 수 있다. 대안적으로 또는 부가적으로, CRISPR 엔도뉴클레아제는 가이드 RNA 서열로부터 물리적으로 떨어진 핵산에서 또는 별도의 벡터에서 인코딩될 수 있다.
일부 구체예에서, RNA 분자 예컨대 crRNA, tracrRNA, gRNA는 하나 이상의 변형된 핵염기를 포함하도록 유전조작된다. 예를 들면, RNA 분자의 공지된 변형은, 예를 들면, Genes VI, Chapter 9 ("Interpreting the Genetic Code"), Lewis, ed. (1997, Oxford University Press, New York), 및 Modification and Editing of RNA, Grosjean 및 Benne, eds. (1998, ASM Press, Washington DC)에서 찾을 수 있다. 변형된 RNA 성분은 다음을 포함한다: 2'-O-메틸시티딘; N4-메틸시티딘; N4-2'-O-디메틸시티딘; N4-아세틸시티딘; 5-메틸시티딘; 5,2'-O-디메틸시티딘; 5-하이드록시메틸시티딘; 5-포르밀시티딘; 2'-O-메틸-5-포르마일시티딘; 3-메틸시티딘; 2-티오시티딘; 리시딘; 2'-O-메틸유리딘; 2-티오유리딘; 2-티오-2'-O-메틸유리딘; 3,2'-O-디메틸유리딘; 3-(3-아미노-3-카르복시프로필)유리딘; 4-티오유리딘; 리보실티민; 5,2'-O-디메틸유리딘; 5-메틸-2-티오유리딘; 5-하이드록시유리딘; 5-메톡시유리딘; 유리딘 5-옥시아세트산; 유리딘 5-옥시아세트산 메틸 에스테르; 5-카르복시메틸유리딘; 5-메톡시카르보닐메틸유리딘; 5-메톡시카르보닐메틸-2'-O-메틸유리딘; 5-메톡시카르보닐메틸-2'-티오유리딘; 5-카르바모일메틸유리딘; 5-카르바모일메틸-2'-O-메틸유리딘; 5-(카르복시하이드록시메틸)유리딘; 5-(카르복시하이드록시메틸) 유리딘메틸 에스테르; 5-아미노메틸-2-티오유리딘; 5-메틸아미노메틸유리딘; 5-메틸아미노메틸-2-티오유리딘; 5-메틸아미노메틸-2-셀레노유리딘; 5-카르복시메틸아미노메틸유리딘; 5-카르복시메틸아미노메틸-2'-O-메틸-유리딘; 5-카르복시메틸아미노메틸-2-티오유리딘; 디하이드로유리딘; 디하이드로리보실티민; 2'-메틸아데노신; 2-메틸아데노신; N.sup.6N-메틸아데노신; N6,N6-디메틸아데노신; N6,2'-O-트리메틸아데노신; 2-메틸티오-N6N-이소펜테닐아데노신; N6-(cis-하이드록시이소펜테닐)-아데노신; 2-메틸티오-N6-(cis--하이드록시이소펜테닐)-아데노신; N6-글리시닐카르바모일)아데노신; N6-트레오닐카르바모일 아데노신; N6-메틸-N6-트레오닐카르바모일 아데노신; 2-메틸티오-N6-메틸-N6-트레오닐카르바모일 아데노신; N6-하이드록시노르발릴카르바모일 아데노신; 2-메틸티오-N6-하이드록스노르발릴카르바모일 아데노신; 2'-O-리보실아데노신 (포스페이트); 이노신; 2'O-메틸 이노신; 1-메틸 이노신; 1;2'-O-디메틸 이노신; 2'-O-메틸 구아노신; 1-메틸 구아노신; N2-메틸 구아노신; N2,N2-디메틸 구아노신; N2,2'-O-디메틸 구아노신; N2,N2,2'-O-트리메틸 구아노신; 2'-O-리보실 구아노신 (포스페이트); 7-메틸 구아노신; N2;7-디메틸 구아노신; N2; N2;7-트리메틸 구아노신; 와이오신; 메틸와이오신; 저-변형된 하이드록시와이부토신; 와이부토신; 하이드록시와이부토신; 퍼옥시와이부토신; 케오신; 에폭시케오신; 갈락토실-케오신; 만노실-케오신; 7-시아노-7-데아자구아노신; 아라케오신 [7-포름아미도-7-데아자구아노신으로도 지칭됨]; 및 7-아미노메틸-7-데아자구아노신.
용어 "핵산" 및 "폴리뉴클레오티드"는 RNA 및 DNA, 가령 cDNA, 유전체 DNA, 합성 DNA, 및 핵산 유사체를 내포한 DNA (또는 RNA)를 모두 지칭하기 위해 상호교환적으로 사용할 수 있고 이들 중 어느 것도 본 발명의 폴리펩티드를 인코딩할 수 있으며 상기 모두가 본 발명에 포함된다. 폴리뉴클레오티드는 본질적으로 임의의 3-차원 구조를 가질 수 있다. 핵산은 이중-가닥 또는 단일-가닥 (즉, 센스 가닥 또는 안티센스 가닥)일 수 있다. 폴리뉴클레오티드의 비-제한적인 예시는 유전자, 유전자 단편, 엑손, 인트론, 전령 RNA (mRNA) 및 이들의 부분, 운반 RNA, 리보솜 RNA, siRNA, 마이크로-RNA, 리보자임, cDNA, 재조합 폴리뉴클레오티드, 분지형 폴리뉴클레오티드, 플라스미드, 벡터, 임의 서열의 단리된 DNA, 임의 서열의 단리된 RNA, 핵산 탐침, 및 프라이머, 뿐만 아니라 핵산 유사체를 포함한다. 본 발명의 맥락에서, 핵산은 자연발생적 Cas9 또는 이의 생물학적으로 활성인 변이체 및 가이드 RNA의 단편을 인코딩할 수 있고 여기서 가이드 RNA는 HIV 내 서열에 상보적이다.
"단리된" 핵산은, 예를 들면, 자연-발생적 DNA 분자 또는 이의 단편일 수 있고, 적어도 하나의 핵산 서열이 일반적으로 자연-발생적 유전체 내 DNA 분자의 바로 옆에서 발견된다는 전제하에 제거되거나 부재한다. 따라서, 단리된 핵산은, 제한 없이, 다른 서열과 독립적으로 개별 분자로서 존재하는 DNA 분자 (예컨대, 화학적으로 합성된 핵산, 또는 중합효소 사슬 반응 (PCR) 또는 제한 엔도뉴클레아제 처리에 의해 제조된 cDNA 또는 유전체 DNA 단편)를 포함한다. 단리된 핵산은 또한 벡터, 독자적으로 복제하는 플라스미드, 바이러스에 통합되거나, 또는 원핵생물 또는 진핵생물의 유전체 DNA에 통합된 DNA 분자를 지칭한다. 또한, 단리된 핵산은 유전조작된 핵산 가령 하이브리드 또는 융합 핵산의 일부인 DNA 분자를 포함할 수 있다. 많은 (예컨대, 수십, 또는 수백 내지 수백 만) 다른 핵산 중에 존재하는, 예를 들면, cDNA 라이브러리 또는 유전체 라이브러리 내부의 핵산, 또는 유전체 DNA 제한 단편을 포함하는 겔 절편은 단리된 핵산이 아니다.
단리된 핵산 분자는 표준 기술로 제조될 수 있다. 예를 들면, 중합효소 사슬 반응 (PCR) 기술을 사용하여 본 명세서에 기술된 뉴클레오티드 서열, 가령 본 명세서에 기술된 폴리펩티드를 인코딩하는 뉴클레오티드 서열을 내포하는 단리된 핵산을 얻을 수 있다. PCR은 총 유전체 DNA 또는 총 세포 RNA로부터의 서열을 포함하여, DNA 뿐만 아니라 RNA로부터의 특정한 서열을 증폭하기 위해 사용될 수 있다. 다양한 PCR 방법이, 예를 들면, PCR Primer: A Laboratory Manual, Dieffenbach 및 Dveksler, eds., Cold Spring Harbor Laboratory Press, 1995에 기술되어 있다. 일반적으로, 관심 또는 그 이외의 부의의 말단으로부터의 서열 정보는 증폭시킬 주형의 반대 가닥에 대해 동일하거나 유사한 서열을 가진 올리고뉴클레오티드 프라이머를 설계하기 위해 사용된다. 부위-특이적 뉴클레오티드 서열 변형을 주형 핵산에 도입할 수 있는 다양한 PCR 전략이 또한 이용가능하다.
단리된 핵산은 또한 단일 핵산 분자로서 (예컨대, 포스포라미디트 기술을 이용한 3'에서 5' 방향의 자동 DNA 합성을 이용하여) 또는 일련의 올리고뉴클레오티드로서 화학적으로 합성될 수 있다. 예를 들면, 긴 올리고뉴클레오티드 (예컨대, >50-100 뉴클레오티드)의 하나 이상의 쌍은 요망되는 서열을 내포하도록 합성될 수 있고, 여기서 각각의 쌍은 올리고뉴클레오티드 쌍이 합쳐질 때 이중복합체가 형성되도록 상보적인 짧은 조각 (예컨대, 약 15 뉴클레오티드)를 내포한다. DNA 중합효소는 올리고뉴클레오티드를 연장하기 위해 사용되어, 올리고뉴클레오티드 쌍마다 나중에 벡터에 결찰될 수 있는 단일, 이중-가닥 핵산 분자를 생성한다. 본 발명의 단리된 핵산은 또한 예컨대, Cas9-인코딩 DNA의 자연발생적 부분 (예를 들면, 상기 식에 따른 것)에 돌연변이를 유발시킴으로써 수득될 수 있다.
이들이 인코딩하는 두 핵산 또는 폴리펩티드는 서로 특정 정도의 동일성을 가지도록 기술될 수 있다. 예를 들면, Cas9 단백질 및 이의 생물학적으로 활성인 변이체는 특정 정도의 동일성을 나타내도록 기술될 수 있다. 정렬은 PIR(Protein Information Research, 단백질 정보 검색) 웹사이트 (http://pir.georgetown.edu)에서 짧은 Cas9 서열을 배치하고, 이후 NCBI 웹사이트(http://www.ncbi.nlm.nih.gov/blast)에서 BLAST(Basic Local Alignment Search Tool, 유전자위치 정보 검색 도구) 알고리즘의 "짧은 거의 동일한 서열"을 이용하여 조립될 수 있다.
본 명세서에서 사용된, 용어 "백분율 서열 동일성"은 주어진 임의의 검색 서열 및 대상 서열 사이의 동일성 정도를 가리킨다. 예를 들면, 자연발생적 Cas9은 검색 서열이 될 수 있고 Cas9 단백질의 단편이 대상 서열이 될 수 있다. 유사하게, Cas9 단백질의 단편이 검색 서열이 될 수 있고 이의 생물학적으로 활성인 변이체가 대상 서열이 될 수 있다.
서열 동일성을 확인하기 위해, 검색 핵산 또는 아미노산 서열을 컴퓨터 프로그램 ClustalW (버전 1.83, 디폴트 변수)를 이용하여 각각 하나 이상의 개체 핵산 또는 아미노산 서열에 정렬시킬 수 있고, 상기 프로그램은 핵산 또는 단백질 서열을 이들의 전체 길이에 걸쳐 정렬할 수 있게 해준다(전반적 정렬). Chenna et al, Nucleic Acids Res. 31:3497-3500, 2003을 참조하라.
ClustalW는 검색 및 하나 이상의 개체 서열 사이의 최적의 대응을 산출하고 이를 정렬하여 동일성, 유사성 및 차이점이 확인될 수 있게 한다. 서열 정렬을 최대화하기 위해 하나 이상의 잔기의 간격이 검색 서열, 개체 서열, 또는 둘 다에 삽입될 수 있다. 핵산 서열의 빠른 쌍 방식의 정렬을 위해, 하기 디폴트 변수가 사용된다: 글자 크기: 2; 창 크기: 4; 점수 매김 방법: 백분율; 최대 항의 수: 4; 및 간격 페널티: 5. 핵산 서열의 다중 정렬을 위해, 하기 변수가 사용된다: 간격 개방 페널티: 10.0; 간격 연장 페널티: 5.0; 및 가중 전이: 있음. 단백질 서열의 빠른 쌍 방식의 정렬을 위해, 하기 변수가 사용된다: 글자 크기: 1; 창 크기: 5; 점수 매김 방법: 백분율; 최대 항의 수: 5; 및 간격 페널티: 3. 단백질 서열의 다중 정렬을 위해, 하기 변수가 사용된다: 가중 매트릭스: 블로섬(blosum); 간격 개방 페널티: 10.0; 간격 연장 페널티: 0.05; 친수성 간격: 사용; 친수성 잔기: Gly, Pro, Ser, Asn, Asp, Gin, Glu, Arg, 및 Lys; 잔기-특이적 간격 페널티: 사용. 출력 결과는 서열 사이의 관계를 반영하는 서열 정렬이다. ClustalW는 인터넷 예를 들면, Baylor 의대 검색 런처(Search Launcher) 사이트 (searchlauncher.bcm.tmc.edu/multi-align/multi-align.html) 및 유럽 생물정보연구소 사이트 (ebi.ac.uk/clustalw)에서 실행시킬 후 있다.
검색 서열 및 개체 서열 사이의 백분율 동일성을 결정하기 위해, ClustalW는 최적의 정렬에서 동일성의 수를 비교된 잔기의 수로 나누고(간격 위치는 배제함), 결과에 100을 곱한다. 출력 결과는 검색 서열에 대한 개체 서열의 백분율 동일성이다. 백분율 동일성 수치는 소수 첫째 자리까지 반올림할 수 있음이 주의된다. 예를 들면, 78.11, 78.12, 78.13, 및 78.14는 78.1로 버림되는 반면, 78.15, 78.16, 78.17, 78.18, 및 78.19는 78.2로 올림된다.
본 명세서에 기술된 핵산 및 폴리펩티드는 "외생성"으로 지칭될 수 있다. 용어 "외생성"은 핵산 또는 폴리펩티드가 재조합 핵산 구조체의 일부이거나 이에 의해 인코딩되고, 또는 이의 천연 환경이 아닌 것을 가리킨다. 예를 들면, 외생성 핵산은 또다른 종에 도입된 하나의 종으로부터의 서열, 즉, 이종 핵산일 수 있다. 전형적으로, 그러한 외생성 핵산은 재조합 핵산 구조체를 통해 다른 종으로 도입된다. 외생성 핵산은 또한 하나의 유기체에게 자연적이며 유기체의 세포에 재도입된 서열일 수 있다. 자연 서열을 포함하는 외생성 핵산은 흔히 외생성 핵산에 연결된 비-자연적 서열의 존재, 예컨대, 재조합 핵산 구조체 내 자연 서열의 측면에 부착된 비-자연적 조절 서열에 의해 자연발생적 서열과 구분될 수 있다. 또한, 안정하게 형질전환된 외생성 핵산은 전형적으로 자연 서열이 발견되는 위치가 아닌 위치에 통합된다.
재조합 구조체가 또한 본 명세서에 제공되며 세포가 Cas9 및/또는 HIV 내 표적 서열에 상보적인 가이드 RNA를 발현하도록 형질전환시키기 위해 사용될 수 있다. 재조합 핵산 구조체는 본 명세서에 기술된 바와 같이 세포에서 Cas9 및/또는 HIV 내 표적 서열에 상보적인 가이드 RNA를 발현하기에 적절한 조절 부위에 작동가능하도록 연결된, Cas9 및/또는 HIV 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산을 포함한다. 수많은 핵산이 특정 아미노산 서열을 가지는 폴리펩티드를 인코딩할 수 있음이 이해될 것이다. 유전 암호의 퇴화는 당해 분야에 널리 공지되어 있다. 많은 아미노산에 있어서, 아미노산에 대한 코돈으로서 기능하는 뉴클레오티드 삼중항은 둘 이상이 존재한다. 예를 들면, Cas9에 대한 암호화 서열 내 코돈은 특정 유기체에서 최적의 발현을 얻도록, 해당 유기체에게 적절한 코돈 바이어스(bias) 표를 이용하여 변형될 수 있다.
본 명세서에 기술된 것과 같은, 핵산을 내포하는 벡터가 또한 제공된다. "벡터"는 또다른 DNA 조각이 삽입되어 삽입된 조각의 복제를 일으킬 수 있는 플라스미드, 파지, 또는 코스미드와 같은 복제단위이다. 일반적으로, 벡터는 적절한 조절 요소와 연합되었을 때 복제가 가능하다. 적절한 벡터 백본은, 예를 들면, 당해 분야에서 일상적으로 사용되는 것들 가령 플라스미드, 바이러스, 인공적인 염색체, BAC, YAC, 또는 PAC를 포함한다. 용어 "벡터"는 클로닝 및 발현 벡터, 뿐만 아니라 바이러스 벡터 및 통합 벡터를 포함한다. "발현 벡터"는 조절 부위를 포함하는 벡터이다. 다양한 숙주/발현 벡터 조합물이 본 명세서에 기술된 핵산 서열을 발현시키기 위해 사용될 수 있다. 적절한 발현 벡터는 제한없이, 예를 들면, 박테리오파지, 배큘로바이러스, 및 레트로바이러스에서 유래한 플라스미드 및 바이러스 벡터를 포함한다. 수많은 벡터 및 발현 시스템이 Novagen (Madison, WI), Clontech (Palo Alto, CA), Stratagene (La Jolla, CA), 및 Invitrogen/Life Technologies (Carlsbad, CA)와 같은 제조사로부터 구입가능하다.
본 명세서에 제공된 벡터는 또한, 예를 들면, 복제원점, 스캐폴드 부착 부위 (SAR), 및/또는 마커를 포함할 수 있다. 마커 유전자는 숙주 세포에 선별가능한 표현형을 전달할 수 있다. 예를 들면, 마커는 살생물제 내성, 가령 항생제 내성 (예컨대, 카나마이신, G418, 블레오마이신, 또는 히그로마이신)을 전달할 수 있다. 상기 언급된 바와 같이, 발현 벡터는 발현된 폴리펩티드의 조작 또는 검출(예컨대, 정제 또는 국재화)이 용이하도록 설계된 태그 서열을 포함할 수 있다. 태그 서열, 가령 녹색 형광 단백질 (GFP), 글루타티온 S-전이효소 (GST), 폴리히스티딘, c-myc, 헤마글루티딘, 또는 Flag™ 태그 (Kodak, New Haven, CT) 서열은 전형적으로 인코딩된 폴리펩티드와 융합되어 발현된다. 그러한 태그는 카르복실 또는 아미노 말단 중 어느 하나를 비롯하여, 폴리펩티드 내 어디든 삽입될 수 있다.
추가적인 발현 벡터는 또한, 예를 들면, 염색체, 비-염색체 및 합성 DNA 서열의 조각을 포함할 수 있다. 적절한 벡터는 SV40 유도체 및 공지의 박테리아 플라스미드, 예컨대, E. coli 플라스미드 col E1, pCR1, pBR322, pMal-C2, pET, pGEX, pMB9 및 이들의 유도체, 플라스미드 가령 RP4; 파지 DNA, 예컨대, 파지 1의 수많은 유도체, 예컨대, NM989, 및 다른 파지 DNA, 예컨대, M13 및 섬유상 단일 가닥 파지 DNA; 효모 플라스미드 가령 2μ 플라스미드 또는 이들의 유도체, 진핵 세포에서 유용한 벡터, 가령 곤충 또는 포유류 세포에서 유용한 벡터; 플라스미드 및 파지 DNA의 조합에서 유래된 벡터, 가령 파지 DNA 또는 다른 발현 조절 서열을 사용하도록 변형된 플라스미드를 포함한다.
효모 발현 시스템이 또한 사용될 수 있다. 예를 들면, 두 가지만 언급하자면, 비-융합 pYES2 벡터 (XbaI, SphI, SholI, NotI, GstXI, EcoRI, BstXI, BamH1, SacI, Kpn1, 및 HindIII 클로닝 부위; Invitrogen) 또는 융합 pYESHisA, B, C (XbaI, SphI, ShoI, NotI, BstXI, EcoRI, BamH1, SacI, KpnI, 및 HindIII 클로닝 부위, ProBond 수지로 정제하고 엔테로키나제로 절단한 N-말단 펩티드; Invitrogen)가 본 발명에 따라 사용될 수 있다. 효모 두 가지-하이브리드 발현 시스템이 또한 본 발명에 따라 제조될 수 있다.
벡터는 또한 조절 부위를 포함할 수 있다. 용어 "조절 부위"는 전사 또는 번역 개시 및 속도, 및 안정성 및/또는 전사물 또는 번역 산물의 이동성에 영향을 주는 뉴클레오티드 서열을 지칭한다. 조절 부위는, 제한없이, 프로모터 서열, 인핸서 서열, 반응 요소, 단백질 인식 부위, 유도 요소, 단백질 결합 서열, 5' 및 3' 미번역 부위 (UTR), 전사 시작 부위, 종말 서열, 폴리아데닐화 서열, 핵국재화신호, 및 인트론을 포함한다.
본 명세서에서 사용된, 용어 "작동가능하도록 연결된"은 조절 부위 및 전사될 핵산 내 서열이 그러한 서열의 전사 또는 번역에 영향을 끼치도록 배치되는 것을 가리킨다. 예를 들면, 암호화 서열을 프로모터의 제어 아래 두기 위해, 폴리펩티드의 번역 판독 프레임의 번역 개시 부위는 전형적으로 프로모터의 일 및 약 오십 뉴클레오티드 하류에 위치한다. 프로모터는, 그러나, 번역 개시 부위의 약 5,000 뉴클레오티드 상류 또는 전사 시작 부위의 약 2,000 뉴클레오티드 상류만큼 위치할 수도 있다. 프로모터는 전형적으로 적어도 핵심 (기본) 프로모터를 포함한다. 프로모터는 또한 적어도 하나의 제어 요소, 가령 인핸서 서열, 상류 요소 또는 상류 활성화 부위 (UAR)를 포함할 수 있다. 포함될 프로모터의 선택은 효율성, 선택성, 유도성, 요망되는 발현 수준, 및 세포- 또는 조직-선별 발현을 포함하지만, 이에 제한되지 않는 여러가지 요인에 의존적이다. 적절히 선택 및 배치 프로모터 및 암호화 서열에 상대적인 다른 조절 부위를 적절히 선택하고 배치함으로써 암호화 서열의 발현을 조정하는 것은 당해 분야의 숙련가에게 일상적인 일이다.
벡터는, 예를 들면, 바이러스 벡터 (가령 아데노바이러스 ("Ad"), 아데노-연관 바이러스 (AAV), 및 소포성 구내염 바이러스 (VSV) 및 레트로바이러스), 리포좀 및 다른 지질-함유 복합체, 및 숙주 세포에 폴리뉴클레오티드의 송달을 매개할 수 있는 다른 거대분자 복합체를 포함한다. 벡터는 또한 추가로 유전자 송달 및/또는 유전자 발현을 조정하거나, 그렇지 않으면 표적화 세포에게 유익한 특징을 제공하는 다른 성분 또는 관능기를 포함할 수 있다. 하기에 더 상세하게 기술되고 예시되는 바와 같이, 그러한 다른 성분은, 예를 들면, 세포에 대한 결합 또는 표적화에 영향을 주는 성분 (가령 세포-유형 또는 조직-특이적 결합을 매개하는 성분); 세포에 의한 벡터 핵산의 흡수에 영향을 주는 성분; 흡수 후 세포 내부에서 폴리뉴클레오티드의 국재화에 영향을 주는 성분 (가령 핵 국재화를 매개하는 물질); 및 폴리뉴클레오티드의 발현에 영향을 주는 성분을 포함한다. 그러한 성분은 또한 벡터를 흡수하고 벡터에 의해 송달되는 핵산을 발현하는 세포를 검출 또는 선별하기 위해 사용될 수 있는 검출가능한 및/또는 선별가능한 마커와 같은 마커를 포함할 수 있다. 그러한 성분은 벡터의 자연적인 특징으로서 제공될 수 있고 (가령 결합 및 흡수를 매개하는 성분 또는 관능기를 가지는 특정한 바이러스 벡터의 이용), 또는 벡터는 그러한 관능기를 제공하도록 변형될 수 있다. 다른 벡터는 Chen et al; BioTechniques, 34: 167-171 (2003)에 기술된 것들을 포함한다. 아주 다양한 그러한 벡터가 당해 분야에 공지되어 있고 일반적으로 이용가능하다.
"재조합 바이러스 벡터"는 하나 이상의 이종 유전자 산물 또는 서열을 포함하는 바이러스 벡터를 가리킨다. 많은 바이러스 벡터가 패키징과 연관하여 크기-제한을 나타내기 때문에, 이종 유전자 산물 또는 서열은 전형적으로 하나 이상의 분량의 바이러스 유전체를 대체하면서 도입된다. 그러한 바이러스는 복제-결손이 되어, 결실된 기능(들)을 바이러스 복제 및 단백질막 생성 도중에 교차 제공받아야 할 수 있다 (예컨대, 복제 및/또는 단백질막 생성을 위해 필요한 유전자 산물을 지니는 보조 바이러스 또는 패키징 세포주를 이용함). 전달해야 할 폴리뉴클레오티드를 바이러스 입자의 외부에 지니는 변형된 바이러스 벡터가 또한 기술된 바 있다(예컨대, Curiel, D T, et al. PNAS 88: 8850-8854, 1991를 참조).
적절한 핵산 송달 시스템은 재조합 바이러스 벡터, 전형적으로는 아데노바이러스, 아데노바이러스-연관 바이러스 (AAV), 보조-의존성 아데노바이러스, 레트로바이러스, 또는 일본 혈구응집 바이러스-리포좀 (HVJ) 복합체 중 적어도 하나로부터의 서열을 포함한다. 그러한 경우, 바이러스 벡터는 폴리뉴클레오티드에 작동가능하도록 연결된 강력한 진핵세포 프로모터 예컨대, 거대세포바이러스 (CMV) 프로모터를 포함한다. 재조합 바이러스 벡터는 내부에 하나 이상의 폴리뉴클레오티드, 바람직하게는 약 하나의 폴리뉴클레오티드를 포함할 수 있다. 일부 구체예에서, 본 발명의 방법에서 사용되는 바이러스 벡터는 약 108의 pfu (플라그 형성 단위) 내지 약 5 x 1010 pfu를 가진다. 폴리뉴클레오티드가 비-바이러스 벡터와 함께 투여되는 구체예에서, 약 0.1 나노그램 내지 약 4000 마이크로그램의 사용 예컨대, 약 1 나노그램 내지 약 100 마이크로그램의 사용이 흔히 유용할 것이다.
추가적인 벡터는 바이러스 벡터, 융합 단백질 및 화학 접합체를 포함한다. 레트로바이러스 벡터는 몰로니(Moloney) 쥐 백혈병 바이러스 및 HIV-계 바이러스를 포함한다. 하나의 HIV-계 바이러스 벡터는 적어도 두 가지 벡터를 포함하며 여기서 gag 및 pol 유전자는 HIV 유전체에서 유래하고 env 유전자는 또다른 바이러스에서 유래한다. DNA 바이러스 벡터는 폭스(pox) 벡터 가령 오르소폭스 또는 아비폭스 벡터, 헤르페스바이러스 벡터 가령 I형 단순 헤르페스 바이러스 (HSV) 벡터 [Geller, A.I. et al, J. Neurochem, 64: 487 (1995); Lim, F., et al, DNA Cloning: Mammalian Systems, D. Glover, Ed. (Oxford Univ. Press, Oxford England) (1995) 수록; Geller, A.I. et al, Proc Natl. Acad. Sci: U.S.A.:90 7603 (1993); Geller, A.I., et al, Proc Natl. Acad. Sci USA: 87: 1149 (1990)], 아데노바이러스 벡터 [LeGal LaSalle et al., Science, 259:988 (1993); Davidson, et al., Nat. Genet. 3: 219 (1993); Yang, et al., J. Virol. 69: 2004 (1995)] 및 아데노-연관 바이러스 벡터 [Kaplitt, M.G., et al, Nat. Genet. 8: 148 (1994)]를 포함한다.
폭스 바이러스 벡터는 유전자를 세포의 세포질에 도입한다. 아비폭스 바이러스 벡터는 오로지 핵산의 단기 발현을 야기한다. 아데노바이러스 벡터, 아데노-연관 바이러스 벡터 및 단순 헤르페스 바이러스 (HSV) 벡터는 일부 발명의 구체예를 위해 지정될 수 있다. 아데노바이러스 벡터는 아데노-연관 바이러스보다 더 짧은 단기 발현 (예컨대, 약 한 달 미만)을 야기하며, 일부 구체예에서, 훨씬 더 긴 발현을 나타낼 수 있다. 선택되는 특정한 벡터는 표적 세포 및 치료되는 조건에 의존적일 것이다. 적절한 프로모터의 선택은 쉽게 달성될 수 있다. 적절한 프로모터의 예시는 763-염기-쌍 거대세포바이러스 (CMV) 프로모터이다. 유전자 발현을 위해 사용될 수 있는 다른 적절한 프로모터는, Rous 육종 바이러스 (RSV) (Davis, et al, Hum Gene Ther 4: 151 (1993)), SV40 초기 프로모터 부위, 헤르페스 티미딘 키나아제 프로모터, 메탈로티오네인 (MMT) 유전자 조절 서열, 원핵세포 발현 벡터 가령 β-락타마제 프로모터, tac 프로모터, 효모 또는 다른 균류로부터의 프로모터 요소 가령 Gal 4 프로모터, ADC (알코올 탈수소화효소) 프로모터, PGK (포스포글리세롤 키나아제) 프로모터, 알칼리성 포스파타제 프로모터; 및 조직 특이성을 나타내고 형질전환 동물에서 이용되는 동물 전사 제어 부위: 췌장 소엽 세포에서 활성인 엘라스타제 I 유전자 제어 부위, 췌장 베타 세포에서 활성인 인슐린 유전자 제어 부위, 림프양 세포에서 활성인 면역글로불린 유전자 제어 부위, 고환, 유방, 림프양 및 비만세포에서 활성인 마우스 유방 종양 바이러스 제어 부위, 간에서 활성인 알부민 유전자 제어 부위, 간에서 활성인 알파-태아단백질 유전자 제어 부위, 간에서 활성인 알파 1-안티트립신 유전자 제어 부위, 골수 세포에서 활성인 베타-글로빈 유전자 제어 부위, 뇌의 희소돌기아교세포 세포에서 활성인 미엘린 염기성 단백질 유전자 제어 부위, 골격 근육에서 활성인 미오신 경사슬-2 유전자 제어 부위, 및 시상하부에서 활성인 생식선자극 방출 호르몬 유전자 제어 부위를 포함하지만 이에 제한되지 않는다. 특정 단백질은 이들의 자연적인 프로모터를 이용하여 발현될 수 있다. 발현을 촉진할 수 있는 다른 요소 가령 인핸서 또는 tat 유전자 및 tar 요소와 같은 높은 수준의 발현을 야기하는 시스템이 또한 포함될 수 있다. 이러한 카세트는 이후 벡터, 예컨대, 플라스미드 벡터 가령, pUC19, pUC118, pBR322, 또는 다른 공지의 플라스미드 벡터, 예를 들면, E. coli의 복제원점을 포함하는 벡터에 삽입될 수 있다. Sambrook et al., Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, (1989)를 참조하라. 플라스미드 벡터는 또한 마커 폴리펩티드가 처리되는 유기체의 대사에 유해하게 영향끼치지 않는다는 전제하에, 선별가능한 마커 가령 암피실린 내성에 대한 β-락타마제 유전자를 포함할 수 있다. 카세트는 또한 합성 송달 시스템, 가령 WO 95/22618에 개시된 시스템 내 핵산 결합 모이어티에 결합될 수 있다.
요망되는 경우, 본 발명의 폴리뉴클레오티드는 또한 미세수송 비히클 가령 양이온성 리포좀 및 아데노바이러스 벡터와 함께 사용될 수 있다. 리포좀 제조, 표적화 및 내용물의 송달에 관한 절차를 알아보려면, Mannino 및 Gould-Fogerite, BioTechniques, 6:682 (1988)를 참조하라. 또한, Felgner 및 Holm, Bethesda Res. Lab. Focus, 11(2):21 (1989) 및 Maurer, R.A., Bethesda Res. Lab. Focus, 11(2):25 (1989)를 참조하라.
복제-결손 재조합 아데노바이러스 벡터는 공지된 기술에 따라 제조될 수 있다. Quantin, et al, Proc. Natl. Acad. Sci. USA, 89:2581-2584 (1992); Stratford-Perricadet, et al., J. Clin. Invest., 90:626-630 (1992); 및 Rosenfeld, et al., Cell, 68: 143-155 (1992)를 참조하라.
또다른 송달 방법은 세포내에서 발현된 산물을 제조할 수 있는 벡터를 생산하는 단일 가닥 DNA를 사용하는 것이다. 예를 들면, Chen et al, BioTechniques, 34: 167-171 (2003)를 참조, 상기 문헌은 본 명세서에서 그 전체가 참고로서 포함된다.
약제학적 조성물
상기 기술된 바와 같이, 본 발명의 조성물은 당해 분야의 숙련가에게 공지된 다양한 방식으로 제조될 수 있다. 조성물이 수득되는 본래 출처 또는 방식과 관계없이, 본 발명의 조성물은 이들의 용도에 따라 제형화될 수 있다. 예를 들면, 상기 기술된 핵산 및 벡터는 조직 배양물 내 세포에 적용하기 위해 또는 환자 또는 개체에게 투여하기 위해 조성물 내에 제형화될 수 있다. 본 발명의 임의의 약제학적 조성물은 의약의 제조에서 사용하기 위해 제형화될 수 있고, 특정한 용도가 하기에서 치료, 예컨대, HIV 감염증을 가지거나 또는 HIV 감염증에 걸릴 위험이 있는 개체의 치료의 맥락에서 나타난다. 약물로 사용되는 경우, 임의의 핵산 및 벡터는 약제학적 조성물의 형태로 투여될 수 있다. 이들 조성물은 약제학 분야에 널리 공지된 방식으로 제조될 수 있고, 국부 또는 전신 치료의 요망 여부 및 처리되는 부분에 따라, 다양한 경로에 의해 투여될 수 있다. 투여는 국소 (가령 눈 및 비강내, 질 및 직장 송달을 비롯한 점액성 막), 폐 (예컨대, 분무기에 의한 것을 비롯한 분말 또는 에어로졸의 흡입 또는 통기에 의해; 기관내, 비강내, 상피 및 경피), 안내, 경구 또는 비경구일 수 있다. 안내 송달을 위한 방법은 국소 투여 (점안액), 결막하, 안주위 또는 유리체내 주입 또는 풍선 카테터 또는 결막낭에 수술로 배치한 안내 삽입물에 의한 도입을 포함할 수 있다. 비경구 투여는 정맥내, 동맥내, 피하, 복강내 또는 근육내 주사 또는 주입; 또는 두개내, 예컨대, 척추강내 또는 심실내 투여를 포함한다. 비경구 투여는 단일 볼루스(bolus) 투여의 형태일 수 있거나, 또는 예를 들면, 연속 관류 펌프에 의한 것일 수 있다. 국소 투여를 위한 약제학적 조성물 및 제형은 경피 패치, 연고, 로션, 크림, 겔, 점적액, 좌제, 분사제, 액체, 분말, 등을 포함할 수 있다. 통상적인 약제학적 담체인, 수용성, 분말 또는 유성 베이스, 증점제 등이 필요하거나 요망될 수 있다.
본 발명은 또한 활성 성분으로서, 본 명세서에 기술된 핵산 및 벡터를 하나 이상의 약제학적으로 허용되는 담체와 조합하여 함유하는 약제학적 조성물을 포함한다. 용어 "약제학적으로 허용되는" (또는 "약리학적으로 허용되는")은 동물 또는 인간에게, 적절히 투여될 때 부작용, 알러지, 또는 다른 원치않는 반응을 일으키지 않는 분자 독립체 및 조성물을 가리키기 위해 사용된다. 본 명세서에서 사용된 용어 "약제학적으로 허용되는 담체"는 약제학적으로 허용되는 물질을 위한 매체로서 사용될 수 있는 임의의 및 모든 용매, 분산 매체, 코팅제, 항생제, 등장화제 및 흡수지연제, 완충제, 부형제, 결합제, 활택제, 겔, 계면활성제 등을 포함한다. 본 발명의 조성물의 제조에서, 활성 성분은 전형적으로 부형제와 혼합되거나, 부형제로 희석되거나 또는 예를 들면, 캅셀, 정제, 사셰(sachet), 종이, 또는 다른 저장소의 형태로 된 담체 내에 봉입된다. 부형제가 희석제로서 기능하는 경우, 부형제는 고체, 반고체, 또는 액체 물질 (예컨대, 일반적인 식염수)일 수 있고, 활성 성분을 위한 비히클, 담체 또는 매체로서 작용한다. 따라서, 조성물은 정제, 알약, 분말, 로젠지(lozenge), 사셰, 카셰(cachet), 엘릭서, 현탁액, 에멀젼, 용액, 시럽, 에어로졸 (고체로서 또는 액체 매체 내), 로션, 크림, 연고, 겔, 연질 및 경질 젤라틴 캅셀, 좌제, 무균 주사용 용액, 및 무균 포장된 분말의 형태일 수 있다. 당해 분야에 공지된 바와 같이, 희석제의 유형은 의도되는 투여의 경로에 따라 달라질 수 있다. 생성된 조성물은 추가적인 물질, 가령 보존제를 포함할 수 있다. 일부 구체예에서, 담체는 지질-기반 또는 중합체-기반 콜로이드일 수 있거나 이들을 포함할 수 있다. 일부 구체예에서, 담체 물질은 리포좀, 하이드로겔, 미소입자, 나노입자, 또는 블록 공중합체 미셀(micelle)로서 제형화된 콜로이드일 수 있다. 언급한 바와 같이, 담체 물질은 캅셀을 형성할 수 있고, 해당 물질은 중합체-기반 콜로이드일 수 있다.
본 발명의 핵산 서열은 개체의 적절한 세포에 송달될 수 있다. 이는, 예를 들면, 식세포 가령 대식 세포에 의한 식세포작용에 최적화된 크기의 중합체, 생분해가능한 미소입자 또는 마이크로캡슐 송달 비히클의 사용에 의해 성취될 수 있다. 예를 들면, 대략 1-10 μm 직경의 PLGA (폴리-락토-코-글리콜리드) 미소입자가 사용될 수 있다. 폴리뉴클레오티드는 이들 미소입자에 캡슐화되고, 이는 대식 세포에 의해 흡수되고 세포 내에서 점차 생분해되어, 이를 통해 폴리뉴클레오티드를 방출한다. 일단 방출되면, DNA는 세포 내에 발현된다. 두 번째 유형의 미소입자는 세포에 의해 직접 흡수되는 대신, 처음에는 생분해를 통해 미소-입자로부터 방출되었을 때에만 세포에 의해 흡수되는 핵산의 서방출 저장소로서 기능하도록 의도된다. 이들 중합체 입자는 그러므로 식세포작용이 불가능하도록 충분히 더 커야 한다(즉, 5 μm 초과 및 바람직하게는 20 μm 초과). 핵산의 흡수를 성취하기 위한 또다른 방법은 표준 방법에 의해 제조된, 리포좀을 이용하는 것이다. 핵산은 이들 송달 비히클에 단독으로 포함되거나 조직-특이적 항체, 예를 들면 HIV 감염에서 흔히 잠복성으로 감염되는 저장소인 세포 유형, 예를 들면, 뇌 대식 세포, 미소아교세포, 성상아교세포, 및 장관-연관 림프양 세포를 표적하는 항체와 동시-포함될 수 있다. 대안적으로, 정전 또는 공유 힘에 의해 폴리-L-리신에 부착된 플라스미드 또는 다른 벡터로 이루어진 분자 복합체를 제조할 수 있다. 폴리-L-리신은 표적 세포 상의 수용체에 결합할 수 있는 리간드에 결합한다. 근육내, 피내, 또는 피하 부위로 "노출된 DNA" (즉, 송달 비히클이 없는 것)의 송달은 생체 내 발현을 얻기 위한 또다른 송달 수단이다. 관련된 폴리뉴클레오티드 (예컨대, 발현 벡터)에서 CRISPR-연관 엔도뉴클레아제 및 가이드 RNA를 인코딩하는 서열을 포함하는 단리된 핵산 서열을 인코딩하는 핵산 서열은 프로모터 또는 인핸서-프로모터 조합에 작동가능하게 연결된다. 프로모터 및 인핸서는 위에서 기술되었다.
일부 구체예에서, 본 발명의 조성물은 나노 입자, 예를 들면, DNA를 가지고 폴리에틸렌글리콜-변형된 (페길화) 저분자량 LPEI의 껍질에 둘러쌓인 고분자량 선형 폴리에틸렌이민 (LPEI) 복합체의 본체로 이루어진 나노입자로서 제형화될 수 있다.
핵산 및 벡터는 또한 장치 (예컨대, 카테터)의 표면에 도포되거나 펌프, 패치, 또는 다른 약물 송달 장치 내에 내포될 수 있다. 본 발명의 핵산 및 벡터는 약제학적으로 허용되는 부형제 또는 담체 (예컨대, 생리학적 식염수)의 존재에서 단독으로, 또는 조합으로 투여될 수 있다. 부형제 또는 담체는 투여의 방식 및 경로를 기준으로 선택된다. 약제학적 제형에서 사용하기 위한 적절한 약제학적 담체, 뿐만 아니라 약제학적 필수품이 본 발명의 분야에 널리-공지된 참고 서적인 Remington's Pharmaceutical Sciences (E. W. Martin), 및 USP/NF (미국 약전 및 처방집, United States Pharmacopeia and the National Formulary)에 기술되어 있다.
