[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20140101357A - 회전각센서 - Google Patents

회전각센서 Download PDF

Info

Publication number
KR20140101357A
KR20140101357A KR1020147015841A KR20147015841A KR20140101357A KR 20140101357 A KR20140101357 A KR 20140101357A KR 1020147015841 A KR1020147015841 A KR 1020147015841A KR 20147015841 A KR20147015841 A KR 20147015841A KR 20140101357 A KR20140101357 A KR 20140101357A
Authority
KR
South Korea
Prior art keywords
angle sensor
shaft
springs
spring
features
Prior art date
Application number
KR1020147015841A
Other languages
English (en)
Other versions
KR101968791B1 (ko
Inventor
발레리 클리멘코
요한 야르스토퍼
Original Assignee
보우린스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 보우린스, 인크. filed Critical 보우린스, 인크.
Publication of KR20140101357A publication Critical patent/KR20140101357A/ko
Application granted granted Critical
Publication of KR101968791B1 publication Critical patent/KR101968791B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0215Determination of steering angle by measuring on the steering column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/30Measuring arrangements characterised by the use of electric or magnetic techniques for measuring angles or tapers; for testing the alignment of axes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0245Means or methods for determination of the central position of the steering system, e.g. straight ahead position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/502Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates and internal partition means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/50Solar heat collectors using working fluids the working fluids being conveyed between plates
    • F24S10/503Solar heat collectors using working fluids the working fluids being conveyed between plates having conduits formed by paired plates, only one of which is plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/69Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of shingles or tiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Steering Controls (AREA)
  • Power Steering Mechanism (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

샤프트의 회전각을 측정하기 위한 회전각센서는 두개의 코딩디스크(3, 5)를 가지고 있으며, 그중 제1코딩디스크(3)는 회전할 수 있도록 샤프트(2)에 고정되어 있고, 제2코딩디스크(5)는 두개의 스프링그룹(7, 그리고 8, 9)을 통하여 샤프트(2)와 하우징(1)사이에 유지되어 있다. 두 코딩디스크(3, 5)에는 각각 한 센서(4, 6)가 부속되어 있다. 제1코딩디스크의 센서(4)는 주기적인 회전각신호를 발생하고 반면에 제2코딩디스크에 부속된 센서(6)는 상기 센서(4)의 신호와 다른 거친 신호(U2)를 발생하는데, 이 거친 신호로부터 샤프트(2)가 가능한 n회(n1)의 회전 중 몇 번째 회에 있는가를 알 수 있다.