일부 구체예에서, 조성물은 HIV의 성적 전염을 방지하기 위한 국소 겔로서 제형화될 수 있다. 국소 겔은 성적 행위 전 남성 또는 여성의 생식기 부위의 피부 또는 점액성 막에 직접 도포될 수 있다. 대안적으로 또는 부가적으로 국소 겔은 남성용 또는 여성용 콘돔 또는 페서리(diaphragm)의 표면에 도포되거나 내포될 수 있다.
일부 구체예에서, 조성물은 Cas9 또는 변이체 Cas9 및 표적 HIV에 상보적인 가이드 RNA 서열을 인코딩하는 핵산 또는 Cas9 및 표적 HIV에 상보적인 가이드 RNA 서열을 인코딩하는 핵산을 포함하는 벡터에 피막을 형성하는 나노입자로서 제형화될 수 있다. 대안적으로, 조성물은 CRISPR-연관 엔도뉴클레아제 폴리펩티드, 예컨대, Cas9 또는 변이체 Cas9 및 표적에 상보적인 가이드 RNA 서열에 피막을 형성하는 나노입자로서 제형화될 수 있다.
본 발명의 제형은 Cas9 및 표적 HIV에 상보적인 가이드 RNA 서열을 인코딩하는 벡터를 둘러쌀 수 있다. 가이드 RNA 서열은 단일 부위, 예컨대 LTR A, B, C, 또는 D에 상보적인 서열을 포함할 수 있거나 LTR A, B, C, 및 D에 상보적인 서열의 임의의 조합을 포함할 수 있다. 대안적으로 Cas9를 인코딩하는 서열 및 가이드 RNA 서열을 인코딩하는 서열은 별도의 벡터에 존재할 수 있다.
치료 방법
본 명세서에 개시된 조성물은 레트로바이러스 감염, 예컨대, HIV 감염증을 가지는 개체의 치료에 있어서 일반적으로 및 다양하게 유용하다. 개체, 환자, 또는 개인은 상호교환적으로 지칭될 수 있다. 본 방법은 임의의 HIV, 예를 들면, HIV-1, HIV-2 및 이들의 임의의 순환하는 재조합 형태를 표적하는데 유용하다. 임상적으로 유익한 결과가 이어지는 경우 개체는 효과적으로 치료된다. 이는 예를 들면, 질환 증상의 완전한 해소, 질환 증상의 중증도 감소, 또는 질환 진행의 지연을 의미할 수 있다. 이들 방법은 a) HIV 감염증을 가진 개체(예컨대, 환자 및, 더 특정하게는, 인간 환자)를 확인하는 단계; 및 b) 개체에게 CRISPR-연관 뉴클레아제, 예컨대, Cas9, 및 HIV 표적 서열, 예컨대 HIV LTR에 상보적인 가이드 RNA를 인코딩하는 핵산을 포함하는 조성물을 제공하는 단계를 추가로 포함할 수 있다. 개체는 개체의 혈청에서 HIV 항체 또는 HIV 폴리펩티드 p24의 존재를 검출하기 위한 표준 임상 시험, 예를 들면, 면역어세이를 이용하거나, HIV 핵산 증폭 어세이를 통해 확인될 수 있다. 개체에게 제공되어 감염 증상의 완전한 해소, 감염 증상의 중증도 감소, 또는 감염 진행의 지연을 야기하는 그러한 조성물의 양은 치료적으로 효과적인 양으로 간주된다. 본 발명의 방법은 또한 투여량 및 투여 스케줄을 최적화하는 것을 돕고 결과를 예측하기 위한 관찰 단계를 포함할 수 있다. 본 발명의 일부 방법에 있어서, 먼저 환자가 잠복성 HIV-1 감염을 가졌는지 확인하고, 이후 환자를 본 명세서에 기술된 하나 이상의 조성물로 치료할 것인지 여부를 결정할 수 있다. 관찰하는 단계는 또한 약물 저항성의 발생을 검출하고 응답하는 환자를 응답하지 않는 환자와 빠르게 구분하기 위해 사용될 수 있다. 일부 구체예에서, 본 방법은 추가로 환자에 잠복하는 특정 HIV의 핵산 서열을 검사하는 단계 및 이후 이러한 특정 서열에 상보적인 가이드 RNA를 설계하는 단계를 포함할 수 있다. 예를 들면, 개체의 LTR U3, R 또는 U5 부위의 핵산 서열을 확인하고 이후 환자의 서열에 정확히 상보적이도록 하나 이상의 가이드 RNA를 설계할 수 있다.
조성물은 또한 레트로바이러스 감염, 예컨대, HIV 감염증을 가질 위험이 있는 개체의 치료, 예를 들면, 예방적 치료에 유용하다. 이들 방법은 a) HIV 감염증을 가질 위험이 있는 개체를 확인하는 단계; b) 개체에게 CRISPR-연관 뉴클레아제, 예컨대, Cas9, 및 HIV 표적 서열, 예컨대 HIV LTR에 상보적인 가이드 RNA를 인코딩하는 핵산을 포함하는 조성물을 제공하는 단계를 추가로 포함할 수 있다. HIV 감염증을 가질 위험이 있는 개체는, 예를 들면, 복수의 파트너와 보호되지 않은 즉, 콘돔을 사용하지 않고 성행위를 하는 임의의 개체; 또다른 성적으로 전염되는 감염증을 가진 복수의 파트너와 성행위를 하는 개체; 정맥 주사 마약 사용자; 또는 포경수술을 받지 않은 남성일 수 있다. HIV 감염증을 가질 위험이 있는 개체는, 예를 들면, 직업상 HIV-감염된 집단과 접촉할 수 있는 개체, 예컨대, 보건 의료 종사자 또는 최초응급대응자일 수 있다. HIV 감염증을 가질 위험이 있는 개체는, 예를 들면, 범죄 교정 시설의 수감자 또는 성 노동자, 즉 노동 대가 또는 음식, 약품, 또는 숙소와 같은 비화폐적인 대가를 위해 성적인 행위를 이용하는 개체일 수 있다.
조성물은 또한 모친에게서 자녀로 HIV가 전염될 가능성을 낮추기 위해 HIV 감염증을 가지는 임산부 또는 수유부에게 투여될 수 있다. HIV에 감염된 임산부는 자궁에서 태반을 통해, 출산시 산도를 통해 또는 출산후 모유 수유를 통해 자녀에게 바이러스를 옮길 수 있다. 본 명세서에 개시된 조성물은 산전기, 주산기 또는 산후 수유기 중 어느 한 기간에 HIV에 감염된 모친에게 투여될 수 있고, 또는 산전기, 주산기, 및 산후기의 복합적인 투여가 이루어질 수 있다. 조성물은 하기 기술된 바와 같은 표준 항레트로바이러스 요법에 따라 모친에게 투여될 수 있다. 일부 구체예에서, 본 발명의 조성물은 또한 출산 직후 즉시 및, 일부 구체예에서, 출산 후 기간에 신생아에게 투여된다. 신생아는 또한 표준 항레트로바이러스 요법을 받을 수 있다.
본 명세서에 개시된 방법 및 조성물은 레트로바이러스 감염증의 치료에 유용하다. 예시적인 레트로바이러스는 인간 면역결핍 바이러스, 예컨대 HIV-1, HIV-2; 원숭이 면역결핍 바이러스 (SIV); 고양이 면역결핍 바이러스 (FIV); 소의 면역결핍 바이러스 (BIV); 말 감염성 빈혈 바이러스 (EIAV); 및 염소 관절염/뇌염 바이러스 (CAEV)를 포함한다. 본 명세서에 개시된 방법은 광범위한 종, 예컨대, 인간, 인간이-아닌 영장류 (예컨대, 원숭이), 말 또는 다른 가축, 개, 고양이, 페럿 또는 애완용으로 키워지는 다른 포유동물, 래트, 마우스, 또는 다른 실험실용 동물에 투여될 수 있다.
본 발명의 방법은 의약의 제조 측면에서 표현될 수 있다. 따라서, 본 발명은 의약의 제조에서 본 명세서에 기술된 물질 및 조성물의 사용을 포괄한다. 본 명세서에 기술된 화합물은 치료 조성물 및 계획에서 또는 본 명세서에 기술된 바와 같은 질환 또는 용태의 치료에 사용하기 위한 의약의 제조에 있어서 유용하다.
본 명세서에 기술된 임의의 조성물은 표적 세포로의 추후 송달을 위해 숙주의 신체 중 임의의 부위에 투여될 수 있다. 조성물은 제한없이, 포유동물의 뇌, 뇌척수액, 관절, 비강점막, 혈액, 폐, 장, 근육 조직, 피부, 또는 복막강에 전달될 수 있다. 송달 경로의 관점에서, 조성물은 정맥내, 두개내, 복강내, 근육내, 피하, 근내, 직장내, 질내, 척추강내, 기관내, 피내, 또는 경피 주입에 의해, 경구 또는 비강 투여에 의해, 또는 시간에 따른 점진적인 관류에 의해 투여될 수 있다. 추가의 예시에서, 조성물의 에어로졸 제제가 흡입에 의해 숙주에게 제공될 수 있다.
요구되는 투여량은 투여 경로, 제형의 성질, 환자 질병의 성질, 환자의 체형, 체중, 체표면적, 연령, 및 성별, 투여되는 다른 약물, 및 진료하는 임상의의 판단에 따라 달라질 것이다. 세포 표적의 다양성 및 다양한 투여 경로의 상이한 효율의 측면에서 필요한 투여량의 다양한 변조가 예상된다. 이러한 투여량 수준의 변조는 당해 분야에서 숙지되는 바와 같이, 최적화를 위한 표준 실증 루틴을 이용하여 조정될 수 있다. 투여는 단일 분량 또는 다회 분량일 수 있다 (예컨대, 2- 또는 3-, 4-, 6-, 8-, 10-, 20-, 50-, 100-, 150-배, 또는 그 이상). 적절한 송달 비히클 (예컨대, 중합체 미소입자 또는 이식가능한 장치) 내 화합물의 봉입은 송달 효율을 증가시킬 수 있다.
본 명세서에 제공된 임의의 조성물을 이용한 치료 기간은 하루 만큼 짧은 시간부터 숙주의 평생 만큼 긴 시간까지 (예컨대, 수 년) 임의의 길이일 수 있다. 예를 들면, 화합물은 주당 한 회(예를 들면, 4 주 내지 수 개월 또는 년간); 개월당 한 회(예를 들면, 3 내지 12개월간 또는 수년 간); 또는 5년, 10년, 또는 그 이상의 기간 동안 연간 한 회 투여될 수 있다. 치료 빈도가 변할 수 있음이 또한 주의된다. 예를 들면, 본 발명의 화합물은 매일, 매주, 매달, 또는 매년 한 회(또는 두 차례, 세 차례 등) 투여될 수 있다.
본 명세서에 제공된 임의의 조성물의 효과적인 양이 치료가 필요한 개체에게 투여될 수 있다. 본 명세서에서 사용된 용어 "효과적인"은 환자에서 요망되는 반응을 유도하는 반면 상당한 독성을 유발하지 않는 임의의 양을 지칭한다. 그러한 양은 확인된 양의 특정 조성물의 투여 후에 환자의 반응을 평가함으로써 결정될 수 있다. 또한, 독성이 존재하는 경우, 독성의 수준은 확인된 양의 특정 조성물의 투여 전후에 환자의 임상적인 증상을 평가함으로써 결정될 수 있다. 환자에게 투여되는 특정 조성물의 효과적인 양은 요망되는 결과 뿐만 아니라 환자의 반응 및 독성 수준에 따라 조정될 수 있다. 상당한 독성은 각각의 특정 환자에서 다를 수 있고 제한없이, 환자의 질환 상태, 연령, 및 부작용에 대한 저항성을 비롯한 복수의 요인에 의존적이다.
특정한 반응이 유발되는지 여부를 확인하기 위해 당해 분야의 숙련가에게 공지된 임의의 방법이 사용될 수 있다. 반응이 유발되는지 확인하기 위해 특정한 질환 상태의 정도를 평가할 수 있는 임상적인 방법이 사용될 수 있다. 반응을 평가하기 위해 사용되는 특정 방법은 환자의 장애의 성질, 환자의 연령, 및 성별, 투여되는 다른 약물, 및 진료하는 임상의의 판단에 따라 달라질 것이다.
조성물은 또한 또다른 치료제, 예를 들면, HAART에서 사용되는 항-레트로바이러스제와 함께 투여될 수 있다. 예시적인 항레트로바이러스제는 역전사효소 저해제 (예컨대, 뉴클레오사이드/뉴클레오티드 역전사효소 저해제, 지도부딘(zidovudine), 엠트리시티빈(emtricitibine), 라미부딘(lamivudine) 및 테노피비어(tenofivir); 및 비-뉴클레오사이드 역전사효소 저해제 가령 에파바렌즈(efavarenz), 네비라핀(nevirapine), 릴피비린(rilpivirine)); 프로테아제 저해제, 예컨대, 티피라비어(tipiravir), 다루나비어(darunavir), 인디나비어(indinavir); 침입 저해제, 예컨대, 마라비록(maraviroc); 융합 저해제, 예컨대, 엔푸비리티드(enfuviritide); 또는 인테그라제 저해제 예컨대, 랄테그리비어(raltegrivir), 도루테그라비어(dolutegravir)를 포함한다. 예시적인 항레트로바이러스제는 또한 다중-단계 복합제 예를 들면, 엠트리시타빈(emtricitabine), 에파바렌즈, 및 테노피비어의 조합; 엠트리시타빈; 릴피비린, 및 테노피비어의 조합; 또는 엘비테그라비어(elvitegravir), 코비시스탯(cobicistat), 엠트리시타빈 및 테노피비어의 조합을 포함할 수 있다.
둘 이상의 치료제의 동시적인 투여는 치료제가 치료 효과를 발생시키는 시간이 겹치는 동안은, 치료제를 동일한 시간 또는 동일한 경로로 투여할 필요가 없다. 투여가 서로다른 날짜 또는 주에 이루어지는 것처럼, 동시적 또는 연속적인 투여가 고려된다. 치료제는 규칙적인 계획, 예컨대, 치료제의 연속적인 낮은-투여 하에 투여될 수 있다.
그러한 조성물의 투여량, 독성 및 치료적 효능은 세포 배양 또는 실험 동물의 표준 약학 절차, 예컨대, LD50 (집단 중 50%의 치사량) 및 ED50 (집단 중 50%의 치료적 으로 효과적인 투여량)을 측정하기 위한 절차에 의해 결정될 수 있다. 독성 및 치료 효과 사이의 용량 비율이 치료 지수이며 이는 비율 LD50/ED50로 표현될 수 있다.
세포 배양 어세이 및 동물 연구로부터 얻은 데이터가 인간에서 사용을 위한 투여량 범위를 구성하는데 사용될 수 있다. 그러한 조성물의 투여는 바람직하게는 독성이 없거나 거의 없는 ED50를 포함하는 순환 농도의 범위 내에 존재한다. 투여량은 활용되는 투여 형태 및 사용되는 투여 경로에 따라 상기 범위 내에서 달라질 수 있다. 본 발명의 방법에서 사용되는 임의의 조성물에 있어서, 치료적으로 효과적인 투여량은 처음에는 세포 배양 어세이로부터 추정될 수 있다. 투여량은 세포 배양에서 측정된 바와 같은 IC50 (즉, 증상의 최대저해-절반을 달성하는 시험 화합물의 농도)을 포함하는 순환하는 혈장 농도 범위를 동물 모델에서 얻도록 형성될 수 있다. 그러한 정보는 인간에서 유용한 투여량을 더욱 정확하게 결정하기 위해 사용될 수 있다. 혈장 내 수준은, 예를 들면, 고성능 액체 크로마토그래피에 의해 측정될 수 있다.
기술된 바와 같이, 치료적으로 효과적인 양의 조성물 (즉, 효과적인 투여량)은 치료적으로 (예컨대, 임상적으로) 요망되는 결과를 생성하기에 충분한 양을 의미한다. 조성물은 하루 한 회부터 격일에 한 회를 포함하여 한주에 한 회까지 투여될 수 있다. 당해 분야의 숙련가는 질환 또는 장애의 중증도, 기존 치료, 개체의 일반적인 건강 및/또는 연령, 및 존재하는 다른 질환을 포함하지만, 이에 제한되지 않는 특정 요인이 개체를 효과적으로 치료하기 위해 요구되는 투여 및 투여 시간에 영향을 줄 수 있음을 이해할 것이다. 게다가, 치료적으로 효과적인 양의 본 발명의 조성물로 개체를 치료하는 것은 단일 치료 또는 일련의 치료를 포함할 수 있다.
본 명세서에 기술된 조성물은 상기 기술된 다양한 약물 송달 시스템에서 사용하기에 적절하다. 추가적으로, 투여된 화합물의 생체 내 혈청 반-감기를 증가시키기 위해, 조성물은 캡슐화되거나, 리포좀의 내강 내부에 도입되거나, 콜로이드로서 제조될 수 있고, 또는 조성물의 연장된 혈청 반-감기를 제공하는 다른 통상적인 기술이 사용될 수 있다. 예컨대, 각각 본 명세서에 참고로서 포함된 Szoka, et al, 미국 특허 제4,235,871호, 제4,501,728호 및 제4,837,028호에 기술된 리포좀을 제조하는 다양한 방법이 이용가능하다. 추가로, 표적화 약물 송달 시스템, 예를 들면, 조직-특이적 항체로 코팅된 리포좀에 내포된 약물을 투여할 수 있다. 리포좀은 조직을 표적으로 하며 조직에 의해 선별적으로 흡수될 것이다.
또한 제공된 것은 포유류 세포에서 레트로바이러스, 예를 들면 렌티바이러스 가령 인간 면역결핍 바이러스, 원숭이 면역결핍 바이러스, 고양이 면역결핍 바이러스, 또는 소의 면역결핍 바이러스를 비활성화하는 방법이다. 인간 면역결핍 바이러스는 HIV-1 또는 HIV-2일 수 있다. 인간 면역결핍 바이러스는 염색체 내에 통합된 프로바이러스일 수 있다. 포유류 세포는 CD4+ 림프구, 대식 세포, 섬유아세포, 단핵백혈구, T 림프구, B 림프구, 자연 살해 세포, 수지상 세포 가령 랑게르한스(Langerhans) 세포 및 소포성 수지상 세포, 조혈 줄기세포, 내피 세포, 뇌 미소아교 세포, 및 위장 상피 세포를 포함하지만, 이에 제한되지 않는 HIV에 감염된 임의의 세포 유형일 수 있다. 그러한 세포 유형은 전형적으로 원발성 감염 도중에 감염되는 세포 유형, 예를 들면, CD4+ 림프구, 대식 세포, 또는 랑게르한스 세포, 뿐만 아니라 잠복성 HIV 저장소를 이루는 세포 유형, 즉, 잠복성으로 감염된 세포를 포함한다.
본 방법은 CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 포함하는 유전자 편집 복합체(gene editing complex)를 인코딩하는 단리된 핵산을 포함하는 조성물에 세포를 노출시키는 단계를 포함하며, 여기서 가이드 RNA는 레트로바이러스 내 표적 핵산 서열에 상보적이다. 접촉하는 단계는 생체 내에서 일어날 수 있고, 즉 조성물은 HIV 감염증을 가지는 개체에 직접 투여될 수 있다. 본 방법은 제한되지 않지만, 접촉하는 단계는 생체외에서 일어날 수 있다. 예를 들면, 하나의 세포 또는 다수의 세포, 또는 조직 외식편이 HIV 감염증을 가지는 개체에서 제거되어 배양되고, 이후 CRISPR-연관 엔도뉴클레아제 및 가이드 RNA를 포함하는 조성물과 접촉할 수 있고 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 핵산 서열에 상보적이다. 상기 기술된 바와 같이, 조성물은 CRISPR-연관 엔도뉴클레아제 및 가이드 RNA를 인코딩하는 핵산, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 핵산 서열에 상보적임; 상기 핵산 서열을 포함하는 발현 벡터; 또는 CRISPR-연관 엔도뉴클레아제 및 가이드 RNA를 인코딩하는 핵산, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 핵산 서열에 상보적임; 또는 상기 핵산 서열을 포함하는 발현 벡터를 포함하는 약제학적 조성물일 수 있다. 일부 구체예에서, 유전자 편집 복합체는 CRISPR-연관 엔도뉴클레아제 폴리펩티드 및 가이드 RNA를 포함할 수 있고 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 핵산 서열에 상보적이다.
조성물이 핵산 또는 폴리펩티드로서 투여되는지와 상관없이, 조성물은 포유류 세포에 의한 흡수를 촉진하는 방식으로 제형화된다. 유용한 벡터 시스템 및 제형은 위에서 기술되었다. 일부 구체예에서 벡터는 조성물을 특정한 세포 유형으로 송달할 수 있다. 본 발명은 제한적이지 않지만, 다른 DNA 송달 방법 가령 예를 들면 칼슘 포스페이트, DEAE 덱스트란, 리포좀, 지질접합체(lipoplex), 계면활성제, 및 퍼플루오로 화학적 액체를 이용하는 화학적 형질감염, 마찬가지로 물리적 송달 방법, 가령 전기천공, 미세 주입, 탄도 입자, 및 "유전자 총(gun)" 시스템이 또한 고려된다.
표준 방법, 예를 들면, CRISPR-연관 엔도뉴클레아제를 검출하기 위한 면역어세이, 또는 핵산-기잔 어세이 가령 gRNA를 검출하기 위한 PCR이 복합체가 도입된 세포에 의해 흡수되고 발현되는지 확인하기 위해 사용될 수 있다. 조작된 세포는 이후 하기 기술된 바와 같이 이들이 유래한 개체로 재도입될 수 있다.
유전자 편집 복합체는 CRISPR-연관 뉴클레아제, 예컨대, Cas9, 및 레트로바이러스 표적 서열, 예를 들면, HIV 표적 서열에 상보적인 가이드 RNA를 포함한다. 유전자 편집 복합체는 다양한 돌연변이를 프로바이러스 DNA에 도입시킬 수 있다. 그러한 돌연변이가 바이러스를 비활성화하는 메커니즘은 다양할 수 있고, 예를 들면 돌연변이는 프로바이러스 복제, 바이러스 유전자 발현 또는 프로바이러스 절제에 영향을 줄 수 있다. 돌연변이는 조절 서열 또는 구조적 유전자 서열에 배치되어 HIV 생산 결함을 야기할 수 있다. 돌연변이는 결실을 포함할 수 있다. 결실의 크기는 단일 뉴클레오티드 염기 쌍 내지 약 10,000 염기 쌍까지 달라질 수 있다. 일부 구체예에서 결실은 프로바이러스 서열 전체 또는 실질적으로 전체를 포함할 수 있다. 일부 구체예에서 결실은 프로바이러스 서열 전체를 포함할 수 있다. 돌연변이는 삽입을 포함할 수 있고, 즉 하나 이상의 뉴클레오티드 염기 쌍이 프로-바이러스 서열에 부가될 수 있다. 삽입되는 서열의 크기 또한 다양할 수 있고, 예를 들면 약 하나의 염기 쌍 내지 약 300 염기 쌍까지 달라질 수 있다. 돌연변이는 점 돌연변이를 포함할 수 있고, 즉, 단일 뉴클레오티드가 또다른 뉴클레오티드로 교체될 수 있다. 유용한 점 돌연변이는 기능적 결과를 내는 것들, 예를 들면, 아미노산 코돈을 종말 코돈으로 전환하거나 비기능적 단백질의 생산을 야기하는 돌연변이다.
다른 구체예에서, 조성물은 하나 이상의 Cas/gRNA 벡터로 형질전환 또는 형질주입된 세포를 포함한다. 일부 구체예에서, 본 발명의 방법은 생체외에서 적용될 수 있다. 즉, 개체의 세포는 신체에서 제거되어 HIV 서열을 절제하기 위해 배양물 내에서 조성물로 처리되고 처리된 세포가 개체의 신체로 되돌아갈 수 있다. 세포는 개체의 세포일 수 있거나 세포는 단상형(haplotype) 일치된 것 또는 세포주일 수 있다. 세포는 복제를 방지하기 위해 방사선 조사될 수 있다. 일부 구체예에서, 세포는 인간 백혈구 항원 (HLA)-일치된 것, 자가, 세포주, 또는 이들의 조합이다. 다른 구체예에서, 세포는 줄기 세포일 수 있다. 예를 들면, 배아 줄기세포 또는 인공적인 만능 줄기세포 (유도된 만능 줄기세포 (iPS 세포)). 배아 줄기세포 (ES 세포) 및 인공적인 만능 줄기세포 (유도된 만능 줄기세포, iPS 세포)는 인간을 비롯한 많은 동물종으로부터 만들어졌다. 이러한 유형의 만능 줄기세포는 적절한 분화 유도에 의해 다능성을 유지하면서 활발히 분열하는 능력을 보유하면서도 거의 모든 장기로 분화할 수 있기 때문에 재생 의약을 위한 세포의 가장 유용한 공급원일 것이다. 특히 iPS 세포는 자가-유래 체세포로부터 만들어질 수 있고, 따라서 배아를 파괴하여 생성되는 ES 세포에 비해 윤리적이고 사회적인 논란을 덜 야기한다. 게다가, 자가-유래 세포인 iPS 세포는 재생 의약 또는 이식 요법에서 가장 큰 장애물인 거부 반응을 피할 수 있게 해준다.
gRNA 발현 카세트는 당해 분야에 공지된 방법, 예를 들면, siRNA를 송달하는 방법으로 개체에 용이하게 송달될 수 있다. 일부 양태에서, Cas는 Cas 분자의 활성 도메인이 포함된 단편으로, 이를 통해 분자 크기로 절단될 수 있다. 따라서, Cas9/gRNA분자는 최신 유전자 요법에서 취하는 접근법과 유사하게 임상적으로 사용될 수 있다. 특히, 세포 이식 요법 뿐만 아니라 HIV-1 면역화를 위한 Cas9/다중 gRNA 안정한 발현 줄기세포 또는 iPS 세포가 개체에서 사용되기 위해 개발될 것이다.
형질도입된 세포가 공지의 방법에 따른 재융합을 위해 제조된다. 약 2-4 주의 배양 기간 후에, 세포는 1 x 106 및 1 x 1010의 수일 수 있다. 이와 관련하여, 세포의 성장 특징은 환자마다 및 세포 유형마다 달라질 수 있다. 형질도입된 세포를 재융합하기 약 72시간 전에, 치료제를 발현하는 세포의 표현형, 및 백분율을 분석하기 위해 일부를 분취한다. 투여를 위해, 본 발명의 세포는 환자의 체중 및 전반적인 건강에 적용하는 것처럼, 세포 유형의 LD50, 및 다양한 농도에서 세포 유형의 부작용에 의해 결정된 비율로 투여될 수 있다. 투여는 단일 또는 분할 용량으로 이루어질 수 있다. 성인 줄기세포가 또한 이들의 생산을 촉진하고 골수 또는 지방질 조직을 포함할 수 있지만, 이에 제한되지 않는 조직 또는 장소로부터 떠나게 하는 외생적으로 투여된 요인을 이용하여 동원될 수 있다.
제조 물품
본 명세서에 기술된 조성물은 예를 들면, 레트로바이러스 감염, 예를 들면, HIV 감염증을 가지는 개체 또는 레트로바이러스 감염, 예를 들면, HIV 감염증에 걸릴 위험이 있는 개체를 치료하는 요법으로서 사용하기 위해 라벨이 달린 적절한 용기에 포장될 수 있다. 용기는 CRISPR-연관 엔도뉴클레아제, 예를 들면, Cas9 엔도뉴클레아제, 및 인간 면역결핍 바이러스 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산 서열, 또는 상기 핵산을 인코딩하는 벡터, 및 하나 이상의 적절한 안정화제, 담체 분자, 착향제, 및/또는 의도하는 용도를 위해 적절한 것 등을 포함하는 조성물을 포함할 수 있다. 따라서, 적어도 하나의 본 발명의 조성물, 예컨대, CRISPR-연관 엔도뉴클레아제, 예를 들면, Cas9 엔도뉴클레아제, 및 인간 면역결핍 바이러스 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산 서열, 또는 상기 핵산을 인코딩하는 벡터 및 사용 설명서를 포함하는, 포장된 제품 (예컨대, 농축된 또는 바로 쓸 수 있는(ready-to-use) 농도로 본 명세서에 기술된 하나 이상의 조성물을 내포하고 저장, 배송, 또는 판매를 위해 포장된 무균 용기) 및 키트가 본 발명의 범위 내에 포함된다. 제품은 하나 이상의 본 발명의 조성물을 내포하는 용기(예컨대, 바이알, 자(jar), 병, 봉투, 등)를 포함할 수 있다. 또한, 제조 물품은, 예를 들면 예방 또는 치료가 요구되는 용태를 치료하거나 관찰하기 위한 포장 재료, 사용 설명서, 주사기, 송달 장치, 완충액 또는 다른 대조 시약을 추가로 포함할 수 있다.
일부 구체예에서, 키트는 하나 이상의 추가적인 항레트로바이러스 물질, 예를 들면, 역전사효소 저해제, 프로테아제 저해제 또는 침입 저해제를 포함할 수 있다. 추가적인 물질이 CRISPR-연관 엔도뉴클레아제, 예를 들면, Cas9 엔도뉴클레아제, 및 인간 면역결핍 바이러스 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산 서열, 또는 상기 핵산을 인코딩하는 벡터와 동일한 용기에 함께 포장될 수 있거나 별도로 포장될 수 있다. CRISPR-연관 엔도뉴클레아제, 예를 들면, Cas9 엔도뉴클레아제, 및 인간 면역결핍 바이러스 내 표적 서열에 상보적인 가이드 RNA를 인코딩하는 핵산 서열, 또는 상기 핵산을 인코딩하는 벡터 및 추가적인 물질은 사용 직전에 조합되거나 별도로 투여될 수 있다.
제품은 또한 설명서(예컨대, 인쇄된 라벨 또는 삽입물 또는 제품 사용을 설명하는 다른 매체 (예컨대, 오디오- 또는 비디오테이프))를 포함할 수 있다. 설명서는 용기와 연계될 수 있고 (예컨대, 용기에 부착) 포함된 조성물이 투여되어야 하는 방식(예컨대, 투여의 빈도 및 경로), 이를 위한 적응증, 및 다른 용도를 설명할 수 있다. 조성물은 바로 투여할 수 있고 (예컨대, 투여-적합 단위로 존재), 하나 이상의 추가적인 약제학적으로 허용되는 어쥬번트, 담체 또는 다른 희석제 및/또는 추가적인 치료제를 포함할 수 있다. 대안적으로, 조성물은 희석제 및 희석을 위한 설명과 함께 농축 형태로 제공될 수 있다.
실시예
실시예 1: 재료 및 방법
플라스미드 제조: 인간 Cas9 및 gRNA 발현 카세트, pX260, 및 pX330 (Addgene)을 내포하는 벡터를 사용하여 다양한 구조체, LTR-A, B, C, 및 D를 생성하였다.
세포 배양물 및 안정한 세포주: TZM-bI 리포터 및 U1 세포주를 NIH AIDS Reagent Program으로부터 얻었고 CHME5 미소아교 세포는 당해 분야에 공지되어 있다.
면역조직화학 및 웨스턴 블롯: 세포의 조직화학적 관찰을 위한 표준 방법 및 웨스턴 블롯에 의한 단백질 발현 평가를 사용하였다.
반딧불 -루시페라아제 어세이: 세포를 부동 용해 완충액(Passive Lysis Buffer, Promega)을 이용하여 24시간 처리-후 용리하였고 루시페라아제 리포터 유전자 어세이 키트(Promega)를 이용하여 제조사의 프로토콜에 따라 분석하였다. 루시페라아제 활성은 평행 MTT 어세이 (Vybrant, Invitrogen)에 의해 측정된 세포수로 정상화하였다.
p24 ELISA: 감염 또는 비활성화 이후, p24 Gag ELISA (Advanced Bioscience Laboratories, Inc)에 의해 제조사의 프로토콜에 따라 상청액 내 HIV-1 바이러스 로드 수준을 정량화하였다. 처리에 따른 세포 생존능을 평가하기 위해, MTT 어세이를 제조자의 프로토콜에 따라 평행하게 수행하였다 (Vybrant, Invitrogen).
EGFP 유세포 분석: 세포를 트립신화하고, PBS로 세척하고 실온의 2% 파라포름알데히드에서 10분간 고정시킨 후, PBS로 두 차례 세척하고 Guava EasyCyte Mini 유세포 분석기(Guava Technologies)를 이용하여 분석하였다.
HIV-1 리포터 바이러스 제조 및 감염: HEK293T 세포를 pNL4-3-ΔE-EGFP (NIH AIDS Research and Reference Reagent Program)와 함께 리포펙타민 2000 시약 (Invitrogen)을 이용하여 형질주입시켰다. 48 시간 후에, 상청액을 수집하고, 0.45 μm 여과하고 HeLa 세포에서 감염 마커로서 EGFP를 이용하여 적정하였다. 바이러스 감염을 위해, 안정한 Cas9/gRNA TZM-bI 세포를 2 시간 동안 희석된 바이러스 스톡으로 배양하고, 이후 PBS로 두 차례 세척하였다. 감염-후 2일 및 4일에, 세포를 수집하고, 고정하고 EGFP 발현에 대해 유세포 분석으로 분석하거나, 또는 PCR 및 전체 유전체 서열분석을 위해 유전체 DNA 정제를 수행하였다.
유전체 DNA 증폭, PCR, TA-클로닝, 및 Sanger 서열분석, Genome Walker 연결 PCR: 클로닝 및 서열분석을 위해 DNA 조작을 위한 표준 방법을 사용하였다. HIV-1 통합 부위를 식별하기 위해, 본 발명자는 Lenti-X™ 통합 부위 분석 키트를 사용하였다.
Surveyor 어세이: PCR 산물 내 돌연변이의 존재를 SURVEYOR 돌연변이 검출 키트 (Transgenomic)를 이용하여 제조자의 프로토콜에 따라 검사하였다. 간단히 뒤섞인 PCR 산물을 95℃에서 10분간 변성시키고 유전자증폭기(thermocycler)를 이용하여 점차 냉각시키며 혼성화시켰다. 이후, 300 ng의 혼성화된 DNA (9 μl)을 0.25 μl SURVEYOR 인핸서 S 및 15 mM MgCl2의 존재에서 4시간 동안 42℃에서 0.25 μl의 SURVEYOR 뉴클레아제로 절단 처리하였다. 중지 용액을 부가하고 샘플을 2% 아가로스 겔에서 동일한 양의 미절단된 PCR 산물 대조군과 함께 분석하였다.
일부 PCR 산물을 제한 단편 길이 다형성 분석을 위해 사용하였다. 동일한 양의 PCR 산물을 BsaJI로 절단시켰다. 절단된 DNA를 에티디움 브로마이드-함유 아가로스 겔 (2%)에 분배하였다. 서열분석을 위해, PCR 산물을 TA 클로닝® 키트 이중 프로모터를 이용하여 pCR™II 벡터와 함께 (TA Cloning® Kit Dual Promoter with pCR™II vector, Invitrogen) 클로닝하였다. 삽입물을 EcoRI로 분해하여 확인하고 양성 클론을 Sanger 서열 분석을 위해 Genewiz로 보냈다.
LTR 표적 부위 선별, 전체 유전체 서열분석 및 생물정보학 및 통계 분석. 본 발명자는 처음에 LTR 내부의 가능한 표적 부위를 식별하기 위해 Jack Lin CRISPR/Cas9 gRNA 검색 도구를 이용하였다.
플라스미드 제조. 전구-crRNA를 위한 LTR-A 또는 LTR-B을 발현하는 DNA 조각을 퓨로마이신 선별 유전자가 내포된 pX260 벡터 (Addgene, 플라스미드 #42229)에 클로닝하였다. 키메라 crRNA-tracrRNA를 위한 LTR-C 또는 LTR-D를 발현하는 DNA 조각을 pX330 벡터 (Addgene, 플라스미드 #42230)에 클로닝하였다. 두 벡터는 모두 CAG 프로모터에 의해 유도되는 인간화된 Cas9 암호화 서열 및 인간 U6 프로모터에 의해 유도되는 gRNA 발현 카세트를 내포한다. 벡터를 BbsI로 절단하고 안탈틱 포스파타제(Antarctic Phosphatase)로 처리하고, 선형화된 벡터를 Quick 뉴클레오티드 제거 키트 (Qiagen)로 정제하였다. 각각의 표적화 부위에 대한 올리고뉴클레오티드 쌍 (도 14, AlphaDNA)을 다시 결합시키고, 인산화하고, 선형 벡터에 결찰시켰다. gRNA 발현 카세트를 GENEWIZ에서 U6 서열분석 프라이머 (도 14)로 서열분석하였다. pX330 벡터에 있어서, 본 발명자는 즉시 형질감염 또는 다른 벡터로 서브클로닝하기 위해 gRNA 발현 카세트 (U6-gRNA-crRNA-줄기-tracrRNA)를 가지런하게 만들 수 있는 오버행(overhang) 절단 부위 (도 14)를 가지는 보편 PCR 프라이머의 쌍을 설계하였다.
세포 배양. Dr John C. Kappes, Dr Xiaoyun Wu 및 Tranzyme Inc로부터의 TZM-bI 리포터 세포주, Dr. Thomas Folks로부터의 U1/Hiv-1 세포주 및 Dr. Eric Verdin으로부터의 J-Lat 전장 클론을 NIH AIDS Reagent Program의 미국립보건원 에이즈 부서(Division of AIDS, NIAID, NIH)를 통해 얻었다. CHME5/HIV 태아 미소아교세포 세포주를 앞서 기술한 바와 같이 생성하였다. TZM-bI 및 CHME5 세포를 고글루코스 보충된 둘베코(Dulbecco) 최소 영양 배지에서 10% 열-비활성화된 태아 소 혈청 (FBS) 및 1% 페니실린/스트렙토마이신과 함께 배양하였다. U1 및 J-Lat 세포를 2.0 mM L-글루타민, 10% FBS 및 1% 페니실린/스트렙토마이신을 함유하는 RPMI 1640에서 배양하였다.
안정한 세포주 및 서브클로닝. TZM-bI 또는 CHME5/HIV 세포를 6-웰 플레이트에 1.5 x 105 세포/웰로 시딩하고 리포펙타민 2000 시약 (Invitrogen)을 이용하여 1 μg의 pX260 (LTR-A 및 B를 위해) 또는 1 μg/0.1 μg의 pX330/pX260 (LTR-C 및 D을 위해) 플라스미드로 형질주입하였다. 다음날, 세포를 100-mm 접시에 옮기고 1 μg/ml의 퓨로마이신 (Sigma)을 함유하는 성장 배지에서 배양하였다. 두 주 후에, 생존하는 세포 콜로니를 클로닝 실린더 (Corning)를 이용하여 단리하였다. U1 세포(1.5 x 105)를 Neon™ 형질감염 시스템 (Invitrogen)에서 10 μl 팁, 3 x 10 ms 1400 V 자극을 이용하여 1 μg의 DNA로 전기천공시켰다. 세포를 0.5 μg/ml의 퓨로마이신으로 두 주간 선별하였다. 안정한 클론을 96-웰 플레이트에서 제한 희석 방법을 이용하여 계대배양하고 단일 세포-유래 서브클론을 추가적인 연구를 위해 유지하였다.
면역세포화학 및 웨스턴 블롯. Cas9/gRNA 안정한 발현 TZM-bI 세포를 8-웰 챔버 슬라이드에서 2일 동안 배양하면 4% 파라포름알데히드/PBS에서 10분 동안 고정하였다. 세 차례 헹굼 후에, 세포를 0.5% Triton X-100/PBS로 20분간 처리하고 10% 당나귀 혈청으로 1시간 동안 차단하였다. 세포를 밤새 4℃에서 마우스 항-Flag M2 일차 항체 (1:500, Sigma)와 함께 배양하였다. 세 차례 헹굼 후에, 세포를 당나귀 항-마우스 Alexa-Fluor-594 이차 항체와 함께 1시간 동안 배양하고, Hoechst 33258과 함께 5분간 배양하였다. PBS로 세 차례 헹군 후에, 세포에 페이딩-방지 수성 고정 매체 (Biomeda)를 얇게 덮고 Leica DMI6000B 형광 현미경 하에서 분석하였다.
6-웰 플레이트에서 배양한 TZM-bI 세포를 20 mM Tris-HCl (pH 7.4), 1% Triton X-100, 5 mM 에틸렌디아민테트라아세트산, 5 mM 디티오트레이톨, 150 mM NaCl, 1 mM 페닐메틸설포닐 플루오라이드, 1x 핵 추출 프로테이나제 저해제 칵테일 (Cayman Chemical, Ann Arbor, MI), 1 mM 소듐 오르소바나데이트 및 30 mM NaF를 함유하는 200 μl의 Triton X-100-기반 용해 완충액에서 용해하였다. 세포 용해물을 4℃에서 30분간 원심분리시켰다. 핵 및 세포 파편을 4℃에서 20,000 g로 20분간 원심분리하여 제거하였다. 동일한 양의 용해물 단백질 (20 μg)을 5분간 나트륨 도데실 설페이트 (SDS) 샘플 완충액 내에서 끓임으로써 변성시키고, 트리-글리신 완충액에서 SDS-폴리아크릴아미드 겔 전기영동에 의해 분별하고, 니트로셀룰로스 막 (BioRad)으로 이동시켰다. SeeBlue로 선염색한 표준 (Invitrogen)을 분자량 기준으로서 이용하였다. 블롯을 5% BSA/트리스-완충 식염수 (pH 7.6) 더하기 0.1% Tween-20 (TBS-T)에서 1시간 동안 차단하고 이후 밤새 4℃에서 마우스 항-Flag M2 단클론 항체 (1:1000, Sigma) 또는 마우스 항-GAPDH 단클론 항체 (1:3000, Santa Cruz Biotechnology)와 함께 배양하였다. TBS-T로 헹군 후에, 블롯을 IRDye 680LT-접합된 항-마우스 항체와 함께 1시간 동안 실온에서 배양하였다. 막을 스캔하고 Odyssey Infrared Imaging System (LI-COR Biosciences)를 이용하여 분석하였다.