Description

회전각센서{ROTATIONAL ANGLE SENSOR}
본 발명은 일종의 회전각센서에 관한 것으로, 특히 자동차의 스티어링 샤프트의 회전위치를 검출할 수 있는 회전각센서에 관한 것이다. 여기서 스티어링 샤프트는 여러 회의 회전을 실행할 수 있다.
DE 10 2005 007 259 B4는 일종의 위치측정장치에 대해 기술한다. 상기 위치측정장치는 회전할 수 있는 샤프트와 여러 개의 스프링을 통하여 이 샤프트에 연결돼 있는 마그넷링, 그리고 상기 마그넷링의 바깥둘레에 설치된 마그넷요크를 가지고 있다. 상기 마그넷링은 원주방향에서 교대로 북극과 남극을 가질 수 있다. 샤프트 회전시 마그넷링은 자력에 의하여 우선 샤프트를 향하여 후행만 하며, 스프링들로부터 작용되는 회전력이 자력보다 커지면 마그넷링이 갑자기 움직이면서 운동에너지가 방출된다. 상기 운동에너지는 자석요크에 배치된 코일을 통하여 전기 임펄스를 발생하며, 상기 전기 임펄스는 분석장치에서 계수되어 불휘발성 메모리에 저장된다. 따라서 계수된 전기 임펄스는 마그넷링의 회전각의 측정치수이다. 불휘발성 메모리를 통하여 전원전압차단 시에도 마지막으로 저장된 측정수치를 불러올 수 있다. 그러나 전원전압차단 시 마그넷링이 회전했다면, 회전위치의 저장된 측정수치는 더는 실제수치랑 일치하지 않으며 따라서 이후의 모든 측정결과도 틀리게 된다.
DE 199 62 241 A1 및DE 195 06 938 A1로부터 알려져 있는 회전각센서에는 두개의 측정기어가 하나의 샤프트 기어와 결합되어 있으며, 이 두 측정기어들은 상이한 톱니개수를 가지고 있어서 그중 하나의 측정기어가 규정된 측정범위 내에서 n회의 완전 회전을 진행할 때 두 번째 측정기어는 n-1 혹은 n+1회의 완전 회전을 진행한다. 두 센서는 두 측정기어들의 회전위치를 스캐닝하며 따라서 상응한 출력신호를 생성하며 이 출력신호들의 위상차로부터 절대위치신호가 산출된다.
이러한 회전각센서들의 측정정확도는 특히 기어 맞물림의 정밀성에 의존된다. 기어는 자축거리의 제조허용오차, 조립허용오차 그리고 또 마찰소모로 인해 백래시가 있는데 이는 일반적인 의미에서 슬립이라고도 하며 측정오차를 초래한다. 회전방향전환 시 이 오차는 히스테리시스 오차로 나타난다. 기어들과 기어랙들의 오차의 다른 원인은 톱니 모양과 톱니 사이 홈의 균일성의 부족, 그리고 또 톱니 분포의 불일치성이며, 이는 톱니들이 백래시가 없이 맞물리는 상황에서도 선형오차를 초래한다. 비 원형 기어도 이 경우에 속하며, 그 결과는 비 원형 기어는 특정된 회전위치범위에서는 백래시가 있고 다른 회전위치범위에서는 백래시가 없다. 여기서 유의해야 할 것은, 대부분의 측정 응용에서 플라스틱기어가 사용된다는 것이다.
이 문제를 해결하기 위해, DE 199 62 241 A1은 측정 기어들이 스프링 탄력으로 샤프트의 기어를 향하여 고정하라고 제의한다.
DE 199 37 120 C2는 조향각측정장치에 관해 설명했으며, 상기 조향각측정장치는 자동차의 조향축을 둘러싸고 나선형으로 배치된 벌류트스프링을 가지고 있고 상기 벌류트 스프링의 한쪽 끝은 조향축에, 다른 한쪽 끝은 고정적으로 배치되어 있으며, 여기서 벌류트스프링에 그의 익스텐션 및/또는 벤딩을 측정하는 측정장치가 배치되어 있다. 벌류트스프링의 익스텐션 및/또는 벤딩 측정치에 근거하여 조향각이 결정된다.
DE 198 356 886 A1은 일종의 조향각 센서에 관한 발명이며 상기 조향각 센서에는 역시 조향축과 하우징에 고정된 벌류트스프링이 있다. 하나의 센서는 벌류트스프링의 인덕턴스변화를 검출하며 이 변화는 코일수량의 변화에 의해 유발된다. 이 벌류트 스프링은 탄성재료로 만들어진 플렉시블하고 편편한 띠이고, 종종 시계스프링라고도 불린다.
DE 42 33 393 A1은 하나의 스프링 멤브레인설치를 제안한다. 상기 스프링 멤브레인은 하나의 하우징 그리고 샤프를 따라 재배치가 가능한 원더너트에 고정된다. 익스텐션측정밴드는 스프링 멤브레인의 변형을 검출한다.
DE 198 95 106 C1는 일종의 회전위치센서를 보여준다. 상기 회전위치센서에는 하나의 회전할 수 있는 샤프트와 이 샤프트의 주변에 고정된 하나의 스테이터가 있다. 샤프트와 스테이터 사이의 간극에 나란히 접속되고 서로 반대방향의 코일센스를 가진 두 개의 벌류트 스프링이 설치돼 있으며 상기 두 스프링의 연결 영역에서 하나의 피복 아크 용접봉이 설치되고 이는 하나의 스테이터 고정 전극과 협력하여 일종의 축전기를 형성한다. 샤프트 회전시 두 전극은 둘 다 자기들의 상대위치를 변화시키고 이는 축전기의 용량변화를 초래하며 이 변화는 샤프트가 스테이터를 기준으로 회전한 각도이다.
현대 자동차 전자 공학은 고도로 정밀한 스티어링 샤프트 회전각센서를 필요로 한다. 또한 좋은 선형성, 히스테리시스가 없고, 높은 해상도와 높은 측정속도도 필요하다. 낮은 단위원가와 마찬가지로 마찰소모가 없이 긴 수명 또한 물론 판단기준이다.
상기 측정기어를 가진 센서는 상술한 기준을 만족시키기 위해서는 아주 복잡하고 비싸다. 스프링과 함께 작동하는 상기 센서는 필요로 한 측정정확도를 제공하지 못하며, 특히 필요로 한 해상도를 제공하지 못한다.