반딧불 -루시페라아제 어세이. 세포를 부동 용해 완충액(Promega)을 이용하여 24시간 처리-후 용리하였고 루시페라아제 리포터 유전자 어세이 키트(Promega)를 이용하여 제조사의 프로토콜에 따라 분석하였다. 루시페라아제 활성은 평행 MTT 어세이 (Vybrant, Invitrogen)에 의해 측정된 세포수로 정상화하였다.
p24 ELISA 감염 또는 비활성화 이후, p24 Gag ELISA (Advanced Bioscience Laboratories, Inc)에 의해 제조사의 프로토콜에 따라 상청액 내 HIV-1 바이러스 로드 수준을 정량화하였다. 처리에 따른 세포 생존능을 평가하기 위해, MTT 어세이를 제조자의 프로토콜에 따라 평행하게 수행하였다 (Vybrant, Invitrogen).
EGFP 유세포 분석. 세포를 트립신화하고, PBS로 세척하고 실온의 2% 파라포름알데히드에서 10분간 고정시킨 후, PBS로 두 차례 세척하고 Guava EasyCyte Mini 유세포 분석기(Guava Technologies)를 이용하여 분석하였다.
Hiv-1 리포터 바이러스 제조 및 감염. HEK293T 세포를 pNL4-3-ΔE-EGFP, SF162 및 JRFL (NIH AIDS Research and Reference Reagent Program)과 함께 리포펙타민 2000 시약 (Invitrogen)을 이용하여 형질주입시켰다. 위형 pNL4-3-ΔE-EGFP에 있어서, VSVG 벡터를 동시형질감염시켰다. 48 시간 후에, 상청액을 수집하고, 0.45 μm 여과하고 HeLa 세포에서 감염 마커로서 발현된 EGFP를 이용하여 적정하였다. 바이러스 감염을 위해, 안정한 Cas9/gRNA TZM-bI 세포를 2 시간 동안 희석된 바이러스 스톡으로 배양하고, PBS로 두 차례 세척하였다. 감염-후 2일 및 4일에, 세포를 수집하고, 고정하고 EGFP 발현에 대해 유세포 분석으로 분석하거나, 또는 PCR 및 전체 유전체 서열분석을 위해 유전체 DNA 정제를 수행하였다.
유전체 DNA 정제, PCR, TA-클로닝, 및 Sanger 서열분석. 유전체 DNA를 ArchivePure DNA 세포/조직 정제 키트 (5PRIME)를 이용하여 제조자가 권고하는 프로토콜에 따라 세포로부터 단리하였다. 100 ng의 추출된 DNA를 도 14에 나열된 프라이머를 이용하여 높은-정확성의 FailSafe PCR 키트 (Epicentre)를 이용하여 PCR 처리하였다. 세 단계의 표준 PCR을 55℃ 어닐링 및 72℃ 연장으로 30 사이클 수행하였다. 산물을 2% 아가로스 겔에서 분석하였다. 관심의 밴드를 겔-정제하고 pCRII T-A 벡터 (Invitrogen)로 클로닝시키고, 개별적인 클론의 뉴클레오티드 서열을 Genewiz에서 보편 T7 및/또는 SP6 프라이머를 이용하여 서열분석함으로써 결정하였다.
통상적인 및 실시간 역전사 (RT)-PCR. 총 RNA 추출을 위해, 세포를 RNeasy Mini 키트 (Qiagen)를 이용하여 제조자의 설명에 따라 처리하였다. 잠재적으로 잔여하는 유전체 DNA를 RNase-Free DNase Set (Qiagen)과 함께 컬럼-상 DNA 가수분해효소 절단을 통해 제거하였다. 각 샘플의 1 μg을 랜덤 헥사뉴클레오티드 프라이머를 이용하여 고성능 cDNA 역전사 키트 (Invitrogen, Grand Island, NY)로 cDNA로 역전사하였다. 통상적인 PCR을 표준 프로토콜을 이용하여 수행하였다.
정량적 PCR (qPCR) 분석을 SYBR® Green PCR Master 혼합 키트 (Applied Biosystems)를 이용하여 LightCycler480 (Roche)에서 수행하였다. RT 반응물을 반응물 마이크로-리터당 5 ng의 총 RNA까지 희석하였고 20-μl PCR 반응물에서 2 μl를 사용하였다. HIV-1 프로바이러스의 qPCR 분석을 위해, 50 ng의 유전체 DNA를 사용하였다. 프라이머를 AlphaDNA에서 합성하였고 도 14에 나타난다. 인간 항존유전자 GAPDH 및 RPL13A을 위한 프라이머를 RealTimePrimers (Elkins Park, PA)에서 수득하였다. 각각의 샘플을 삼중복으로 시험하였다. 표적 유전자 및 항존-유전자에 대한 사이클 역치 (Ct) 값을 그래프로부터 얻었다. 항존유전자 및 표적 유전자 사이의 Ct 값 차이는 ΔCt 값으로 표현된다. 실험 샘플에서 대조 샘플의 ΔCt 값을 뺌으로써 ΔΔCt 값을 얻었다. 비교적인 배수 또는 백분율 변화를 2-ΔΔCt로서 산출하였다. 일부 경우에, 인간 유전체 DNA에서 표준으로서 기준화된 pNL4-3-ΔE-EGFP 플라스미드를 이용하여 절대 정량화를 수행하였다. HIV-1 바이러스 복제물의 수를 항존유전자로 정규화한 후에 표준 곡선을 기준으로 산출하였다.
Genome Walker 연결 PCR 및 긴-범위 PCR. 숙주 세포에서 HIV-1의 통합 부위를 Lenti-X™ 통합 부위 분석 키트 (Clontech)를 이용하여 제조자의 설명에 따라 식별하였다. 간략하게, 고품질 유전체 DNA를 NucleoSpin 조직 키트 (Clontech)를 이용하여 U1 세포로부터 추출하였다. 바이러스 통합 라이브러리를 구성하기 위해, 각각의 유전체 DNA 샘플을 평활-말단(blunt-end)-생성절단효소 Dra I, Ssp I 또는 Hpal를 이용하여 개별적으로 밤새 37℃에서 절단하였다. 절단 효율을 0.6% 아가로스 상에서 전기영동에 의해 확인하였다. 절단된 DNA를 NucleoSpin 겔 및 PCR 제거 키트를 이용하여 정제하고 이후 절단된 유전체 DNA 단편을 Genome Walker™ Adaptor로 16℃에서 밤새 결찰시켰다. 결찰 반응을 5분간 70℃에서 배양함으로써 중지시키고 TE 완충액으로 5배 희석하였다. 일차 PCR을 DNA 조각에 대해 어댑터(adaptor) 프라이머 1 (AP1) 및 LTR-특이적 프라이머 1 (LSP1)와 함께 Advantage 2 Polymerase Mix를 이용하여 수행하고 이후 이차 (내포된) PCR을 AP2 및 LSP2 프라이머를 이용하여 수행하였다 (도 14). 이차 PCR 산물을 1.5% 에티디움 브로마이드-함유 아가로스 겔 상에 분배하였다. 주요 밴드를 겔-정제하고 pCRII T-A 벡터 (Invitrogen)로 클로닝시키고, 개별적인 클론의 뉴클레오티드 서열을 Genewiz에서 보편 T7 및 SP6 프라이머를 이용하여 서열분석함으로써 결정하였다. 서열 판독을 NCBI BLAST 검색에 의해 분석하였다. U1 세포 내 HIV-1의 두 가지 통합 부위를 염색체 X 및 2에서 확인하였다. 각각의 통합 부위를 포괄하는 프라이머의 쌍(도 14)을 AlphaDNA에서 합성하였다. U1 유전체 DNA를 이용한 긴-범위 PCR을 Phusion 고-정확도 PCR 키트 (New England Biolabs)를 이용하여 제조사의 프로토콜에 따라 수행하였다. PCR 산물을 1% 아가로스 겔 상에 가시화하고 Sanger 서열분석으로 확인하였다.
Surveyor 어세이. PCR 산물 내 돌연변이의 존재를 SURVEYOR 돌연변이 검출 키트 (Transgenomic)를 이용하여 제조자의 프로토콜에 따라 시험하였다. 간단히 뒤섞인 PCR 산물을 95℃에서 10분간 변성시키고 유전자증폭기(thermocycler)를 이용하여 점차 냉각시키며 혼성화시켰다. 이후, 300 ng의 혼성화된 DNA (9 ul)을 0.25 μl SURVEYOR 인핸서 S 및 15 mM MgCl2의 존재에서 4시간 동안 42℃에서 0.25 μl의 SURVEYOR 뉴클레아제로 절단 처리하였다. 중지 용액을 부가하고 샘플을 2% 아가로스 겔에서 동일한 양의 미절단된 PCR 산물과 함께 분석하였다.
일부 PCR 산물을 제한 단편 길이 다형성 분석을 위해 사용하였다. 동일한 양의 PCR 산물을 BsaJI로 절단시켰다. 절단된 DNA를 에티디움 브로마이드-함유 아가로스 겔 (2%)에 분배하였다. 서열분석을 위해, PCR 산물을 TA 클로닝® 키트 이중 프로모터를 이용하여 pCR™II 벡터와 함께 (TA Cloning® Kit Dual Promoter with pCR™II vector, Invitrogen) 클로닝하였다. 삽입물을 EcoRI로 분해하여 확인하고 양성 클론을 Sanger 서열 분석을 위해 Genwiz로 보냈다.
LTR 표적 부위의 선별 및 가능한 표적-이탈 부위의 예측. 최초 연구를 위해, 본 발명자는 계대배양 도중의 LTR의 돌연변이 가능성 때문에, 통합된 렌티바이러스 LTR-루시페라아제 리포터의 LTR 프로모터 서열 (-411 내지 -10)을 인간 TZM-bI 세포의 유전체로부터의 PCR 산물의 TA-클로닝 서열분석에 의해 얻었다. 이러한 프로모터 서열은 pHR'-CMV-LacZ 렌티바이러스 벡터 (AF105229)의 5'-LTR과 100% 일치한다. 따라서, 전장 pHR' 5'-LTR (634 bp)의 센스 및 안티센스 서열을 활용하여 20 bp gRNA 표적화 서열 더하기 PAM 서열 (NRG)을 내포하는 Cas9/gRNA 표적 부위를 검색하기 위해 Jack Lin CRISPR/Cas9 gRNA 검색 도구를 사용하였다 (http://spot.colorado.edu/~slin/cas9.html). 정확한 일치를 보이는 가능한 표적-이탈의 수는 NCBI/blastn 스위트를 이용하고 E-값 한계 1,000 및 글자 크기 7로 하여 각각의 gRNA 표적화 서열 더하기 NRG (AGG, TGG, GGG 및 CGG; AAG, TAG, GAG, CAG)를 모든 이용가능한 인간 유전체 및 전사 서열에 대해 블라스트 처리하여 예측하였다. Control + F 키를 누른 후, 표적 서열 (1-23부터 9-23까지 뉴클레오티드)를 복사/붙여넣기하고 표적 서열에 100% 일치하는 유전체 표적의 수를 찾는다. 반복된 유전체 라이브러리 때문에 각 검색에서 표적-이탈의 수를 3으로 나눴다.
전체 유전체 서열분석 및 생물정보 분석. TZM-bI 세포의 대조 서브클론 C1 및 실험 서브클론 AB7을 LTR-루시페라아제 리포터의 표적 조각 효율 및 기능적 억제에 대하여 검증하였다. 유전체 DNA를 NucleoSpin 조직 키트 (Clontech)로 단리하였다. DNA 샘플을 텝플 대학교 Fox Chase 암 센터의 NextGen 서열분석 설비에 제출하였다. 복제된 유전체 DNA 라이브러리를 Illumina를 위한 NEBNext Ultra DNA 라이브러리 제조 키트 (New England Biolab)을 이용하여 제조자의 설명에 따라 각각의 서브클론으로부터 제조하였다. 모든 라이브러리를 HiSeq 2500 장비 (Illumina)에서 두 대의 Illumina Rapid Run 플로우셀(flowcells)에서 대응-말단(paired-end) 141-bp 판독을 이용하여 서열분석하였다. 서열분석된 라이브러리로부터 탈복합화된 판독 데이터는 전문적인 생물정보 분석을 위해 AccuraScience, LLC (http://www.accurascience.com)로 보냈다. 간단히, 원본 판독물은 Bowtie2를 이용하여 인간 유전체 (hg19) 및 HIV-1 유전체에 대해 유전자지도로 그려졌다. 중복된 판독물 제거, 국부 정렬, 염기 품질 재조정 및 삽입결실 호출을 위해 유전체 분석 툴키트 (GATK, 버전 2.8.1)를 사용하였다. 신뢰성 점수 10 및 30은 저품질 (LowQual) 및 고신뢰성 호출 (PASS)에 대한 역치였다. 다양한 미스매치를 갖는 LTR-A 및 LTR-B의 가능한 표적-이탈 부위를 상기 기술된 바와 같이 NCBI/blastn 스위트에 의해 및 CRISPR Design Tool (http://crispr.mit.edu/)에 의해 예측하였다. 모든 가능한 gRNA 표적 부위 (도 15)를 사용하여 GATK에 의해 확인된 각각의 삽입결실 주변으로 ± 300 bp 부위를 지도로 그렸다. 인간 유전체 및 HIV-1 유전체에서 중복된 부위의 위치를 대조 C1 및 실험 AB7 사이에 비교하였다.
통계 분석. 정량 데이터는 3-5개의 독립적인 실험으로부터 평균 ± 표준 편차를 나타내었고, 스튜던트 t-시험 또는 ANOVA 및 Newman-Keuls 다중 비교 시험으로 평가하였다. <0.05 또는 0.01인 p 값은 통계학적으로 유의한 차이로 간주하였다.
실시예 2: Cas9/LTR-gRNA는 HIV-1로 잠복성으로 감염된 CHME5 미소아교 세포에서 HIV-1 리포터 바이러스 생산을 억제한다
본 발명자는 HIV-1-공략성 가이드 RNA (gRNA)가 특히 처리하기 어려운 표적 집단인 뇌내 HIV-1 저장소로서 기능하는, 잠복성으로-감염된 골수 세포의 유전체로부터 LTR 전사 활성을 없애고 프로바이러스 DNA를 제거하는 능력을 평가하였다. 본 발명자의 전략은 HIV-1 LTR 프로모터 U3 부위를 표적화하는데 집중되었다. 생물정보학적 선별 및 효율/표적-이탈 예측에 의해, 본 발명자는 보존된 전사 인자 결합 부위를 피하여, 숙주 유전자 발현이 변화할 가능성을 최소화하는 네 가지 gRNA 표적 (프로토스페이서; LTR A-D)을 규명하였다(도 5 및 13). 본 발명자는 gRNA A-D에 상보적인 DNA 단편을 인간화된 Cas9 발현 벡터 (A/B는 pX260 내; C/D는 pX330 내)에 삽입하였고 통합된 HIV-1 유전체 활성을 변화시키는 이들의 개별적 및 조합적 능력을 시험하였다. 본 발명자는 먼저 5' 및 3' LTR, 및 증강된 녹색 형광 단백질 (EGFP) 리포터 대체 Gag (pNL4-3-ΔGag-d2EGFP)를 인코딩하는 유전자를 포함하는 싱글 라운드 HIV-1 벡터의 통합된 복제물이 잠복하는 미소아교 세포주 CHME5를 활용하였다. CHME5 세포를 트리코스타틴 A (TSA), 히스톤 탈아세틸효소 저해제로 처리하면, 대부분의 통합된 프로바이러스로부터 전사가 재활성화되며 EGFP 및 잔여 HIV-1 단백질체(proteome)의 발현이 유도된다. gRNA 더하기 Cas9의 발현은 TSA-유도된 EGFP-양성 CHME5 세포의 비율을 확연하게 감소시켰다 (도 1A 및 6). 본 발명자는 Cel I 뉴클레아제-기반 이형이중가닥-특이적 SURVEYOR 어세이를 이용하여 LTR A-D에 대한 삽입/결실 유전자 돌연변이 (삽입결실)를 검출하였다(도 IB 및 6B). 유사하게, 안정하게 포함된 HIV-1 LTR 복제물을 내포하여 반딧불-루시페라아제 리포터 유전자를 유도하는, HeLa-유래 TZM-bI 세포에서 LTR C 및 D를 표적하는 gRNA의 발현은, 바이러스 프로모터 활성을 억제하고 (도 7A), SURVEYOR 및 Sanger 서열분석에 의해 입증된 LTR U3 부위 내부의 삽입결실을 유발시켰다(도 7B-D). 게다가, 이들 세포에서 LTR C/D-표적화 gRNA의 조합된 발현은 예측된 302-bp 바이러스 DNA 서열의 절제, 및 잔여 194-bp 단편의 발생을 야기하였다(도 7E-F).
혼합된 클론 CHME5 세포에서 LTR-A/B gRNA의 복합적인 발현은 A 및 B 표적 부위 사이에서 190-bp 단편의 결실을 야기하고 다양한 정도로 삽입결실을 유발하였다(도 1C-D). >20 퓨로마이신-선별된 안정한 서브클론 중에서, 본 발명자는 EGFP에 대한 유세포 분석에 의해 측정된 TSA-유도 HIV-1 프로바이러스 비활성화의 완전한 차단을 가지는 세포 집단을 발견하였다 (도 1E). 프로바이러스 유전체에서 EGFP 및 HIV-1 Rev 반응 요소 (RRE)에 대한 PCR-기반 분석은 HIV-1 유전체의 소거를 확인해주었다 (도 1F, G). 게다가, PCR 산물의 서열분석은 전체 5'-3' LTR-신장 바이러스 유전체가 결실되어, 절단 부위 A 및 B 사이의 190-bp 절제를 통해 351-bp 단편이 얻어졌고(도 1G 및 8), 및 LTR-A 및 -B 부위에 각각 175-bp 삽입 및 27-bp 결실로 682-bp 단편이 얻어졌음을 나타내었다(도 8C). 잔여 HIV-1 유전체 (도 1F-H)는 미량의 Cas9/gRNA-음성 세포의 존재를 반영할 수 있다. 이들 결과는 LTR-표적화 Cas9/gRNA A/B가 HIV-1 유전체를 소거하고 잠복성으로 감염된 미소아교 세포에서 이의 비활성화를 차단함을 나타낸다.
실시예 3: Cas9/LTR-gRNA는 U1 단세포성 세포에서 잠복성 HIV-1 바이러스를 효율적으로 제거한다
감염된 혈관주위 대식 세포 및 단핵백혈구에 대한 HIV-1 잠복 모델인 전단구 U-937 세포 서브클론 U1은 만성적으로 HIV-1-감염되며 낮은 수준의 구성적 바이러스 유전자 발현 및 복제를 나타낸다. GenomeWalker 지도는 두 개의 통합된 프로바이러스 DNA 복제물을 U1 세포 내 염색체 Xp11-4 (도 2A) 및 2p21 (도 9A)에서 검출하였다. 전체 9709-bp 프로바이러스 HIV-1 DNA 더하기 측면에 부착된 226-bp X-염색체-유래 서열을 나타내는 9935-bp DNA 단편 (도 2A), 및 9709-bp HIV-1 유전체 더하기 이의 측면에 부착된 2-염색체-유래 467-bp를 내포하는 10176-bp 단편 (도 9A, B)을 부모 대조군 또는 텅빈-벡터 (U6-CAG) U1 세포의 긴-범위 PCR 분석에 의해 규명하였다. 226-bp 및 467-bp 단편은 염색체 X 및 2의 다른 복제물로부터의 예측된 조각을 각각 나타내며, 여기에는 통합된 프로바이러스 DNA가 없다. LTR-A/B gRNA 및 Cas9를 발현하는 U1 세포에서, 본 발명자는 염색체 X 내 833 및 670 bp의 두 개의 추가적인 DNA 단편 및 염색체 2 내 하나의 추가적인 1102-bp 단편을 발견하였다. 따라서, gRNA A/B는 Cas9가 두 염색체 모두에서 HIV-1 5'-3' LTR-신장 바이러스 유전체 조각을 절제하도록 만든다. 833-bp 단편은 숙주 유전체로부터의 예측된 226-bp 및 LTR-A 부위 주변에 27-bp 결실을 갖는 607-bp 바이러스 LTR 서열을 포함한다(도 2A-B). 670-bp 단편은 양쪽 LTR의 gRNA-A/B-유도 절단으로 야기된(도 2A) 190-bp 단편 절제 후에 226-bp 숙주 서열 및 잔여 444-bp 바이러스 LTR 서열을 포함했다(도 1D). 환형 LTR 통합을 통해서는 이것이 부모 U1 세포에 부재했기 때문에 추가적인 단편이 발생하지 않았고, 그러한 환형 LTR 바이러스 유전체 배열은 HIV-1 감염 후 즉시 발생하지만 수명이 짧으며 반복되는 계대배양에 취약하다. 이들 세포는 실질적으로 감소된 HIV-1 바이러스 로드를 나타내었고, 기능적 p24 ELISA 복제 어세이 (도 2C) 및 실시간 PCR 분석 (도 9C, D)에서 보여진다. 검출가능하지만 낮은 잔여 바이러스 로드 및 비활성화는 세포 집단 이종성 및/또는 불완전한 유전체 편집에서 야기될 수 있다. 본 발명자는 또한 통합된 HIV-R7/E-/EGFP가 숨어있는 잠복성으로 감염된 J-Lat T 세포에서 Cas9/LTR-A/B gRNA에 의한 HIV-1 유전체의 소모를 유세포 분석기 분석, SURVEYOR 어세이 및 PCR 유전형검증 (도 10)을 통하여 확인하였고, 이는 Cas9/gRNA 및 ZFN에 의한 Jurkat T 세포 내 HIV-1 프로바이러스 결실에 관한 기존 보고 결과를 지지한다. 모두 고려하면, 본 발명자들의 결과는 복합 LTR-gRNA/Cas9 시스템이 인간 잠복성 HIV-1 감염증에서 전형적인 잠복성으로 HIV-1-감염된 "저장소" (미소아교, 단세포성 및 T) 세포에서, 및 HIV-1 전사 및 비활성화를 검출하는데 있어서 고도로 민감한 TZM-bI 세포에서 효율적으로 HIV-1 복제 및 비활성화를 억제함을 시사한다. 5'- 및 3'-LTR을 표적하는 단일 또는 복합 gRNA는 전체 HIV-1 유전체를 효과적으로 소거하였다.
실시예 4: Cas9 더하기 LTR-A/B의 안정적인 발현은 새로운 HIV-1 감염으로부터 TZM-bI 세포를 면역화한다
다음으로 본 발명자는 조합된 Cas9/LTR gRNA가 세포를 HIV-1 감염에 대해 면역화할 수 있는지 안정한 Cas9/gRNA-A 및 -B-발현 TZM-bI-기반 클론을 이용하여 시험하였다 (도 3A). 7가지의 퓨로마이신-선택된 서브클론 중 두 가지가 190-bp LTR-A/B 부위-신장 DNA 단편의 효율적인 절제를 나타내었다 (도 3B). 그러나, 나머지 5가지 서브클론은 Sanger 서열분석로 검증하여 절제가 없고 (도 3B) 삽입결실 돌연변이가 없음을 나타내었다. Cas9 및 U6-LTR을 표적하는 프라이머를 이용한 PCR 유전형검증은 이들 비효과적인 서브클론 중 어느 것도 Cas9/LTR-A/B gRNA 발현 카세트의 통합된 복제물을 보유하지 않았음을 나타내었다. (도 11A, B). 그 결과, 전장 Cas9의 발현은 검출되지 않았다(도 11C, D). Cas9/LTR-A/B gRNA의 장기 발현은 세포 성장 또는 생존능에 유해한 영향을 주지 않았으며, 이는 상기 모델에서 숙주 유전체 또는 Cas9-유도 독성을 가지는 표적-이탈 방해가 낮게 발생함을 암시한다. 본 발명자는 세포를 VSVG-위형 pNL4-3-ΔE-EGFP 리포터 바이러스로 감염시킴으로써 신규(de novo) HIV-1 복제를 평가하였고, 여기서 유세포 분석에 의한 EGFP-양성은 HIV-1 복제를 나타낸다. 대조 U6-CAG 세포와 달리, Cas9/gRNA LTR-A/B를 안정적으로 발현하는 세포는 감염 후 2일에 HIV-1 복제를 지원하지 못했고, 이는 이들이 신규한 HIV-1 감염에 대해 효과적으로 면역화되었음을 나타낸다 (도 3C-D). 자연적인 T-국한(T-tropic) X4 계통 pNL4-3-ΔE-EGFP 리포터 바이러스 (도 12A) 또는 자연적인 M-국한(M-tropic) R5 계통 가령 SF162 및 JRFL (도 12B-D)로 감염된 Cas/LTR-A/B gRNA 발현 세포에서 HIV-1에 대한 유사한 면역성이 관찰되었다.
실시예 5: 인간 유전체에 대한 Cas9/LTR-A/B의 표적-이탈 효과
개입 접근법으로서의 Cas9/gRNA의 장점은 이의 고도로 특이적인 표적-적중 삽입결실-발생 절단에 있지만, 복합적인 gRNA는 잠재적으로 숙주 유전체 돌연변이유발 및 염색체 장애, 세포독성, 유전독성, 또는 발암을 야기할 수 있다. 상당히 낮은 바이러스-인간 유전체 상동성은 이러한 위험을 감소시키지만, 인간 유전체는 수많은 내인성 레트로바이러스 유전체를 내포하므로 잠재적으로 HIV-1-공략성 gRNA에 취약하다. 그러므로, 본 발명자는 인간 유전체에 대한 선택된 HIV-1 LTR gRNA의 표적-이탈 효과를 평가하였다. 프로토스페이서-인접 모티프 (PAM) 부위 (NGG)에 가장 가까운 12-14-bp 시드 서열이 절단 특이성을 위해 중요하기 때문에, 본 발명자는 >14-bp 시드+NGG를 검색하였고, LTR gRNA A-D에 의한 표적-이탈 후보 부위를 찾지 못했다 (도 13). 점점 더 짧은 gRNA 조각이 상응하는 표적-적중 서열에 대해 100% 일치하는 표적-이탈 절단 부위를 더 많이 얻었다는 사실은 놀랍지 않다 (즉, NGG+13bp은 6, 0, 2 및 9개 표적-이탈 부위를 각각 얻은 반면, NGG+12bp은 16, 5, 16 및 29개를 얻었다; 도 13). 인간 유전체 DNA로부터 본 발명자는 고성능 PCR을 이용하여 예측된 표적-이탈 부위 중 하나를 포괄하는 500-800-bp 서열을 얻었고, 가능한 돌연변이를 SURVEYOR 및 Sanger 서열분석으로 분석하였다. 본 발명자는 어떠한 돌연변이도 찾지 못했다 (TZM-bI 및 U1 세포에서 대표적인 표적-이탈 부위 #1, 5 및 6를 참조하라; 도 4A).
표적-이탈 효과의 위험을 철저히 측정하기 위해, 본 발명자는 안정한 Cas9/gRNA A/B-발현 및 대조 U6-CAG TZM-bI 세포를 이용하여 전체 유전체 서열분석 (WGS)을 수행하였다 (도 4B-D). 본 발명자는 인간 (hg19) 및 HIV-1 유전체를 기준 서열로 가지는 유전체 분석 툴키트 (GATK, v.2.8.1)를 이용하여 676,105개 삽입결실을 규명하였다. 삽입결실 중에서, 24%는 U6-CAG 대조에서 발생했고, 26%는 LTR-A/B 서브클론에서 발생했고, 50%가 양쪽 모두에서 발생했다 (도 4B). 그러한 실질적인 샘플-내 삽입결실 호출 차이는 가능한 표적-이탈 효과를 암시하지만, 아마도 이의 제한된 신뢰성, 제한된 WGS 적용범위 (15-30X), 및 세포 이종성 때문일 것이다. GATK는 오직 신뢰성-규명된 삽입결실만 보고하였다: 일부는 U6-CAG 대조에서 발견되었지만 LTR-A/B 서브클론에는 없었고, 다른 일부는 LTR-A/B에 있었으나 U6-CAG에 없었다. 본 발명자는 양쪽 샘플에서 없어진 수많은 삽입결실 호출을 제한된 WGS 적용범위 때문이라고 예상했다. 그러한 제한된 삽입결실 호출 신뢰도는 또한 잘못된 부정의 가능성을 의미한다: 없어진 삽입결실은 LTR-A/B에 발생하나 U6-CAG 대조에는 없었다. 세포 이종성은 Cas9/gRNA 편집 효율의 가변성 및 계대배양의 영향을 반영할 수 있다. 그러므로, 본 발명자는 HIV-1 유전체의 LTR-A/-B-표적화 부위 및 숙주 유전체의 예상/가능한 gRNA 표적-이탈 부위에 대한 각각의 삽입결실의 측면에 부착된 ±300 bp를 분석함으로써, 각각의 삽입결실이 LTR-A/B gRNA-유도된 것인지 시험하였다 (도 15). 시드 (12-bp) 더하기 NRG를 내포하는 서열에 100% 일치하는 서열을 위해, 본 발명자는 676,105개 삽입결실에 대한 92개의 가능한 표적-이탈 부위 중 단지 8개의 중복된 부위를 규명하였다: 6개의 삽입결실은 두 샘플 모두에서 발생했고, 2개는 U6-CAG 대조에서만 발생했다 (도 4C, D). 본 발명자는 또한 LTR-A/B 서브클론에서만 발생하고, 예상한 대로, U6-CAG에서는 발생하지 않는 HIV-1 LTR 상의 2 개 삽입결실을 규명하였다. 상기 결과는 LTR-A/B gRNA가 언급된 표적-적중 삽입결실을 유도하지만, 표적-이탈 삽입결실은 유도하지 않음을 시사하며, 이는 예상/가능한 표적-이탈 부위를 포괄하는 PCR 산물의 세밀한 서열분석을 이용한 이전 발견과 일치한다.
본 발명자의 복합적 접근법은 표적-이탈 효과를 최소화함과 동시에 유전체에 통합된 HIV-1 프로바이러스를 고효율로 및 완전하게 소거하였다. 외부 바이러스 유전체 및 내인성 레트로바이러스 DNA를 비롯한 숙주 세포 유전체 사이에 극도로 낮은 상동성 외에, 본 발명의 연구에서 특징적인 핵심 설계는: 표적-이탈 인간 전사체 또는 (훨씬 드물게는) 미번역된-유전체 부위를 배제하고; HIV-1 LTR 프로모터 (가능하게는 숙주 유전체 내에 보존된 것) 내부의 전사 인자 결합 부위를 피하기 위해 가장 짧은 12-bp+NGG 표적-선별 기준을 이용하는 생물정보학적 선별; LTR-A- 및 -B-공략성, 30-bp gRNA 및 또한 특이성/효율을 증가시키기 위해 본래의 박테리아 면역 메커니즘을 반영하는 전구-crRNA 시스템 vs. 20-bp gRNA-, 키메라 crRNA-tracRNA-기반 시스템 및 WGS의 선별, 가능한 표적-이탈 효과를 규명하고 배제하기 위한 Sanger 서열분석 및 SURVEYOR 어세이를 포함한다. 실제로, 신규하게 개발된 Cas9 이중-틈생성 및 RNA-유도된 FokI 뉴클레아제의 사용은 감소된 표적-이탈 효과를 가지며 HIV-1의 다양한 보존된 부위 내부에서 신규한 표적의 식별을 더욱 도울 수 있다.
본 결과는 HIV-1 Cas9/gRNA 시스템이 상이한 염색체에 위치한 LTR의 하나 초과의 복제물을 표적하는 능력을 가짐을 나타내며, 이는 이러한 유전체 편집 시스템이 다중 프로바이러스 DNA가 숨어있는 잠복성으로 감염된 환자의 세포에서 HIV-1의 DNA 서열을 바꿀 수 있음을 시사한다. 본 기술의 높은 편집 효율 및 일관성을 더욱 보장하기 위해, 환자 샘플 내 HIV-1을 소거하기 위한 표적으로서 HIV-1 유전체의 가장 안정한 부위를 고려할 수 있고, 여기에는 단 하나의 HIV-1 계통만 숨어있지 않을 수 있다. 대안적으로, 치료적 Cas9/gRNA 분자를 조작하기 이전에 환자-유래 바이러스 유전체의 세밀한 서열분석으로부터의 데이터를 기반으로 하여 맞춤형 치료 요법을 개발할 수 있다.
본 결과는 또한 HIV-1 감염에 대해 세포를 면역화하기 위해 Cas9/gRNA 유전체 편집이 사용될 수 있음을 보여준다. 예방적 면역화는 어떻게 바이러스가 감염된 세포에 침입하는지 상관없이 시스템이 유전체 서열을 표적하기 때문에 HIV-1 계통의 다양성과 관계없다. 세포 내 Cas9/gRNA 시스템의 선존재는 새로운 HIV-1이 숙주 유전체로 통합되기 전에 이의 빠른 제거를 야기한다. 고위험 개체를 면역화하기 위해 Cas9/LTR-gRNA를 송달하기 위한 다양한 시스템, 예컨대, HIV-1 감염을 제거하기 위한 유전자 요법(바이러스 벡터 및 나노입자) 및 자가 Cas9/gRNA-변형된 골수 줄기/전구세포 세포 또는 유발성 만능 줄기세포의 이식이 연구될 수 있다.
여기서, 본 발명자는 HIV-1 표적 유전체를 편집하는데 있어서 Cas9/gRNA의 높은 특이성을 증명하였다. 서브클론 데이터로부터의 결과는 Cas9 및 gRNA 둘다의 존재에 대한 유전체 편집의 엄격한 의존성을 드러내었다. 게다가, 설계된 gRNA 표적 내 단 하나의 뉴클레오티드 미스매치라도 편집 효능을 저해할 것이다. 또한, 본 발명의 4 개의 설계된 LTR gRNA는 모두 상이한 세포주에 잘 작용했고, 이는 편집이 숙주 세포 유전체보다 HIV-1 유전체에서 더 효율적임을 나타내며, 여기서 설계된 gRNA가 기능적인 것은 아닌데, 이는 상이한 후생적 조절, 가변 유전체 접근성, 또는 다른 이유로 인한 것일 수 있다. Cas9/gRNA 개발의 용이성 및 빠른 속도를 감안하면, 만약 HIV-1 돌연변이가 하나의 Cas9/gRNA-기반 요법에 대한 내성을 전달한다고 해도, 위에서 기술한 바와 같이, 개별적인 환자를 위한 또다른 맞춤형 요법을 가능하게 하기 위한 HIV-1 변이체의 유전형이 검증될 수 있다.
본 발명의 수많은 구체예가 기술되었다. 그렇지만, 다양한 변형이 본 발명의 사상 및 범위로부터 벗어나지 않고 만들어질 수 있음이 이해될 것이다. 따라서, 다른 구체예가 하기 청구범위의 범위 내에 있다.