본 발명의 목적은 처음에 제기한 회전각 센서를 상술한 기준을 만족시키는, 특히 좋은 해상도를 가진 정밀한 출력신호를 제공하도록 개선하는 것이다.
이 목적은 청구항 1 에 진술된 특징들에 의해 실현된다. 유리한 실시 예 및 본 발명의 추가 방안들은 종속항에 개시되어 있다.
본 발명의 기본적인 아이디어는 두개의 센서를 사용하며, 그중 첫 번째 센서는 샤프트의 위치변화를 직접 측정하고, 두 번째 센서는 하나의 오브젝트의 위치변화를 측정하며, 상기 오브젝트는 두개의 스프링 그룹을 통하여 샤프트 그리고 고정되고 비틀리지 않는 바디와 연결되어 있다.
제1센서는 하나의 제1코딩디스크를 감지하며 이 코딩디스크는 정확하게 샤프트를 따라 회전하며 n회의 회전시 n 주기의 주기적인 각 신호를 산출한다. 이 신호는 높은 해상도의 아주 정밀한 신호이며 '정밀신호" 라고도 불린다. 하지만 샤프트가 가능한 전체 회전 중 몇 번째 회전 중에 있는가는 알 수 없다.
제2센서는 하나의 제2코딩디스크를 감지하며 제2 코딩디스크는 두개의 스프링그룹에 지지되어 있으며 감소된 원주범위 내에서만 샤프트의 회전을 따른다. 제2코딩디스크는 n회 회전의 전체 측정 범위 내에서 제1코딩디스크 보다 더 작은 각도를 회전한다.
제1실시 예에서 샤프트가 360°이상 회전할 때, 특히는 여러 개의 완전회전을 할 때 제2코딩디스크는 360° 이하의 각도를 회전한다. 제2코딩디스크의 각 변위는 상대적으로 작을 수 있다. 예를 들면 단지 몇 도 또는 몇 밀리미터일수 있다. 그리하여 제2코딩디스크에 부속된 센서의 감지범위는 실제로(거의) 선형운동을 수행한다. 일반적으로 제2센서에 의해 두 스프링 혹은 스프링그룹의 힘이 측정되며, 이 힘은 그들과 결합된 물체들의 위치를 결정한다. 그리하여 이 물체는 반드시 링 모양의 코딩디스크여야 하는 것은 아니고 두 스프링 또는 스프링 그룹과 연결된 다른 오브젝트 일 수도 있다. 센서는 또한 익스텐션측정센서와 같은 비 자성센서여도 된다.
실시예에서 제2코딩디스크는 한편으로는 여러 개의 스프링을 통하여 고정된 하우징에 연결되고 다른 한편으로는 적어도 하나의 나선형으로 감긴 벌류트스프링을 통하여 샤프트에 연결된다. 벌류트 스프링은 샤프트의 n회의 완전회전을 감당하게끔 설계되어 있다. 여기서 벌류트 스프링은 원주방향에서 제2코딩디스크에 일종의 힘을 발생하며, 이 힘은 코딩디스크와 하우징 사이에 배치된 스프링의 힘에 대항한다. 따라서 제2코딩디스크에 부속된 센서는 빈약한 해상도의 “거친 신호”를 발생시킨다. 비록 “거친 신호”이지만 이로부터 샤프트가 n회의 완전 회전 중 어느 회전주기에 있는가 하는 것을 유도하기에는 충분하다. 두 가지 신호, 즉 “거친 신호” 와 “정밀 신호”로부터 완전한 회전범위 내에서 샤프트의 회전운동에 관한 아주 정확한 출력신호를 얻을 수 있다.
본 발명의 두 번째 실시예에서 스프링 그룹이 바뀐다. 제2코딩 디스크는 여러 개의 스프링을 통해 샤프트에 직접 연결되고 적어도 하나의 벌류트 스프링을 통해 하우징에 연결된다. 처음에 언급된 스프링은 벌류트 스프링보다 선명하게 낮은 연신율과 굽힘성을 갖는다. 따라서 제2코딩디스크는 주로 샤프트의 회전위치를 따르지만 벌류트스프링의 영향으로 샤프트의 회전각을 따라서 움직이며, 이로 인하여 제2센서의 출력신호는 제1센서의 출력신호와 다른 주기성을 가진다. 두 스프링 그룹의 적합한 진열방식을 통해, 예를 들면 제2센서의 출력신호가 n+1의 주기성을 가질 때 제1선서의 출력신호는 n의 주기성을 가지게 할 수 있다. n > 1이며 자동차에서 일반적으로 2와 4사이이며 여기서 n은 정수가 아니어도 된다, 예를 들면 2.5 또는 3.5여도 된다.
본 발명의 추가 방안에 의하면 두 개의 실시예에 각각 샤프트의 축 방향으로 가까이 나란히 놓여있는 두 개의 벌류트 스프링이 배치되어 있으며, 이 두 스프링은 서로 180° 편향되어 배치된다. 그리하여 벌류트 스프링이 긴장될 때 나타나는 레이디얼 힘이 상쇄되며, 그렇지 않은 경우에는 제2코딩디스크로 하여금 샤프트의 중축선을 마주하여 반경방향에서 위치변화가 생기게 한다. 두 개의 벌류트 스프링의 스프링 특성곡선은 당연히 동일하게 설계되어 있다.
바람직하게는 두 코딩디스크가 자성화 되었고 부속된 센서는 이미 알려진 형식의 자기 센서이다. 물론 다른 유형의 코딩디스크와 센서가 사용될 수도 있다. 예를 들면 상응한 센서를 가진 광학 코드, 정전 용량 코드 또는 옴 코드이다.
자동차의 회전각 센서가 충격과 진동을 받기 때문에, 본 발명의 추가 방안에 의하면 제2코딩디스크는 하나 혹은 여러 개의 감쇠기에 연결되고 인도된다. 특히 간단한 방법에서 이런 감쇠기는 하나의 안내 장치로 구성되고, 이 안내 장치는 적은 백래시로 제2코딩디스크의 축방향에서의 끝부분을 포위한다. 축방향, 그리고 반경방향에서의 진동시 고딩디스크는 이 안내장치에 스쳐닿으며, 이 안내장치는 한편으로는 진동을 제한하고 또 접촉시 생긴 마찰 또한 감쇠된다.
자성화된 디스크가 코딩디스크로 사용시, 본 발명의 추가 방안에 의하면 스크린 판 또는 칸막이 판이 두 개의 고딩 디스크의 자계를 상호 차단하며, 그리하여 하나의 코딩 디스크의 자계는 다른 하나의 코딩디스크의 센서에 영향을 주지 않게 된다. 바람직하게는 스프링 스트랩 자료로 만들어진 벨로우즈스프링 그룹의 스프링들은 세로방향 그리고 굽힘방향에서 스프링탄력이 있다. 이와 반대로 축방향에서는 뻣뻣해서 제2코딩디스크가 축방향에서는 위치변화가 없도록 유지한다. 이 스프링은 지그- 재그 형 흐름이 있기에 지그-재그-스프링이라고도 불리운다. 바람직한 것은 적어도 세 개 혹은 네 개의 이런 스프링들이 상호 등거리로 배치되어 사용되는 것이다.
본 발명의 추가 방안에 따르면 회전각 센서의 제조 사이즈를 축소하기 위하여 두 스프링 그룹은 링 모양의 제2코딩 디스크의 안쪽에 배치된다. 여기서 스프링 그룹의 고정 방식은 실시예의 필요에 따라 선택되는데, 벌류트 스프링 아니면 다른 스프링 그룹(예를 들면 지그-재그-스프링)이 샤프트와 연결되고 두 스프링 그룹의 다른 끝부분은 제2코딩디스크와 연결된다.
다음에 이어서 본 발명은 실시예들과 관련 도면들의 참조하에 더 상세히 설명된다.
도 1은 본 발명의 제1실시예에 의한 회전각센서의 개략적인 종단면도이다.
도 2는 도 1의 라인A-A를 따른 단면도이다.
도 3은 도 1과 도 2에 있는 실시예의 두 센서들의 출력신호들을 나타내는 다이어그램이다.
도 4는 본 발명의 제2실시예에 의한 회전각센서의 종단면도이다.
도 5는 도 4의 라인B-B를 따른 단면도이다.
도 6은 도 4와 도 5에서 언급된 실시예의 두 센서들의 출력신호들을 나타내는 다이어그램이다.
도 7a-c는 본 발명에 사용된 한 스프링그룹의 스프링들의 조감도이다.
도 8은 제2코딩디스크내부에 놓여있는 스프링그룹들을 가진 도 1의 실시예의 변화를 나타낸다.
도 9는 본 발명의 또 하나의 실시예를 나타낸다.
도 1은 본 발명에 따른 회전각센서의 개략적인 횡단면도이다. 회전각센서는 고정하우징(1)에 수용되어 있으며 고정하우징(1)은 샤프트(2)에 의해 관통되어 삽입돼 있으며 회전각α는 고정하우징(1)에 상대하여 측정되어야 하며 또한 360 °이상의 회전범위, 특히 2바퀴 이상의 전체 회전을 측정할 수 있다. 제1코딩디스크(3)는 샤프트(2)에 회전축과 함께 회전할 수 있도록 고정되어 있다. 예를 들어 코딩디스크(3)가 자석화되었을 때 그의 회전은 제1센서(4)에 의해 스캐닝되고, 이 예에서 제1센서(4)는 마그넷센서이고 이는 하나의 전체 회전에서의 회전각α 에 해당되는 전기출력신호U1을 생성한다. 여기서 알 수 있는바, 이 신호는 주기적 신호이며 한 개 주기 즉 360° 이내에서만 대응되는 각도α 를 측정할 수 있지 n × 360 °개의 어떠한 측정 범위에서도 다 가능한 것은 아니다.
샤프트(2)가 어느 회전주기에 있는지 확인하기 위하여 제2코딩디스크(5)(역시 자석화되었을 가능성 있음)는 링 모양으로 샤프트(2)에 설치되어 있다. 고정하우징(1)에 연결되 있는 제2센서(6)는 제2코딩디스크(5)의 회전을 감지할 수 있으며 출력신호 U2를 생성한다.
제2코딩디스크(5)는 여러 개의 스프링(7)에 의해 하우징(1)에 탄성적으로 장착되어 있다. 스프링(7)은 등거리 간격으로 제2코딩디스크주위에 배치되어 있으며 실제 응용상 적어도 세 개, 특히 네 개의 스프링이 필요하다. 스프링(7)은 벨로우즈스프링을 선호하며, 이런 스프링은 회전축방향으로는 고정되어 있고 축방향과 수직으로만 방사형으로 움직일 수 있다. 그리하여 제2코딩디스크(5)가 회전축방향에 따라 움직여서 위치변화가 생기는 가능성이 아주 적다.
또한 제2코딩디스크는 두 개의 벌류트스프링(8과9)에 의해 샤프트(2)에 연결되어 있으며 이 두 벌류트스프링(8과 9)은 평면나선형스프링, 일명 태엽스프링이라고도 한다. 이 스프링은 규격상 샤프트(2)가 n × 360 °(n> 1)회전할 수 있도록 되어 있으며 샤프트(2)의 회전위치에 따라 두 스프링(8과 9)의 압축 또는 이완에 의해 주변에, 정확히 말해서 회전방향으로 제2코딩디스크(5)에 힘이 작용된다. 스프링(7, 8, 9)의 치수에 따라 제2코딩디스크(5)는 하우징(1)을 기준으로 비틀어진다. 그러나 제2코딩디스크(5)는 샤프트(2)의 n × 360 °전체 회전범위에서도 비틀어지는 각도는 360 °이하이다. 제2센서(6)에서 생성된 출력신호U2는 제2코딩디스크(5)의 회전위치를 확인할 수 있고 이는 회전각α에 해당되며 α는 360°보다 클 수도 있다.
샤프트(2)가 몇 번째 전체 회전중에 있는가 하는 것을 신호 U2를 통해서 쉽게 확인할 수 있다. 그리하여 신호U2는 거친 신호로 지칭되며 반면에 신호U1은 현저하게 높은 해상도를 가지고 있으며 따라서 정밀신호로 지칭될 수 있다. 거친 신호는 자동차 스티어링 각센서에 일반적으로 필요로 하는 측정의 정확도를 충분히 만족시키지 못한다.