SEQUENCE LISTING
<110> TEMPLE UNIVERSITY OF THE COMMONWEALTH SYSTEM OF HIGHER
EDUCATION
<120> METHODS AND COMPOSITIONS FOR RNA-GUIDED TREATMENT OF HIV
INFECTION
<130> F5129-00031
<140>
<141>
<150> 62/026,103
<151> 2014-07-18
<150> 62/018,441
<151> 2014-06-27
<150> 61/871,626
<151> 2013-08-29
<160> 389
<170> PatentIn version 3.5
<210> 1
<211> 30
<212> DNA
<213> Human immunodeficiency virus 1
<400> 1
gccagggatc agatatccac tgacctttgg 30
<210> 2
<211> 34
<212> DNA
<213> Human immunodeficiency virus 1
<400> 2
tccggagtac ttcaagaact gctgacatcg agct 34
<210> 3
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 3
ccactgacta cttcaagaa 19
<210> 4
<211> 859
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<220>
<221> modified_base
<222> (289)..(313)
<223> a, c, t, g, unknown or other
<400> 4
ctaggtgatt aggatattct acaatccaaa ttcttaccag tttgggatta ttcaaattgg 60
gcaccttggc agatatgttt tgaaaactgc taggcaaagc attctggaag aatagacaaa 120
gaagtaataa aatataacaa aaagcagtgg aagttacaaa aaaaaatgtt tctcttttgg 180
aagggctaat ttggtcccaa agaagacaag atatccttga tctgtggatc taccacacac 240
aaggctactt ccctgattgg cagaactaca acaccagggc cagggatcnn nnnnnnnnnn 300
nnnnnnnnnn nnnttcaagt tagtaccagt tgagccaggg caggtagaag aggccaatga 360
aggagagaac aacaccttgt tacaccctat gagcctgcat gggatggagg acccggaggg 420
agaagtatta gtgtggaagt ttgacagcct cctagcattt cgtcacatgg cccgagagct 480
gcatccggag tactacaaag actgctgaca tcgagttttc tacaagggac tttccgctgg 540
ggactttcca gggaggtgtg gcctgggcgg gactggggag tggcgagccc tcagatgctg 600
catataagca gctgcttttt gcctgtactg ggtctctctg gttagaccag atctgagcct 660
gggagctctc tggctagcta gggaacccac tgcttaagcc tcaataaagc ttgccttgag 720
tgctacaagt agtgtgtgcc cgtctgttgt gtgactctgg taactagaga tccctcagac 780
ccttttagtc agtgtggaaa atctctagca tctttaaagt acagaatgcc aaaacaggaa 840
ggattgataa gatagtcgt 859
<210> 5
<211> 10
<212> DNA
<213> Human immunodeficiency virus 1
<400> 5
tcttttggaa 10
<210> 6
<211> 76
<212> DNA
<213> Human immunodeficiency virus 1
<400> 6
gattggcaga actacacacc agggccaggg atcagatatc cactgacctt tggatggtgc 60
ttcaagttag taccag 76
<210> 7
<211> 10
<212> DNA
<213> Human immunodeficiency virus 1
<400> 7
tctttaaagt 10
<210> 8
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 8
tcttttggaa 10
<210> 9
<211> 63
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 9
gattggcaga actacaacac cagggccagg gatcagatgg atggtgcttc aagttagtac 60
cag 63
<210> 10
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 10
tctttaaagt 10
<210> 11
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 11
tcttttggaa 10
<210> 12
<211> 50
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 12
gattggcaga actacaacac cagggccagg gatcttcaag ttagtaccag 50
<210> 13
<211> 10
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 13
tctttaaagt 10
<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 14
gagatcctgt ctcaaaaaaa agtt 24
<210> 15
<211> 17
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 15
atctatccat gagggcg 17
<210> 16
<211> 402
<212> DNA
<213> Human immunodeficiency virus 1
<400> 16
gatctgtgga tctaccacac acaaggctac ttccctgatt ggcagaacta cacaccaggg 60
ccagggatca gatatccact gacctttgga tggtgctaca agctagtacc agttgagcaa 120
gagaaggtag aagaagccaa tgaaggagag aacacccgct tgttacaccc tgtgagcctg 180
catgggatgg atgacccgga gagagaagta ttagagtgga ggtttgacag ccgcctagca 240
tttcatcaca tggcccgaga gctgcatccg gagtacttca agaactgctg acatcgagct 300
tgctacaagg gactttccgc tggggacttt ccagggaggc gtggcctggg cgggactggg 360
gagtggcgag ccctcagatg ctgcatataa gcagctgctt tt 402
<210> 17
<211> 31
<212> DNA
<213> Human immunodeficiency virus 1
<400> 17
ccctgattgg cagaactaca caccagggcc a 31
<210> 18
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 18
ccctgattgg cagaactaca acaccagggc ca 32
<210> 19
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 19
ccctgattgg cagaactaca acaccagggc ca 32
<210> 20
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 20
ccctgattgg cagaactaca acaccagggc ca 32
<210> 21
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 21
ccctgattgg cagaactaca accagggcca 30
<210> 22
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 22
ccctgattgg cagaactaca ccagggcca 29
<210> 23
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 23
ccctgattgg cagaactaca ccagggcca 29
<210> 24
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 24
ccctgattgg cagaactaca gggcca 26
<210> 25
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 25
ccctgattgg cagaactaca gggccaggg 29
<210> 26
<211> 86
<212> DNA
<213> Human immunodeficiency virus 1
<400> 26
gactttccag ggaggcgtgg cctgggcggg actggggagt ggcgagccct cagatgctgc 60
atataagcag cggtgaagcc gaattc 86
<210> 27
<211> 86
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 27
gactttccag ggaggcgtgg cctgggcggg actggggggt ggcgagccct cagatgctgc 60
atataagcag cggtgaagcc gaattc 86
<210> 28
<211> 88
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 28
gactttccag ggaggcgtgg cctgggcggg tatctgggga gtggcgagcc ctcagatgct 60
gcatataagc agcggtgaag ccgaattc 88
<210> 29
<211> 85
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 29
gactttccag gggggcgtgg cctgggcggg actggggagt ggcgagccct cagatgctgc 60
ataaagcagc ggtgaagccg aattc 85
<210> 30
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 30
gactttccag ggaagccgaa ttc 23
<210> 31
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 31
gattggcaga actacactgg ggagt 25
<210> 32
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 32
gattggcaga actacacctc agatgc 26
<210> 33
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 33
catcacatgg cccgctgctg acatcgag 28
<210> 34
<211> 55
<212> DNA
<213> Human immunodeficiency virus 1
<400> 34
catcacatgg cccgagagct gcatccggag tacttcaaga actgctgaca tcgag 55
<210> 35
<211> 1106
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<220>
<221> modified_base
<222> (152)..(155)
<223> a, c, t, g, unknown or other
<400> 35
gctattgtat ctgatcacaa gctgttaaaa gcggtcatgc cacttcttga atgctttgca 60
gctggaaggg ctaatttggt cccaaagaag acaagatatc cttgatctgt ggatctacca 120
cacacaaggc tacttccctg attggcagaa cnnnncacca gggccaggga tcagatatcc 180
actgaccatc cactttggat ggtgcttcaa gttagtacca gttgagccag ggcaggtaga 240
agaggccaat gaaggagaga acaacacctt gttacaccct atgagcctgc atgggatgga 300
ggacccggag ggagaagtat tagtgtggaa gtttgacagc ctcctagcat ttcgtcacat 360
ggcccgagag ctgcatccgg agtactacaa agactgctga catcgagttt tctacaaggg 420
actttccgct ggggactttc cagggaggtg tggcctgggc gggactgggg agtggcgagc 480
cctcagatgc tgcatataag cagctgcttt ttgcctgtac tgggtctctc tggttagacc 540
agatctgagc ctgggagctc tctggctagc tagggaaccc actgcttaag cctcaataaa 600
gcttgccttg agtgctacaa gtagtgtgtg cccgtctgtt gtgtgactct ggtaactaga 660
gatccctcag acccttttag tcagtgtgga aaatctctag cagcagctta gaaatttttt 720
ccaccagagg ccgggcgtgg tggctcacgc ctgtaatccc agcactttgg gaggccgagg 780
tgggcggatc acctgaagtc aggagttcga gaccagcctc aacatggaga aaccccatct 840
ctactaaaaa tacaaaatta gctgggcgtg gtggtgcatg cctgtaatcc cagctacttg 900
ggaggctgag acaggataat tgcttgaacc tggaaggcag aggttgcggt gagccgagat 960
tgcgccattg cattccagcc tgggcaacag gagcgaaact tcgtctcaaa aaaaaaaaaa 1020
aaagacattt tttccaccag ataccctaga tcatgactgt taagtctggc cttccacgaa 1080
gccctaggac ctggacacac aatcaa 1106
<210> 36
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 36
aaacagggcc agggatcaga tatccactga ccttgt 36
<210> 37
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 37
taaacaaggt cagtggatat ctgatccctg gccct 35
<210> 38
<211> 36
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 38
aaacagctcg atgtcagcag ttcttgaagt actcgt 36
<210> 39
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 39
taaacgagta cttcaagaac tgctgacatc gagct 35
<210> 40
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 40
caccgattgg cagaactaca cacc 24
<210> 41
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 41
aaacggtgtg tagttctgcc aatc 24
<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 42
caccgcgtgg cctgggcggg actg 24
<210> 43
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 43
aaaccagtcc cgcccaggcc acgc 24
<210> 44
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 44
tggaagggct aattcactcc caac 24
<210> 45
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 45
ccgagagctc ccaggctcag atct 24
<210> 46
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 46
caccgatctg tggatctacc acacaca 27
<210> 47
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 47
aaacgagtca cacaacagac gggc 24
<210> 48
<211> 37
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 48
cgcctcgagg atccgagggc ctatttccca tgattcc 37
<210> 49
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 49
tgtgaattca ggcgggccat ttaccgtaag ttatg 35
<210> 50
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 50
acgactatct tatcaatcct tcctg 25
<210> 51
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 51
ctaggtgatt aggatattct acaatc 26
<210> 52
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 52
gctattgtat ctgatcacaa gctg 24
<210> 53
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 53
ttgattgtgt gtccaggtcc tagg 24
<210> 54
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 54
gcaagggcga ggagctgttc acc 23
<210> 55
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 55
ttgtagttgc cgtcgtcctt gaag 24
<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 56
aatggtacat caggccatat cac 23
<210> 57
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 57
cccactgtgt ttagcatggt att 23
<210> 58
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 58
cacagcatca agaagaacct gat 23
<210> 59
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 59
tcttccgtct ggtgtatctt cttc 24
<210> 60
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 60
cgccaagctt gaataggagc tttgttcc 28
<210> 61
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
primer
<400> 61
ctaggatcca ggagctgttg atcctttagg 30
<210> 62
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 62
gtggactttg gatggtgaga tag 23
<210> 63
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 63
gcctggcaag agtgaactga gtc 23
<210> 64
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 64
aagataatga gttgtggcag agc 23
<210> 65
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 65
tctacctggt aatccagcat ctgg 24
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 66
ataggaggaa ggcaccaaga ggg 23
<210> 67
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 67
aatgatgctt tggtcctact cct 23
<210> 68
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 68
tgctcttgct actctggcat gtac 24
<210> 69
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 69
aatctacctc tgagagctgc agg 23
<210> 70
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 70
tcagacacag ctgaagcaga ggc 23
<210> 71
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 71
atgccagtgt cagtagatgt cag 23
<210> 72
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 72
tcaagatcag ccagagtgca catg 24
<210> 73
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 73
tgctcttccg agcctctctg gag 23
<210> 74
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 74
atggactatc atatgcttac cg 22
<210> 75
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 75
gcttcagcaa gccgagtcct gcgtcgag 28
<210> 76
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 76
gctcctctgg tttccctttc gctttcaa 28
<210> 77
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 77
gtaatacgac tcactatagg gc 22
<210> 78
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 78
actatagggc acgcgtggt 19
<210> 79
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 79
tcagaccctt ttagtcagtg tgg 23
<210> 80
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 80
ttgcttgtac tgggtctctc tgg 23
<210> 81
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 81
cagctgcttt ttgcttgtac tgg 23
<210> 82
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 82
ctgacatcga gcttgctaca agg 23
<210> 83
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 83
ccgcctagca tttcatcaca tgg 23
<210> 84
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 84
cggagagaga agtattagag tgg 23
<210> 85
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 85
agtaccagtt gagcaagaga agg 23
<210> 86
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 86
gatatccact gacctttgga tgg 23
<210> 87
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 87
gattggcaga actacacacc agg 23
<210> 88
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 88
cacaaggcta cttccctgat tgg 23
<210> 89
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 89
ctgtggatct accacacaca agg 23
<210> 90
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 90
tgggagctct ctggctaact agg 23
<210> 91
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 91
ggttagacca gatctgagcc tgg 23
<210> 92
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 92
tgctacaagg gactttccgc tgg 23
<210> 93
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 93
agagagaagt attagagtgg agg 23
<210> 94
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 94
ttacaccctg tgagcctgca tgg 23
<210> 95
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 95
aaggtagaag aagccaatga agg 23
<210> 96
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 96
atcagatatc cactgacctt tgg 23
<210> 97
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 97
gacaagatat ccttgatctg tgg 23
<210> 98
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 98
gcccgtctgt tgtgtgactc tgg 23
<210> 99
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 99
atctgagcct gggagctctc tgg 23
<210> 100
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 100
ctttccgctg gggactttcc agg 23
<210> 101
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 101
cagaactaca caccagggcc agg 23
<210> 102
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 102
cctgcatggg atggatgacc cgg 23
<210> 103
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 103
ccctgtgagc ctgcatggga tgg 23
<210> 104
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 104
ctttccaggg aggcgtggcc tgg 23
<210> 105
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 105
ggggactttc cagggaggcg tgg 23
<210> 106
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 106
ccgctgggga ctttccaggg agg 23
<210> 107
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 107
catggcccga gagctgcatc cgg 23
<210> 108
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 108
gcctgggcgg gactggggag tgg 23
<210> 109
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 109
aggcgtggcc tgggcgggac tgg 23
<210> 110
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 110
gcgtggcctg ggcgggactg ggg 23
<210> 111
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 111
ccagggaggc gtggcctggg cgg 23
<210> 112
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 112
tgtggtagat ccacagatca agg 23
<210> 113
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 113
ggtgtgtagt tctgccaatc agg 23
<210> 114
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 114
gtcagtggat atctgatccc tgg 23
<210> 115
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 115
tagcaccatc caaaggtcag tgg 23
<210> 116
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 116
tagcttgtag caccatccaa agg 23
<210> 117
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 117
tctaccttct cttgctcaac tgg 23
<210> 118
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 118
cactctaata cttctctctc cgg 23
<210> 119
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 119
ccatgtgatg aaatgctagg cgg 23
<210> 120
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 120
gggccatgtg atgaaatgct agg 23
<210> 121
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 121
cagcagttct tgaagtactc cgg 23
<210> 122
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 122
ctgcttatat gcagcatctg agg 23
<210> 123
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 123
cacactactt gaagcactca agg 23
<210> 124
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 124
taccagagtc acacaacaga cgg 23
<210> 125
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 125
acactgacta aaagggtctg agg 23
<210> 126
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 126
caaggatatc ttgtcttcgt tgg 23
<210> 127
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 127
cagggaagta gccttgtgtg tgg 23
<210> 128
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 128
gcgggtgttc tctccttcat tgg 23
<210> 129
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 129
tagttagcca gagagctccc agg 23
<210> 130
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 130
ctttattgag gcttaagcag tgg 23
<210> 131
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 131
actcaaggca agctttattg agg 23
<210> 132
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 132
ggatatctga tccctggccc tgg 23
<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 133
ggctcacagg gtgtaacaag cgg 23
<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 134
tccatcccat gcaggctcac agg 23
<210> 135
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 135
agtactccgg atgcagctct cgg 23
<210> 136
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 136
agagctccca ggctcagatc tgg 23
<210> 137
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 137
gattttccac actgactaaa agg 23
<210> 138
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 138
ccgggtcatc catcccatgc agg 23
<210> 139
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 139
cctccctgga aagtccccag cgg 23
<210> 140
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 140
gccactcccc agtcccgccc agg 23
<210> 141
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 141
ccgcccaggc cacgcctccc tgg 23
<210> 142
<211> 23
<212> DNA
<213> Human immunodeficiency virus 1
<400> 142
atcagatatc cactgacctt tgg 23
<210> 143
<211> 22
<212> DNA
<213> Human immunodeficiency virus 1
<400> 143
tcagatatcc actgaccttt gg 22
<210> 144
<211> 22
<212> DNA
<213> Human immunodeficiency virus 1
<400> 144
tcagatatcc actgaccttt gg 22
<210> 145
<211> 21
<212> DNA
<213> Human immunodeficiency virus 1
<400> 145
cagatatcca ctgacctttg g 21
<210> 146
<211> 21
<212> DNA
<213> Human immunodeficiency virus 1
<400> 146
cagatatcca ctgacctttg g 21
<210> 147
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 147
agatatccac tgacctttgg 20
<210> 148
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 148
agatatccac tgacctttgg 20
<210> 149
<211> 19
<212> DNA
<213> Human immunodeficiency virus 1
<400> 149
gatatccact gacctttgg 19
<210> 150
<211> 19
<212> DNA
<213> Human immunodeficiency virus 1
<400> 150
gatatccact gacctttgg 19
<210> 151
<211> 18
<212> DNA
<213> Human immunodeficiency virus 1
<400> 151
atatccactg acctttgg 18
<210> 152
<211> 18
<212> DNA
<213> Human immunodeficiency virus 1
<400> 152
atatccactg acctttgg 18
<210> 153
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 153
tatccactga ccttggg 17
<210> 154
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 154
tatccactga cctttgg 17
<210> 155
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 155
tatccactga cctttgg 17
<210> 156
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 156
tatccactga ccttaag 17
<210> 157
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 157
tatccactga ccttgag 17
<210> 158
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 158
atccactgac cttagg 16
<210> 159
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 159
atccactgac cttagg 16
<210> 160
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 160
atccactgac cttggg 16
<210> 161
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 161
atccactgac cttggg 16
<210> 162
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 162
atccactgac cttggg 16
<210> 163
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 163
atccactgac cttggg 16
<210> 164
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 164
atccactgac ctttgg 16
<210> 165
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 165
atccactgac ctttgg 16
<210> 166
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 166
atccactgac ctttgg 16
<210> 167
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 167
atccactgac cttaag 16
<210> 168
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 168
atccactgac cttaag 16
<210> 169
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 169
atccactgac cttcag 16
<210> 170
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 170
atccactgac cttcag 16
<210> 171
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 171
atccactgac cttgag 16
<210> 172
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 172
atccactgac cttgag 16
<210> 173
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 173
tccactgacc ttagg 15
<210> 174
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 174
tccactgacc ttagg 15
<210> 175
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 175
tccactgacc ttagg 15
<210> 176
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 176
tccactgacc ttagg 15
<210> 177
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 177
tccactgacc ttagg 15
<210> 178
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 178
tccactgacc ttagg 15
<210> 179
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 179
tccactgacc ttggg 15
<210> 180
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 180
tccactgacc ttggg 15
<210> 181
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 181
tccactgacc ttggg 15
<210> 182
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 182
tccactgacc ttggg 15
<210> 183
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 183
tccactgacc ttggg 15
<210> 184
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 184
tccactgacc ttggg 15
<210> 185
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 185
tccactgacc ttggg 15
<210> 186
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 186
tccactgacc ttggg 15
<210> 187
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 187
tccactgacc tttgg 15
<210> 188
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 188
tccactgacc tttgg 15
<210> 189
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 189
tccactgacc tttgg 15
<210> 190
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 190
tccactgacc tttgg 15
<210> 191
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 191
tccactgacc tttgg 15
<210> 192
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 192
tccactgacc tttgg 15
<210> 193
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 193
tccactgacc tttgg 15
<210> 194
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 194
tccactgacc tttgg 15
<210> 195
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 195
tccactgacc tttgg 15
<210> 196
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 196
tccactgacc ttaag 15
<210> 197
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 197
tccactgacc ttaag 15
<210> 198
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 198
tccactgacc ttaag 15
<210> 199
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 199
tccactgacc ttaag 15
<210> 200
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 200
tccactgacc ttaag 15
<210> 201
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 201
tccactgacc ttcag 15
<210> 202
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 202
tccactgacc ttcag 15
<210> 203
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 203
tccactgacc ttcag 15
<210> 204
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 204
tccactgacc ttcag 15
<210> 205
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 205
tccactgacc ttcag 15
<210> 206
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 206
tccactgacc ttcag 15
<210> 207
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 207
tccactgacc ttcag 15
<210> 208
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 208
tccactgacc ttcag 15
<210> 209
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 209
tccactgacc ttcag 15
<210> 210
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 210
tccactgacc ttcag 15
<210> 211
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 211
tccactgacc ttcag 15
<210> 212
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 212
tccactgacc ttcag 15
<210> 213
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 213
tccactgacc ttgag 15
<210> 214
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 214
tccactgacc ttgag 15
<210> 215
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 215
tccactgacc ttgag 15
<210> 216
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 216
tccactgacc ttgag 15
<210> 217
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 217
tccactgacc ttgag 15
<210> 218
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 218
tccactgacc ttgag 15
<210> 219
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 219
tccactgacc ttgag 15
<210> 220
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 220
tccactgacc ttgag 15
<210> 221
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 221
tccactgacc ttgag 15
<210> 222
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 222
tccactgacc tttag 15
<210> 223
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 223
tccactgacc tttag 15
<210> 224
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 224
tccactgacc tttag 15
<210> 225
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 225
tccactgacc tttag 15
<210> 226
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 226
tccactgacc tttag 15
<210> 227
<211> 23
<212> DNA
<213> Human immunodeficiency virus 1
<400> 227
cagcagttct tgaagtactc cgg 23
<210> 228
<211> 22
<212> DNA
<213> Human immunodeficiency virus 1
<400> 228
agcagttctt gaagtactcc gg 22
<210> 229
<211> 21
<212> DNA
<213> Human immunodeficiency virus 1
<400> 229
gcagttcttg aagtactccg g 21
<210> 230
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 230
cagttcttga agtactccgg 20
<210> 231
<211> 19
<212> DNA
<213> Human immunodeficiency virus 1
<400> 231
agttcttgaa gtactccgg 19
<210> 232
<211> 18
<212> DNA
<213> Human immunodeficiency virus 1
<400> 232
gttcttgaag tactccgg 18
<210> 233
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 233
ttcttgaagt actccgg 17
<210> 234
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 234
tcttgaagta ctccgg 16
<210> 235
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 235
tcttgaagta ctctag 16
<210> 236
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 236
cttgaagtac tcagg 15
<210> 237
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 237
cttgaagtac tcagg 15
<210> 238
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 238
cttgaagtac tcagg 15
<210> 239
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 239
cttgaagtac tcagg 15
<210> 240
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 240
cttgaagtac tccgg 15
<210> 241
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 241
cttgaagtac tctgg 15
<210> 242
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 242
cttgaagtac tcaag 15
<210> 243
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 243
cttgaagtac tcaag 15
<210> 244
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 244
cttgaagtac tcaag 15
<210> 245
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 245
cttgaagtac tcaag 15
<210> 246
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 246
cttgaagtac tcaag 15
<210> 247
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 247
cttgaagtac tccag 15
<210> 248
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 248
cttgaagtac tccag 15
<210> 249
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 249
cttgaagtac tccag 15
<210> 250
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 250
cttgaagtac tccag 15
<210> 251
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 251
cttgaagtac tctag 15
<210> 252
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 252
cttgaagtac tctag 15
<210> 253
<211> 23
<212> DNA
<213> Human immunodeficiency virus 1
<400> 253
atcagatatc cactgacctt tgg 23
<210> 254
<211> 22
<212> DNA
<213> Human immunodeficiency virus 1
<400> 254
tcagatatcc actgaccttt gg 22
<210> 255
<211> 22
<212> DNA
<213> Human immunodeficiency virus 1
<400> 255
tcagatatcc actgaccttt gg 22
<210> 256
<211> 21
<212> DNA
<213> Human immunodeficiency virus 1
<400> 256
cagatatcca ctgacctttg g 21
<210> 257
<211> 21
<212> DNA
<213> Human immunodeficiency virus 1
<400> 257
cagatatcca ctgacctttg g 21
<210> 258
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 258
agatatccac tgacctttgg 20
<210> 259
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 259
agatatccac tgacctttgg 20
<210> 260
<211> 19
<212> DNA
<213> Human immunodeficiency virus 1
<400> 260
gatatccact gacctttgg 19
<210> 261
<211> 19
<212> DNA
<213> Human immunodeficiency virus 1
<400> 261
gatatccact gacctttgg 19
<210> 262
<211> 18
<212> DNA
<213> Human immunodeficiency virus 1
<400> 262
atatccactg acctttgg 18
<210> 263
<211> 18
<212> DNA
<213> Human immunodeficiency virus 1
<400> 263
atatccactg acctttgg 18
<210> 264
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 264
tatccactga ccttggg 17
<210> 265
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 265
tatccactga cctttgg 17
<210> 266
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 266
tatccactga cctttgg 17
<210> 267
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 267
tatccactga ccttaag 17
<210> 268
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 268
tatccactga ccttgag 17
<210> 269
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 269
atccactgac cttagg 16
<210> 270
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 270
atccactgac cttagg 16
<210> 271
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 271
atccactgac cttggg 16
<210> 272
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 272
atccactgac cttggg 16
<210> 273
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 273
atccactgac cttggg 16
<210> 274
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 274
atccactgac cttggg 16
<210> 275
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 275
atccactgac ctttgg 16
<210> 276
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 276
atccactgac ctttgg 16
<210> 277
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 277
atccactgac ctttgg 16
<210> 278
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 278
atccactgac cttaag 16
<210> 279
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 279
atccactgac cttaag 16
<210> 280
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 280
atccactgac cttcag 16
<210> 281
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 281
atccactgac cttcag 16
<210> 282
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 282
atccactgac cttgag 16
<210> 283
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 283
atccactgac cttgag 16
<210> 284
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 284
tccactgacc ttagg 15
<210> 285
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 285
tccactgacc ttagg 15
<210> 286
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 286
tccactgacc ttagg 15
<210> 287
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 287
tccactgacc ttagg 15
<210> 288
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 288
tccactgacc ttagg 15
<210> 289
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 289
tccactgacc ttagg 15
<210> 290
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 290
tccactgacc ttggg 15
<210> 291
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 291
tccactgacc ttggg 15
<210> 292
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 292
tccactgacc ttggg 15
<210> 293
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 293
tccactgacc ttggg 15
<210> 294
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 294
tccactgacc ttggg 15
<210> 295
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 295
tccactgacc ttggg 15
<210> 296
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 296
tccactgacc ttggg 15
<210> 297
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 297
tccactgacc ttggg 15
<210> 298
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 298
tccactgacc tttgg 15
<210> 299
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 299
tccactgacc tttgg 15
<210> 300
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 300
tccactgacc tttgg 15
<210> 301
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 301
tccactgacc tttgg 15
<210> 302
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 302
tccactgacc tttgg 15
<210> 303
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 303
tccactgacc tttgg 15
<210> 304
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 304
tccactgacc tttgg 15
<210> 305
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 305
tccactgacc tttgg 15
<210> 306
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 306
tccactgacc tttgg 15
<210> 307
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 307
tccactgacc ttaag 15
<210> 308
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 308
tccactgacc ttaag 15
<210> 309
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 309
tccactgacc ttaag 15
<210> 310
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 310
tccactgacc ttaag 15
<210> 311
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 311
tccactgacc ttaag 15
<210> 312
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 312
tccactgacc ttcag 15
<210> 313
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 313
tccactgacc ttcag 15
<210> 314
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 314
tccactgacc ttcag 15
<210> 315
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 315
tccactgacc ttcag 15
<210> 316
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 316
tccactgacc ttcag 15
<210> 317
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 317
tccactgacc ttcag 15
<210> 318