원칙적으로 벌류트스프링(8과9) 중에 하나만 있으면 충분하지만 각스프링 압축시 화살표(11 과 12) 방향으로 발생하는 반경방향힘이 나타날 수 있으며 이로 인하여 제2코딩디스크(5)는 중심위치로부터 반경방향으로 변위될 문제가 생긴다. 이러한 이유로 가능한 가까이 나란히 위치한 벌류트스프링(8과 9)은 서로 180°로 편향되어 샤프트(2)에 고정되어 제2코딩디스크(5)를 고정시키는데 필요하다. 벌류트스프링(8과 9)이 압축되어 생기는 반경방향힘(화살표(11과12))은 대치되지만 크기가 동일하므로 서로 상쇄된다. 두 개의 코너스프링이 충분히 가까이 나란히 있으면 아직 남아있는 틸팅모멘트는 반대로 작용하는 스프링(7)의 힘에 비하면 무시할 수 있다. 제2코딩디스크는 벨로우즈스프링(7)에도 불구하고 자동차에서 발생하는 것처럼 충격이나 진동시 탄성설치를 통하여 회전축방향과 반경방향으로 움직여서 제2센서(6)의 측정결과를 왜곡하는 가능성을 배제할 수 없다. 이를 방지하기 위하여 제2코딩디스크(5)는 별도로 하우징(1)에 고정되어 있는 댐핑부재(13)에 인도된다. 이 댐핑부재(13)들은 각각 축방향끝에서의 작은 움직임으로 링 모양의 제 2코딩디스크를 포위하고 있다. 진동 시 제2코딩 디스크(5)는 댐핑부재(13)를 스치면서 그로 인해 생기는 기계학적 마찰에 의해 더 강한 움직임을 방해한다. 이런 접촉이 끝나는 대로 제2코딩디스크(5)는 스프링(7, 8, 9)에 의해 다시 정확한 회전위치에 놓여진다.
여기서 유의해야할 것은 코딩디스크(3과 5)는 둘 다 다른 방법으로도 자성코딩될 수 있다는 것이다. 센서(4와 6)가 둘 다 상응한 광학센서일 때 특히 광학표식이 가능하다.
일번적인 경우 코딩디스크의 외주변을 오믹 저항으로 코딩하고 센서(4와6)를 슬라이더 콘택트로 사용하는 것도 가능하다.
도 2는 도 1의 라인A-A를 따른 단면도 즉, 두 벌류트스프링(8, 9)(volute spring)들의 상면도이다. 도 2에서 상세하게 볼 수 있는바, 두 벌류트스프링(8, 9)은 180 각도로 서로 편향되어 있다. 두 벌류트스프링(8, 9)들의 각 내측단부(15, 17)들은 샤프트(2)의 중심을 통과하는 한 라인(21)에 놓여있다. 또한 벌류트스프링(8, 9)의 외측 단부(14와 16)는 라인(21 ')에 투영되며 라인(21')은 샤프트(2)와 코딩디스크(5)가 상대적 회전운동을 하는 경우에만 라인(21)과 일치하다.
샤프트(2)는 도 2에서 내측단부(15, 17)들과 외측 단부(14, 16)들 사이에 배치되어 있다. 물론, 샤프트(2)가 내측단부(15, 17)들과 외측 단부(14, 16)들의 동일한 위치에 배치되어 있도록 내측단부(15, 17)들과 외측 단부(14, 16)들을 고정할 수도 있다. 상기 두 경우에 반경방향의 힘들은 스프링(8, 9)들이 상대적으로 180도 각도로 회전되어 있을 경우, 화살표(11과 12)로 표시된 방향에서 서로 상쇄된다.
자화된 코딩디스크(3, 4)를 사용 시, 두 코딩디스크(3과 5)의 자계들이 서로 영향주지 않게 하기 위해 절단디스크(18)를 추가로 두 코딩디스크(3, 5)사이에 배치한다. 이 자성재료로 된 절단 디스크(18)는 샤프트(2)에 회전불가능하게 접속되어 있다.
도 3은 4개의 전체 회전, 즉 4360, 다시 말하면 1440의 측정범위에서 센서(4와 6)가 생성한 출력신호 U1과 U2를 보여준다. 하우징(1)의 내부 또는 외부에 배치된 평가회로(19)는 출력신호U1과 U2 둘 다 수신할 수 있으며 이로부터 예를 들면 콤퍼레이터의 감시를 통해 얻을 수 있는 역치 S1부터 S4까지 하나의 정수치n(U2에 관한 약도에서 묘사한 n1, n2, n3, n4)을 얻을 수 있다. 측정된 각도는 n360+ U1에 해당한다. 이렇게 쉬운 방법으로 각에 대한 정밀회전위치신호를 얻을 수 있다.
도 4와 도 5는 본 발명의 두 번째 실시예를 보여준다. 여기서 벌류트스프링(8과 9) 그리고 벨로우즈 스프링(7)은 다르게 배치된다. 벨로우즈 스프링(7)의 하나의 단부는 회전불가능하게 샤프트(2)에 연결되고 다른 하나의 단부는 제2코딩디스크(5)에 연결되어 있다. 벌류트스프링(8과 9)은 둘 다 각각 하나의 단부로는 제2코딩디스크(5)에, 다른 하나의 단부로는 하우징(1)에 고정되어 있다. 도 4와 도 5의 실시예에서 하우징(1)은 슬리브(20)를 갖는데 이 슬리브는 샤프트(2)를 약간의 간격을 두고 둘러싸고 있다. 벌류트스프링(8과9) 그리고 스프링(7)은 서로 가능한 먼 간격으로 평형되게 놓여있고 그리하여 코딩디스크(5)와 샤프트(2) 사이에 위치한다.
그렇지 않으면 제1코딩디스크(3), 제1센서(4), 절단디스크(18) 그리고 댐핑요소(13)등 나머지 요소들은 도 1과도 2의 실시예와 같은 방식으로 배치된다. 두 벌류트스프링(8과 9)도 각각 서로 180도 비틀어져 배치된다.
이 배치에서 제2코딩디스크(5)는 샤프트(2)와 함께 가능한 많이 회전한다. 이것은 스크링(7)이 상대적으로 좁은 확장영역, 즉 탄성영역을 가지고 있기 때문이다. 샤프트(2)가 여러 회의 전체회전을 수행하면 제2코딩디스크(5)도 따라서 여러 회의 전체회전을 수행한다. 그렇지만 샤프트(2)가 회전시 벌류트스프링(8과 9)은 압축으로 인하여 원주방향으로 작용하는 힘을 생성하는데 이 힘은 스프링(7)의 구동력과 반대로 작용한다. 이리하여 샤프트(2)의 제2코딩디스크(5)도 이들의 회전에 따라서 회전한다. 이 후행각은 여기서 샤프트(2)의 회전각α 의 함수이며 상용 벌류트스프링인 경우 회전각α랑 선형종속 관계이다. 스프링(7,8과9)들이 처한 위치에 따라서 제2센서(6)의 출력신호로서 도 6에 묘사한 바와 같은 곡선이 이루어지며 이 곡선은 제1센서(4)의 출력신호U1과 다른 순환주기성을 가진다.