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 318
tccactgacc ttcag 15
<210> 319
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 319
tccactgacc ttcag 15
<210> 320
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 320
tccactgacc ttcag 15
<210> 321
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 321
tccactgacc ttcag 15
<210> 322
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 322
tccactgacc ttcag 15
<210> 323
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 323
tccactgacc ttcag 15
<210> 324
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 324
tccactgacc ttgag 15
<210> 325
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 325
tccactgacc ttgag 15
<210> 326
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 326
tccactgacc ttgag 15
<210> 327
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 327
tccactgacc ttgag 15
<210> 328
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 328
tccactgacc ttgag 15
<210> 329
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 329
tccactgacc ttgag 15
<210> 330
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 330
tccactgacc ttgag 15
<210> 331
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 331
tccactgacc ttgag 15
<210> 332
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 332
tccactgacc ttgag 15
<210> 333
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 333
tccactgacc tttag 15
<210> 334
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 334
tccactgacc tttag 15
<210> 335
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 335
tccactgacc tttag 15
<210> 336
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 336
tccactgacc tttag 15
<210> 337
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 337
tccactgacc tttag 15
<210> 338
<211> 23
<212> DNA
<213> Human immunodeficiency virus 1
<400> 338
cagcagttct tgaagtactc cgg 23
<210> 339
<211> 22
<212> DNA
<213> Human immunodeficiency virus 1
<400> 339
agcagttctt gaagtactcc gg 22
<210> 340
<211> 21
<212> DNA
<213> Human immunodeficiency virus 1
<400> 340
gcagttcttg aagtactccg g 21
<210> 341
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 341
cagttcttga agtactccgg 20
<210> 342
<211> 19
<212> DNA
<213> Human immunodeficiency virus 1
<400> 342
agttcttgaa gtactccgg 19
<210> 343
<211> 18
<212> DNA
<213> Human immunodeficiency virus 1
<400> 343
gttcttgaag tactccgg 18
<210> 344
<211> 17
<212> DNA
<213> Human immunodeficiency virus 1
<400> 344
ttcttgaagt actccgg 17
<210> 345
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 345
tcttgaagta ctccgg 16
<210> 346
<211> 16
<212> DNA
<213> Human immunodeficiency virus 1
<400> 346
tcttgaagta ctctag 16
<210> 347
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 347
cttgaagtac tcagg 15
<210> 348
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 348
cttgaagtac tcagg 15
<210> 349
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 349
cttgaagtac tcagg 15
<210> 350
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 350
cttgaagtac tcagg 15
<210> 351
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 351
cttgaagtac tccgg 15
<210> 352
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 352
cttgaagtac tctgg 15
<210> 353
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 353
cttgaagtac tcaag 15
<210> 354
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 354
cttgaagtac tcaag 15
<210> 355
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 355
cttgaagtac tcaag 15
<210> 356
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 356
cttgaagtac tcaag 15
<210> 357
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 357
cttgaagtac tcaag 15
<210> 358
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 358
cttgaagtac tccag 15
<210> 359
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 359
cttgaagtac tccag 15
<210> 360
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 360
cttgaagtac tccag 15
<210> 361
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 361
cttgaagtac tccag 15
<210> 362
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 362
cttgaagtac tctag 15
<210> 363
<211> 15
<212> DNA
<213> Human immunodeficiency virus 1
<400> 363
cttgaagtac tctag 15
<210> 364
<211> 23
<212> DNA
<213> Human immunodeficiency virus 1
<400> 364
gatctgtgga tctaccacac aca 23
<210> 365
<211> 26
<212> DNA
<213> Human immunodeficiency virus 1
<400> 365
gatctgtgga tctaccacac acaagg 26
<210> 366
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 366
gattggcaga actacacacc 20
<210> 367
<211> 23
<212> DNA
<213> Human immunodeficiency virus 1
<400> 367
gattggcaga actacacacc agg 23
<210> 368
<211> 27
<212> DNA
<213> Human immunodeficiency virus 1
<400> 368
gccagggatc agatatccac tgacctt 27
<210> 369
<211> 30
<212> DNA
<213> Human immunodeficiency virus 1
<400> 369
gccagggatc agatatccac tgacctttgg 30
<210> 370
<211> 30
<212> DNA
<213> Human immunodeficiency virus 1
<400> 370
gagtacttca agaactgctg acatcgagct 30
<210> 371
<211> 33
<212> DNA
<213> Human immunodeficiency virus 1
<400> 371
ccggagtact tcaagaactg ctgacatcga gct 33
<210> 372
<211> 20
<212> DNA
<213> Human immunodeficiency virus 1
<400> 372
gcgtggcctg ggcgggactg 20
<210> 373
<211> 23
<212> DNA
<213> Human immunodeficiency virus 1
<400> 373
gcgtggcctg ggcgggactg ggg 23
<210> 374
<211> 22
<212> DNA
<213> Human immunodeficiency virus 1
<400> 374
tcagatgctg catataagca gc 22
<210> 375
<211> 25
<212> DNA
<213> Human immunodeficiency virus 1
<400> 375
ccctcagatg ctgcatataa gcagc 25
<210> 376
<211> 634
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 376
tggaagggct aattcactcc caacgaagac aagatatcct tgatctgtgg atctaccaca 60
cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc agatatccac 120
tgacctttgg atggtgctac aagctagtac cagttgagca agagaaggta gaagaagcca 180
atgaaggaga gaacacccgc ttgttacacc ctgtgagcct gcatgggatg gatgacccgg 240
agagagaagt attagagtgg aggtttgaca gccgcctagc atttcatcac atggcccgag 300
agctgcatcc ggagtacttc aagaactgct gacatcgagc ttgctacaag ggactttccg 360
ctggggactt tccagggagg cgtggcctgg gcgggactgg ggagtggcga gccctcagat 420
gctgcatata agcagctgct ttttgcttgt actgggtctc tctggttaga ccagatctga 480
gcctgggagc tctctggcta actagggaac ccactgctta agcctcaata aagcttgcct 540
tgagtgcttc aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta gagatccctc 600
agaccctttt agtcagtgtg gaaaatctct agca 634
<210> 377
<211> 453
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 377
tggaagggct aattcactcc caacgaagac aagatatcct tgatctgtgg atctaccaca 60
cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc agatatccac 120
tgacctttgg atggtgctac aagctagtac cagttgagca agagaaggta gaagaagcca 180
atgaaggaga gaacacccgc ttgttacacc ctgtgagcct gcatgggatg gatgacccgg 240
agagagaagt attagagtgg aggtttgaca gccgcctagc atttcatcac atggcccgag 300
agctgcatcc ggagtacttc aagaactgct gacatcgagc ttgctacaag ggactttccg 360
ctggggactt tccagggagg cgtggcctgg gcgggactgg ggagtggcga gccctcagat 420
gctgcatata agcagctgct ttttgcttgt act 453
<210> 378
<211> 97
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 378
gggtctctct ggttagacca gatctgagcc tgggagctct ctggctaact agggaaccca 60
ctgcttaagc ctcaataaag cttgccttga gtgcttc 97
<210> 379
<211> 84
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide
<400> 379
aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta gagatccctc agaccctttt 60
agtcagtgtg gaaaatctct agca 84
<210> 380
<211> 818
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 380
tggaagggat ttattacagt gcaagaagac atagaatctt agacatatac ttagaaaagg 60
aagaaggcat cataccagat tggcaggatt acacctcagg accaggaatt agatacccaa 120
agacatttgg ctggctatgg aaattagtcc ctgtaaatgt atcagatgag gcacaggagg 180
atgaggagca ttatttaatg catccagctc aaacttccca gtgggatgac ccttggggag 240
aggttctagc atggaagttt gatccaactc tggcctacac ttatgaggca tatgttagat 300
acccagaaga gtttggaagc aagtcaggcc tgtcagagga agaggttaga agaaggctaa 360
ccgcaagagg ccttcttaac atggctgaca agaaggaaac tcgctgaaac agcagggact 420
ttccacaagg ggatgttacg gggaggtact ggggaggagc cggtcgggaa cgcccacttt 480
cttgatgtat aaatatcact gcatttcgct ctgtattcag tcgctctgcg gagaggctgg 540
cagattgagc cctgggaggt tctctccagc actagcaggt agagcctggg tgttccctgc 600
tagactctca ccagcacttg gccggtgctg ggcagagtga ctccacgctt gcttgcttaa 660
agccctcttc aataaagctg ccattttaga agtaagctag tgtgtgttcc catctctcct 720
agccgccgcc tggtcaactc ggtactcaat aataagaaga ccctggtctg ttaggaccct 780
ttctgctttg ggaaaccgaa gcaggaaaat ccctagca 818
<210> 381
<211> 517
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 381
tggaagggat ttattacagt gcaagaagac atagaatctt agacatatac ttagaaaagg 60
aagaaggcat cataccagat tggcaggatt acacctcagg accaggaatt agatacccaa 120
agacatttgg ctggctatgg aaattagtcc ctgtaaatgt atcagatgag gcacaggagg 180
atgaggagca ttatttaatg catccagctc aaacttccca gtgggatgac ccttggggag 240
aggttctagc atggaagttt gatccaactc tggcctacac ttatgaggca tatgttagat 300
acccagaaga gtttggaagc aagtcaggcc tgtcagagga agaggttaga agaaggctaa 360
ccgcaagagg ccttcttaac atggctgaca agaaggaaac tcgctgaaac agcagggact 420
ttccacaagg ggatgttacg gggaggtact ggggaggagc cggtcgggaa cgcccacttt 480
cttgatgtat aaatatcact gcatttcgct ctgtatt 517
<210> 382
<211> 176
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 382
cagtcgctct gcggagaggc tggcagattg agccctggga ggttctctcc agcactagca 60
ggtagagcct gggtgttccc tgctagactc tcaccagcac ttggccggtg ctgggcagag 120
tgactccacg cttgcttgct taaagccctc ttcaataaag ctgccatttt agaagt 176
<210> 383
<211> 125
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 383
aagctagtgt gtgttcccat ctctcctagc cgccgcctgg tcaactcggt actcaataat 60
aagaagaccc tggtctgtta ggaccctttc tgctttggga aaccgaagca ggaaaatccc 120
tagca 125
<210> 384
<211> 14825
<212> DNA
<213> Human immunodeficiency virus 1
<400> 384
tggaagggct aatttggtcc caaaaaagac aagagatcct tgatctgtgg atctaccaca 60
cacaaggcta cttccctgat tggcagaact acacaccagg gccagggatc agatatccac 120
tgacctttgg atggtgcttc aagttagtac cagttgaacc agagcaagta gaagaggcca 180
atgaaggaga gaacaacagc ttgttacacc ctatgagcca gcatgggatg gaggacccgg 240
agggagaagt attagtgtgg aagtttgaca gcctcctagc atttcgtcac atggcccgag 300
agctgcatcc ggagtactac aaagactgct gacatcgagc tttctacaag ggactttccg 360
ctggggactt tccagggagg tgtggcctgg gcgggactgg ggagtggcga gccctcagat 420
gctacatata agcagctgct ttttgcctgt actgggtctc tctggttaga ccagatctga 480
gcctgggagc tctctggcta actagggaac ccactgctta agcctcaata aagcttgcct 540
tgagtgctca aagtagtgtg tgcccgtctg ttgtgtgact ctggtaacta gagatccctc 600
agaccctttt agtcagtgtg gaaaatctct agcagtggcg cccgaacagg gacttgaaag 660
cgaaagtaaa gccagaggag atctctcgac gcaggactcg gcttgctgaa gcgcgcacgg 720
caagaggcga ggggcggcga ctggtgagta cgccaaaaat tttgactagc ggaggctaga 780
aggagagaga tgggtgcgag agcgtcggta ttaagcgggg gagaattaga taaatgggaa 840
aaaattcggt taaggccagg gggaaagaaa caatataaac taaaacatat agtatgggca 900
agcagggagc tagaacgatt cgcagttaat cctggccttt tagagacatc agaaggctgt 960
agacaaatac tgggacagct acaaccatcc cttcagacag gatcagaaga acttagatca 1020
ttatataata caatagcagt cctctattgt gtgcatcaaa ggatagatgt aaaagacacc 1080
aaggaagcct tagataagat agaggaagag caaaacaaaa gtaagaaaaa ggcacagcaa 1140
gcagcagctg acacaggaaa caacagccag gtcagccaaa attaccctat agtgcagaac 1200
ctccaggggc aaatggtaca tcaggccata tcacctagaa ctttaaatgc atgggtaaaa 1260
gtagtagaag agaaggcttt cagcccagaa gtaataccca tgttttcagc attatcagaa 1320
ggagccaccc cacaagattt aaataccatg ctaaacacag tggggggaca tcaagcagcc 1380
atgcaaatgt taaaagagac catcaatgag gaagctgcag aatgggatag attgcatcca 1440
gtgcatgcag ggcctattgc accaggccag atgagagaac caaggggaag tgacatagca 1500
ggaactacta gtacccttca ggaacaaata ggatggatga cacataatcc acctatccca 1560
gtaggagaaa tctataaaag atggataatc ctgggattaa ataaaatagt aagaatgtat 1620
agccctacca gcattctgga cataagacaa ggaccaaagg aaccctttag agactatgta 1680
gaccgattct ataaaactct aagagccgag caagcttcac aagaggtaaa aaattggatg 1740
acagaaacct tgttggtcca aaatgcgaac ccagattgta agactatttt aaaagcattg 1800
ggaccaggag cgacactaga agaaatgatg acagcatgtc agggagtggg gggacccggc 1860
cataaagcaa gagttttggc tgaagcaatg agccaagtaa caaatccagc taccataatg 1920
atacagaaag gcaattttag gaaccaaaga aagactgtta agtgtttcaa ttgtggcaaa 1980
gaagggcaca tagccaaaaa ttgcagggcc cctaggaaaa agggctgttg gaaatgtgga 2040
aaggaaggac accaaatgaa agattgtact gagagacagg ctaatttttt agggaagatc 2100
tggccttccc acaagggaag gccagggaat tttcttcaga gcagaccaga gccaacagcc 2160
ccaccagaag agagcttcag gtttggggaa gagacaacaa ctccctctca gaagcaggag 2220
ccgatagaca aggaactgta tcctttagct tccctcagat cactctttgg cagcgacccc 2280
tcgtcacaat aaagataggg gggcaattaa aggaagctct attagataca ggagcagatg 2340
atacagtatt agaagaaatg aatttgccag gaagatggaa accaaaaatg atagggggaa 2400
ttggaggttt tatcaaagta agacagtatg atcagatact catagaaatc tgcggacata 2460
aagctatagg tacagtatta gtaggaccta cacctgtcaa cataattgga agaaatctgt 2520
tgactcagat tggctgcact ttaaattttc ccattagtcc tattgagact gtaccagtaa 2580
aattaaagcc aggaatggat ggcccaaaag ttaaacaatg gccattgaca gaagaaaaaa 2640
taaaagcatt agtagaaatt tgtacagaaa tggaaaagga aggaaaaatt tcaaaaattg 2700
ggcctgaaaa tccatacaat actccagtat ttgccataaa gaaaaaagac agtactaaat 2760
ggagaaaatt agtagatttc agagaactta ataagagaac tcaagatttc tgggaagttc 2820
aattaggaat accacatcct gcagggttaa aacagaaaaa atcagtaaca gtactggatg 2880
tgggcgatgc atatttttca gttcccttag ataaagactt caggaagtat actgcattta 2940
ccatacctag tataaacaat gagacaccag ggattagata tcagtacaat gtgcttccac 3000
agggatggaa aggatcacca gcaatattcc agtgtagcat gacaaaaatc ttagagcctt 3060
ttagaaaaca aaatccagac atagtcatct atcaatacat ggatgatttg tatgtaggat 3120
ctgacttaga aatagggcag catagaacaa aaatagagga actgagacaa catctgttga 3180
ggtggggatt taccacacca gacaaaaaac atcagaaaga acctccattc ctttggatgg 3240
gttatgaact ccatcctgat aaatggacag tacagcctat agtgctgcca gaaaaggaca 3300
gctggactgt caatgacata cagaaattag tgggaaaatt gaattgggca agtcagattt 3360
atgcagggat taaagtaagg caattatgta aacttcttag gggaaccaaa gcactaacag 3420
aagtagtacc actaacagaa gaagcagagc tagaactggc agaaaacagg gagattctaa 3480
aagaaccggt acatggagtg tattatgacc catcaaaaga cttaatagca gaaatacaga 3540
agcaggggca aggccaatgg acatatcaaa tttatcaaga gccatttaaa aatctgaaaa 3600
caggaaagta tgcaagaatg aagggtgccc acactaatga tgtgaaacaa ttaacagagg 3660
cagtacaaaa aatagccaca gaaagcatag taatatgggg aaagactcct aaatttaaat 3720
tacccataca aaaggaaaca tgggaagcat ggtggacaga gtattggcaa gccacctgga 3780
ttcctgagtg ggagtttgtc aatacccctc ccttagtgaa gttatggtac cagttagaga 3840
aagaacccat aataggagca gaaactttct atgtagatgg ggcagccaat agggaaacta 3900
aattaggaaa agcaggatat gtaactgaca gaggaagaca aaaagttgtc cccctaacgg 3960
acacaacaaa tcagaagact gagttacaag caattcatct agctttgcag gattcgggat 4020
tagaagtaaa catagtgaca gactcacaat atgcattggg aatcattcaa gcacaaccag 4080
ataagagtga atcagagtta gtcagtcaaa taatagagca gttaataaaa aaggaaaaag 4140
tctacctggc atgggtacca gcacacaaag gaattggagg aaatgaacaa gtagataaat 4200
tggtcagtgc tggaatcagg aaagtactat ttttagatgg aatagataag gcccaagaag 4260
aacatgagaa atatcacagt aattggagag caatggctag tgattttaac ctaccacctg 4320
tagtagcaaa agaaatagta gccagctgtg ataaatgtca gctaaaaggg gaagccatgc 4380
atggacaagt agactgtagc ccaggaatat ggcagctaga ttgtacacat ttagaaggaa 4440
aagttatctt ggtagcagtt catgtagcca gtggatatat agaagcagaa gtaattccag 4500
cagagacagg gcaagaaaca gcatacttcc tcttaaaatt agcaggaaga tggccagtaa 4560
aaacagtaca tacagacaat ggcagcaatt tcaccagtac tacagttaag gccgcctgtt 4620
ggtgggcggg gatcaagcag gaatttggca ttccctacaa tccccaaagt caaggagtaa 4680
tagaatctat gaataaagaa ttaaagaaaa ttataggaca ggtaagagat caggctgaac 4740
atcttaagac agcagtacaa atggcagtat tcatccacaa ttttaaaaga aaagggggga 4800
ttggggggta cagtgcaggg gaaagaatag tagacataat agcaacagac atacaaacta 4860
aagaattaca aaaacaaatt acaaaaattc aaaattttcg ggtttattac agggacagca 4920
gagatccagt ttggaaagga ccagcaaagc tcctctggaa aggtgaaggg gcagtagtaa 4980
tacaagataa tagtgacata aaagtagtgc caagaagaaa agcaaagatc atcagggatt 5040
atggaaaaca gatggcaggt gatgattgtg tggcaagtag acaggatgag gattaacaca 5100
tggaaaagat tagtaaaaca ccatatgtat atttcaagga aagctaagga ctggttttat 5160
agacatcact atgaaagtac taatccaaaa ataagttcag aagtacacat cccactaggg 5220
gatgctaaat tagtaataac aacatattgg ggtctgcata caggagaaag agactggcat 5280
ttgggtcagg gagtctccat agaatggagg aaaaagagat atagcacaca agtagaccct 5340
gacctagcag accaactaat tcatctgcac tattttgatt gtttttcaga atctgctata 5400
agaaatacca tattaggacg tatagttagt cctaggtgtg aatatcaagc aggacataac 5460
aaggtaggat ctctacagta cttggcacta gcagcattaa taaaaccaaa acagataaag 5520
ccacctttgc ctagtgttag gaaactgaca gaggacagat ggaacaagcc ccagaagacc 5580
aagggccaca gagggagcca tacaatgaat ggacactaga gcttttagag gaacttaaga 5640
gtgaagctgt tagacatttt cctaggatat ggctccataa cttaggacaa catatctatg 5700
aaacttacgg ggatacttgg gcaggagtgg aagccataat aagaattctg caacaactgc 5760
tgtttatcca tttcagaatt gggtgtcgac atagcagaat aggcgttact cgacagagga 5820
gagcaagaaa tggagccagt agatcctaga ctagagccct ggaagcatcc aggaagtcag 5880
cctaaaactg cttgtaccaa ttgctattgt aaaaagtgtt gctttcattg ccaagtttgt 5940
ttcatgacaa aagccttagg catctcctat ggcaggaaga agcggagaca gcgacgaaga 6000
gctcatcaga acagtcagac tcatcaagct tctctatcaa agcagtaagt agtacatgta 6060
atgcaaccta taatagtagc aatagtagca ttagtagtag caataataat agcaatagtt 6120
gtgtggtcca tagtaatcat agaatatagg aaaatattaa gacaaagaaa aatagacagg 6180
ttaattgata gactaataga aagagcagaa gacagtggca atgagagtga aggagaagta 6240
tcagcacttg tggagatggg ggtggaaatg gggcaccatg ctccttggga tattgatgat 6300
ctgtagtgct acagaaaaat tgtgggtcac agtctattat ggggtacctg tgtggaagga 6360
agcaaccacc actctatttt gtgcatcaga tgctaaagca tatgatacag aggtacataa 6420
tgtttgggcc acacatgcct gtgtacccac agaccccaac ccacaagaag tagtattggt 6480
aaatgtgaca gaaaatttta acatgtggaa aaatgacatg gtagaacaga tgcatgagga 6540
tataatcagt ttatgggatc aaagcctaaa gccatgtgta aaattaaccc cactctgtgt 6600
tagtttaaag tgcactgatt tgaagaatga tactaatacc aatagtagta gcgggagaat 6660
gataatggag aaaggagaga taaaaaactg ctctttcaat atcagcacaa gcataagaga 6720
taaggtgcag aaagaatatg cattctttta taaacttgat atagtaccaa tagataatac 6780
cagctatagg ttgataagtt gtaacacctc agtcattaca caggcctgtc caaaggtatc 6840
ctttgagcca attcccatac attattgtgc cccggctggt tttgcgattc taaaatgtaa 6900
taataagacg ttcaatggaa caggaccatg tacaaatgtc agcacagtac aatgtacaca 6960
tggaatcagg ccagtagtat caactcaact gctgttaaat ggcagtctag cagaagaaga 7020
tgtagtaatt agatctgcca atttcacaga caatgctaaa accataatag tacagctgaa 7080
cacatctgta gaaattaatt gtacaagacc caacaacaat acaagaaaaa gtatccgtat 7140
ccagagggga ccagggagag catttgttac aataggaaaa ataggaaata tgagacaagc 7200
acattgtaac attagtagag caaaatggaa tgccacttta aaacagatag ctagcaaatt 7260
aagagaacaa tttggaaata ataaaacaat aatctttaag caatcctcag gaggggaccc 7320
agaaattgta acgcacagtt ttaattgtgg aggggaattt ttctactgta attcaacaca 7380
actgtttaat agtacttggt ttaatagtac ttggagtact gaagggtcaa ataacactga 7440
aggaagtgac acaatcacac tcccatgcag aataaaacaa tttataaaca tgtggcagga 7500
agtaggaaaa gcaatgtatg cccctcccat cagtggacaa attagatgtt catcaaatat 7560
tactgggctg ctattaacaa gagatggtgg taataacaac aatgggtccg agatcttcag 7620
acctggagga ggcgatatga gggacaattg gagaagtgaa ttatataaat ataaagtagt 7680
aaaaattgaa ccattaggag tagcacccac caaggcaaag agaagagtgg tgcagagaga 7740
aaaaagagca gtgggaatag gagctttgtt ccttgggttc ttgggagcag caggaagcac 7800
tatgggcgca gcgtcaatga cgctgacggt acaggccaga caattattgt ctgatatagt 7860
gcagcagcag aacaatttgc tgagggctat tgaggcgcaa cagcatctgt tgcaactcac 7920
agtctggggc atcaaacagc tccaggcaag aatcctggct gtggaaagat acctaaagga 7980
tcaacagctc ctggggattt ggggttgctc tggaaaactc atttgcacca ctgctgtgcc 8040
ttggaatgct agttggagta ataaatctct ggaacagatt tggaataaca tgacctggat 8100
ggagtgggac agagaaatta acaattacac aagcttaata cactccttaa ttgaagaatc 8160
gcaaaaccag caagaaaaga atgaacaaga attattggaa ttagataaat gggcaagttt 8220
gtggaattgg tttaacataa caaattggct gtggtatata aaattattca taatgatagt 8280
aggaggcttg gtaggtttaa gaatagtttt tgctgtactt tctatagtga atagagttag 8340
gcagggatat tcaccattat cgtttcagac ccacctccca atcccgaggg gacccgacag 8400
gcccgaagga atagaagaag aaggtggaga gagagacaga gacagatcca ttcgattagt 8460
gaacggatcc ttagcactta tctgggacga tctgcggagc ctgtgcctct tcagctacca 8520
ccgcttgaga gacttactct tgattgtaac gaggattgtg gaacttctgg gacgcagggg 8580
gtgggaagcc ctcaaatatt ggtggaatct cctacagtat tggagtcagg aactaaagaa 8640
tagtgctgtt aacttgctca atgccacagc catagcagta gctgagggga cagatagggt 8700
tatagaagta ttacaagcag cttatagagc tattcgccac atacctagaa gaataagaca 8760
gggcttggaa aggattttgc tataagatgg gtggcaagtg gtcaaaaagt agtgtgattg 8820
gatggcctgc tgtaagggaa agaatgagac gagctgagcc agcagcagat ggggtgggag 8880
cagtatctcg agacctagaa aaacatggag caatcacaag tagcaataca gcagctaaca 8940
atgctgcttg tgcctggcta gaagcacaag aggaggaaga ggtgggtttt ccagtcacac 9000
ctcaggtacc tttaagacca atgacttaca aggcagctgt agatcttagc cactttttaa 9060
aagaaaaggg gggactggaa gggctaattc actcccaaag aagacaagat atccttgatc 9120
tgtggatcta ccacacacaa ggctacttcc ctgattggca gaactacaca ccagggccag 9180
gggtcagata tccactgacc tttggatggt gctacaagct agtaccagtt gagccagata 9240
aggtagaaga ggccaataaa ggagagaaca ccagcttgtt acaccctgtg agcctgcatg 9300
gaatggatga ccctgagaga gaagtgttag agtggaggtt tgacagccgc ctagcatttc 9360
atcacgtggc ccgagagctg catccggagt acttcaagaa ctgctgacat cgagcttgct 9420
acaagggact ttccgctggg gactttccag ggaggcgtgg cctgggcggg actggggagt 9480
ggcgagccct cagatgctgc atataagcag ctgctttttg cctgtactgg gtctctctgg 9540
ttagaccaga tctgagcctg ggagctctct ggctaactag ggaacccact gcttaagcct 9600
caataaagct tgccttgagt gcttcaagta gtgtgtgccc gtctgttgtg tgactctggt 9660
aactagagat ccctcagacc cttttagtca gtgtggaaaa tctctagcac ccaggaggta 9720
gaggttgcag tgagccaaga tcgcgccact gcattccagc ctgggcaaga aaacaagact 9780
gtctaaaata ataataataa gttaagggta ttaaatatat ttatacatgg aggtcataaa 9840
aatatatata tttgggctgg gcgcagtggc tcacacctgc gcccggccct ttgggaggcc 9900
gaggcaggtg gatcacctga gtttgggagt tccagaccag cctgaccaac atggagaaac 9960
cccttctctg tgtattttta gtagatttta ttttatgtgt attttattca caggtatttc 10020
tggaaaactg aaactgtttt tcctctactc tgataccaca agaatcatca gcacagagga 10080
agacttctgt gatcaaatgt ggtgggagag ggaggttttc accagcacat gagcagtcag 10140
ttctgccgca gactcggcgg gtgtccttcg gttcagttcc aacaccgcct gcctggagag 10200
aggtcagacc acagggtgag ggctcagtcc ccaagacata aacacccaag acataaacac 10260
ccaacaggtc caccccgcct gctgcccagg cagagccgat tcaccaagac gggaattagg 10320
atagagaaag agtaagtcac acagagccgg ctgtgcggga gaacggagtt ctattatgac 10380
tcaaatcagt ctccccaagc attcggggat cagagttttt aaggataact tagtgtgtag 10440
ggggccagtg agttggagat gaaagcgtag ggagtcgaag gtgtcctttt gcgccgagtc 10500
agttcctggg tgggggccac aagatcggat gagccagttt atcaatccgg gggtgccagc 10560
tgatccatgg agtgcagggt ctgcaaaata tctcaagcac tgattgatct taggttttac 10620
aatagtgatg ttaccccagg aacaatttgg ggaaggtcag aatcttgtag cctgtagctg 10680
catgactcct aaaccataat ttcttttttg tttttttttt tttatttttg agacagggtc 10740
tcactctgtc acctaggctg gagtgcagtg gtgcaatcac agctcactgc agcctcaacg 10800
tcgtaagctc aagcgatcct cccacctcag cctgcctggt agctgagact acaagcgacg 10860
ccccagttaa tttttgtatt tttggtagag gcagcgtttt gccgtgtggc cctggctggt 10920
ctcgaactcc tgggctcaag tgatccagcc tcagcctccc aaagtgctgg gacaaccggg 10980
gccagtcact gcacctggcc ctaaaccata atttctaatc ttttggctaa tttgttagtc 11040
ctacaaaggc agtctagtcc ccaggcaaaa agggggtttg tttcgggaaa gggctgttac 11100
tgtctttgtt tcaaactata aactaagttc ctcctaaact tagttcggcc tacacccagg 11160
aatgaacaag gagagcttgg aggttagaag cacgatggaa ttggttaggt cagatctctt 11220
tcactgtctg agttataatt ttgcaatggt ggttcaaaga ctgcccgctt ctgacaccag 11280
tcgctgcatt aatgaatcgg ccaacgcgcg gggagaggcg gtttgcgtat tgggcgctct 11340
tccgcttcct cgctcactga ctcgctgcgc tcggtcgttc ggctgcggcg agcggtatca 11400
gctcactcaa aggcggtaat acggttatcc acagaatcag gggataacgc aggaaagaac 11460
atgtgagcaa aaggccagca aaaggccagg aaccgtaaaa aggccgcgtt gctggcgttt 11520
ttccataggc tccgcccccc tgacgagcat cacaaaaatc gacgctcaag tcagaggtgg 11580
cgaaacccga caggactata aagataccag gcgtttcccc ctggaagctc cctcgtgcgc 11640
tctcctgttc cgaccctgcc gcttaccgga tacctgtccg cctttctccc ttcgggaagc 11700
gtggcgcttt ctcatagctc acgctgtagg tatctcagtt cggtgtaggt cgttcgctcc 11760
aagctgggct gtgtgcacga accccccgtt cagcccgacc gctgcgcctt atccggtaac 11820
tatcgtcttg agtccaaccc ggtaagacac gacttatcgc cactggcagc agccactggt 11880
aacaggatta gcagagcgag gtatgtaggc ggtgctacag agttcttgaa gtggtggcct 11940
aactacggct acactagaag aacagtattt ggtatctgcg ctctgctgaa gccagttacc 12000
ttcggaaaaa gagttggtag ctcttgatcc ggcaaacaaa ccaccgctgg tagcggtggt 12060
ttttttgttt gcaagcagca gattacgcgc agaaaaaaag gatctcaaga agatcctttg 12120
atcttttcta cggggtctga cgctcagtgg aacgaaaact cacgttaagg gattttggtc 12180
atgagattat caaaaaggat cttcacctag atccttttaa attaaaaatg aagttttaaa 12240
tcaatctaaa gtatatatga gtaaacttgg tctgacagtt accaatgctt aatcagtgag 12300
gcacctatct cagcgatctg tctatttcgt tcatccatag ttgcctgact ccccgtcgtg 12360
tagataacta cgatacggga gggcttacca tctggcccca gtgctgcaat gataccgcga 12420
gacccacgct caccggctcc agatttatca gcaataaacc agccagccgg aagggccgag 12480
cgcagaagtg gtcctgcaac tttatccgcc tccatccagt ctattaattg ttgccgggaa 12540
gctagagtaa gtagttcgcc agttaatagt ttgcgcaacg ttgttgccat tgctacaggc 12600
atcgtggtgt cacgctcgtc gtttggtatg gcttcattca gctccggttc ccaacgatca 12660
aggcgagtta catgatcccc catgttgtgc aaaaaagcgg ttagctcctt cggtcctccg 12720
atcgttgtca gaagtaagtt ggccgcagtg ttatcactca tggttatggc agcactgcat 12780
aattctctta ctgtcatgcc atccgtaaga tgcttttctg tgactggtga gtactcaacc 12840
aagtcattct gagaatagtg tatgcggcga ccgagttgct cttgcccggc gtcaatacgg 12900
gataataccg cgccacatag cagaacttta aaagtgctca tcattggaaa acgttcttcg 12960
gggcgaaaac tctcaaggat cttaccgctg ttgagatcca gttcgatgta acccactcgt 13020
gcacccaact gatcttcagc atcttttact ttcaccagcg tttctgggtg agcaaaaaca 13080
ggaaggcaaa atgccgcaaa aaagggaata agggcgacac ggaaatgttg aatactcata 13140
ctcttccttt ttcaatatta ttgaagcatt tatcagggtt attgtctcat gagcggatac 13200
atatttgaat gtatttagaa aaataaacaa ataggggttc cgcgcacatt tccccgaaaa 13260
gtgccacctg acgtctaaga aaccattatt atcatgacat taacctataa aaataggcgt 13320
atcacgaggc cctttcgtct cgcgcgtttc ggtgatgacg gtgaaaacct ctgacacatg 13380
cagctcccgg agacggtcac agcttgtctg taagcggatg ccgggagcag acaagcccgt 13440
cagggcgcgt cagcgggtgt tggcgggtgt cggggctggc ttaactatgc ggcatcagag 13500
cagattgtac tgagagtgca ccatatgcgg tgtgaaatac cgcacagatg cgtaaggaga 13560
aaataccgca tcaggcgcca ttcgccattc aggctgcgca actgttggga agggcgatcg 13620
gtgcgggcct cttcgctatt acgccagggg aggcagagat tgcagtaagc tgagatcgca 13680
gcactgcact ccagcctggg cgacagagta agactctgtc tcaaaaataa aataaataaa 13740
tcaatcagat attccaatct tttcctttat ttatttattt attttctatt ttggaaacac 13800
agtccttcct tattccagaa ttacacatat attctatttt tctttatatg ctccagtttt 13860
ttttagacct tcacctgaaa tgtgtgtata caaaatctag gccagtccag cagagcctaa 13920
aggtaaaaaa taaaataata aaaaataaat aaaatctagc tcactccttc acatcaaaat 13980
ggagatacag ctgttagcat taaataccaa ataacccatc ttgtcctcaa taattttaag 14040
cgcctctctc caccacatct aactcctgtc aaaggcatgt gccccttccg ggcgctctgc 14100
tgtgctgcca accaactggc atgtggactc tgcagggtcc ctaactgcca agccccacag 14160
tgtgccctga ggctgcccct tccttctagc ggctgccccc actcggcttt gctttcccta 14220
gtttcagtta cttgcgttca gccaaggtct gaaactaggt gcgcacagag cggtaagact 14280
gcgagagaaa gagaccagct ttacaggggg tttatcacag tgcaccctga cagtcgtcag 14340
cctcacaggg ggtttatcac attgcaccct gacagtcgtc agcctcacag ggggtttatc 14400
acagtgcacc cttacaatca ttccatttga ttcacaattt ttttagtctc tactgtgcct 14460
aacttgtaag ttaaatttga tcagaggtgt gttcccagag gggaaaacag tatatacagg 14520
gttcagtact atcgcatttc aggcctccac ctgggtcttg gaatgtgtcc cccgaggggt 14580
gatgactacc tcagttggat ctccacaggt cacagtgaca caagataacc aagacacctc 14640
ccaaggctac cacaatgggc cgccctccac gtgcacatgg ccggaggaac tgccatgtcg 14700
gaggtgcaag cacacctgcg catcagagtc cttggtgtgg agggagggac cagcgcagct 14760
tccagccatc cacctgatga acagaaccta gggaaagccc cagttctact tacaccagga 14820
aaggc 14825
<210> 385
<211> 10535
<212> DNA
<213> Simian immunodeficiency virus
<400> 385
gcatgcacat tttaaaggct tttgctaaat atagccaaaa gtccttctac aaattttcta 60
agagttctga ttcaaagcag taacaggcct tgtctcatca tgaactttgg catttcatct 120
acagctaagt ttatatcata aatagttctt tacaggcagc accaacttat acccttatag 180
catactttac tgtgtgaaaa ttgcatcttt cattaagctt actgtaaatt tactggctgt 240
cttccttgca ggtttctgga agggatttat tacagtgcaa gaagacatag aatcttagac 300
atatacttag aaaaggaaga aggcatcata ccagattggc aggattacac ctcaggacca 360
ggaattagat acccaaagac atttggctgg ctatggaaat tagtccctgt aaatgtatca 420
gatgaggcac aggaggatga ggagcattat ttaatgcatc cagctcaaac ttcccagtgg 480
gatgaccctt ggggagaggt tctagcatgg aagtttgatc caactctggc ctacacttat 540
gaggcatatg ttagataccc agaagagttt ggaagcaagt caggcctgtc agaggaagag 600
gttagaagaa ggctaaccgc aagaggcctt cttaacatgg ctgacaagaa ggaaactcgc 660
tgaaacagca gggactttcc acaaggggat gttacgggga ggtactgggg aggagccggt 720
cgggaacgcc cactttcttg atgtataaat atcactgcat ttcgctctgt attcagtcgc 780
tctgcggaga ggctggcaga ttgagccctg ggaggttctc tccagcacta gcaggtagag 840
cctgggtgtt ccctgctaga ctctcaccag cacttggccg gtgctgggca gagtgactcc 900
acgcttgctt gcttaaagcc ctcttcaata aagctgccat tttagaagta agctagtgtg 960
tgttcccatc tctcctagcc gccgcctggt caactcggta ctcaataata agaagaccct 1020
ggtctgttag gaccctttct gctttgggaa accgaagcag gaaaatccct agcagattgg 1080
cgcctgaaca gggacttgaa ggagagtgag agactcctga gtacggctga gtgaaggcag 1140
taagggcggc aggaaccaac cacgacggag tgctcctata aaggcgcggg tcggtaccag 1200
acggcgtgag gagcgggaga ggaagaggcc tccggttgca ggtaagtgca acacaaaaaa 1260
gaaatagctg tcttttatcc aggaaggggt aataagatag agtgggagat gggcgtgaga 1320
aactccgtct tgtcagggaa gaaagcagat gaattagaaa aaattaggct acgacccaac 1380
ggaaagaaaa agtacatgtt gaagcatgta gtatgggcag caaatgaatt agatagattt 1440
ggattagcag aaagcctgtt ggagaacaaa gaaggatgtc aaaaaatact ttcggtctta 1500
gctccattag tgccaacagg ctcagaaaat ttaaaaagcc tttataatac tgtctgcgtc 1560
atctggtgca ttcacgcaga agagaaagtg aaacacactg aggaagcaaa acagatagtg 1620
cagagacacc tagtggtgga aacaggaaca acagaaacta tgccaaaaac aagtagacca 1680
acagcaccat ctagcggcag aggaggaaat tacccagtac aacaaatagg tggtaactat 1740
gtccacctgc cattaagccc gagaacatta aatgcctggg taaaattgat agaggaaaag 1800
aaatttggag cagaagtagt gccaggattt caggcactgt cagaaggttg caccccctat 1860
gacattaatc agatgttaaa ttgtgtggga gaccatcaag cggctatgca gattatcaga 1920
gatattataa acgaggaggc tgcagattgg gacttgcagc acccacaacc agctccacaa 1980
caaggacaac ttagggagcc gtcaggatca gatattgcag gaacaactag ttcagtagat 2040
gaacaaatcc agtggatgta cagacaacag aaccccatac cagtaggcaa catttacagg 2100
agatggatcc aactggggtt gcaaaaatgt gtcagaatgt ataacccaac aaacattcta 2160
gatgtaaaac aagggccaaa agagccattt cagagctatg tagacaggtt ctacaaaagt 2220
ttaagagcag aacagacaga tgcagcagta aagaattgga tgactcaaac actgctgatt 2280
caaaatgcta acccagattg caagctagtg ctgaaggggc tgggtgtgaa tcccacccta 2340
gaagaaatgc tgacggcttg tcaaggagta ggggggccgg gacagaaggc tagattaatg 2400
gcagaagccc tgaaagaggc cctcgcacca gtgccaatcc cttttgcagc agcccaacag 2460
aggggaccaa gaaagccaat taagtgttgg aattgtggga aagagggaca ctctgcaagg 2520
caatgcagag ccccaagaag acagggatgc tggaaatgtg gaaaaatgga ccatgttatg 2580
gccaaatgcc cagacagaca ggcgggtttt ttaggccttg gtccatgggg aaagaagccc 2640
cgcaatttcc ccatggctca agtgcatcag gggctgatgc caactgctcc cccagaggac 2700
ccagctgtgg atctgctaaa gaactacatg cagttgggca agcagcagag agaaaagcag 2760
agagaaagca gagagaagcc ttacaaggag gtgacagagg atttgctgca cctcaattct 2820
ctctttggag gagaccagta gtcactgctc atattgaagg acagcctgta gaagtattac 2880
tggatacagg ggctgatgat tctattgtaa caggaataga gttaggtcca cattataccc 2940
caaaaatagt aggaggaata ggaggtttta ttaatactaa agaatacaaa aatgtagaaa 3000
tagaagtttt aggcaaaagg attaaaggga caatcatgac aggggacacc ccgattaaca 3060
tttttggtag aaatttgcta acagctctgg ggatgtctct aaattttccc atagctaaag 3120
tagagcctgt aaaagtcgcc ttaaagccag gaaaggatgg accaaaattg aagcagtggc 3180
cattatcaaa agaaaagata gttgcattaa gagaaatctg tgaaaagatg gaaaaggatg 3240
gtcagttgga ggaagctccc ccgaccaatc catacaacac ccccacattt gctataaaga 3300
aaaaggataa gaacaaatgg agaatgctga tagattttag ggaactaaat agggtcactc 3360
aggactttac ggaagtccaa ttaggaatac cacaccctgc aggactagca aaaaggaaaa 3420
gaattacagt actggatata ggtgatgcat atttctccat acctctagat gaagaattta 3480
ggcagtacac tgcctttact ttaccatcag taaataatgc agagccagga aaacgataca 3540
tttataaggt tctgcctcag ggatggaagg ggtcaccagc catcttccaa tacactatga 3600
gacatgtgct agaacccttc aggaaggcaa atccagatgt gaccttagtc cagtatatgg 3660
atgacatctt aatagctagt gacaggacag acctggaaca tgacagggta gttttacagt 3720
caaaggaact cttgaatagc atagggtttt ctaccccaga agagaaattc caaaaagatc 3780
ccccatttca atggatgggg tacgaattgt ggccaacaaa atggaagttg caaaagatag 3840
agttgccaca aagagagacc tggacagtga atgatataca gaagttagta ggagtattaa 3900
attgggcagc tcaaatttat ccaggtataa aaaccaaaca tctctgtagg ttaattagag 3960
gaaaaatgac tctaacagag gaagttcagt ggactgagat ggcagaagca gaatatgagg 4020
aaaataaaat aattctcagt caggaacaag aaggatgtta ttaccaagaa ggcaagccat 4080
tagaagccac ggtaataaag agtcaggaca atcagtggtc ttataaaatt caccaagaag 4140
acaaaatact gaaagtagga aaatttgcaa agataaagaa tacacatacc aatggagtga 4200
gactattagc acatgtaata cagaaaatag gaaaggaagc aatagtgatc tggggacagg 4260
tcccaaaatt ccacttacca gttgagaagg atgtatggga acagtggtgg acagactatt 4320
ggcaggtaac ctggataccg gaatgggatt ttatctcaac accaccgcta gtaagattag 4380
tcttcaatct agtgaaggac cctatagagg gagaagaaac ctattataca gatggatcat 4440
gtaataaaca gtcaaaagaa gggaaagcag gatatatcac agataggggc aaagacaaag 4500
taaaagtgtt agaacagact actaatcaac aagcagaatt ggaagcattt ctcatggcat 4560
tgacagactc agggccaaag gcaaatatta tagtagattc acaatatgtt atgggaataa 4620
taacaggatg ccctacagaa tcagagagca ggctagttaa tcaaataata gaagaaatga 4680
ttaaaaagtc agaaatttat gtagcatggg taccagcaca caaaggtata ggaggaaacc 4740
aagaaataga ccacctagtt agtcaaggga ttagacaagt tctcttcttg gaaaagatag 4800
agccagcaca agaagaacat gataaatacc atagtaatgt aaaagaattg gtattcaaat 4860
ttggattacc cagaatagtg gccagacaga tagtagacac ctgtgataaa tgtcatcaga 4920
aaggagaggc tatacatggg caggcaaatt cagatctagg gacttggcaa atggattgta 4980
cccatctaga gggaaaaata atcatagttg cagtacatgt agctagtgga ttcatagaag 5040
cagaggtaat tccacaagag acaggaagac agacagcact atttctgtta aaattggcag 5100
gcagatggcc tattacacat ctacacacag ataatggtgc taactttgct tcgcaagaag 5160
taaagatggt tgcatggtgg gcagggatag agcacacctt tggggtacca tacaatccac 5220
agagtcaggg agtagtggaa gcaatgaatc accacctgaa aaatcaaata gatagaatca 5280
gggaacaagc aaattcagta gaaaccatag tattaatggc agttcattgc atgaatttta 5340
aaagaagggg aggaataggg gatatgactc cagcagaaag attaattaac atgatcacta 5400
cagaacaaga gatacaattt caacaatcaa aaaactcaaa atttaaaaat tttcgggtct 5460
attacagaga aggcagagat caactgtgga agggacccgg tgagctattg tggaaagggg 5520
aaggagcagt catcttaaag gtagggacag acattaaggt agtacccaga agaaaggcta 5580
aaattatcaa agattatgga ggaggaaaag aggtggatag cagttcccac atggaggata 5640
ccggagaggc tagagaggtg gcatagcctc ataaaatatc tgaaatataa aactaaagat 5700
ctacaaaagg tttgctatgt gccccatttt aaggtcggat gggcatggtg gacctgcagc 5760
agagtaatct tcccactaca ggaaggaagc catttagaag tacaagggta ttggcatttg 5820
acaccagaaa aagggtggct cagtacttat gcagtgagga taacctggta ctcaaagaac 5880
ttttggacag atgtaacacc aaactatgca gacattttac tgcatagcac ttatttccct 5940
tgctttacag cgggagaagt gagaagggcc atcaggggag aacaactgct gtcttgctgc 6000
aggttcccga gagctcataa gtaccaggta ccaagcctac agtacttagc actgaaagta 6060
gtaagcgatg tcagatccca gggagagaat cccacctgga aacagtggag aagagacaat 6120
aggagaggcc ttcgaatggc taaacagaac agtagaggag ataaacagag aggcggtaaa 6180
ccacctacca agggagctaa ttttccaggt ttggcaaagg tcttgggaat actggcatga 6240
tgaacaaggg atgtcaccaa gctatgtaaa atacagatac ttgtgtttaa tacaaaaggc 6300
tttatttatg cattgcaaga aaggctgtag atgtctaggg gaaggacatg gggcaggggg 6360
atggagacca ggacctcctc ctcctccccc tccaggacta gcataaatgg aagaaagacc 6420
tccagaaaat gaaggaccac aaagggaacc atgggatgaa tgggtagtgg aggttctgga 6480
agaactgaaa gaagaagctt taaaacattt tgatcctcgc ttgctaactg cacttggtaa 6540
tcatatctat aatagacatg gagacaccct tgagggagca ggagaactca ttagaatcct 6600
ccaacgagcg ctcttcatgc atttcagagg cggatgcatc cactccagaa tcggccaacc 6660
tgggggagga aatcctctct cagctatacc gccctctaga agcatgctat aacacatgct 6720
attgtaaaaa gtgttgctac cattgccagt tttgttttct taaaaaaggc ttggggatat 6780
gttatgagca atcacgaaag agaagaagaa ctccgaaaaa ggctaaggct aatacatctt 6840
ctgcatcaaa caagtaagta tgggatgtct tgggaatcag ctgcttatcg ccatcttgct 6900
tttaagtgtc tatgggatct attgtactct atatgtcaca gtcttttatg gtgtaccagc 6960
ttggaggaat gcgacaattc ccctcttttg tgcaaccaag aatagggata cttggggaac 7020
aactcagtgc ctaccagata atggtgatta ttcagaagtg gcccttaatg ttacagaaag 7080
ctttgatgcc tggaataata cagtcacaga acaggcaata gaggatgtat ggcaactctt 7140
tgagacctca ataaagcctt gtgtaaaatt atccccatta tgcattacta tgagatgcaa 7200
taaaagtgag acagatagat ggggattgac aaaatcaata acaacaacag catcaacaac 7260
atcaacgaca gcatcagcaa aagtagacat ggtcaatgag actagttctt gtatagccca 7320
ggataattgc acaggcttgg aacaagagca aatgataagc tgtaaattca acatgacagg 7380
gttaaaaaga gacaagaaaa aagagtacaa tgaaacttgg tactctgcag atttggtatg 7440
tgaacaaggg aataacactg gtaatgaaag tagatgttac atgaaccact gtaacacttc 7500
tgttatccaa gagtcttgtg acaaacatta ttgggatgct attagattta ggtattgtgc 7560
acctccaggt tatgctttgc ttagatgtaa tgacacaaat tattcaggct ttatgcctaa 7620
atgttctaag gtggtggtct cttcatgcac aaggatgatg gagacacaga cttctacttg 7680
gtttggcttt aatggaacta gagcagaaaa tagaacttat atttactggc atggtaggga 7740
taataggact ataattagtt taaataagta ttataatcta acaatgaaat gtagaagacc 7800
aggaaataag acagttttac cagtcaccat tatgtctgga ttggttttcc actcacaacc 7860
aatcaatgat aggccaaagc aggcatggtg ttggtttgga ggaaaatgga aggatgcaat 7920
aaaagaggtg aagcagacca ttgtcaaaca tcccaggtat actggaacta acaatactga 7980
taaaatcaat ttgacggctc ctggaggagg agatccggaa gttaccttca tgtggacaaa 8040
ttgcagagga gagttcctct actgtaaaat gaattggttt ctaaattggg tagaagatag 8100
gaatacagct aaccagaagc caaaggaaca gcataaaagg aattacgtgc catgtcatat 8160
tagacaaata atcaacactt ggcataaagt aggcaaaaat gtttatttgc ctccaagaga 8220
gggagacctc acgtgtaact ccacagtgac cagtctcata gcaaacatag attggattga 8280
tggaaaccaa actaatatca ccatgagtgc agaggtggca gaactgtatc gattggaatt 8340
gggagattat aaattagtag agatcactcc aattggcttg gcccccacag atgtgaagag 8400
gtacactact ggtggcacct caagaaataa aagaggggtc tttgtgctag ggttcttggg 8460
ttttctcgca acggcaggtt ctgcaatggg cgcggcgtcg ttgacgctga ccgctcagtc 8520
ccgaacttta ttggctggga tagtgcagca acagcaacag ctgttggacg tggtcaagag 8580
acaacaagaa ttgttgcgac tgaccgtctg gggaacaaag aacctccaga ctagggtcac 8640
tgccatcgag aagtacttaa aggaccaggc gcagctgaat gcttggggat gtgcgtttag 8700
acaagtctgc cacactactg taccatggcc aaatgcaagt ctaacaccaa agtggaacaa 8760
tgagacttgg caagagtggg agcgaaaggt tgacttcttg gaagaaaata taacagccct 8820
cctagaggag gcacaaattc aacaagagaa gaacatgtat gaattacaaa agttgaatag 8880
ctgggatgtg tttggcaatt ggtttgacct tgcttcttgg ataaagtata tacaatatgg 8940
agtttatata gttgtaggag taatactgtt aagaatagtg atctatatag tacaaatgct 9000
agctaagtta aggcaggggt ataggccagt gttctcttcc ccaccctctt atttccagca 9060
gacccatatc caacaggacc cggcactgcc aaccagagaa ggcaaagaaa gagacggtgg 9120
agaaggcggt ggcaacagct cctggccttg gcagatagaa tatattcatt tcctgatccg 9180
ccaactgata cgcctcttga cttggctatt cagcaactgc agaaccttgc tatcgagagt 9240
ataccagatc ctccaaccaa tactccagag gctctctgcg accctacaga ggattcgaga 9300
agtcctcagg actgaactga cctacctaca atatgggtgg agctatttcc atgaggcggt 9360
ccaggccgtc tggagatctg cgacagagac tcttgcgggc gcgtggggag acttatggga 9420
gactcttagg agaggtggaa gatggatact cgcaatcccc aggaggatta gacaagggct 9480
tgagctcact ctcttgtgag ggacagaaat acaatcaggg acagtatatg aatactccat 9540
ggagaaaccc agctgaagag agagaaaaat tagcatacag aaaacaaaat atggatgata 9600
tagatgagta agatgatgac ttggtagggg tatcagtgag gccaaaagtt cccctaagaa 9660
caatgagtta caaattggca atagacatgt ctcattttat aaaagaaaag gggggactgg 9720
aagggattta ttacagtgca agaagacata gaatcttaga catatactta gaaaaggaag 9780
aaggcatcat accagattgg caggattaca cctcaggacc aggaattaga tacccaaaga 9840
catttggctg gctatggaaa ttagtccctg taaatgtatc agatgaggca caggaggatg 9900
aggagcatta tttaatgcat ccagctcaaa cttcccagtg ggatgaccct tggggagagg 9960
ttctagcatg gaagtttgat ccaactctgg cctacactta tgaggcatat gttagatacc 10020
cagaagagtt tggaagcaag tcaggcctgt cagaggaaga ggttagaaga aggctaaccg 10080
caagaggcct tcttaacatg gctgacaaga aggaaactcg ctgaaacagc agggactttc 10140
cacaagggga tgttacgggg aggtactggg gaggagccgg tcgggaacgc ccactttctt 10200
gatgtataaa tatcactgca tttcgctctg tattcagtcg ctctgcggag aggctggcag 10260
attgagccct gggaggttct ctccagcact agcaggtaga gcctgggtgt tccctgctag 10320
actctcacca gcacttggcc ggtgctgggc agagtgactc cacgcttgct tgcttaaagc 10380
cctcttcaat aaagctgcca ttttagaagt aagctagtgt gtgttcccat ctctcctagc 10440
cgccgcctgg tcaactcggt actcaataat aagaagaccc tggtctgtta ggaccctttc 10500
tgctttggga aaccgaagca ggaaaatccc tagca 10535
<210> 386
<211> 9713
<212> DNA
<213> Human immunodeficiency virus 2
<400> 386
agtcgctctg cggagaggct ggcagattga gccctgggag gttctctcca gcactagcag 60
gtagagcctg ggtgttccct gctagactct caccggtgct tggccggcac tgggcagacg 120
gctccacgct tgcttgctta aaagacctct taataaagct gccagttaga agcaagttaa 180
gtgtgtgttc ccatctctcc tagtcgccgc ctggtcattc ggtgttcatc tgaataacaa 240
gaccctggtc tgttaggacc ctttctgctt tgggaaacca aagcaggaaa atccctagca 300
ggttggcgcc cgaacaggga cttagagaag actgaaaagc cttggaacac ggctgagtga 360
aggcagtaag ggcggcagga acaaaccacg acggagtgct cctagaaagg cgcaggccaa 420
ggtaccaaag gcggcgtgtg gagcgggagt aaagaggcct ccgggtgaag gtaagtacct 480
acaccaaaaa attgtagcca ggaagggctt gttatcctac ctttagacag gtagaagatt 540
gtgggagatg ggcgcgagaa actccgtctt gaaagggaaa aaagcagacg aattagaaac 600
aattaggtta cggcccggcg gaaagaaaaa atacaggcta aagcatattg tgtgggcagc 660
gaatgaattg gacagattcg gattagcaga gagcctgttg gagtcaaaag aaggttgcca 720
aagaattctt acagttttag gtccattagt accgacaggt tcagaaaatt taaaaagcct 780
ttttaatact gtctgcgtca tttggtgcat acacgcagaa gagaaagtga aagatactga 840
aggagcaaaa caaatagtac agagacatct agcggcagaa acaggaactg cagagaaaat 900
gccaaataca agtagaccaa cagcaccacc tagcgggaag ggaggaaact tccccgtaca 960
acaagtaggc ggcaattata cccatgtgcc gctgagtcct cgaaccctaa atgcttgggt 1020
aaaattagta gaggaaaaga agttcggggc agaggtagtg ccaggatttc aggcactctc 1080
agaaggctgc acgccctatg atatcaacca aatgcttaat tgtgtgggcg accatcaagc 1140
agctatgcaa ataatcaggg agatcgttaa tgaagaagca gcagattggg atgtgcaaca 1200
tccaatacca ggtcccttac cagcggggca gcttagagaa ccaagagggt ctgacatagc 1260
agggacaaca agcacagtag atgaacagat ccagtggatg tttaggccac aaaatcccgt 1320
accagtggga aacatctata ggagatggat ccagatagga ctgcagaagt gcgtcaggat 1380
gtacaacccg accaacatcc tagacataaa acaaggacca aaggaaccat tccaaagtta 1440
tgtagataga ttctacaaaa gcttgagggc agaacaaaca gatccagcag tgaagaattg 1500
gatgacccag acactactag tacagaatgc caacccagac tgtaaattag tactaaaagg 1560
actagggatg aatcctacct tagaagagat gctaaccgcc tgccaagggg taggtgggcc 1620
aggccagaaa gctagactaa tggcagaagc cttaaaagag gccttgacac cagcccctat 1680
cccatttgca gcagcccagc agaaaaggac aattaaatgc tggaattgtg gaaaggaagg 1740
acactcggca agacaatgcc gagcacctag aagacagggc tgctggaagt gtggtaaacc 1800
aggacatgtc atagcaaatt gcccagatag acaggtgggt tttttaggga tgggcccccg 1860
gggaaagaag ccccgcaact tccccgtggc ccaagtcccg caggggctaa caccaacagc 1920
acccccagta gatccagcag tggacctact ggagaattat atgcagcaag gaaaaagaca 1980
aagagaacag agagagagac catacaaaga agtgacagag gacttactgc acctcgagca 2040
gggagaggca ccatgcagag agacgacaga ggacttgctg cacctcaatt ctctcttttg 2100
aaaagaccag tagtcacggc atacgtcgag ggccagccag tagaagttct gctagacacg 2160
ggggctgacg actcaatagt agcagggata gagttaggga gcaattatag tccaaagata 2220
gtaggaggaa tagggggatt cataaatacc aaggaatata aaaatgtaaa aatagaagtt 2280
ttaggtaaaa aggtaagggc caccataatg acaggtgaca ccccaatcaa catttttggc 2340
agaaatattc tgacagcctt aggcatgtca ttaaatttac cagtcgccaa aatagaacca 2400
ataaaaataa tgttaaagcc aggaaaagat ggaccaaaac tgaggcaatg gcccttaaca 2460
aaagaaaaaa tagaggcact aaaagaaatc tgtgaaaaaa tggaaagaga aggccagcta 2520
gaggaagcgc ctccaactaa tccttataac acccccacat ttgcaatcaa gaaaaaggac 2580
aaaaataaat ggaggatgct aatagatttt agagaactaa acaaggtaac tcaagatttc 2640
acagaaattc agttaggaat tccacaccca gcaggattgg ccaagaaaaa aagaattact 2700
gtactagata taggggatgc ttacttttcc ataccactac atgaagactt tagacagtat 2760
actgcattta ctttaccatc aataaacaat gcagaaccag gaaaaagata tatatataag 2820
gtcctgcctc agggatggaa ggggtcacca gcaatttttc aatacacaat gaggcaggtc 2880
ttagaaccat tcagaaaagc aaacctagat gtcattatca ttcagtacat ggatgatatc 2940
ctaatagcta gtgacaggac agatctagaa catgacaagg tggtcctgca gctaaaggaa 3000
cttctaaata acctaggatt ttctacccca gatgagaagt tccaaaagga ccctccatac 3060
cactggatgg gctatgaact gtggccaact aagtggaagc tgcagaagat acagttgccc 3120
caaaaagatg tatggacagt aaatgacatc caaaagttag tgggtgtctt aaactgggca 3180
gcacaaatct acccagggat aaaaaccaga cacttatgta agctaattag aggaaaaatg 3240
acactcacag aagaagtaca gtggacagaa ctagcagagg cggagttaga agagaacaag 3300
attatcttaa gccaggagca agagggacac tattaccaag aagaaaaaga gttagaagca 3360
acagtccaaa aggatcaaga caatcagtgg acatataaag tacaccaggg agagaaaatt 3420
ctaaaagtag ggaaatatgc aaagataaaa aatacccata ccaatggggt cagattgtta 3480
gcacaagtag ttcaaaagat aggaaaagaa gcactaatca tttggggacg aataccaaaa 3540
tttcacctac cagtagaaag agagacatgg gaacagtggt gggatgacta ctggcaggtg 3600
acatggatcc ctgactggga cttcgtatct accccgccgc tggtcagact agcatttaac 3660
ctggtaaaag atcctatacc aagaacagag actttctaca cagatggatc ctgcaatagg 3720
caatcaaagg aaggaaaagc aggatatgta acagatagag ggagagacaa ggtaaggatg 3780
ctagaacaaa ctaccaatca gcaagcagaa ttagaagcct ttgcaatggc actaacagac 3840
tcaggtccaa aagccaatat tatagtagac tcacagtatg taatggggat agtagcaggc 3900
cagccaacag aatcagagag tagaatagta aatcaaatca tagaggagat gataaaaaag 3960
gaagcaatct atgttgcatg ggtcccagcc cataaaggca taggagggaa tcaggaggta 4020
gatcagttag taagtcaggg catcagacaa gtgttgttcc tggaaaaaat agagcccgct 4080
caggaagaac atgagaaata ccatagcaat gtaaaagaac tatcccataa atttggattg 4140
cccaaattag tagcaagaca aatagtaaac acatgtgccc aatgtcaaca gaaaggggag 4200
gctatacatg ggcaagtaga tgcagaatta ggcacttggc aaatggactg cacacactta 4260
gaaggaaaga tcattatagt agcagtacat gttgcaagtg gattcataga agcagaagtc 4320
atcccacagg aatcaggaag gcagacagca ctcttcctat taaaactggc cagtaggtgg 4380
ccaataacac acttgcacac agataatggt gccaacttca cttcacagga agtaaaaatg 4440
gtagcatggt gggtaggtat agaacaatct ttcggagtac cttacaatcc acaaagccaa 4500
ggagtagtag aagcaatgaa tcaccaccta aaaaatcaga taagtagaat tagagaacag 4560
gcaaatacag tagaaacaat agtactgatg gcaacacact gcatgaattt taaaagaagg 4620
ggaggaatag gggatatgac cccagcagaa agactaatca atatgatcac cacagaacaa 4680
gaaatacaat tcctccacgc caaaaattca aaattaaaaa attttcgggt ctatttcaga 4740
gaaggcagag atcagctgtg gaaaggaccc ggggaactac tgtggaaggg agacggagca 4800
gtcatagtca aggtagggac agacataaaa gtagtaccaa ggaggaaagc caagatcatc 4860
aaagactatg gaggaaggca agaactggat agtggttccc acttggaggg tgccagggag 4920
gatggagaaa tggcatagcc ttgtcaaata tctaaaatac agaacaaaag atctagaaga 4980
cgtgtgctat gttccccacc ataaagtagg atgggcatgg tggacttgca gcagggtaat 5040
attcccatta aagggaaaca gtcatctaga aatacaggca tattggaacc taacgccaga 5100
aaaaggatgg ctctcctctt attcagtaag aatgacttgg tatacggaaa ggttctggac 5160
agatgttacc ccagactgtg cagactccct aatacatagc acttatttct cttgctttac 5220
agcaggtgaa gtaagaagag ccatcagagg ggaaaagtta ttgtcctgct gcaattatcc 5280
ccaagcccat agagcccagg taccgtcact ccaatttttg gccttagtgg tagtgcagca 5340
aaatgacaga ccccagagaa acggtacccc caggaaacag tggcgaagag actatcgaag 5400
aggccttcaa ttggctagac aggacggtag aagccataaa cagagaggca gtgaatcacc 5460
tgccccgaga gcttattttc caggtgtggc agaggtcctg gagatactgg catgatgaac 5520
aagggatgtc acaaagttac acaaagtata gatatttgtg cttaatacag aaggctatgt 5580
tcacacattg taagagaggg tgcacttgcc tggggggagg acatgggcca ggagggtgga 5640
gaccaggacc tccccctcct ccccctccag gtctagtcta atgactgaag caccaacaga 5700
gtttcccccg gaggatggga ccccaccgag ggaaccaggg gatgagtgga taatagaaat 5760
cctgagaaaa ataaagaaag aagctttaaa gcattttgac cctcgcttgc taactgctct 5820
tggcaactat atccatacta gacatggaga cacccttgaa ggcgccagag agctcattaa 5880
tgtcctacaa cgagccctct tcatgcactt cagagcggga tgtaggctct caagaattgg 5940
ccaaacaggg ggaagaactc ctttcccagc tacatcgacc cctagaacca tgcaataaca 6000
aatgctattg taaaggatgc tgcttccact gccagctgtg ttttttaaac aaggggctcg 6060
ggatatgtta tgaccggaag ggcagacgaa gaagaactcc gaagaaaact aaggctcatt 6120
catcttctgc atcagacaag tgagtatgat gggtggtaga aatcagctgc ttgttgccat 6180
tttgctaact agtacttgct tgatatattg caccaattat gtgactgttt tctatggcat 6240
acccgcgtgg agaaatgcat ccattcccct cttttgtgca accaagaata gggatacttg 6300
gggaaccata cagtgcttgc cagacaatga tgattatcag gagataactt tgaatgtgac 6360
agaggctttc gatgcatggg ataatacagt aacagaacaa gcaatagaag atgtctggaa 6420
tctatttgag acatcaataa aaccatgtgt caaattaacg cctttatgtg tagcaatgag 6480
atgtaacaac acagatgcaa ggaacacaac cacacccaca acagcatccc cgcgtacaat 6540
aaaacccgtg acagagataa gtgagaattc ctcatgcata cgcgcaaaca actgctcagg 6600
attgggagaa gaagaggtgg tcaattgtca attcaatatg acaggattag agagagataa 6660
gaaaaagcaa tatagtgaga catggtactc gaaggatgta gtttgtgaag gaaatggcac 6720
cacagataca tgttacatga accattgcaa cacatcggtc atcacagagt catgtgacaa 6780
gcactattgg gatgctatga ggtttagata ctgtgcacca ccaggttttg ccctactaag 6840
atgcaatgat accaattatt caggctttgc gcccaattgc tctaaggtag tagctgctac 6900
atgcaccaga atgatggaaa cgcaaacttc tacatggttt ggctttaatg gcactagagc 6960
agaaaataga acatttatct attggcatgg tagggataac agaactatca tcagcttaaa 7020
caaatattat aatctcacta tacattgtaa gaggccagga aataagacag tggtaccaat 7080
aacacttatg tcagggttaa ggtttcactc ccagccggtc atcaataaaa gacccagaca 7140
agcatggtgt tggttcaaag gtgaatggaa gggagccatg caggaggtga aggaaaccct 7200
tgcaaaacat cccaggtata aaggaaccaa tgaaacaaag aatattaact ttacagcacc 7260
aggaaagggc tcagacccag aggtggcata catgtggact aactgcagag gagaatttct 7320
ctactgcaac atgacttggt tcctcaattg gatagaaaat aagacacacc gcaattatgt 7380
accgtgccat ataagacaaa taattaacac ctggcataag gtagggaaaa atgtatattt 7440
gcctcccagg gaaggggagt tgacctgcaa ctcaacagta actagcataa ttgctaacat 7500
tgatgcaaat ggaaataata caaatattac ctttagtgca gaggtggcag aactataccg 7560
attagagttg ggagattata aattggtaga aataacacca attggcttcg cacctacagc 7620
agaaaaaaga tactcctcta ctccaatgag gaacaagaga ggtgtgttcg tgctagggtt 7680
cttgggtttt ctcgcaacag caggctctgc aatgggcgcg gcgtccttaa cgctgtcggc 7740
tcagtctcgg actttactgg ccgggatagt gcagcaacag caacagctgt tggacgtggt 7800
caagagacaa caggaaatgt tgcgactgac cgtctgggga acaaaaaatc tccaggcaag 7860
agtcactgct atcgagaagt acttaaagga ccaggcgcaa ctaaattcat ggggatgtgc 7920
atttagacaa gtctgccaca ctactgtacc atgggtaaat gataccttaa cgcctgagtg 7980
gaacaatatg acgtggcaag aatgggaagg caaaatccgc gacctggagg caaatatcag 8040
tcaacaatta gaacaagcac aaattcagca agagaagaat atgtatgaac tacaaaagtt 8100
aaatagctgg gatgtttttg gtaactggtt tgacttaacc tcctggatca agtatattca 8160
atatggagtt tatataataa taggaatagt agttcttaga atagtaatat atatagtaca 8220
gatgttaagt agacttagaa agggctatag gcctgttttc tcttcccccc ccggttacct 8280
ccaacagatc catatccaca aggactggga acagccagcc agagaagaaa cagaagaaga 8340
cgttggaaac aacgttggag acagctcgtg gccttggccg ataagatata tacatttcct 8400
gatccaccag ctgattcgcc tcttggccgg actatacaac atctgcagga acttactatc 8460
caggatctcc ctgaccctcc gaccagtttt ccagagtctt cagagggcac tgacagcaat 8520
cagagactgg ctaagaactg acgcagccta cttgcagtat gggtgcgagt ggatccaagg 8580
agcgttccag gccttcgcaa gggctacgag agagactctt gcgggcacgt ggagagactt 8640
gtggggggca ctgcagcgga tcgggagggg aatacttgca gtcccaagaa gaatcaggca 8700
gggagcagag atcgccctcc tatgagggac agcggtatca gcagggagac tttatgaata 8760
ccccatggag aaccccagca aaagaagggg agaaagaatt gtacaagcaa caaaatagag 8820
atgatgtaga ttcggatgat gatgacctag taggggtctc tgtcacacca agagtaccac 8880
taagagaatt gacacataga ttagcaatag atgtgtcaca ttttataaaa gaaaaagggg 8940
gactggaagg gatgtattac agtgagagaa gacatagaat cttagacata taccttgaaa 9000
aggaagaagg gataattgca gattggcaga actatactca tgggccagga ataagatacc 9060
caatgttctt tgggtggcta tggaagctag taccagtaga tgtcacacga caggaggagg 9120
acgatgggac tcactgttta ctacacccag cacaaacaag caggtttgat gacccgcatg 9180
gggaaacact gatatggaag tttgacccca cgctggctca tgattacaag gcttttatcc 9240
tgcacccaga ggaatttggg cataagtcag gcctgccaga agaagactgg aaggcaagac 9300
tgaaagcaag agggatacca tttagttaga gacaggaaca gctatatttg gccagggcag 9360
gaaataacta ctgaaaacag ctgagactgc agggactttc cgaaggggct gtaaccaggg 9420
gagggacatg ggaggagccg gtggggaacg ccctcatact ttctgtataa agatacccgc 9480
tgcttgcatt gtacttcagt cgctctgcgg agaggctggc agattgagcc ctgggaggtt 9540
ctctccagca ctagcaggta gagcctgggt gttccctgct agactctcac cggtgcttgg 9600
ccggcactgg gcagacggct ccacgcttgc ttgcttaaaa gacctcttaa taaagctgcc 9660
agttagaagc aagttaagtg tgtgttccca tctctcctag tcgccgcctg gtc 9713
<210> 387
<211> 11878
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 387
gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt 60
gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc 120
atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag 180
atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa 240
aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg 300
aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag 360
ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg 420
ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga 480
tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc 540
ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc 600
acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga 660
gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt 720
cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg 780
aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac 840
atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga 900
gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg 960
gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc 1020
tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt 1080
tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt 1140
ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga ttacgccaag 1200
ctatttaggt gacactatag aatactcaag cttgggggga tcctctagag tcgacctgca 1260
ggcatgctat ttgatgaatt aactacactt aaaataatac aattattatt aaattttttt 1320
ttgatttatt tattaatttt taaacttaat catttgtatt tgggaggaat tatatatatc 1380
tttataatta ttttattttt ttttattttt ttattttttt attattatta ttttttttta 1440
tttttttttt ttactgtatc aaagaaaaac ctttaaaaaa aaaattataa tttccccatc 1500
ttactatatt tttaatacat acgttttaag gaattaaatt agacaaaagc tatattatgc 1560
tttacatata attagaattt ataaacgttt ggttattaga tatttcatgt ctcagtaaag 1620
tctttcaata catatgtaaa aaaatatata tgaatacaca taagttgtta atatatttta 1680
tatgcataaa tgtataaata tatatatata tatatatata tgtatgtatg tatatgtgtg 1740
tatatgaaat tatttcaatg tttaattttt taaattttaa tttttttttt tttttttttt 1800
tttattatgt atattgatct ttattattta aatattactt ttttcgtttt ttcttctttt 1860
tattattttt tttttttttt atattttata caaatggtaa ttcaaataaa aggtataaat 1920
ttatatttaa ttttctttta tggataaata aaagaaaaat ataaatatat aaaaatataa 1980
aaatatatat atgtatattg gggtgatgat aaaatgaaag ataatatata tatatatata 2040
tctttatttt tttttttttg tagaccccat tgtgagtaca taaatatatt atataactcg 2100
ggagcatcag tcatggaatt cttatttctt tttctttttt gcctggccgg cctttttcgt 2160
ggccgccggc cttttgtcgc ctcccagctg agacaggtcg atccgtgtct cgtacaggcc 2220
ggtgatgctc tggtggatca gggtggcgtc cagcacctct ttggtgctgg tgtacctctt 2280
ccggtcgatg gtggtgtcaa agtacttgaa ggcggcaggg gctcccagat tggtcagggt 2340
aaacaggtgg atgatattct cggcctgctc tctgatgggc ttatcccggt gcttgttgta 2400
ggcggacagc actttgtcca gattagcgtc ggccaggatc actctcttgg agaactcgct 2460
gatctgctcg atgatctcgt ccaggtagtg cttgtgctgt tccacaaaca gctgtttctg 2520
ctcattatcc tcgggggagc ccttcagctt ctcatagtgg ctggccaggt acaggaagtt 2580
cacatatttg gagggcaggg ccagttcgtt tcccttctgc agttcgccgg cagaggccag 2640
cattctcttc cggccgtttt ccagctcgaa cagggagtac ttaggcagct tgatgatcag 2700
gtcctttttc acttctttgt agcccttggc ttccagaaag tcgatgggat tcttctcgaa 2760
gctgcttctt tccatgatgg tgatccccag cagctctttc acactcttca gtttcttgga 2820
cttgcccttt tccactttgg ccaccaccag cacagaatag gccacggtgg ggctgtcgaa 2880
gccgccgtac ttcttagggt cccagtcctt ctttctggcg atcagcttat cgctgttcct 2940
cttgggcagg atagactctt tgctgaagcc gcctgtctgc acctcggtct ttttcacgat 3000
attcacttgg ggcatgctca gcactttccg cacggtggca aaatcccggc ccttatccca 3060
cacgatctcc ccggtttcgc cgtttgtctc gatcagaggc cgcttccgga tctcgccgtt 3120
ggccagggta atctcggtct tgaaaaagtt catgatgttg ctgtagaaga agtacttggc 3180
ggtagccttg ccgatttcct gctcgctctt ggcgatcatc ttccgcacgt cgtacacctt 3240
gtagtcgccg tacacgaact cgctttccag cttagggtac tttttgatca gggcggttcc 3300
cacgacggcg ttcaggtagg cgtcgtgggc gtggtggtag ttgttgatct cgcgcacttt 3360
gtaaaactgg aaatccttcc ggaaatcgga caccagcttg gacttcaggg tgatcacttt 3420
cacttcccgg atcagcttgt cattctcgtc gtacttagtg ttcatccggg agtccaggat 3480
ctgtgccacg tgctttgtga tctgccgggt ttccaccagc tgtctcttga tgaagccggc 3540
cttatccagt tcgctcaggc cgcctctctc ggccttggtc agattgtcga actttctctg 3600
ggtaatcagc ttggcgttca gcagctgccg ccagtagttc ttcatcttct tcacgacctc 3660
ttcggagggc acgttgtcgc tcttgccccg gttcttgtcg cttctggtca gcaccttgtt 3720
gtcgatggag tcgtccttca gaaagctctg aggcacgata tggtccacat cgtagtcgga 3780
cagccggttg atgtccagtt cctggtccac gtacatatcc cgcccattct gcaggtagta 3840
caggtacagc ttctcgttct gcagctgggt gttttccacg gggtgttctt tcaggatctg 3900
gctgcccagc tctttgatgc cctcttcgat ccgcttcatt ctctcgcggc tgttcttctg 3960
tcccttctgg gtggtctggt tctctctggc catttcgatc acgatgttct cgggcttgtg 4020
ccggcccatc actttcacga gctcgtccac caccttcact gtctgcagga tgcccttctt 4080
aatggcgggg ctgccggcca gattggcaat gtgctcgtgc aggctatcgc cctggccgga 4140
cacctgggct ttctggatgt cctctttaaa ggtcaggctg tcgtcgtgga tcagctgcat 4200
gaagtttctg ttggcgaagc cgtcggactt caggaaatcc aggattgtct tgccggactg 4260
cttgtcccgg atgccgttga tcagcttccg gctcagcctg ccccagccgg tgtatctccg 4320
ccgcttcagc tgcttcatca ctttgtcgtc gaacaggtgg gcataggttt tcagccgttc 4380
ctcgatcatc tctctgtcct caaacagtgt cagggtcagc acgatatctt ccagaatgtc 4440
ctcgttttcc tcattgtcca ggaagtcctt gtccttgata attttcagca gatcgtggta 4500
tgtgcccagg gaggcgttga accgatcttc cacgccggag atttccacgg agtcgaagca 4560
ctcgattttc ttgaagtagt cctctttcag ctgcttcacg gtcactttcc ggttggtctt 4620
gaacagcagg tccacgatgg cctttttctg ctcgccgctc aggaaggcgg gctttctcat 4680
tccctcggtc acgtatttca ctttggtcag ctcgttatac acggtgaagt actcgtacag 4740
caggctgtgc ttgggcagca ccttctcgtt gggcaggttc ttatcgaagt tggtcatccg 4800
ctcgatgaag ctctgggcgg aagcgccctt gtccaccact tcctcgaagt tccagggggt 4860
gatggtttcc tcgctctttc tggtcatcca ggcgaatctg ctgtttcccc tggccagagg 4920
gcccacgtag taggggatgc ggaaggtcag gatcttctcg atcttttccc ggttgtcctt 4980
caggaatggg taaaaatctt cctgccgccg cagaatggcg tgcagctctc ccaggtggat 5040
ctggtggggg atgctgccgt tgtcgaaggt ccgctgcttc cgcagcaggt cctctctgtt 5100
cagcttcacg agcagttcct cggtgccgtc catcttttcc aggatgggct tgatgaactt 5160
gtagaactct tcctggctgg ctccgccgtc aatgtagccg gcgtagccgt tcttgctctg 5220
gtcgaagaaa atctctttgt acttctcagg cagctgctgc cgcacgagag ctttcagcag 5280
ggtcaggtcc tggtggtgct cgtcgtatct cttgatcata gaggcgctca ggggggcctt 5340
ggtgatctcg gtgttcactc tcaggatgtc gctcagcagg atggcgtcgg acaggttctt 5400
ggcggccaga aacaggtcgg cgtactggtc gccgatctgg gccagcaggt tgtccaggtc 5460
gtcgtcgtag gtgtccttgc tcagctgcag tttggcatcc tcggccaggt cgaagttgct 5520
cttgaagttg ggggtcaggc ccaggctcag ggcaatcagg tttccgaaca ggccattctt 5580
cttctcgccg ggcagctggg cgatcagatt ttccagccgt ctgctcttgc tcagtctggc 5640
agacaggatg gccttggcgt ccacgccgct ggcgttgatg gggttttcct cgaacagctg 5700
gttgtaggtc tgcaccagct ggatgaacag cttgtccacg tcgctgttgt cggggttcag 5760
gtcgccctcg atcaggaagt ggccccggaa cttgatcatg tgggccaggg ccagatagat 5820
cagccgcagg tcggccttgt cggtgctgtc caccagtttc tttctcaggt ggtagatggt 5880
ggggtacttc tcgtggtagg ccacctcgtc cacgatgttg ccgaagatgg ggtgccgctc 5940
gtgcttctta tcctcttcca ccaggaagga ctcttccagt ctgtggaaga agctgtcgtc 6000
caccttggcc atctcgttgc tgaagatctc ttgcagatag cagatccggt tcttccgtct 6060
ggtgtatctt cttctggcgg ttctcttcag ccgggtggcc tcggctgttt cgccgctgtc 6120
gaacagcagg gctccgatca ggttcttctt gatgctgtgc cggtcggtgt tgcccagcac 6180
cttgaatttc ttgctgggca ccttgtactc gtcggtgatc acggcccagc ccacagagtt 6240
ggtgccgatg tccaggccga tgctgtactt cttgtcggct gctgggactc cgtggatacc 6300
gaccttccgc ttcttctttg gggccatctt atcgtcatcg tctttgtaat caatatcatg 6360
atccttgtag tctccgtcgt ggtccttata gtccattttt ctcgagggat cctgatatat 6420
ttctattagg tatttattat tataaaatat aaatcttgaa tgataataaa taaaatatta 6480
gttattcctt ttctagttta aaatatacat attataaata tatatatata tatatatatt 6540
tttattgtga caagaatata taattataaa ttatattatt tatttttgta tttttttttt 6600
tttttttttt tttttctttt tttgttttat ttttcttttt ttttataaat attatttttt 6660
tcttttatca tgcacattgg aataatacat taatatatat atatatatta tattatacat 6720
atattgaata atgtttataa aaaatgcata acttatatga atataatttt ttttaaatat 6780
gacaaaaaga aaaaaaaaaa aaaccaaaaa aaattaaaat tgaaatgaaa tatataaata 6840
tattatttat atatattata cattgtttaa tactactaca tgtatatata tatattatat 6900
atatatatat atatcaattt tttcaaaaat aaattaatat aaaaagaggg gaaaaaaaaa 6960
aaaaaaaaaa aaaaaagata attaagtaag catttaaaaa tatataaatt gataatatat 7020
aaaattaatc acatataaaa gcttataaac actaggttag ctaattcgct tgtaagaggt 7080
actctcgttt atgcaaaact atttgatata gcattttaac aagtacacat atatatatgt 7140
aatatatata ctatatatat ctattgcatg tgtactaagc atgtgcatgg catccccttt 7200
ttctcgtgtt taaaacagtt tgtatgataa aatataaagg atttgaaaaa gagaaaaaaa 7260
tatatgatct catcctatat agcgccataa tttttatttg ggttgaataa aattttctac 7320
taaatttagg tgtaagtaaa ataatggaat atatataagt acaataaaaa agtgcataaa 7380
ttaaaaaatt tttataataa atattttttt taaaaaagtc aataataata ttaaatatat 7440
ataacacagg attatatatg ttcactacaa ttttttatat tataatataa attcttttca 7500
attttcattt tattttacat acactttcct tttttgtcac tatattttaa tattcacata 7560
tttagtttaa atactggcta tttctttcta catttgctag taacaattgt gtagtgctta 7620
aatatataca cacacctaaa acttacaaag tatcctagga ccatggccaa gcctttgtct 7680
caagaagaat ccaccctcat tgaaagagca acggctacaa tcaacagcat ccccatctct 7740
gaagactaca gcgtcgccag cgcagctctc tctagcgacg gccgcatctt cactggtgtc 7800
aatgtatatc attttactgg gggaccttgt gcagaactcg tggtgctggg cactgctgct 7860
gctgcggcag ctggcaacct gacttgtatc gtcgcgatcg gaaatgagaa caggggcatc 7920
ttgagcccct gcggacggtg ccgacaggtg cttctcgatc tgcatcctgg gatcaaagcc 7980
atagtgaagg acagtgatgg acagccgacg gcagttggga ttcgtgaatt gctgccctct 8040
ggttatgtgt gggagggcta accgcgggta ccccattaaa tttatttaat aatagattaa 8100
aaatattata aaaataaaaa cataaacaca gaaattacaa aaaaaataca tatgaatttt 8160
ttttttgtaa tcttccttat aaatatagaa taatgaatca tataaaacat atcattattc 8220
atttatttac atttaaaatt attgtttcag tatctttaat ttattatgta tatataaaaa 8280
taacttacaa ttttattaat aaacaatata tgtttattaa ttcatgtttt gtaatttatg 8340
ggatagcgat tttttttact gtctgtattt tcttttttaa ttatgtttta attgtattta 8400
ttttattttt attattgttc tttttatagt attattttaa aacaaaatgt attttctaag 8460
aacttataat aataataata taaattttaa taaaaattat atttatcttt tacaatatga 8520
acataaagta caacattaat atatagcttt taatattttt attcctaatc atgtaaatct 8580
taaatttttc tttttaaaca tatgttaaat atttatttct cattatatat aagaacatat 8640
ttattacatc tagaggtacc gagctcgttt tcgacactgg atggcggcgt tagtatcgaa 8700
tcgacagcag tatagcgacc agcattcaca tacgattgac gcatgatatt actttctgcg 8760
cacttaactt cgcatctggg cagatgatgt cgaggcgaaa aaaaatataa atcacgctaa 8820
catttgatta aaatagaaca actacaatat aaaaaaacta tacaaatgac aagttcttga 8880
aaacaagaat ctttttattg tcagtactga ttagaaaaac tcatcgagca tcaaatgaaa 8940
ctgcaattta ttcatatcag gattatcaat accatatttt tgaaaaagcc gtttctgtaa 9000
tgaaggagaa aactcaccga ggcagttcca taggatggca agatcctggt atcggtctgc 9060
gattccgact cgtccaacat caatacaacc tattaatttc ccctcgtcaa aaataaggtt 9120
atcaagtgag aaatcaccat gagtgacgac tgaatccggt gagaatggca aaagcttatg 9180
catttctttc cagacttgtt caacaggcca gccattacgc tcgtcatcaa aatcactcgc 9240
atcaaccaaa ccgttattca ttcgtgattg cgcctgagcg agacgaaata cgcgatcgct 9300
gttaaaagga caattacaaa caggaatcga atgcaaccgg cgcaggaaca ctgccagcgc 9360
atcaacaata ttttcacctg aatcaggata ttcttctaat acctggaatg ctgttttgcc 9420
ggggatcgca gtggtgagta accatgcatc atcaggagta cggataaaat gcttgatggt 9480
cggaagaggc ataaattccg tcagccagtt tagtctgacc atctcatctg taacatcatt 9540
ggcaacgcta cctttgccat gtttcagaaa caactctggc gcatcgggct tcccatacaa 9600
tcgatagatt gtcgcacctg attgcccgac attatcgcga gcccatttat acccatataa 9660
atcagcatcc atgttggaat ttaatcgcgg cctcgaaacg tgagtctttt ccttacccat 9720
ggttgtttat gttcggatgt gatgtgagaa ctgtatccta gcaagatttt aaaaggaagt 9780
atatgaaaga agaacctcag tggcaaatcc taacctttta tatttctcta caggggcgcg 9840
gcgtggggac aattcaacgc gtctgtgagg ggagcgtttc cctgctcgca ggtctgcagc 9900
gaggagccgt aatttttgct tcgcgccgtg cggccatcaa aatgtatgga tgcaaatgat 9960
tatacatggg gatgtatggg ctaaatgtac gggcgacagt cacatcatgc ccctgagctg 10020
cgcacgtcaa gactgtcaag gagggtattc tgggcctcca tgtcgctggc ctaacattag 10080
taatgtaggt ctgactttca ctcatataag tcttatggta actaaactaa ggtcttacct 10140
ttactgatat atgtcttact ttcactaact taggtattac ttttactaac ttaggtctta 10200
aattcagtaa ctaaggtcat acttcgacta actaaggtct tacattcact gatataggtc 10260
ttatgattac taacttaggt cctaatttga ctaacataag tcctaacatt agtaatgtag 10320
gtcttaactt aactaactta ggtcttacct tcactaatat aggtcttaat attactgact 10380
taagtaatta aggtactaac ttaggtcgta aggtaactaa tatataggtc ttaaggtaac 10440
taatttaggt cttgacttaa taaatatagg tcctaacata aatagtatag gtcctaatat 10500
aagtactata ggccttaact taaccaacat aggtcctaac ataagttata taggtcttaa 10560
cgtaactaac ataagtcatt aaggtactaa gtttggtctt aatttaacaa taacatgtcg 10620
ctggcctaac attagtaatg taggtctgac tttcactcat ataagtctta tggtaactaa 10680
actaaggtct tacctttact gatatatgtc ttactttcac taacttaggt attactttta 10740
ctaacttagg tcttaaattc agtaactaag gtcatacttc gactaactaa ggtcttacat 10800
tcactgatat aggtcttatg attactaact taggtcctaa tttgactaac ataagtccta 10860
acattagtaa tgtaggtctt aacttaacta acttaggtct taccttcact aatataggtc 10920
ttaatattac tgacttaagt aattaaggta ctaacttagg tcgtaaggta actaatatat 10980
aggtcttaag gtaactaatt taggtcttga cttaataaat ataggtccta acataaatag 11040
tataggtcct aatataagta ctataggcct taacttaacc aacataggtc ctaacataag 11100
ttatataggt cttaacgtaa ctaacataag tcattaaggt actaagtttg gtcttaattt 11160
aacaataacc atgtcgctgg ccgggtggtc ttaatttaac aaatatagac catgtcgctg 11220
gccgggtgac ccggcgggga cgaggcaagc taaacagatc ctcgtgatac gcctattttt 11280
ataggttaat gtcatgataa taatggtttc ttaggacgga tcgcttgcct gtaacttaca 11340
cgcgcctcgt atcttttaat gatggaataa tttgggaatt tactctgtgt ttatttattt 11400
ttatgttttg tatttggatt ttagaaagta aataaagaag gtagaagagt tacggaatga 11460
agaaaaaaaa ataaacaaag gtttaaaaaa tttcaacaaa aagcgtactt tacatatata 11520
tttattagac aagaaaagca gattaaatag atatacattc gattaacgat aagtaaaatg 11580
taaaatcaca ggattttcgt gtgtggtctt ctacacagac aagatgaaac aattcggcat 11640
taatacctga gagcaggaag agcaagataa aaggtagtat ttgttggcga tccccctaga 11700
gtcttttaca tcttcggaaa acaaaaacta ttttttcttt aatttctttt tttactttct 11760
atttttaatt tatatattta tattaaaaaa tttaaattat aattattttt atagcacgtg 11820
atgaaaagga cccaggtggc acttttcggg gaaatctcga cctgcagcgt acgaagct 11878
<210> 388
<211> 12044
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 388
gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt 60
gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc 120
atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag 180
atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa 240
aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg 300
aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag 360
ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg 420
ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga 480
tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc 540
ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc 600
acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga 660
gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt 720
cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg 780
aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac 840
atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga 900
gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg 960
gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc 1020
tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt 1080
tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt 1140
ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga ttacgccaag 1200