회전각α는 이미 알려진 방법, 예를 들면 DE 100 48 911 C1 와DE 198 49 554 C1에서 묘사한 바와 같이, 즉 출력신호 U1 과 U2 의 차이의 형성을 통해 결정된다.
센서(4)와 센서(6)가 사인- 과 코사인 형태의 출력신호를 발생할 경우, 각α 도 따라서 계산된다. 이것 역시 이미 알려진 방법 DE 195 39 134 C2 혹은 DE 197 47 753 C1, DE 199 62 241 A1, DE 195 39 134 A1, DE 198 49 554 C1에서 묘사한 바와 같다. 상기 문헌들 모두는 본 문에 참조문헌으로 본 출원서에 포함된다.
도 6은 U2에서 U1을 뺀 차이를 도시한다. 각α를 위한 연속된 선형 각 신호를 얻기 위하여 차이 형성이 마이너스로 나타날 때 이미 알려진 방법에 따라 정정된다.
도 7은 단면도로 스프링(7)의 다양한 변형방식을 보여준다. 이 스프링은 편평한 스프링스트랩강으로부터 지그-재그형으로 휘여진다. 도 7a는 반원모양으로 휘여진 상태고 도 7b와 7c는 휜 부분에만 반경이 존재하며, 그 사이에 직선부분도 있다.
중요한 것은, 스프링(7)은 종축을 상대로 휘여질 수 있을 뿐만 아니라 종축을 상대로 길이를 변화시킬 수 도 있다. 더 유리한 것은, 스프링(7)이 샤프트(2)의 축방향으로 강성이 가능한 큰 경우, 이로 인하여 제2코딩디스크의 축방향에서의 상태가 안정한 것이다.
원칙상, 다른 스프링이 사용될 수 도 있다. 예를 들면 나선형 스프링, 리프 스프링, 벌류트 스프링, 시계 스프링인데 여기서 이 스프링들은 다른 스프링 그룹의 벌류트스프링보다 강성이 커야 한다, 즉 하나의 가파른 특성곡선이 있어야 한다. 이 스프링이 회전축의 축방향에서 휘기 쉬우면 댐핑 요소(13)는 제2코딩디스크의 위치를 보장한다. 또한 주목해야 할 것은, 실시예 1에서 언급했던 하우징(1)은 일반적으로 말해서 하나의 고정된 물체, 예를 들면 자동차의 바디부분이지 꼭 회전 각 센서의 구성 성분이 아니어도 된다. 물론 그것이 샤프트에 상대적으로 고정되어 센서의 하우징이 될 수 있는 회전 각 센서의 구조적 구성 성분이면 바람직하다.
도 1과 도 2의 실시예에서 더 큰 제2코딩디스크의 더 큰 회전 각도를 달성하기 위해, 스프링(7)은 하나 혹은 여러 개의 나선형의 벌류트스프링으로 구성될 수도 있다. 다만 보증되어야 할 것은 샤프트(2)의 n*360°의 완전 회전 범위 내에서 제2코딩디스크의 회전각도가 360°이하여야 한다는 것이다. 일반적으로 이러한 변형방식은 또한 도 4와 도 5의 실시예에도 적용된다. 이 벌류트 스프링이 샤프트(2)의 축방향으로 휘기 쉬운 경우, 반드시 제2코딩디스크의 축의 위치를 보장해야 한다.
도 8과 도 4의 차이점은 바로, 두개의 스프링 그룹이 한편으로는 스프링(7)과, 다른 한편으로는 스프링(8, 9)과 교환되고, 이로 인해 도 1의 실시예의 효과에 도달하며, 다시 말하면 제 2코딩디스크(5)는 스프링(7)을 통하여 하우징에 연결되어 있고 또한 하우징에 밀접하게 둘러싸여 있는 슬리브(20)와 연결되기도 한다. 그리하여 제2코딩디스크(5)는 실시예1에서와 같이 매우 제한된 회전운동만 수행할 수 있다.
도 8이 결과적으로 도 1의 실시예와 다른 점은 스프링(7)이 제2코딩디스크의 안쪽에 위치하고 하우징(1)에는 슬리브(20)가 존재한다는 것이다.
또한 주목해야 할 것은 이론적으로 도 4의 실시예에서 벌류트 스프링(8과9)은 제2코딩 디스크(5)의 외면에 설정하고 그들의 다른 한쪽 끝은 하우징(1)에 고정될수 있다.
도 9는 본 발명의 다른 하나의 실시예의 도해식 단면도이다. 여기서 상술한 실시예 중의 제2코딩디스크 대신에 하나의 벌류트 스프링(8)과 또 하나의 스프링(7) 사이에 유지되어 있는 오직 하나의 오브젝트(5)만 존재한다. 벌류트 스프링(8)의 한쪽 끝은 샤프트(2)에 연결되어 있다. 스프링(7)의 한쪽 끝은 고정된 물체(1)에 연결되어 있으며 이 물체는 회전축(2)에 상대적으로 이행이 가능하지 않으며 일반적으로 회전각 센서의 구성요소가 아니어도 되며, 또한 예를 들면 차체의 바디부분이다. 물론 회전각 센서의 하우징일 수도 있다. 오브젝트(5)는 하나의 짧은 마그넷일 수 도 있으며 여기에 제2센서(6)가 귀속되며 이 센서 자체는 또한 고정상태를 유지한다. 따라서 센서(6)는 물체(5)의 상대적 위치를 검출하고 스프링(7과 8)의 배치와 진열상태에 따라 상술한 실시예에서처럼 꼭 샤프트(2)의 환상궤도에 따라 움직여야만 하는 것은 아니다. 오브젝트(5) 자체가 환상궤도위에서 움직이지 않음에도 불구하고 오브젝트(5)의 공간 위치는 스프링(7과8)의 상호장력에 의해 결정되며 그리하여 또한 샤프트(2)의 회적 각도에 의해서 결정된다. 그럼에도 불과하고 오브젝트(5)의 공간위치로부터 샤프트가 n개의 가능한 회전주기 중 어느 주기에 처해 있는지를 확인할 수 있다.
회전 위치 센서의 나머지 필요한 구성요소들, 즉 제1코딩디스크(3) 그리고 부속된 제일 센서(4)는 도 9에 도식되지 않았지만 상응하게 도 1부터 8까지의 도면에서 볼 수 있다.
도 9에서 특별히 선명하게 볼 수 있는바 제2센서(6)는 오브젝트(5)의 위치를 검출할 수 있지만 회전각위치는 꼭 검출할 수 있는 것은 아니다.

Claims (17)

  1. 두 개의 센서(4, 6)들 - 샤프트(2)의 회전위치를 측정하는 제1센서(4)와,
    적어도 하나의 제1스프링(7; 8, 9)에 의해 샤프트(2)와, 그리고 적어도 하나의 제2스프링(8, 9; 7)에 의해 샤프트(2)와 상대적으로 회전할 수 없는 바디(1)와 연결되어 있는 한 오브젝트(5)의 위치를 측정하는 제2센서(6) - 을 포함한 샤프트(2)의 회전위치를 측정하는 회전 각 센서.
  2. 청구항 1에 있어서,
    여러 개의 상기 제1스프링(8, 9)들을 포함한 제1스프링그룹과
    여러 개의 상기 제2스프링(7)들을 포함한 제2스프링그룹을
    특징으로 하는 회전 각 센서.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 샤프트(2)와 함께 회전할 수 있도록 고정되어 있는 상기 제1코딩디스크(3)를 스캐닝하여, 상기 샤프트의 회전각(α)과 상응되는 한 출력신호(U1)를 생성하는 상기 제1센서를
    특징으로 하는 회전 각 센서.
  4. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 오브젝트(5)는 제2코딩디스크이고,
    상기 제2센서(6)는 상기 오브젝트(5)의 회전위치에 상응되는 제2출력신호(U2)를 생성하는 것을
    특징으로 하는 회전 각 센서.
  5. 청구항 2 내지 청구항 4 중 어느 한 항에 있어서,
    적어도 하나의 스프링그룹이 한 나선형의 벌류트스프링(8, 9)을 포함하고,
    상기 벌류트스프링은 샤프트(2)의 회전범위 전부를 커버할 수 있도록 규격이 정해지고 장치되어 있는 것을
    특징으로 하는 회전 각 센서.
  6. 청구항 5에 있어서,
    상기 오브젝트(5)는, 두 개의 서로 같은, 서로 가까이, 나란히, 그리고 서로180°로 편향으로 위치되어 있는 상기 벌류트스프링(8, 9)들을 통하여 상기 샤프트(2), 혹은 상기 바디(1)와 연결되어 있는 것을
    특징으로 하는 회전 각 센서.
  7. 청구항 2 내지 청구항 5 중 어느 한 항에 있어서,
    상기 스프링그룹들 중 하나의 스프링그룹이 여러개의 지그-재그형으로 굽혀진 스프링스트랩스프링을 포함하고,
    최저 3개의 이러한 스프링(7)들은 서로 동일한 간격으로 상기 샤프트(2)를 중심으로 배치되어 있는 것을
    특징으로 하는 회전 각 센서.
  8. 청구항 5 내지 청구항 7 중 어느 한 항에 있어서,
    상기 벌류트스프링(8, 9)들이 상기 샤프트(2)와 상기 제2코딩디스크(5)에 고정되어 있고,
    상기 다른 스프링그룹의 스프링(7)들이 상기 제2코딩디스크(5)와 하우징(1)에 고정되어 있는 것을
    특징으로 하는 회전 각 센서.
  9. 청구항 5 내지 청구항 7 중 어느 한 항에 있어서,
    상기 벌류트스프링(8, 9)들이 상기 하우징(1)과 상기 제2코딩디스크(5)에 고정되어 있고,
    상기 다른 스프링그룹의 스프링(7)들이 상기 샤프트(2)와 상기 제2코딩디스크(5)에 고정되어 있는 것을
    특징으로 하는 회전 각 센서.
  10. 청구항 2 내지 청구항 9 중 어느 한 항에 있어서,
    상기 두 스프링그룹들의 스프링(7; 8, 9)들이 제2코딩디스크(5)의 내부에 배치되어 있는 것을
    특징으로 하는 회전 각
  11. 청구항 4 내지 청구항 10 중 어느 한 항에 있어서,
    제2코딩디스크(5)가 댐핑부재(13)에 의해 축방향과 반경방향으로 유도되는 것을
    특징으로 하는 회전 각 센서.
  12. 청구항 4 내지 청구항 11 중 어느 한 항에 있어서,
    상기 코딩디스크(3, 5)들이 둘 다 자화되어 있고,
    부속된 상기 센서(4, 6)들은 마그넷 센서들임을
    특징으로 하는 회전 각 센서.
  13. 청구항 12에 있어서,
    서로 축방향으로 엇갈리게 배치되어 있는 상기 두 코딩디스크(3, 5)사이에 배치되어 있는, 두 코딩디스크(3, 5)들의 자계들을 서로 차단시키는 절단디스크(18)를
    특징으로 하는 회전 각 센서.
  14. 청구항 1 내지 청구항 13 중 어느 한 항에 있어서,
    상기 바디(1)가 회전 각 센서의 한 구조구성부품인 것을
    특징으로 하는 회전 각 센서.
  15. 청구항 1 내지 청구항 13 중 어느 한 항에 있어서,
    상기 바디(1)가 회전 각 센서에 인접되어 있는 한 구성부품인 것을
    특징으로 하는 회전 각 센서.
  16. 청구항 1 내지 청구항 13 중 어느 한 항에 있어서,
    상기 바디(1)가 회전 각 센서의 한 부위이고, 비틀어지지 않는 것을
    특징으로 하는 회전 각 센서.
  17. 청구항 1 내지 청구항 13 중 어느 한 항에 있어서,
    상기 바디(1)가 회전각센서의 한 하우징인 것을
    특징으로 하는 회전 각 센서.
KR1020147015841A 2011-11-21 2012-11-10 회전각센서 KR101968791B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102011118928.2A DE102011118928B4 (de) 2011-11-21 2011-11-21 Drehwinkelsensor
DE102011118928.2 2011-11-21
PCT/EP2012/004685 WO2013075796A1 (de) 2011-11-21 2012-11-10 Drehwinkelsensor