ctatttaggt gacactatag aatactcaag cttgggggga tcctctagag tcgactaata 1260
cgactcacta taggaacata atctatagcg gcgttttaga gctagaaata gcaagttaaa 1320
ataaggctag tccgttatca acttgaaaaa gtggcaccga gtcggtgcta gcataacccc 1380
ttggggcctc taaacgggtc ttgaggggtt ttttggtcga cctgcaggca tgctatttga 1440
tgaattaact acacttaaaa taatacaatt attattaaat ttttttttga tttatttatt 1500
aatttttaaa cttaatcatt tgtatttggg aggaattata tatatcttta taattatttt 1560
attttttttt atttttttat ttttttatta ttattatttt tttttatttt ttttttttac 1620
tgtatcaaag aaaaaccttt aaaaaaaaaa ttataatttc cccatcttac tatattttta 1680
atacatacgt tttaaggaat taaattagac aaaagctata ttatgcttta catataatta 1740
gaatttataa acgtttggtt attagatatt tcatgtctca gtaaagtctt tcaatacata 1800
tgtaaaaaaa tatatatgaa tacacataag ttgttaatat attttatatg cataaatgta 1860
taaatatata tatatatata tatatatgta tgtatgtata tgtgtgtata tgaaattatt 1920
tcaatgttta attttttaaa ttttaatttt tttttttttt ttttttttta ttatgtatat 1980
tgatctttat tatttaaata ttactttttt cgttttttct tctttttatt attttttttt 2040
ttttttatat tttatacaaa tggtaattca aataaaaggt ataaatttat atttaatttt 2100
cttttatgga taaataaaag aaaaatataa atatataaaa atataaaaat atatatatgt 2160
atattggggt gatgataaaa tgaaagataa tatatatata tatatatctt tatttttttt 2220
tttttgtaga ccccattgtg agtacataaa tatattatat aactcgggag catcagtcat 2280
ggaattctta tttctttttc ttttttgcct ggccggcctt tttcgtggcc gccggccttt 2340
tgtcgcctcc cagctgagac aggtcgatcc gtgtctcgta caggccggtg atgctctggt 2400
ggatcagggt ggcgtccagc acctctttgg tgctggtgta cctcttccgg tcgatggtgg 2460
tgtcaaagta cttgaaggcg gcaggggctc ccagattggt cagggtaaac aggtggatga 2520
tattctcggc ctgctctctg atgggcttat cccggtgctt gttgtaggcg gacagcactt 2580
tgtccagatt agcgtcggcc aggatcactc tcttggagaa ctcgctgatc tgctcgatga 2640
tctcgtccag gtagtgcttg tgctgttcca caaacagctg tttctgctca ttatcctcgg 2700
gggagccctt cagcttctca tagtggctgg ccaggtacag gaagttcaca tatttggagg 2760
gcagggccag ttcgtttccc ttctgcagtt cgccggcaga ggccagcatt ctcttccggc 2820
cgttttccag ctcgaacagg gagtacttag gcagcttgat gatcaggtcc tttttcactt 2880
ctttgtagcc cttggcttcc agaaagtcga tgggattctt ctcgaagctg cttctttcca 2940
tgatggtgat ccccagcagc tctttcacac tcttcagttt cttggacttg cccttttcca 3000
ctttggccac caccagcaca gaataggcca cggtggggct gtcgaagccg ccgtacttct 3060
tagggtccca gtccttcttt ctggcgatca gcttatcgct gttcctcttg ggcaggatag 3120
actctttgct gaagccgcct gtctgcacct cggtcttttt cacgatattc acttggggca 3180
tgctcagcac tttccgcacg gtggcaaaat cccggccctt atcccacacg atctccccgg 3240
tttcgccgtt tgtctcgatc agaggccgct tccggatctc gccgttggcc agggtaatct 3300
cggtcttgaa aaagttcatg atgttgctgt agaagaagta cttggcggta gccttgccga 3360
tttcctgctc gctcttggcg atcatcttcc gcacgtcgta caccttgtag tcgccgtaca 3420
cgaactcgct ttccagctta gggtactttt tgatcagggc ggttcccacg acggcgttca 3480
ggtaggcgtc gtgggcgtgg tggtagttgt tgatctcgcg cactttgtaa aactggaaat 3540
ccttccggaa atcggacacc agcttggact tcagggtgat cactttcact tcccggatca 3600
gcttgtcatt ctcgtcgtac ttagtgttca tccgggagtc caggatctgt gccacgtgct 3660
ttgtgatctg ccgggtttcc accagctgtc tcttgatgaa gccggcctta tccagttcgc 3720
tcaggccgcc tctctcggcc ttggtcagat tgtcgaactt tctctgggta atcagcttgg 3780
cgttcagcag ctgccgccag tagttcttca tcttcttcac gacctcttcg gagggcacgt 3840
tgtcgctctt gccccggttc ttgtcgcttc tggtcagcac cttgttgtcg atggagtcgt 3900
ccttcagaaa gctctgaggc acgatatggt ccacatcgta gtcggacagc cggttgatgt 3960
ccagttcctg gtccacgtac atatcccgcc cattctgcag gtagtacagg tacagcttct 4020
cgttctgcag ctgggtgttt tccacggggt gttctttcag gatctggctg cccagctctt 4080
tgatgccctc ttcgatccgc ttcattctct cgcggctgtt cttctgtccc ttctgggtgg 4140
tctggttctc tctggccatt tcgatcacga tgttctcggg cttgtgccgg cccatcactt 4200
tcacgagctc gtccaccacc ttcactgtct gcaggatgcc cttcttaatg gcggggctgc 4260
cggccagatt ggcaatgtgc tcgtgcaggc tatcgccctg gccggacacc tgggctttct 4320
ggatgtcctc tttaaaggtc aggctgtcgt cgtggatcag ctgcatgaag tttctgttgg 4380
cgaagccgtc ggacttcagg aaatccagga ttgtcttgcc ggactgcttg tcccggatgc 4440
cgttgatcag cttccggctc agcctgcccc agccggtgta tctccgccgc ttcagctgct 4500
tcatcacttt gtcgtcgaac aggtgggcat aggttttcag ccgttcctcg atcatctctc 4560
tgtcctcaaa cagtgtcagg gtcagcacga tatcttccag aatgtcctcg ttttcctcat 4620
tgtccaggaa gtccttgtcc ttgataattt tcagcagatc gtggtatgtg cccagggagg 4680
cgttgaaccg atcttccacg ccggagattt ccacggagtc gaagcactcg attttcttga 4740
agtagtcctc tttcagctgc ttcacggtca ctttccggtt ggtcttgaac agcaggtcca 4800
cgatggcctt tttctgctcg ccgctcagga aggcgggctt tctcattccc tcggtcacgt 4860
atttcacttt ggtcagctcg ttatacacgg tgaagtactc gtacagcagg ctgtgcttgg 4920
gcagcacctt ctcgttgggc aggttcttat cgaagttggt catccgctcg atgaagctct 4980
gggcggaagc gcccttgtcc accacttcct cgaagttcca gggggtgatg gtttcctcgc 5040
tctttctggt catccaggcg aatctgctgt ttcccctggc cagagggccc acgtagtagg 5100
ggatgcggaa ggtcaggatc ttctcgatct tttcccggtt gtccttcagg aatgggtaaa 5160
aatcttcctg ccgccgcaga atggcgtgca gctctcccag gtggatctgg tgggggatgc 5220
tgccgttgtc gaaggtccgc tgcttccgca gcaggtcctc tctgttcagc ttcacgagca 5280
gttcctcggt gccgtccatc ttttccagga tgggcttgat gaacttgtag aactcttcct 5340
ggctggctcc gccgtcaatg tagccggcgt agccgttctt gctctggtcg aagaaaatct 5400
ctttgtactt ctcaggcagc tgctgccgca cgagagcttt cagcagggtc aggtcctggt 5460
ggtgctcgtc gtatctcttg atcatagagg cgctcagggg ggccttggtg atctcggtgt 5520
tcactctcag gatgtcgctc agcaggatgg cgtcggacag gttcttggcg gccagaaaca 5580
ggtcggcgta ctggtcgccg atctgggcca gcaggttgtc caggtcgtcg tcgtaggtgt 5640
ccttgctcag ctgcagtttg gcatcctcgg ccaggtcgaa gttgctcttg aagttggggg 5700
tcaggcccag gctcagggca atcaggtttc cgaacaggcc attcttcttc tcgccgggca 5760
gctgggcgat cagattttcc agccgtctgc tcttgctcag tctggcagac aggatggcct 5820
tggcgtccac gccgctggcg ttgatggggt tttcctcgaa cagctggttg taggtctgca 5880
ccagctggat gaacagcttg tccacgtcgc tgttgtcggg gttcaggtcg ccctcgatca 5940
ggaagtggcc ccggaacttg atcatgtggg ccagggccag atagatcagc cgcaggtcgg 6000
ccttgtcggt gctgtccacc agtttctttc tcaggtggta gatggtgggg tacttctcgt 6060
ggtaggccac ctcgtccacg atgttgccga agatggggtg ccgctcgtgc ttcttatcct 6120
cttccaccag gaaggactct tccagtctgt ggaagaagct gtcgtccacc ttggccatct 6180
cgttgctgaa gatctcttgc agatagcaga tccggttctt ccgtctggtg tatcttcttc 6240
tggcggttct cttcagccgg gtggcctcgg ctgtttcgcc gctgtcgaac agcagggctc 6300
cgatcaggtt cttcttgatg ctgtgccggt cggtgttgcc cagcaccttg aatttcttgc 6360
tgggcacctt gtactcgtcg gtgatcacgg cccagcccac agagttggtg ccgatgtcca 6420
ggccgatgct gtacttcttg tcggctgctg ggactccgtg gataccgacc ttccgcttct 6480
tctttggggc catcttatcg tcatcgtctt tgtaatcaat atcatgatcc ttgtagtctc 6540
cgtcgtggtc cttatagtcc atttttctcg agggatcctg atatatttct attaggtatt 6600
tattattata aaatataaat cttgaatgat aataaataaa atattagtta ttccttttct 6660
agtttaaaat atacatatta taaatatata tatatatata tatattttta ttgtgacaag 6720
aatatataat tataaattat attatttatt tttgtatttt tttttttttt tttttttttt 6780
tctttttttg ttttattttt cttttttttt ataaatatta tttttttctt ttatcatgca 6840
cattggaata atacattaat atatatatat atattatatt atacatatat tgaataatgt 6900
ttataaaaaa tgcataactt atatgaatat aatttttttt aaatatgaca aaaagaaaaa 6960
aaaaaaaaac caaaaaaaat taaaattgaa atgaaatata taaatatatt atttatatat 7020
attatacatt gtttaatact actacatgta tatatatata ttatatatat atatatatat 7080
caattttttc aaaaataaat taatataaaa agaggggaaa aaaaaaaaaa aaaaaaaaaa 7140
aagataatta agtaagcatt taaaaatata taaattgata atatataaaa ttaatcacat 7200
ataaaagctt ataaacacta ggttagctaa ttcgcttgta agaggtactc tcgtttatgc 7260
aaaactattt gatatagcat tttaacaagt acacatatat atatgtaata tatatactat 7320
atatatctat tgcatgtgta ctaagcatgt gcatggcatc ccctttttct cgtgtttaaa 7380
acagtttgta tgataaaata taaaggattt gaaaaagaga aaaaaatata tgatctcatc 7440
ctatatagcg ccataatttt tatttgggtt gaataaaatt ttctactaaa tttaggtgta 7500
agtaaaataa tggaatatat ataagtacaa taaaaaagtg cataaattaa aaaattttta 7560
taataaatat tttttttaaa aaagtcaata ataatattaa atatatataa cacaggatta 7620
tatatgttca ctacaatttt ttatattata atataaattc ttttcaattt tcattttatt 7680
ttacatacac tttccttttt tgtcactata ttttaatatt cacatattta gtttaaatac 7740
tggctatttc tttctacatt tgctagtaac aattgtgtag tgcttaaata tatacacaca 7800
cctaaaactt acaaagtatc ctaggaccat ggccaagcct ttgtctcaag aagaatccac 7860
cctcattgaa agagcaacgg ctacaatcaa cagcatcccc atctctgaag actacagcgt 7920
cgccagcgca gctctctcta gcgacggccg catcttcact ggtgtcaatg tatatcattt 7980
tactggggga ccttgtgcag aactcgtggt gctgggcact gctgctgctg cggcagctgg 8040
caacctgact tgtatcgtcg cgatcggaaa tgagaacagg ggcatcttga gcccctgcgg 8100
acggtgccga caggtgcttc tcgatctgca tcctgggatc aaagccatag tgaaggacag 8160
tgatggacag ccgacggcag ttgggattcg tgaattgctg ccctctggtt atgtgtggga 8220
gggctaaccg cgggtacccc attaaattta tttaataata gattaaaaat attataaaaa 8280
taaaaacata aacacagaaa ttacaaaaaa aatacatatg aatttttttt ttgtaatctt 8340
ccttataaat atagaataat gaatcatata aaacatatca ttattcattt atttacattt 8400
aaaattattg tttcagtatc tttaatttat tatgtatata taaaaataac ttacaatttt 8460
attaataaac aatatatgtt tattaattca tgttttgtaa tttatgggat agcgattttt 8520
tttactgtct gtattttctt ttttaattat gttttaattg tatttatttt atttttatta 8580
ttgttctttt tatagtatta ttttaaaaca aaatgtattt tctaagaact tataataata 8640
ataatataaa ttttaataaa aattatattt atcttttaca atatgaacat aaagtacaac 8700
attaatatat agcttttaat atttttattc ctaatcatgt aaatcttaaa tttttctttt 8760
taaacatatg ttaaatattt atttctcatt atatataaga acatatttat tacatctaga 8820
ggtaccgagc tcgttttcga cactggatgg cggcgttagt atcgaatcga cagcagtata 8880
gcgaccagca ttcacatacg attgacgcat gatattactt tctgcgcact taacttcgca 8940
tctgggcaga tgatgtcgag gcgaaaaaaa atataaatca cgctaacatt tgattaaaat 9000
agaacaacta caatataaaa aaactataca aatgacaagt tcttgaaaac aagaatcttt 9060
ttattgtcag tactgattag aaaaactcat cgagcatcaa atgaaactgc aatttattca 9120
tatcaggatt atcaatacca tatttttgaa aaagccgttt ctgtaatgaa ggagaaaact 9180
caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt ccgactcgtc 9240
caacatcaat acaacctatt aatttcccct cgtcaaaaat aaggttatca agtgagaaat 9300
caccatgagt gacgactgaa tccggtgaga atggcaaaag cttatgcatt tctttccaga 9360
cttgttcaac aggccagcca ttacgctcgt catcaaaatc actcgcatca accaaaccgt 9420
tattcattcg tgattgcgcc tgagcgagac gaaatacgcg atcgctgtta aaaggacaat 9480
tacaaacagg aatcgaatgc aaccggcgca ggaacactgc cagcgcatca acaatatttt 9540
cacctgaatc aggatattct tctaatacct ggaatgctgt tttgccgggg atcgcagtgg 9600
tgagtaacca tgcatcatca ggagtacgga taaaatgctt gatggtcgga agaggcataa 9660
attccgtcag ccagtttagt ctgaccatct catctgtaac atcattggca acgctacctt 9720
tgccatgttt cagaaacaac tctggcgcat cgggcttccc atacaatcga tagattgtcg 9780
cacctgattg cccgacatta tcgcgagccc atttataccc atataaatca gcatccatgt 9840
tggaatttaa tcgcggcctc gaaacgtgag tcttttcctt acccatggtt gtttatgttc 9900
ggatgtgatg tgagaactgt atcctagcaa gattttaaaa ggaagtatat gaaagaagaa 9960
cctcagtggc aaatcctaac cttttatatt tctctacagg ggcgcggcgt ggggacaatt 10020
caacgcgtct gtgaggggag cgtttccctg ctcgcaggtc tgcagcgagg agccgtaatt 10080
tttgcttcgc gccgtgcggc catcaaaatg tatggatgca aatgattata catggggatg 10140
tatgggctaa atgtacgggc gacagtcaca tcatgcccct gagctgcgca cgtcaagact 10200
gtcaaggagg gtattctggg cctccatgtc gctggcctaa cattagtaat gtaggtctga 10260
ctttcactca tataagtctt atggtaacta aactaaggtc ttacctttac tgatatatgt 10320
cttactttca ctaacttagg tattactttt actaacttag gtcttaaatt cagtaactaa 10380
ggtcatactt cgactaacta aggtcttaca ttcactgata taggtcttat gattactaac 10440
ttaggtccta atttgactaa cataagtcct aacattagta atgtaggtct taacttaact 10500
aacttaggtc ttaccttcac taatataggt cttaatatta ctgacttaag taattaaggt 10560
actaacttag gtcgtaaggt aactaatata taggtcttaa ggtaactaat ttaggtcttg 10620
acttaataaa tataggtcct aacataaata gtataggtcc taatataagt actataggcc 10680
ttaacttaac caacataggt cctaacataa gttatatagg tcttaacgta actaacataa 10740
gtcattaagg tactaagttt ggtcttaatt taacaataac atgtcgctgg cctaacatta 10800
gtaatgtagg tctgactttc actcatataa gtcttatggt aactaaacta aggtcttacc 10860
tttactgata tatgtcttac tttcactaac ttaggtatta cttttactaa cttaggtctt 10920
aaattcagta actaaggtca tacttcgact aactaaggtc ttacattcac tgatataggt 10980
cttatgatta ctaacttagg tcctaatttg actaacataa gtcctaacat tagtaatgta 11040
ggtcttaact taactaactt aggtcttacc ttcactaata taggtcttaa tattactgac 11100
ttaagtaatt aaggtactaa cttaggtcgt aaggtaacta atatataggt cttaaggtaa 11160
ctaatttagg tcttgactta ataaatatag gtcctaacat aaatagtata ggtcctaata 11220
taagtactat aggccttaac ttaaccaaca taggtcctaa cataagttat ataggtctta 11280
acgtaactaa cataagtcat taaggtacta agtttggtct taatttaaca ataaccatgt 11340
cgctggccgg gtggtcttaa tttaacaaat atagaccatg tcgctggccg ggtgacccgg 11400
cggggacgag gcaagctaaa cagatcctcg tgatacgcct atttttatag gttaatgtca 11460
tgataataat ggtttcttag gacggatcgc ttgcctgtaa cttacacgcg cctcgtatct 11520
tttaatgatg gaataatttg ggaatttact ctgtgtttat ttatttttat gttttgtatt 11580
tggattttag aaagtaaata aagaaggtag aagagttacg gaatgaagaa aaaaaaataa 11640
acaaaggttt aaaaaatttc aacaaaaagc gtactttaca tatatattta ttagacaaga 11700
aaagcagatt aaatagatat acattcgatt aacgataagt aaaatgtaaa atcacaggat 11760
tttcgtgtgt ggtcttctac acagacaaga tgaaacaatt cggcattaat acctgagagc 11820
aggaagagca agataaaagg tagtatttgt tggcgatccc cctagagtct tttacatctt 11880
cggaaaacaa aaactatttt ttctttaatt tcttttttta ctttctattt ttaatttata 11940
tatttatatt aaaaaattta aattataatt atttttatag cacgtgatga aaaggaccca 12000
ggtggcactt ttcggggaaa tctcgacctg cagcgtacga agct 12044
<210> 389
<211> 12044
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
polynucleotide
<400> 389
gcctcactga ttaagcattg gtaactgtca gaccaagttt actcatatat actttagatt 60
gatttaaaac ttcattttta atttaaaagg atctaggtga agatcctttt tgataatctc 120
atgaccaaaa tcccttaacg tgagttttcg ttccactgag cgtcagaccc cgtagaaaag 180
atcaaaggat cttcttgaga tccttttttt ctgcgcgtaa tctgctgctt gcaaacaaaa 240
aaaccaccgc taccagcggt ggtttgtttg ccggatcaag agctaccaac tctttttccg 300
aaggtaactg gcttcagcag agcgcagata ccaaatactg ttcttctagt gtagccgtag 360
ttaggccacc acttcaagaa ctctgtagca ccgcctacat acctcgctct gctaatcctg 420
ttaccagtgg ctgctgccag tggcgataag tcgtgtctta ccgggttgga ctcaagacga 480
tagttaccgg ataaggcgca gcggtcgggc tgaacggggg gttcgtgcac acagcccagc 540
ttggagcgaa cgacctacac cgaactgaga tacctacagc gtgagctatg agaaagcgcc 600
acgcttcccg aagggagaaa ggcggacagg tatccggtaa gcggcagggt cggaacagga 660
gagcgcacga gggagcttcc agggggaaac gcctggtatc tttatagtcc tgtcgggttt 720
cgccacctct gacttgagcg tcgatttttg tgatgctcgt caggggggcg gagcctatgg 780
aaaaacgcca gcaacgcggc ctttttacgg ttcctggcct tttgctggcc ttttgctcac 840
atgttctttc ctgcgttatc ccctgattct gtggataacc gtattaccgc ctttgagtga 900
gctgataccg ctcgccgcag ccgaacgacc gagcgcagcg agtcagtgag cgaggaagcg 960
gaagagcgcc caatacgcaa accgcctctc cccgcgcgtt ggccgattca ttaatgcagc 1020
tggcacgaca ggtttcccga ctggaaagcg ggcagtgagc gcaacgcaat taatgtgagt 1080
tagctcactc attaggcacc ccaggcttta cactttatgc ttccggctcg tatgttgtgt 1140
ggaattgtga gcggataaca atttcacaca ggaaacagct atgaccatga ttacgccaag 1200
ctatttaggt gacactatag aatactcaag cttgggggga tcctctagag tcgactaata 1260
cgactcacta taggaaatga tatggatttt gggttttaga gctagaaata gcaagttaaa 1320
ataaggctag tccgttatca acttgaaaaa gtggcaccga gtcggtgcta gcataacccc 1380
ttggggcctc taaacgggtc ttgaggggtt ttttggtcga cctgcaggca tgctatttga 1440
tgaattaact acacttaaaa taatacaatt attattaaat ttttttttga tttatttatt 1500
aatttttaaa cttaatcatt tgtatttggg aggaattata tatatcttta taattatttt 1560
attttttttt atttttttat ttttttatta ttattatttt tttttatttt ttttttttac 1620
tgtatcaaag aaaaaccttt aaaaaaaaaa ttataatttc cccatcttac tatattttta 1680
atacatacgt tttaaggaat taaattagac aaaagctata ttatgcttta catataatta 1740
gaatttataa acgtttggtt attagatatt tcatgtctca gtaaagtctt tcaatacata 1800
tgtaaaaaaa tatatatgaa tacacataag ttgttaatat attttatatg cataaatgta 1860
taaatatata tatatatata tatatatgta tgtatgtata tgtgtgtata tgaaattatt 1920
tcaatgttta attttttaaa ttttaatttt tttttttttt ttttttttta ttatgtatat 1980
tgatctttat tatttaaata ttactttttt cgttttttct tctttttatt attttttttt 2040
ttttttatat tttatacaaa tggtaattca aataaaaggt ataaatttat atttaatttt 2100
cttttatgga taaataaaag aaaaatataa atatataaaa atataaaaat atatatatgt 2160
atattggggt gatgataaaa tgaaagataa tatatatata tatatatctt tatttttttt 2220
tttttgtaga ccccattgtg agtacataaa tatattatat aactcgggag catcagtcat 2280
ggaattctta tttctttttc ttttttgcct ggccggcctt tttcgtggcc gccggccttt 2340
tgtcgcctcc cagctgagac aggtcgatcc gtgtctcgta caggccggtg atgctctggt 2400
ggatcagggt ggcgtccagc acctctttgg tgctggtgta cctcttccgg tcgatggtgg 2460
tgtcaaagta cttgaaggcg gcaggggctc ccagattggt cagggtaaac aggtggatga 2520
tattctcggc ctgctctctg atgggcttat cccggtgctt gttgtaggcg gacagcactt 2580
tgtccagatt agcgtcggcc aggatcactc tcttggagaa ctcgctgatc tgctcgatga 2640
tctcgtccag gtagtgcttg tgctgttcca caaacagctg tttctgctca ttatcctcgg 2700
gggagccctt cagcttctca tagtggctgg ccaggtacag gaagttcaca tatttggagg 2760
gcagggccag ttcgtttccc ttctgcagtt cgccggcaga ggccagcatt ctcttccggc 2820
cgttttccag ctcgaacagg gagtacttag gcagcttgat gatcaggtcc tttttcactt 2880
ctttgtagcc cttggcttcc agaaagtcga tgggattctt ctcgaagctg cttctttcca 2940
tgatggtgat ccccagcagc tctttcacac tcttcagttt cttggacttg cccttttcca 3000
ctttggccac caccagcaca gaataggcca cggtggggct gtcgaagccg ccgtacttct 3060
tagggtccca gtccttcttt ctggcgatca gcttatcgct gttcctcttg ggcaggatag 3120
actctttgct gaagccgcct gtctgcacct cggtcttttt cacgatattc acttggggca 3180
tgctcagcac tttccgcacg gtggcaaaat cccggccctt atcccacacg atctccccgg 3240
tttcgccgtt tgtctcgatc agaggccgct tccggatctc gccgttggcc agggtaatct 3300
cggtcttgaa aaagttcatg atgttgctgt agaagaagta cttggcggta gccttgccga 3360
tttcctgctc gctcttggcg atcatcttcc gcacgtcgta caccttgtag tcgccgtaca 3420
cgaactcgct ttccagctta gggtactttt tgatcagggc ggttcccacg acggcgttca 3480
ggtaggcgtc gtgggcgtgg tggtagttgt tgatctcgcg cactttgtaa aactggaaat 3540
ccttccggaa atcggacacc agcttggact tcagggtgat cactttcact tcccggatca 3600
gcttgtcatt ctcgtcgtac ttagtgttca tccgggagtc caggatctgt gccacgtgct 3660
ttgtgatctg ccgggtttcc accagctgtc tcttgatgaa gccggcctta tccagttcgc 3720
tcaggccgcc tctctcggcc ttggtcagat tgtcgaactt tctctgggta atcagcttgg 3780
cgttcagcag ctgccgccag tagttcttca tcttcttcac gacctcttcg gagggcacgt 3840
tgtcgctctt gccccggttc ttgtcgcttc tggtcagcac cttgttgtcg atggagtcgt 3900
ccttcagaaa gctctgaggc acgatatggt ccacatcgta gtcggacagc cggttgatgt 3960
ccagttcctg gtccacgtac atatcccgcc cattctgcag gtagtacagg tacagcttct 4020
cgttctgcag ctgggtgttt tccacggggt gttctttcag gatctggctg cccagctctt 4080
tgatgccctc ttcgatccgc ttcattctct cgcggctgtt cttctgtccc ttctgggtgg 4140
tctggttctc tctggccatt tcgatcacga tgttctcggg cttgtgccgg cccatcactt 4200
tcacgagctc gtccaccacc ttcactgtct gcaggatgcc cttcttaatg gcggggctgc 4260
cggccagatt ggcaatgtgc tcgtgcaggc tatcgccctg gccggacacc tgggctttct 4320
ggatgtcctc tttaaaggtc aggctgtcgt cgtggatcag ctgcatgaag tttctgttgg 4380
cgaagccgtc ggacttcagg aaatccagga ttgtcttgcc ggactgcttg tcccggatgc 4440
cgttgatcag cttccggctc agcctgcccc agccggtgta tctccgccgc ttcagctgct 4500
tcatcacttt gtcgtcgaac aggtgggcat aggttttcag ccgttcctcg atcatctctc 4560
tgtcctcaaa cagtgtcagg gtcagcacga tatcttccag aatgtcctcg ttttcctcat 4620
tgtccaggaa gtccttgtcc ttgataattt tcagcagatc gtggtatgtg cccagggagg 4680
cgttgaaccg atcttccacg ccggagattt ccacggagtc gaagcactcg attttcttga 4740
agtagtcctc tttcagctgc ttcacggtca ctttccggtt ggtcttgaac agcaggtcca 4800
cgatggcctt tttctgctcg ccgctcagga aggcgggctt tctcattccc tcggtcacgt 4860
atttcacttt ggtcagctcg ttatacacgg tgaagtactc gtacagcagg ctgtgcttgg 4920
gcagcacctt ctcgttgggc aggttcttat cgaagttggt catccgctcg atgaagctct 4980
gggcggaagc gcccttgtcc accacttcct cgaagttcca gggggtgatg gtttcctcgc 5040
tctttctggt catccaggcg aatctgctgt ttcccctggc cagagggccc acgtagtagg 5100
ggatgcggaa ggtcaggatc ttctcgatct tttcccggtt gtccttcagg aatgggtaaa 5160
aatcttcctg ccgccgcaga atggcgtgca gctctcccag gtggatctgg tgggggatgc 5220
tgccgttgtc gaaggtccgc tgcttccgca gcaggtcctc tctgttcagc ttcacgagca 5280
gttcctcggt gccgtccatc ttttccagga tgggcttgat gaacttgtag aactcttcct 5340
ggctggctcc gccgtcaatg tagccggcgt agccgttctt gctctggtcg aagaaaatct 5400
ctttgtactt ctcaggcagc tgctgccgca cgagagcttt cagcagggtc aggtcctggt 5460
ggtgctcgtc gtatctcttg atcatagagg cgctcagggg ggccttggtg atctcggtgt 5520
tcactctcag gatgtcgctc agcaggatgg cgtcggacag gttcttggcg gccagaaaca 5580
ggtcggcgta ctggtcgccg atctgggcca gcaggttgtc caggtcgtcg tcgtaggtgt 5640
ccttgctcag ctgcagtttg gcatcctcgg ccaggtcgaa gttgctcttg aagttggggg 5700
tcaggcccag gctcagggca atcaggtttc cgaacaggcc attcttcttc tcgccgggca 5760
gctgggcgat cagattttcc agccgtctgc tcttgctcag tctggcagac aggatggcct 5820
tggcgtccac gccgctggcg ttgatggggt tttcctcgaa cagctggttg taggtctgca 5880
ccagctggat gaacagcttg tccacgtcgc tgttgtcggg gttcaggtcg ccctcgatca 5940
ggaagtggcc ccggaacttg atcatgtggg ccagggccag atagatcagc cgcaggtcgg 6000
ccttgtcggt gctgtccacc agtttctttc tcaggtggta gatggtgggg tacttctcgt 6060
ggtaggccac ctcgtccacg atgttgccga agatggggtg ccgctcgtgc ttcttatcct 6120
cttccaccag gaaggactct tccagtctgt ggaagaagct gtcgtccacc ttggccatct 6180
cgttgctgaa gatctcttgc agatagcaga tccggttctt ccgtctggtg tatcttcttc 6240
tggcggttct cttcagccgg gtggcctcgg ctgtttcgcc gctgtcgaac agcagggctc 6300
cgatcaggtt cttcttgatg ctgtgccggt cggtgttgcc cagcaccttg aatttcttgc 6360
tgggcacctt gtactcgtcg gtgatcacgg cccagcccac agagttggtg ccgatgtcca 6420
ggccgatgct gtacttcttg tcggctgctg ggactccgtg gataccgacc ttccgcttct 6480
tctttggggc catcttatcg tcatcgtctt tgtaatcaat atcatgatcc ttgtagtctc 6540
cgtcgtggtc cttatagtcc atttttctcg agggatcctg atatatttct attaggtatt 6600
tattattata aaatataaat cttgaatgat aataaataaa atattagtta ttccttttct 6660
agtttaaaat atacatatta taaatatata tatatatata tatattttta ttgtgacaag 6720
aatatataat tataaattat attatttatt tttgtatttt tttttttttt tttttttttt 6780
tctttttttg ttttattttt cttttttttt ataaatatta tttttttctt ttatcatgca 6840
cattggaata atacattaat atatatatat atattatatt atacatatat tgaataatgt 6900
ttataaaaaa tgcataactt atatgaatat aatttttttt aaatatgaca aaaagaaaaa 6960
aaaaaaaaac caaaaaaaat taaaattgaa atgaaatata taaatatatt atttatatat 7020
attatacatt gtttaatact actacatgta tatatatata ttatatatat atatatatat 7080
caattttttc aaaaataaat taatataaaa agaggggaaa aaaaaaaaaa aaaaaaaaaa 7140
aagataatta agtaagcatt taaaaatata taaattgata atatataaaa ttaatcacat 7200
ataaaagctt ataaacacta ggttagctaa ttcgcttgta agaggtactc tcgtttatgc 7260
aaaactattt gatatagcat tttaacaagt acacatatat atatgtaata tatatactat 7320
atatatctat tgcatgtgta ctaagcatgt gcatggcatc ccctttttct cgtgtttaaa 7380
acagtttgta tgataaaata taaaggattt gaaaaagaga aaaaaatata tgatctcatc 7440
ctatatagcg ccataatttt tatttgggtt gaataaaatt ttctactaaa tttaggtgta 7500
agtaaaataa tggaatatat ataagtacaa taaaaaagtg cataaattaa aaaattttta 7560
taataaatat tttttttaaa aaagtcaata ataatattaa atatatataa cacaggatta 7620
tatatgttca ctacaatttt ttatattata atataaattc ttttcaattt tcattttatt 7680
ttacatacac tttccttttt tgtcactata ttttaatatt cacatattta gtttaaatac 7740
tggctatttc tttctacatt tgctagtaac aattgtgtag tgcttaaata tatacacaca 7800
cctaaaactt acaaagtatc ctaggaccat ggccaagcct ttgtctcaag aagaatccac 7860
cctcattgaa agagcaacgg ctacaatcaa cagcatcccc atctctgaag actacagcgt 7920
cgccagcgca gctctctcta gcgacggccg catcttcact ggtgtcaatg tatatcattt 7980
tactggggga ccttgtgcag aactcgtggt gctgggcact gctgctgctg cggcagctgg 8040
caacctgact tgtatcgtcg cgatcggaaa tgagaacagg ggcatcttga gcccctgcgg 8100
acggtgccga caggtgcttc tcgatctgca tcctgggatc aaagccatag tgaaggacag 8160
tgatggacag ccgacggcag ttgggattcg tgaattgctg ccctctggtt atgtgtggga 8220
gggctaaccg cgggtacccc attaaattta tttaataata gattaaaaat attataaaaa 8280
taaaaacata aacacagaaa ttacaaaaaa aatacatatg aatttttttt ttgtaatctt 8340
ccttataaat atagaataat gaatcatata aaacatatca ttattcattt atttacattt 8400
aaaattattg tttcagtatc tttaatttat tatgtatata taaaaataac ttacaatttt 8460
attaataaac aatatatgtt tattaattca tgttttgtaa tttatgggat agcgattttt 8520
tttactgtct gtattttctt ttttaattat gttttaattg tatttatttt atttttatta 8580
ttgttctttt tatagtatta ttttaaaaca aaatgtattt tctaagaact tataataata 8640
ataatataaa ttttaataaa aattatattt atcttttaca atatgaacat aaagtacaac 8700
attaatatat agcttttaat atttttattc ctaatcatgt aaatcttaaa tttttctttt 8760
taaacatatg ttaaatattt atttctcatt atatataaga acatatttat tacatctaga 8820
ggtaccgagc tcgttttcga cactggatgg cggcgttagt atcgaatcga cagcagtata 8880
gcgaccagca ttcacatacg attgacgcat gatattactt tctgcgcact taacttcgca 8940
tctgggcaga tgatgtcgag gcgaaaaaaa atataaatca cgctaacatt tgattaaaat 9000
agaacaacta caatataaaa aaactataca aatgacaagt tcttgaaaac aagaatcttt 9060
ttattgtcag tactgattag aaaaactcat cgagcatcaa atgaaactgc aatttattca 9120
tatcaggatt atcaatacca tatttttgaa aaagccgttt ctgtaatgaa ggagaaaact 9180
caccgaggca gttccatagg atggcaagat cctggtatcg gtctgcgatt ccgactcgtc 9240
caacatcaat acaacctatt aatttcccct cgtcaaaaat aaggttatca agtgagaaat 9300
caccatgagt gacgactgaa tccggtgaga atggcaaaag cttatgcatt tctttccaga 9360
cttgttcaac aggccagcca ttacgctcgt catcaaaatc actcgcatca accaaaccgt 9420
tattcattcg tgattgcgcc tgagcgagac gaaatacgcg atcgctgtta aaaggacaat 9480
tacaaacagg aatcgaatgc aaccggcgca ggaacactgc cagcgcatca acaatatttt 9540
cacctgaatc aggatattct tctaatacct ggaatgctgt tttgccgggg atcgcagtgg 9600
tgagtaacca tgcatcatca ggagtacgga taaaatgctt gatggtcgga agaggcataa 9660
attccgtcag ccagtttagt ctgaccatct catctgtaac atcattggca acgctacctt 9720
tgccatgttt cagaaacaac tctggcgcat cgggcttccc atacaatcga tagattgtcg 9780
cacctgattg cccgacatta tcgcgagccc atttataccc atataaatca gcatccatgt 9840
tggaatttaa tcgcggcctc gaaacgtgag tcttttcctt acccatggtt gtttatgttc 9900
ggatgtgatg tgagaactgt atcctagcaa gattttaaaa ggaagtatat gaaagaagaa 9960
cctcagtggc aaatcctaac cttttatatt tctctacagg ggcgcggcgt ggggacaatt 10020
caacgcgtct gtgaggggag cgtttccctg ctcgcaggtc tgcagcgagg agccgtaatt 10080
tttgcttcgc gccgtgcggc catcaaaatg tatggatgca aatgattata catggggatg 10140
tatgggctaa atgtacgggc gacagtcaca tcatgcccct gagctgcgca cgtcaagact 10200
gtcaaggagg gtattctggg cctccatgtc gctggcctaa cattagtaat gtaggtctga 10260
ctttcactca tataagtctt atggtaacta aactaaggtc ttacctttac tgatatatgt 10320
cttactttca ctaacttagg tattactttt actaacttag gtcttaaatt cagtaactaa 10380
ggtcatactt cgactaacta aggtcttaca ttcactgata taggtcttat gattactaac 10440
ttaggtccta atttgactaa cataagtcct aacattagta atgtaggtct taacttaact 10500
aacttaggtc ttaccttcac taatataggt cttaatatta ctgacttaag taattaaggt 10560
actaacttag gtcgtaaggt aactaatata taggtcttaa ggtaactaat ttaggtcttg 10620
acttaataaa tataggtcct aacataaata gtataggtcc taatataagt actataggcc 10680
ttaacttaac caacataggt cctaacataa gttatatagg tcttaacgta actaacataa 10740
gtcattaagg tactaagttt ggtcttaatt taacaataac atgtcgctgg cctaacatta 10800
gtaatgtagg tctgactttc actcatataa gtcttatggt aactaaacta aggtcttacc 10860
tttactgata tatgtcttac tttcactaac ttaggtatta cttttactaa cttaggtctt 10920
aaattcagta actaaggtca tacttcgact aactaaggtc ttacattcac tgatataggt 10980
cttatgatta ctaacttagg tcctaatttg actaacataa gtcctaacat tagtaatgta 11040
ggtcttaact taactaactt aggtcttacc ttcactaata taggtcttaa tattactgac 11100
ttaagtaatt aaggtactaa cttaggtcgt aaggtaacta atatataggt cttaaggtaa 11160
ctaatttagg tcttgactta ataaatatag gtcctaacat aaatagtata ggtcctaata 11220
taagtactat aggccttaac ttaaccaaca taggtcctaa cataagttat ataggtctta 11280
acgtaactaa cataagtcat taaggtacta agtttggtct taatttaaca ataaccatgt 11340
cgctggccgg gtggtcttaa tttaacaaat atagaccatg tcgctggccg ggtgacccgg 11400
cggggacgag gcaagctaaa cagatcctcg tgatacgcct atttttatag gttaatgtca 11460
tgataataat ggtttcttag gacggatcgc ttgcctgtaa cttacacgcg cctcgtatct 11520
tttaatgatg gaataatttg ggaatttact ctgtgtttat ttatttttat gttttgtatt 11580
tggattttag aaagtaaata aagaaggtag aagagttacg gaatgaagaa aaaaaaataa 11640
acaaaggttt aaaaaatttc aacaaaaagc gtactttaca tatatattta ttagacaaga 11700
aaagcagatt aaatagatat acattcgatt aacgataagt aaaatgtaaa atcacaggat 11760
tttcgtgtgt ggtcttctac acagacaaga tgaaacaatt cggcattaat acctgagagc 11820
aggaagagca agataaaagg tagtatttgt tggcgatccc cctagagtct tttacatctt 11880
cggaaaacaa aaactatttt ttctttaatt tcttttttta ctttctattt ttaatttata 11940
tatttatatt aaaaaattta aattataatt atttttatag cacgtgatga aaaggaccca 12000
ggtggcactt ttcggggaaa tctcgacctg cagcgtacga agct 12044
Claims (90)
- 포유류 세포에서 레트로바이러스를 비활성화시키는 방법이되, 상기 방법은 CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 포함하는 유전자 편집 복합체(gene editing complex)를 인코딩하는 단리된 핵산을 포함하는 조성물에 세포를 노출시키는 단계를 포함하며, 여기서 가이드 RNA는 레트로바이러스 내 표적 핵산 서열에 상보적인 방법.
- 제1항에 있어서, 레트로바이러스는 인간 면역결핍 바이러스; 원숭이 면역결핍 바이러스; 고양이 면역결핍 바이러스; 및 소 면역결핍 바이러스로 이루어진 군에서 선택된 렌티바이러스인 것을 특징으로 하는 방법.
- 제1항 또는 제2항에 있어서, 인간 면역결핍 바이러스는 HIV-1 또는 HIV-2인 것을 특징으로 하는 방법.
- 제1항 내지 제3항 중 어느 한 항에 있어서, 인간 면역결핍 바이러스는 통합된 프로바이러스 DNA를 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제4항 중 어느 한 항에 있어서, 세포는 잠복성으로 감염된 세포인 것을 특징으로 하는 방법.
- 제1항 내지 제5항 중 어느 한 항에 있어서, 잠복성으로 감염된 세포는 CD4+ T 세포, 대식 세포, 단핵백혈구, 장관-연관 림프양 세포, 미소아교 세포, 또는 성상아교세포인 것을 특징으로 하는 방법.
- 제1항 내지 제6항 중 어느 한 항에 있어서, 비활성화는 생체 내에서 일어나는 것을 특징으로 하는 방법.
- 제1항 내지 제7항 중 어느 한 항에 있어서, 비활성화는 생체 외에서 일어나는 것을 특징으로 하는 방법.
- 제8항에 있어서, 세포는 인간 면역결핍 바이러스 감염, 조직 외식편, 또는 세포주를 가지는 개체로부터 배양된 세포를 포함하는 것을 특징으로 하는 방법.
- 제9항에 있어서, 개체로부터 배양된 세포는 노출되는 단계 이후에 개체에 재도입되는 것을 특징으로 하는 방법.
- 제1항 내지 제10항 중 어느 한 항에 있어서, 유전자 편집 복합체는 하나 이상의 돌연변이를 프로바이러스 DNA에 도입하며, 여기서 돌연변이는 바이러스 복제 또는 바이러스 유전자 발현을 비활성화시키는 것을 특징으로 하는 방법.
- 제1항 내지 제11항 중 어느 한 항에 있어서, 바이러스 DNA 내 돌연변이는 가이드 RNA 서열에 상보적인 서열 내부에 있는 것을 특징으로 하는 방법.
- 제1항 내지 제12항 중 어느 한 항에 있어서, 돌연변이는 결실, 삽입, 또는 점 돌연변이로 이루어진 군에서 선택된 것을 특징으로 하는 방법.
- 제12항에 있어서, 돌연변이는 결실인 것을 특징으로 하는 방법.
- 제14항에 있어서, 결실은 프로바이러스 DNA의 약 1 내지 약 10,000개 뉴클레오티드를 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제15항 중 어느 한 항에 있어서, 결실은 프로바이러스 DNA 전체 또는 실질적으로 전체를 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제16항 중 어느 한 항에 있어서, CRISPR-연관 엔도뉴클레아제는 Cas9인 것을 특징으로 하는 방법.
- 제1항 내지 제17항 중 어느 한 항에 있어서, CRISPR-연관엔도뉴클레아제 서열은 인간 세포에서의 발현을 위해 최적화된 것을 특징으로 하는 방법.
- 제1항 내지 제18항 중 어느 한 항에 있어서, 표적 서열은 인간 면역결핍 바이러스의 암호화 부위 내의 서열을 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제18항 중 어느 한 항에 있어서, 표적 서열은 인간 면역결핍 바이러스의 비-암호화 부위 내의 서열을 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제18항 또는 제20항 중 어느 한 항에 있어서, 비-암호화 부위는 인간 면역결핍 바이러스의 긴 말단 반복(long terminal repeat)을 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제18항 또는 제20항 내지 제21항 중 어느 한 항에 있어서, 표적 서열은 인간 면역결핍 바이러스의 긴 말단 반복 내의 서열을 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제18항 또는 제20항 내지 제22항 중 어느 한 항에 있어서, 인간 면역결핍 바이러스의 긴 말단 반복 내의 서열은 U3, R, 또는 U5 부위 내의 서열을 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제18항 또는 제20항 내지 제23항 중 어느 한 항에 있어서, 긴 말단 반복 내의 서열은 LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87) 및 LTR D (SEQ ID NO: 110) 또는 이들의 조합으로 이루어진 군에서 선택된 서열에 대해 95% 동일성을 가지는 서열을 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제18항 또는 제20항 내지 제24항 중 어느 한 항에 있어서, 긴 말단 반복 내의 서열은 LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87) 및 LTR D (SEQ ID NO: 110) 또는 이들의 조합으로 이루어진 군에서 선택된 서열을 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제25항 중 어느 한 항에 있어서, 유전자 편집 복합체는 전사촉진 소형 RNA (tracrRNA)를 인코딩하는 서열을 더욱 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제26항 중 어느 한 항에 있어서, 전사촉진 소형 RNA (tracrRNA)은 가이드 RNA를 인코딩하는 서열에 융합된 것을 특징으로 하는 방법.
- 제1항 내지 제27항 중 어느 한 항에 있어서, 유전자 편집 복합체를 인코딩하는 핵산은 핵국재화신호(nuclear localization signal)를 더욱 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제28항 중 어느 한 항에 있어서, 유전자 편집 복합체를 인코딩하는 핵산은 발현 벡터에 작동가능하도록 연결된 것을 특징으로 하는 방법.
- 제1항 내지 제29항 중 어느 한 항에 있어서, 발현 벡터는 렌티바이러스 벡터, 아데노바이러스 벡터, 또는 아데노-연관 바이러스 벡터인 것을 특징으로 하는 방법.
- 포유류 세포에서 레트로바이러스를 비활성화시키는 방법이되, 상기 방법은 CRISPR-연관 엔도뉴클레아제 폴리펩티드 및 하나 이상의 가이드 RNA를 포함하는 조성물에 세포를 접촉시키는 단계를 포함하며, 여기서 가이드 RNA는 레트로바이러스 내 표적 핵산 서열에 상보적인 방법.
- 제1항 내지 제31항 중 어느 한 항에 있어서, 조성물은 약제학적으로 허용되는 담체를 포함하는 것을 특징으로 하는 방법.
- 제1항 내지 제32항 중 어느 한 항에 있어서, 약제학적으로 허용되는 담체는 지질-기반 또는 중합체-기반 콜로이드를 포함하는 것을 특징으로 하는 방법.
- 제33항에 있어서, 콜로이드는 리포좀, 하이드로겔, 미소입자, 나노입자, 또는 블록 공중합체 미셀(micelle)인 것을 특징으로 하는 방법.
- 제1항 내지 제34항 중 어느 한 항에 있어서, 조성물은 국소 도포를 위해 제형화되는 것을 특징으로 하는 방법.
- 포유류 세포에서 레트로바이러스를 비활성화시키는 방법이되, 상기 방법은 a) 하나 이상의 CRISPR-연관 엔도뉴클레아제 및 CRISPR-연관 엔도뉴클레아제를 인코딩하는 단리된 핵산; 및 b) 하나 이상의 가이드 RNA 및 가이드 RNA를 인코딩하는 단리된 핵산을 포함하는 조성물에 세포를 노출시키는 단계를 포함하며, 여기서 가이드 RNA는 레트로바이러스 내 표적 핵산 서열에 상보적인 방법.
- CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 인코딩하는 서열을 포함하는 단리된 핵산 서열이되, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적인 단리된 핵산 서열.
- 제37항에 있어서, 레트로바이러스는 인간 면역결핍 바이러스; 원숭이 면역결핍 바이러스; 고양이 면역결핍 바이러스; 및 소 면역결핍 바이러스로 이루어진 군에서 선택된 렌티바이러스인 것을 특징으로 하는 단리된 핵산 서열.
- 제37항 또는 제38항에 있어서, 인간 면역결핍 바이러스는 HIV-1 또는 HIV-2인 것을 특징으로 하는 단리된 핵산 서열.
- 제37항 내지 제39항 중 어느 한 항에 있어서, CRISPR-연관 엔도뉴클레아제는 Cas9인 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제40항 중 어느 한 항에 있어서, CRISPR-연관 엔도뉴클레아제 서열은 인간 세포에서의 발현을 위해 최적화된 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제41항 중 어느 한 항에 있어서, 표적 서열은 인간 면역결핍 바이러스의 암호화 부위 내의 서열을 포함하는 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제41항 중 어느 한 항에 있어서, 표적 서열은 인간 면역결핍 바이러스의 비-암호화 부위 내의 서열을 포함하는 것을 특징으로 하는 방법.
- 제37항 내지 제41 또는 제43항 중 어느 한 항에 있어서, 비-암호화 부위는 인간 면역결핍 바이러스의 긴 말단 반복을 포함하는 것을 특징으로 하는 방법.
- 제37항 내지 제41항 또는 제43항 내지 제44항 중 어느 한 항에 있어서, 표적 서열은 인간 면역결핍 바이러스의 긴 말단 반복 내의 서열을 포함하는 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제41항 또는 제43항 내지 제45항 중 어느 한 항에 있어서, 인간 면역결핍 바이러스의 긴 말단 반복 내의 서열은 U3, R, 또는 U5 부위 내의 서열을 포함하는 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제41항 또는 제43항 내지 제46항 중 어느 한 항에 있어서, 긴 말단 반복 내의 서열은 LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87) 및 LTR D (SEQ ID NO: 110) 또는 이들의 조합으로 이루어진 군에서 선택된 서열에 대해 95% 동일성을 가지는 서열을 포함하는 것을 특징으로 하는 핵산 서열.
- 제36항 내지 제41항 또는 제43항 내지 제46항 중 어느 한 항에 있어서, 긴 말단 반복 내의 서열은 LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87) 및 LTR D (SEQ ID NO: 110) 또는 이들의 조합으로 이루어진 군에서 선택된 서열을 포함하는 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제41항 또는 제43항 내지 제46항 중 어느 한 항에 있어서, 전사촉진 소형 RNA (tracrRNA)를 인코딩하는 서열을 더욱 포함하는 것을 특징으로 하는 핵산 서열.
- 제49항에 있어서, 전사촉진 소형 RNA (tracrRNA)은 가이드 RNA를 인코딩하는 서열에 융합된 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제50항 중 어느 한 항에 있어서, 핵국재화신호를 더욱 포함하는 것을 특징으로 하는 핵산 서열.
- 제37항 내지 제51항 중 어느 한 항의 핵산 서열을 포함하는 발현 벡터
- 제52항에 있어서, 발현 벡터는 렌티바이러스 벡터, 아데노바이러스 벡터, 또는 아데노-연관 바이러스 벡터인 것을 특징으로 하는 발현 벡터.
- 제52항 내지 제53항 중 어느 한 항의 발현 벡터를 포함하는 숙주 세포.
- 제36항 내지 제51항 중 어느 한 항의 핵산 서열, 제52항 내지 제53항의 발현 벡터, 또는 제54항의 세포를 포함하는 약제학적 조성물.
- 제37항 내지 제55항 중 어느 한 항에 있어서, 조성물은 약제학적으로 허용되는 담체를 포함하는 것을 특징으로 하는 약제학적 조성물.
- 제37항 내지 제56항 중 어느 한 항에 있어서, 약제학적으로 허용되는 담체는 지질-기반 또는 중합체-기반 콜로이드를 포함하는 것을 특징으로 하는 약제학적 조성물.
- 제57항에 있어서 콜로이드는 리포좀, 하이드로겔, 미소입자, 나노입자, 또는 블록 공중합체 미셀인 것을 특징으로 하는 약제학적 조성물.
- 제37항 내지 제58항 중 어느 한 항에 있어서, 조성물은 국소 도포를 위해 제형화되는 것을 특징으로 하는 약제학적 조성물.
- 제59항에 있어서, 조성물은 콘돔 내에 함유되는 것을 특징으로 하는 약제학적 조성물.
- 인간 면역결핍 바이러스 감염증을 가진 개체를 치료하는 방법이되, 치료적으로 효과적인 양의 제37항 내지 제59항 중 어느 한 항의 조성물을 개체에게 투여하는 단계를 포함하는 방법.
- 제61항에 있어서, 인간 면역결핍 바이러스 감염증을 가진 개체를 규명하는 단계를 더욱 포함하는 것을 특징으로 하는 방법.
- 제61항에 있어서, 가이드 RNA는 개체를 감염시키는 인간 면역결핍 바이러스 내 표적 서열에 상보적인 것을 특징으로 하는 방법.
- 제61항에 있어서, 인간 면역결핍 바이러스 감염증은 잠복성 감염증인 것을 특징으로 하는 방법.
- 제61항에 있어서, 조성물은 국소적으로 또는 비경구적으로 투여되는 것을 특징으로 하는 방법.
- 제61항에 있어서, 항-레트로바이러스제를 투여하는 단계를 더욱 포함하는 것을 특징으로 하는 방법.
- 제66항에 있어서, 항-레트로바이러스제는 비-뉴클레오사이드 역전사효소 저해제, 프로테아제 저해제 및 침입(entry) 저해제로 이루어진 군에서 선택되는 것을 특징으로 하는 방법.
- 제67항에 있어서, 항-레트로바이러스제는 고도로 활성인 항레트로바이러스 요법을 포함하는 것을 특징으로 하는 방법.
- 인간 면역결핍 바이러스 감염증을 가질 위험이 있는 개체에서 인간 면역결핍 바이러스 감염증의 위험을 감소시키는 방법이되, 치료적으로 효과적인 양의 제36항 내지 제59항 중 어느 한 항의 조성물을 개체에게 투여하는 단계를 포함하는 방법.
- 제69항에 있어서, 개체는 복수의 성파트너를 가지는 것을 특징으로 하는 방법.
- 제69항에 있어서, 개체는 보건 의료 종사자 또는 최초응급대응자인 것을 특징으로 하는 방법.
- HIV-감염된 임부 또는 수유부가 자녀에게 인간 면역결핍 바이러스 감염증을 전염시킬 위험을 감소시키는 방법이되, 치료적으로 효과적인 양의 제37항 내지 제59항 중 어느 한 항의 조성물을 모친에게 투여하는 단계를 포함하는 방법.
- 제72항에 있어서, 조성물은 산전기, 주산기, 산후기, 또는 이중에서 복합적인 시기에 투여되는 것을 특징으로 하는 방법.
- 제72항에 있어서, 항-레트로바이러스제를 투여하는 단계를 더욱 포함하는 것을 특징으로 하는 방법.
- 제74항에 있어서, 항-레트로바이러스제는 비-뉴클레오사이드 역전사효소 저해제, 프로테아제 저해제 및 침입 저해제로 이루어진 군에서 선택되는 것을 특징으로 하는 방법.
- 제75항에 있어서, 항-레트로바이러스제는 고도로 활성인 항레트로바이러스 요법을 포함하는 것을 특징으로 하는 방법.
- 제72항에 있어서, 치료적으로 효과적인 양의 제37항 내지 제59항 중 어느 한 항의 조성물을 자녀에게 투여하는 단계를 더욱 포함하는 것을 특징으로 하는 방법.
- 인간 면역결핍 바이러스 감염증을 가진 개체를 치료하는 방법이되, 상기 방법은 a) 인간 면역결핍 바이러스의 핵산 서열을 확인하는 단계; b) CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 인코딩하는 핵산 서열을 포함하는 약학 조성물을 개체에게 투여하는 단계를 포함하고, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적인 방법.
- 제78항에 있어서, CRISPR-연관 엔도뉴클레아제는 Cas9인 것을 특징으로 하는 방법.
- 제78항 또는 제79항에 있어서, CRISPR-연관 엔도뉴클레아제 서열은 인간 세포에서의 발현을 위해 최적화된 것을 특징으로 하는 방법.
- 제78항 내지 제80항 중 어느 한 항에 있어서, 표적 서열은 인간 면역결핍 바이러스의 긴 말단 반복 내의 서열을 포함하는 것을 특징으로 하는 방법.
- 제78항 내지 제81항 중 어느 한 항에 있어서, 인간 면역결핍 바이러스의 긴 말단 반복 내의 서열은 U3, R, 또는 U5 부위 내의 서열을 포함하는 것을 특징으로 하는 방법.
- 제78항 내지 제82항 중 어느 한 항에 있어서, 긴 말단 반복 내의 서열은 LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87) 및 LTR D (SEQ ID NO: 110) 또는 이들의 조합으로 이루어진 군에서 선택된 서열에 대해 95% 동일성을 가지는 서열을 포함하는 것을 특징으로 하는 방법.
- 제78항 내지 제83항 중 어느 한 항에 있어서, 긴 말단 반복 내의 서열은 LTR A (SEQ ID NO: 96), LTR B (SEQ ID NO: 121), LTR C (SEQ ID NO: 87) 및 LTR D (SEQ ID NO: 110) 또는 이들의 조합으로 이루어진 군에서 선택된 서열을 포함하는 것을 특징으로 하는 방법.
- 제78항 내지 제84항 중 어느 한 항에 있어서, 전사촉진 소형 RNA (tracrRNA)를 인코딩하는 서열을 더욱 포함하는 것을 특징으로 하는 방법.
- 제85항에 있어서, 전사촉진 소형 RNA (tracrRNA)은 가이드 RNA를 인코딩하는 서열에 융합된 것을 특징으로 하는 방법.
- 인간 면역결핍 바이러스 감염증을 치료하기 위한 의약을 제조하기 위한, CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 인코딩하는 서열을 포함하는 단리된 핵산 서열, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적임, 또는 CRISPR-연관 엔도뉴클레아제 및 가이드 RNA를 인코딩하는 서열을 포함하는 발현 벡터, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적임,의 용도.
- 인간 면역결핍 바이러스 감염증의 위험을 감소시키기 위한 의약을 제조하기 위한, CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 인코딩하는 서열을 포함하는 단리된 핵산 서열, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적임, 또는 CRISPR-연관 엔도뉴클레아제 및 가이드 RNA를 인코딩하는 서열을 포함하는 발현 벡터, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적임,의 용도.
- CRISPR-연관 엔도뉴클레아제 및 하나 이상의 가이드 RNA를 인코딩하는 서열을 포함하는 단리된 핵산 서열, 여기서 가이드 RNA는 인간 면역결핍 바이러스 내 표적 서열에 상보적임, 또는 핵산을 인코딩하는 벡터를 포함하는 소정량의 조성물, 및 포장 물질, 사용설명서, 무균 유체, 주사기 및 무균 용기를 포함하는 포장 삽입물로 이루어진 군에서 선택된 하나 이상의 품목을 포함하는 키트.
- 제89항에 있어서, 조성물은 약제학적으로 허용되는 담체를 더욱 포함하는 것을 특징으로 하는 키트.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237002157A KR20230017364A (ko) | 2013-08-29 | 2014-08-29 | Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물 |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361871626P | 2013-08-29 | 2013-08-29 | |
US61/871,626 | 2013-08-29 | ||
US201462018441P | 2014-06-27 | 2014-06-27 | |
US62/018,441 | 2014-06-27 | ||
US201462026103P | 2014-07-18 | 2014-07-18 | |
US62/026,103 | 2014-07-18 | ||
PCT/US2014/053441 WO2015031775A1 (en) | 2013-08-29 | 2014-08-29 | Methods and compositions for rna-guided treatment of hiv infection |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237002157A Division KR20230017364A (ko) | 2013-08-29 | 2014-08-29 | Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20160060659A true KR20160060659A (ko) | 2016-05-30 |
Family
ID=52587370
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237002157A KR20230017364A (ko) | 2013-08-29 | 2014-08-29 | Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물 |
KR1020167008253A KR20160060659A (ko) | 2013-08-29 | 2014-08-29 | Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237002157A KR20230017364A (ko) | 2013-08-29 | 2014-08-29 | Hiv 감염증의 rna-유도 치료를 위한 방법 및 조성물 |
Country Status (15)
Country | Link |
---|---|
US (24) | US9925248B2 (ko) |
EP (2) | EP4385567A3 (ko) |
JP (3) | JP7118588B2 (ko) |
KR (2) | KR20230017364A (ko) |
CN (1) | CN106102781A (ko) |
AU (2) | AU2014312123A1 (ko) |
BR (1) | BR112016004091A2 (ko) |
CA (1) | CA2922428A1 (ko) |
CL (1) | CL2016000424A1 (ko) |
EA (1) | EA037850B1 (ko) |
IL (1) | IL244220B (ko) |
MX (1) | MX2016002586A (ko) |
SG (2) | SG10201801658XA (ko) |
WO (1) | WO2015031775A1 (ko) |
ZA (1) | ZA201601344B (ko) |
Families Citing this family (102)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3613852A3 (en) | 2011-07-22 | 2020-04-22 | President and Fellows of Harvard College | Evaluation and improvement of nuclease cleavage specificity |
EP2931892B1 (en) | 2012-12-12 | 2018-09-12 | The Broad Institute, Inc. | Methods, models, systems, and apparatus for identifying target sequences for cas enzymes or crispr-cas systems for target sequences and conveying results thereof |
DK2931897T3 (en) | 2012-12-12 | 2018-02-05 | Broad Inst Inc | CONSTRUCTION, MODIFICATION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION AND THERAPEUTICAL APPLICATIONS |
EP2946015B1 (en) | 2013-01-16 | 2021-05-26 | Emory University | Cas9-nucleic acid complexes and uses related thereto |
EP3741868B1 (en) | 2013-03-15 | 2024-05-22 | The General Hospital Corporation | Rna-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
US10760064B2 (en) | 2013-03-15 | 2020-09-01 | The General Hospital Corporation | RNA-guided targeting of genetic and epigenomic regulatory proteins to specific genomic loci |
CN105308184B (zh) | 2013-04-16 | 2020-06-02 | 瑞泽恩制药公司 | 大鼠基因组的靶向修饰 |
EP3725885A1 (en) | 2013-06-17 | 2020-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions methods, screens and applications thereof |
CN105793425B (zh) | 2013-06-17 | 2021-10-26 | 布罗德研究所有限公司 | 使用病毒组分靶向障碍和疾病的crispr-cas系统和组合物的递送、用途和治疗应用 |
KR20160044457A (ko) | 2013-06-17 | 2016-04-25 | 더 브로드 인스티튜트, 인코퍼레이티드 | 서열 조작을 위한 탠덤 안내 시스템, 방법 및 조성물의 전달, 조작 및 최적화 |
SG11201510284XA (en) | 2013-06-17 | 2016-01-28 | Broad Inst Inc | Delivery and use of the crispr-cas systems, vectors and compositions for hepatic targeting and therapy |
WO2014204725A1 (en) | 2013-06-17 | 2014-12-24 | The Broad Institute Inc. | Optimized crispr-cas double nickase systems, methods and compositions for sequence manipulation |
US10011850B2 (en) | 2013-06-21 | 2018-07-03 | The General Hospital Corporation | Using RNA-guided FokI Nucleases (RFNs) to increase specificity for RNA-Guided Genome Editing |
US9163284B2 (en) | 2013-08-09 | 2015-10-20 | President And Fellows Of Harvard College | Methods for identifying a target site of a Cas9 nuclease |
US9359599B2 (en) | 2013-08-22 | 2016-06-07 | President And Fellows Of Harvard College | Engineered transcription activator-like effector (TALE) domains and uses thereof |
SG10201801658XA (en) | 2013-08-29 | 2018-03-28 | Univ Temple | Methods and compositions for rna-guided treatment of hiv infection |
US9340799B2 (en) | 2013-09-06 | 2016-05-17 | President And Fellows Of Harvard College | MRNA-sensing switchable gRNAs |
US9526784B2 (en) | 2013-09-06 | 2016-12-27 | President And Fellows Of Harvard College | Delivery system for functional nucleases |
US9322037B2 (en) | 2013-09-06 | 2016-04-26 | President And Fellows Of Harvard College | Cas9-FokI fusion proteins and uses thereof |
KR102523466B1 (ko) | 2013-11-07 | 2023-04-20 | 에디타스 메디신, 인코포레이티드 | 지배적인 gRNA를 이용하는 CRISPR-관련 방법 및 조성물 |
RU2685914C1 (ru) | 2013-12-11 | 2019-04-23 | Регенерон Фармасьютикалс, Инк. | Способы и композиции для направленной модификации генома |
US20150166982A1 (en) | 2013-12-12 | 2015-06-18 | President And Fellows Of Harvard College | Methods for correcting pi3k point mutations |
JP6793547B2 (ja) | 2013-12-12 | 2020-12-02 | ザ・ブロード・インスティテュート・インコーポレイテッド | 最適化機能CRISPR−Cas系による配列操作のための系、方法および組成物 |
KR20160097338A (ko) | 2013-12-12 | 2016-08-17 | 더 브로드 인스티튜트, 인코퍼레이티드 | 뉴클레오티드 반복 장애에서의 crispr-cas 시스템의 조성물 및 방법 및 용도 |
JP2017527256A (ja) * | 2013-12-12 | 2017-09-21 | ザ・ブロード・インスティテュート・インコーポレイテッド | HBV及びウイルス性疾患及び障害のためのCRISPR−Cas系及び組成物の送達、使用及び治療適用 |
WO2015089364A1 (en) | 2013-12-12 | 2015-06-18 | The Broad Institute Inc. | Crystal structure of a crispr-cas system, and uses thereof |
KR20160089527A (ko) | 2013-12-12 | 2016-07-27 | 더 브로드 인스티튜트, 인코퍼레이티드 | 게놈 편집을 위한 crispr-cas 시스템 및 조성물의 전달, 용도 및 치료적 응용 |
KR20160130392A (ko) * | 2014-02-18 | 2016-11-11 | 듀크 유니버시티 | 바이러스 복제의 불활성화를 위한 조성물 및 그의 제조 및 사용 방법 |
CA2949713A1 (en) | 2014-05-30 | 2015-12-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods of delivering treatments for latent viral infections |
JP6930834B2 (ja) | 2014-06-16 | 2021-09-01 | ザ・ジョンズ・ホプキンス・ユニバーシティー | H1プロモーターを用いるcrisprガイドrnaの発現のための組成物および方法 |
CA2956224A1 (en) | 2014-07-30 | 2016-02-11 | President And Fellows Of Harvard College | Cas9 proteins including ligand-dependent inteins |
CN107002042A (zh) | 2014-10-15 | 2017-08-01 | 瑞泽恩制药公司 | 用于产生或维持多能细胞的方法和组合物 |
KR102683423B1 (ko) | 2014-11-21 | 2024-07-10 | 리제너론 파마슈티칼스 인코포레이티드 | 쌍 형성된 가이드 rna를 사용하는 표적화된 유전자 변형을 위한 방법 및 조성물 |
EP3230451B1 (en) | 2014-12-12 | 2021-04-07 | The Broad Institute, Inc. | Protected guide rnas (pgrnas) |
MA41382A (fr) * | 2015-03-20 | 2017-11-28 | Univ Temple | Édition génique basée sur le système crispr/endonucléase à induction par tat |
CN104726449A (zh) * | 2015-03-23 | 2015-06-24 | 国家纳米科学中心 | 一种用于预防和/或治疗HIV的CRISPR-Cas9系统及其制备方法和用途 |
US20160287678A1 (en) * | 2015-04-02 | 2016-10-06 | Agenovir Corporation | Gene delivery methods and compositions |
WO2016183345A1 (en) * | 2015-05-13 | 2016-11-17 | Seattle Children' S Hospital (Dba Seattle Children 's Research Institute) | Enhancing endonuclease based gene editing in primary cells |
EP3324999A1 (en) * | 2015-05-29 | 2018-05-30 | Agenovir Corporation | Compositions and methods for cell targeted hpv treatment |
JP2018516596A (ja) * | 2015-05-29 | 2018-06-28 | アジェノビア コーポレーション | 抗ウイルスの方法および組成物 |
US10117911B2 (en) | 2015-05-29 | 2018-11-06 | Agenovir Corporation | Compositions and methods to treat herpes simplex virus infections |
KR20230110368A (ko) * | 2015-06-01 | 2023-07-21 | 템플 유니버시티-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 | Hiv 감염의 rna-가이드된 치료를 위한 방법 및 조성물 |
CN104894071A (zh) * | 2015-06-08 | 2015-09-09 | 东华大学 | 一种对gt1-7细胞进行基因编辑的方法 |
TW202400626A (zh) | 2015-06-18 | 2024-01-01 | 美商博得學院股份有限公司 | 降低脫靶效應的crispr酶突變 |
WO2016205759A1 (en) | 2015-06-18 | 2016-12-22 | The Broad Institute Inc. | Engineering and optimization of systems, methods, enzymes and guide scaffolds of cas9 orthologs and variants for sequence manipulation |
US9926546B2 (en) | 2015-08-28 | 2018-03-27 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
US9512446B1 (en) | 2015-08-28 | 2016-12-06 | The General Hospital Corporation | Engineered CRISPR-Cas9 nucleases |
JP6799586B2 (ja) | 2015-08-28 | 2020-12-16 | ザ ジェネラル ホスピタル コーポレイション | 遺伝子操作CRISPR−Cas9ヌクレアーゼ |
EP3356521A4 (en) * | 2015-09-28 | 2019-03-13 | Temple University - Of The Commonwealth System of Higher Education | METHOD AND COMPOSITIONS FOR RNA-TREATED TREATMENT OF HIV INFECTIONS |
US20170096649A1 (en) * | 2015-10-02 | 2017-04-06 | Agenovir Corporation | Transgenic nuclease systems and methods |
WO2017062723A1 (en) * | 2015-10-08 | 2017-04-13 | President And Fellows Of Harvard College | Multiplexed genome editing |
US20190083656A1 (en) * | 2015-10-16 | 2019-03-21 | Temple University - Of The Commonwealth System Of Higher Education | Methods and compositions utilizing cpf1 for rna-guided gene editing |
WO2017070632A2 (en) | 2015-10-23 | 2017-04-27 | President And Fellows Of Harvard College | Nucleobase editors and uses thereof |
CA3006305A1 (en) | 2015-12-09 | 2017-06-15 | Excision Biotherapeutics, Inc. | Gene editing methods and compositions for eliminating risk of jc virus activation and pml (progressive multifocal leukoencephalopathy) during immunosuppressive therapy |
WO2017132112A1 (en) * | 2016-01-25 | 2017-08-03 | Excision Biotherapeutics | Methods and compositions for rna-guided treatment of hiv infection |
US12122997B2 (en) * | 2016-02-15 | 2024-10-22 | Temple University—Of the Commonwealth System of Higher Education | Excision of retroviral nucleic acid sequences |
CN114908093A (zh) * | 2016-02-26 | 2022-08-16 | 朗泽科技新西兰有限公司 | 用于c1固定菌的crispr/cas系统 |
EP3219799A1 (en) | 2016-03-17 | 2017-09-20 | IMBA-Institut für Molekulare Biotechnologie GmbH | Conditional crispr sgrna expression |
CA3024494A1 (en) * | 2016-05-10 | 2017-11-16 | United States Government As Represented By The Department Of Veterans Affairs | Lentiviral delivery of crispr/cas constructs that cleave genes essential for hiv-1 infection and replication |
CN107365786A (zh) * | 2016-05-12 | 2017-11-21 | 中国科学院微生物研究所 | 一种将spacer序列克隆至CRISPR-Cas9系统中的方法及其应用 |
AU2017273713A1 (en) * | 2016-06-01 | 2018-10-25 | Excision Biotherapeutics, Inc. | Compositions and methods of treatment for lytic and lysogenic viruses |
CN109640946A (zh) * | 2016-06-03 | 2019-04-16 | 天普大学-联邦高等教育系统 | 通过基因编辑策略进行hiv-1的负反馈调节 |
IL264565B2 (en) | 2016-08-03 | 2024-07-01 | Harvard College | Adenosine nuclear base editors and their uses |
AU2017308889B2 (en) | 2016-08-09 | 2023-11-09 | President And Fellows Of Harvard College | Programmable Cas9-recombinase fusion proteins and uses thereof |
US11542509B2 (en) | 2016-08-24 | 2023-01-03 | President And Fellows Of Harvard College | Incorporation of unnatural amino acids into proteins using base editing |
CN109689866A (zh) * | 2016-09-12 | 2019-04-26 | 切除生物治疗公司 | Hiv临床计划 |
KR101997116B1 (ko) * | 2016-10-14 | 2019-07-05 | 연세대학교 산학협력단 | Kras 유전자에 상보적인 가이드 rna 및 이의 용도 |
WO2018070850A1 (ko) * | 2016-10-14 | 2018-04-19 | 연세대학교 산학협력단 | Kras 유전자에 상보적인 가이드 rna 및 이의 용도 |
EP3526320A1 (en) | 2016-10-14 | 2019-08-21 | President and Fellows of Harvard College | Aav delivery of nucleobase editors |
WO2018119359A1 (en) | 2016-12-23 | 2018-06-28 | President And Fellows Of Harvard College | Editing of ccr5 receptor gene to protect against hiv infection |
US20190071673A1 (en) * | 2017-01-18 | 2019-03-07 | Thomas Malcolm | CRISPRs WITH IMPROVED SPECIFICITY |
WO2018152418A1 (en) * | 2017-02-17 | 2018-08-23 | Temple University - Of The Commonwealth System Of Higher Education | Gene editing therapy for hiv infection via dual targeting of hiv genome and ccr5 |
WO2018165504A1 (en) | 2017-03-09 | 2018-09-13 | President And Fellows Of Harvard College | Suppression of pain by gene editing |
US11542496B2 (en) | 2017-03-10 | 2023-01-03 | President And Fellows Of Harvard College | Cytosine to guanine base editor |
CN106755268B (zh) * | 2017-03-22 | 2020-07-17 | 中国科学院海洋研究所 | 体外筛选具有改善记忆力的牡蛎活性肽的方法 |
IL269458B2 (en) | 2017-03-23 | 2024-02-01 | Harvard College | Nucleic base editors that include nucleic acid programmable DNA binding proteins |
US20200140865A1 (en) * | 2017-04-17 | 2020-05-07 | Temple University - Of The Commonwealth System Of Higher Education | An hiv-1 eradication strategy employing nanoformulated anti-retroviral drugs and gene editing agents |
AU2018254547B2 (en) | 2017-04-20 | 2024-06-13 | Egenesis, Inc. | Methods for generating genetically modified animals |
WO2018195545A2 (en) | 2017-04-21 | 2018-10-25 | The General Hospital Corporation | Variants of cpf1 (cas12a) with altered pam specificity |
WO2018209320A1 (en) | 2017-05-12 | 2018-11-15 | President And Fellows Of Harvard College | Aptazyme-embedded guide rnas for use with crispr-cas9 in genome editing and transcriptional activation |
JP2020521451A (ja) | 2017-05-25 | 2020-07-27 | ザ ジェネラル ホスピタル コーポレイション | 望ましくないオフターゲット塩基エディター脱アミノ化を制限するためのスプリットデアミナーゼの使用 |
JP2020534795A (ja) | 2017-07-28 | 2020-12-03 | プレジデント アンド フェローズ オブ ハーバード カレッジ | ファージによって支援される連続的進化(pace)を用いて塩基編集因子を進化させるための方法および組成物 |
WO2019139645A2 (en) | 2017-08-30 | 2019-07-18 | President And Fellows Of Harvard College | High efficiency base editors comprising gam |
EP3697906A1 (en) | 2017-10-16 | 2020-08-26 | The Broad Institute, Inc. | Uses of adenosine base editors |
US11618780B2 (en) | 2017-10-20 | 2023-04-04 | City Of Hope | Composition and method for activating latent human immunodeficiency virus (HIV) |
WO2020160418A1 (en) * | 2019-01-31 | 2020-08-06 | Board Of Regents Of The University Of Nebraska | Virus-like particles and methods of use thereof |
US11946040B2 (en) | 2019-02-04 | 2024-04-02 | The General Hospital Corporation | Adenine DNA base editor variants with reduced off-target RNA editing |
JP2022527740A (ja) | 2019-03-19 | 2022-06-06 | ザ ブロード インスティテュート,インコーポレーテッド | 編集ヌクレオチド配列を編集するための方法および組成物 |
CN114127291A (zh) | 2019-05-23 | 2022-03-01 | 克里斯蒂安娜保健服务公司 | 用于治疗癌症的nrf2基因敲除 |
US11505797B2 (en) | 2019-05-23 | 2022-11-22 | Christiana Care Health Services, Inc. | Gene knockout of variant NRF2 for treatment of cancer |
US20230257771A1 (en) | 2020-04-20 | 2023-08-17 | Christiana Care Health Services, Inc. | Aav delivery system for lung cancer treatment |
IL297761A (en) | 2020-05-08 | 2022-12-01 | Broad Inst Inc | Methods and compositions for simultaneously editing two helices of a designated double-helix nucleotide sequence |
MX2023000661A (es) * | 2020-07-13 | 2023-07-03 | Alexandra L Howell | Métodos y composiciones para la eficiencia y especificidad de arn guía de crispr/cas9 frente a aislados de vih-1 genéticamente diferentes. |
CA3200929A1 (en) * | 2020-12-01 | 2022-06-09 | Alexandra HOWELL | Compositions and methods for cleaving viral genomes |
WO2022170059A1 (en) | 2021-02-05 | 2022-08-11 | Christiana Care Health Services, Inc. | Methods of and compositions for reducing gene expression and/or activity |
WO2023091696A1 (en) | 2021-11-19 | 2023-05-25 | Christiana Care Gene Editing Institute, Inc. | Adenovirus delivery system for cancer treatment |
EP4433494A2 (en) | 2021-11-19 | 2024-09-25 | Christiana Care Gene Editing Institute, Inc. | Methods for intratumoral delivery of crispr/cas systems |
US20230279442A1 (en) | 2021-12-15 | 2023-09-07 | Versitech Limited | Engineered cas9-nucleases and method of use thereof |
WO2023154451A1 (en) | 2022-02-10 | 2023-08-17 | Christiana Care Gene Editing Institute, Inc. | Methods for lipid nanoparticle delivery of crispr/cas system |
CN114657185B (zh) * | 2022-03-28 | 2023-11-10 | 福州大学 | 一种基于适配体有序排列的金磁纳米探针及其在大田软海绵酸检测中的应用 |
CN115762764A (zh) * | 2022-11-25 | 2023-03-07 | 中山大学附属第三医院 | 一种hiv阴性隐球菌脑膜炎治疗结局预测模型及其构建方法 |
WO2024130151A1 (en) | 2022-12-16 | 2024-06-20 | Christiana Care Gene Editing Institute, Inc. | Compositions and methods for treating broad chemoresistance through chemoresistance-specific regulatory components |
Family Cites Families (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4235871A (en) | 1978-02-24 | 1980-11-25 | Papahadjopoulos Demetrios P | Method of encapsulating biologically active materials in lipid vesicles |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
TW247876B (en) | 1993-12-28 | 1995-05-21 | New York Blood Ct Inc | Pharmaceutical compositions for prevention or treating HIV-1 or HIV-2 infection |
JPH10501681A (ja) | 1994-02-22 | 1998-02-17 | ダナ−ファーバー キャンサー インスティチュート | 核酸送達システムならびにその合成および使用方法 |
CA2250829A1 (en) * | 1996-04-02 | 1997-10-09 | Graham P. Allaway | Method for preventing hiv-1 infection of cd4+ cells |
US6392029B1 (en) * | 1997-05-09 | 2002-05-21 | The Research Foundation Of State University Of New York | HIV chemokines |
US20040132161A1 (en) * | 1998-04-20 | 2004-07-08 | Finkel Terri H. | Methods and compositions for increasing CD4lymphocyte immune responsiveness |
US6534261B1 (en) * | 1999-01-12 | 2003-03-18 | Sangamo Biosciences, Inc. | Regulation of endogenous gene expression in cells using zinc finger proteins |
JP4979851B2 (ja) * | 1999-04-29 | 2012-07-18 | ジービーピー アイピー リミテッド ライアビリティ カンパニー | 高いタイターで安全な組換えレンチウイルスベクターの作製方法 |
US6864085B2 (en) | 1999-12-14 | 2005-03-08 | Novartis Ag | Bovine immunodeficiency virus (BIV) based vectors |
FR2825280B1 (fr) | 2001-06-01 | 2005-04-15 | Merial Sas | Vaccination contre le virus de l'immunodeficience feline |
US20030180756A1 (en) | 2002-03-21 | 2003-09-25 | Yang Shi | Compositions and methods for suppressing eukaryotic gene expression |
US20070175484A1 (en) | 2006-01-30 | 2007-08-02 | Staab Robert J | Condoms for beneficial agents delivery |
EP1942192A1 (en) | 2007-01-08 | 2008-07-09 | Heinrich-Pette-Institut für experimentelle Virologie und Immunologie | Use of a tailored recombinase for the treatment of retroviral infections |
CN103060378A (zh) | 2011-10-24 | 2013-04-24 | 四川百利药业有限责任公司 | 一种siv载体的制备方法 |
GB201122458D0 (en) * | 2011-12-30 | 2012-02-08 | Univ Wageningen | Modified cascade ribonucleoproteins and uses thereof |
EP2931899A1 (en) | 2012-12-12 | 2015-10-21 | The Broad Institute, Inc. | Functional genomics using crispr-cas systems, compositions, methods, knock out libraries and applications thereof |
AU2013359212B2 (en) | 2012-12-12 | 2017-01-19 | Massachusetts Institute Of Technology | Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation |
DK2931897T3 (en) | 2012-12-12 | 2018-02-05 | Broad Inst Inc | CONSTRUCTION, MODIFICATION AND OPTIMIZATION OF SYSTEMS, PROCEDURES AND COMPOSITIONS FOR SEQUENCE MANIPULATION AND THERAPEUTICAL APPLICATIONS |
DK2931891T3 (da) | 2012-12-17 | 2019-08-19 | Harvard College | Rna-styret modificering af menneskelige genomer |
EP2981612B1 (en) * | 2013-04-04 | 2019-07-03 | Trustees of Dartmouth College | Compositions and methods for in vivo excision of hiv-1 proviral dna |
SG10201801658XA (en) | 2013-08-29 | 2018-03-28 | Univ Temple | Methods and compositions for rna-guided treatment of hiv infection |
CA2949713A1 (en) * | 2014-05-30 | 2015-12-03 | The Board Of Trustees Of The Leland Stanford Junior University | Compositions and methods of delivering treatments for latent viral infections |
KR20230110368A (ko) | 2015-06-01 | 2023-07-21 | 템플 유니버시티-오브 더 커먼웰쓰 시스템 오브 하이어 에듀케이션 | Hiv 감염의 rna-가이드된 치료를 위한 방법 및 조성물 |
EP3356521A4 (en) | 2015-09-28 | 2019-03-13 | Temple University - Of The Commonwealth System of Higher Education | METHOD AND COMPOSITIONS FOR RNA-TREATED TREATMENT OF HIV INFECTIONS |
US20190083656A1 (en) | 2015-10-16 | 2019-03-21 | Temple University - Of The Commonwealth System Of Higher Education | Methods and compositions utilizing cpf1 for rna-guided gene editing |
CA3006305A1 (en) | 2015-12-09 | 2017-06-15 | Excision Biotherapeutics, Inc. | Gene editing methods and compositions for eliminating risk of jc virus activation and pml (progressive multifocal leukoencephalopathy) during immunosuppressive therapy |
JP2019512458A (ja) | 2016-01-25 | 2019-05-16 | エクシジョン バイオセラピューティクス インコーポレイテッド | Rnaによって誘導された、ヒトjcウイルス及び他のポリオーマウイルスの根絶 |
WO2017132112A1 (en) | 2016-01-25 | 2017-08-03 | Excision Biotherapeutics | Methods and compositions for rna-guided treatment of hiv infection |
US12122997B2 (en) | 2016-02-15 | 2024-10-22 | Temple University—Of the Commonwealth System of Higher Education | Excision of retroviral nucleic acid sequences |
WO2017176529A1 (en) | 2016-04-06 | 2017-10-12 | Temple Univesity-Of The Commonwealth System Of Higher Education | Compositions for eradicating flavivirus infections in subjects |
US20190093092A1 (en) | 2016-05-05 | 2019-03-28 | Temple University - Of The Commonwealth System Of Higher Education | Rna guided eradication of varicella zoster virus |
CN109565871B (zh) | 2016-05-26 | 2022-03-11 | 诺基亚技术有限公司 | 用于非正交编码接入的码字自适应 |
US20190256844A1 (en) | 2016-06-07 | 2019-08-22 | Temple University - Of The Commonwealth System Of Higher Education | Rna guided compositions for preventing and treating hepatitis b virus infections |
US20190085326A1 (en) | 2016-09-14 | 2019-03-21 | Temple University - Of The Commonwealth System Of Higher Education | Negative feedback regulation of HIV-1 by gene editing strategy |
US20190365862A1 (en) | 2016-10-12 | 2019-12-05 | Temple University - Of The Commonwealth System Of Higher Education | Combination therapies for eradicating flavivirus infections in subjects |
EP3574093A1 (en) | 2017-01-26 | 2019-12-04 | Excision Biotherapeutics, Inc. | Lentivirus and non-integrating lentivirus as viral vector to deliver crispr therapeutic |
WO2018152418A1 (en) | 2017-02-17 | 2018-08-23 | Temple University - Of The Commonwealth System Of Higher Education | Gene editing therapy for hiv infection via dual targeting of hiv genome and ccr5 |
US20200140865A1 (en) | 2017-04-17 | 2020-05-07 | Temple University - Of The Commonwealth System Of Higher Education | An hiv-1 eradication strategy employing nanoformulated anti-retroviral drugs and gene editing agents |
US20210060138A1 (en) | 2019-03-06 | 2021-03-04 | Temple University - Of The Commonwealth System Of Higher Education | CRISPR and LASER ART Eliminates HIV |
-
2014
- 2014-08-29 SG SG10201801658XA patent/SG10201801658XA/en unknown
- 2014-08-29 CN CN201480059153.1A patent/CN106102781A/zh active Pending
- 2014-08-29 US US14/838,057 patent/US9925248B2/en active Active
- 2014-08-29 KR KR1020237002157A patent/KR20230017364A/ko not_active Application Discontinuation
- 2014-08-29 EP EP23219270.8A patent/EP4385567A3/en active Pending
- 2014-08-29 CA CA2922428A patent/CA2922428A1/en active Pending
- 2014-08-29 AU AU2014312123A patent/AU2014312123A1/en not_active Abandoned
- 2014-08-29 KR KR1020167008253A patent/KR20160060659A/ko not_active IP Right Cessation
- 2014-08-29 EP EP14839655.9A patent/EP3038661B1/en active Active
- 2014-08-29 BR BR112016004091A patent/BR112016004091A2/pt not_active Application Discontinuation
- 2014-08-29 EA EA201600226A patent/EA037850B1/ru unknown
- 2014-08-29 JP JP2016537900A patent/JP7118588B2/ja active Active
- 2014-08-29 WO PCT/US2014/053441 patent/WO2015031775A1/en active Application Filing
- 2014-08-29 SG SG11201601313TA patent/SG11201601313TA/en unknown
- 2014-08-29 MX MX2016002586A patent/MX2016002586A/es unknown
-
2016
- 2016-02-22 IL IL244220A patent/IL244220B/en active IP Right Grant
- 2016-02-25 CL CL2016000424A patent/CL2016000424A1/es unknown
- 2016-02-26 ZA ZA2016/01344A patent/ZA201601344B/en unknown
- 2016-05-06 US US15/148,261 patent/US9981020B2/en active Active
-
2018
- 2018-01-25 US US15/879,877 patent/US20180169193A1/en not_active Abandoned
- 2018-01-29 US US15/882,228 patent/US20180236043A1/en not_active Abandoned
- 2018-01-29 US US15/882,197 patent/US20180236041A1/en not_active Abandoned
- 2018-01-29 US US15/882,207 patent/US11285193B2/en active Active
- 2018-01-31 US US15/884,427 patent/US11298411B2/en active Active
- 2018-01-31 US US15/884,428 patent/US20180169195A1/en not_active Abandoned
- 2018-02-01 US US15/885,936 patent/US20180236044A1/en not_active Abandoned
- 2018-02-01 US US15/885,942 patent/US20180236046A1/en not_active Abandoned
- 2018-02-01 US US15/885,940 patent/US20180236045A1/en not_active Abandoned
- 2018-02-22 US US15/902,263 patent/US20180200343A1/en not_active Abandoned
- 2018-02-26 US US15/904,730 patent/US20180228874A1/en not_active Abandoned
- 2018-03-12 US US15/918,107 patent/US20180303915A1/en not_active Abandoned
- 2018-03-15 US US15/921,731 patent/US20180207243A1/en not_active Abandoned
- 2018-03-29 US US15/939,710 patent/US20180214521A1/en not_active Abandoned
- 2018-04-02 US US15/942,773 patent/US20180221458A1/en not_active Abandoned
- 2018-04-11 US US15/950,236 patent/US20180228876A1/en not_active Abandoned
- 2018-04-11 US US15/950,227 patent/US20180228875A1/en not_active Abandoned
-
2020
- 2020-04-24 JP JP2020077848A patent/JP2020188757A/ja active Pending
- 2020-05-14 US US16/874,295 patent/US11291710B2/en active Active
- 2020-10-13 US US17/068,999 patent/US20210252114A1/en not_active Abandoned
- 2020-11-02 AU AU2020264257A patent/AU2020264257B2/en active Active
-
2021
- 2021-05-24 US US17/329,137 patent/US20220313795A1/en not_active Abandoned
-
2022
- 2022-06-03 US US17/832,457 patent/US20230181698A1/en active Pending
-
2023
- 2023-03-06 JP JP2023034137A patent/JP2023071897A/ja active Pending
- 2023-04-11 US US18/298,913 patent/US20240139294A1/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020264257B2 (en) | Methods and compositions for RNA-guided treatment of HIV infection | |
KR102714302B1 (ko) | 세포의 유전자 변형을 위한 비통합형 dna 벡터 | |
RU2718536C2 (ru) | Способы получения и применения популяций мультипотентных и плюрипотентных клеток, устойчивых к заболеваниям и способных к дифференцировке | |
KR20230057487A (ko) | 게놈 조정을 위한 방법 및 조성물 | |
AU2021290257A1 (en) | Globin gene therapy for treating hemoglobinopathies | |
JP2024023294A (ja) | 遺伝子編集のためのcpf1関連方法及び組成物 | |
CN107406854A (zh) | Rna指导的人类jc病毒和其他多瘤病毒的根除 | |
US6524588B1 (en) | Attenuated vaccination and gene-transfer virus, a method to make the virus and a pharmaceutical composition comprising the virus | |
CN107949424A (zh) | Tat诱导的基于crispr/核酸内切酶的基因编辑 | |
EP0454781A1 (en) | Recombinant cells for therapies of infection and hyperproliferative disorders and preparation thereof | |
JPH10509318A (ja) | 組換えcmv−ie/hiv−tar/モロニーマウス白血病ウイルスltrを含有するレトロウイルスベクター | |
KR102156290B1 (ko) | 미세소포 및 이를 생산하는 방법 | |
KR20190104586A (ko) | 예비-면역화 단계가 없는 hiv 면역요법 | |
AU2016373365B2 (en) | Transposon system, kit comprising the same, and uses thereof | |
RU2752529C9 (ru) | Улучшенные эукариотические клетки для получения белка и способы их получения | |
Cornils et al. | Comparative clonal analysis of reconstitution kinetics after transplantation of hematopoietic stem cells gene marked with a lentiviral SIN or a γ-retroviral LTR vector | |
EP3359676A1 (en) | Transposon system, kit comprising the same, and uses thereof | |
Zentilin et al. | Variegation of retroviral vector gene expression in myeloid cells | |
Inouye et al. | Potent inhibition of human immunodeficiency virus type 1 in primary T cells and alveolar macrophages by a combination anti-Rev strategy delivered in an adeno-associated virus vector | |
JP2023182637A (ja) | 制御性t細胞を改変するための組成物および方法 | |
JPH09503641A (ja) | 人体の多剤耐性遺伝子の発現およびそれら遺伝子によって形質導入された細胞の選択 | |
KR20210141997A (ko) | 세포의 유전적 변형을 위한 발현 작제물 | |
WO2022020192A1 (en) | Compositions and methods for targeting tumor associated transcription factors | |
KR20220082033A (ko) | 레트로바이러스의 계내 생성을 위한 생산자 바이러스 | |
CN113846063B (zh) | 一种适用于同种异体移植的通用型人源干细胞以及构建方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
X601 | Decision of rejection after re-examination |