Publications (2)

Publication Number Publication Date
KR20140101357A true KR20140101357A (ko) 2014-08-19
KR101968791B1 KR101968791B1 (ko) 2019-08-13

Family

ID=48221989

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147015841A KR101968791B1 (ko) 2011-11-21 2012-11-10 회전각센서

Country Status (7)

Country Link
US (1) US9366523B2 (ko)
EP (1) EP2782810B1 (ko)
JP (1) JP6216720B2 (ko)
KR (1) KR101968791B1 (ko)
CN (1) CN104053589B (ko)
DE (1) DE102011118928B4 (ko)
WO (1) WO2013075796A1 (ko)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103925933B (zh) * 2013-01-11 2016-12-28 江苏多维科技有限公司 一种多圈绝对磁编码器
DE102015202733A1 (de) * 2015-02-16 2016-08-18 Robert Bosch Gmbh Sensoranordnung zur Erfassung von Drehwinkeln eines rotierenden Bauteils in einem Fahrzeug
US9868212B1 (en) * 2016-02-18 2018-01-16 X Development Llc Methods and apparatus for determining the pose of an object based on point cloud data
TWI570391B (zh) * 2016-05-18 2017-02-11 虹光精密工業股份有限公司 具有交錯配置的編碼轉輪的旋轉編碼器
US11125583B2 (en) * 2016-09-23 2021-09-21 Suzhou Littelfuse Ovs Co., Ltd. Integrated dual rotary position sensor
CN106976478B (zh) * 2017-04-20 2020-12-15 中原内配(上海)电子科技有限公司 一种车辆及角行程电控执行器
US10641597B2 (en) * 2018-02-22 2020-05-05 Bell Helicopter Textron Inc. Method and apparatus for a precision position sensor
US20200158541A1 (en) * 2018-11-21 2020-05-21 Hiwin Mikrosystem Corp. Position detecting device for rotary shaft
CN111412824B (zh) * 2020-04-21 2021-09-24 上海舜诺机械有限公司 一种扭矩传动轴扭转角度测量机构
KR20220067904A (ko) * 2020-11-18 2022-05-25 주식회사 만도 조향 장치 및 조향 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187886A (ja) * 1992-01-10 1993-07-27 Koyo Electron Ind Co Ltd ロータリーエンコーダ
JPH1151607A (ja) * 1997-08-07 1999-02-26 Yazaki Corp 舵角検出装置
DE19900330A1 (de) * 1998-01-07 1999-07-08 Alps Electric Co Ltd Drehwinkelsensor, Drehmomentsensor mit einem Drehwinkelsensor und Servo-Lenkvorrichtung, die einen derartigen Drehmomentsensor verwendet
JP2006133208A (ja) * 2004-11-06 2006-05-25 Kouichi Yamanoue 回転検出器
JP2007248172A (ja) * 2006-03-15 2007-09-27 Jtekt Corp 回転位置センサ、複合回転位置センサ及び電動パワーステアリング装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2341358C2 (de) * 1973-08-16 1983-03-10 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Drehpotentiometer
DE8912785U1 (de) * 1989-10-28 1989-12-28 Preh-Werke GmbH & Co. KG, 97616 Bad Neustadt Tandem-Potentiometer
DE4028246A1 (de) 1990-09-06 1992-03-19 Edgar Beier Beruehrungsfreie messvorrichtung fuer drehmoment und/oder drehwinkel
DE9013001U1 (de) * 1990-09-12 1990-11-15 Wilhelm Ruf KG, 8000 München Drehwinkelgeber, insbesondere Lenkwinkelgeber für Kraftfahrzeuge
DE4125884A1 (de) * 1991-08-05 1993-02-11 Zahnradfabrik Friedrichshafen Drehwinkelsensor
DE4233393A1 (de) * 1992-10-05 1994-04-07 Teldix Gmbh Einrichtung zur analogen Weg- oder Winkel-Kodierung
DE19506938A1 (de) * 1995-02-28 1996-08-29 Bosch Gmbh Robert Verfahren und Vorrichtung zur Winkelmessung bei einem drehbaren Körper
DE19539134C2 (de) * 1995-10-20 2001-05-23 Ruf Electronics Gmbh Auswerteverfahren für berührungslos messende Weg-/Winkelaufnehmer mit sinusförmigen Spursignalen
DE19747753C1 (de) * 1997-10-29 1999-05-12 Ruf Electronics Gmbh Verfahren zum Ermitteln des Phasenwinkels bei Positionsgebern mit sinusförmigen Ausgangssignalen
DE19805106C1 (de) * 1998-02-09 1999-03-25 Kostal Leopold Gmbh & Co Kg Vorrichtung zum Erfassen einer vordefinierten absoluten Nullstellung zwischen einem um seine Längsachse in beiden Richtungen drehbaren zylindrischen Körper und einem feststehenden zylindrischen Körper
DE19835688A1 (de) 1998-08-07 2000-02-10 Piesteritz Stickstoff Verfahren zur Herstellung von Cellulosecarbamat
DE19849554C1 (de) * 1998-10-27 2000-03-02 Ruf Electronics Gmbh Verfahren und Vorrichtung zur Bestimmung der Absolutposition bei Weg- und Winkelgebern
US6170162B1 (en) * 1999-05-27 2001-01-09 Sarcos, L.C. Rotary displacement system using differential measuring
DE19937120C2 (de) * 1999-08-06 2003-05-15 Valeo Schalter & Sensoren Gmbh Lenkwinkelmesseinrichtung
DE19962241A1 (de) * 1999-12-22 2001-07-12 Ruf Electronics Gmbh Positionssensor
DE10048911C1 (de) 2000-10-02 2002-04-25 Ruf Electronics Gmbh Verfahren und Vorrichtung zur Bestimmung der Absolutposition bei Weg- und Winkelgebern
DE10102957A1 (de) * 2001-01-23 2002-07-25 Heidenhain Gmbh Dr Johannes Winkelmeßsystem
JP2003202224A (ja) * 2001-12-28 2003-07-18 Niles Parts Co Ltd 回転角検出装置
JP4407120B2 (ja) * 2002-01-08 2010-02-03 トヨタ自動車株式会社 車両用操舵装置
JP2005077305A (ja) 2003-09-02 2005-03-24 Matsushita Electric Ind Co Ltd 回転角度およびトルク検出装置
DE102005007259B4 (de) * 2005-02-16 2007-04-19 Berger Lahr Gmbh & Co. Kg Positionsmessvorrichtung
JP2010230384A (ja) * 2009-03-26 2010-10-14 Citizen Holdings Co Ltd 機械式時計用調速装置
US8729887B2 (en) * 2009-11-09 2014-05-20 Aisan Kogyo Kabushiki Kaisha Rotation angle sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187886A (ja) * 1992-01-10 1993-07-27 Koyo Electron Ind Co Ltd ロータリーエンコーダ
JPH1151607A (ja) * 1997-08-07 1999-02-26 Yazaki Corp 舵角検出装置
DE19900330A1 (de) * 1998-01-07 1999-07-08 Alps Electric Co Ltd Drehwinkelsensor, Drehmomentsensor mit einem Drehwinkelsensor und Servo-Lenkvorrichtung, die einen derartigen Drehmomentsensor verwendet
JP2006133208A (ja) * 2004-11-06 2006-05-25 Kouichi Yamanoue 回転検出器
JP2007248172A (ja) * 2006-03-15 2007-09-27 Jtekt Corp 回転位置センサ、複合回転位置センサ及び電動パワーステアリング装置

Also Published As

Publication number Publication date
JP6216720B2 (ja) 2017-10-18
DE102011118928B4 (de) 2017-12-07
EP2782810A1 (de) 2014-10-01
US20140320120A1 (en) 2014-10-30
WO2013075796A1 (de) 2013-05-30
CN104053589B (zh) 2017-08-04
JP2015500458A (ja) 2015-01-05
KR101968791B1 (ko) 2019-08-13
CN104053589A (zh) 2014-09-17
EP2782810B1 (de) 2017-05-03
DE102011118928A1 (de) 2013-05-23
US9366523B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
KR20140101357A (ko) 회전각센서
US8890514B2 (en) Magnetic multi-periodic absolute position sensor
US7276899B2 (en) Positional transducer and motor driven gear changer for a bicycle
US7307416B2 (en) Position sensor and assembly
JP5189206B2 (ja) 磁場方向の測定値とフラックスコレクタとを用いる磁気位置センサ
JP6410732B2 (ja) 多極カウントモータのための一体型多回転絶対位置センサ
KR101597639B1 (ko) 앱솔루트 인코더 장치 및 모터
JP4209155B2 (ja) 回転角検出装置
JP4165422B2 (ja) 液面検出装置
JP5766208B2 (ja) 回転角センサ
JP6301970B2 (ja) 磁気リニアまたはロータリエンコーダ
US11448524B2 (en) Multipole magnet for use with a pitched magnetic sensor
US6271663B1 (en) Rotation detector operable to measure magnetism direction change
US6528990B1 (en) Magnetostrictive linear displacement transducer for a vehicle steering system
JP2009002827A (ja) 回転角度検出装置
JP2008216019A (ja) トルクセンサ及び電動式パワーステアリング装置
US20060174499A1 (en) Device for determining an absolute angle of rotation
EP4278154B1 (fr) Capteur de position sans contact comportant un aimant permanent
KR100866904B1 (ko) 자기장의 각도변화를 이용한 위치센서
US20240159570A1 (en) Magnet sensor and ferromagnetic poles
KR102114125B1 (ko) 조향 장치용 토크 센서
CN110873581A (zh) 量测旋转轴偏摆与角度位置的磁性编码器及其装置
JP2011064604A (ja) 永久磁石エンコーダの検査方法及び検査装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant