[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20130043921A - 미세구조의 세포배양 기판 - Google Patents

미세구조의 세포배양 기판 Download PDF

Info

Publication number
KR20130043921A
KR20130043921A KR1020110108110A KR20110108110A KR20130043921A KR 20130043921 A KR20130043921 A KR 20130043921A KR 1020110108110 A KR1020110108110 A KR 1020110108110A KR 20110108110 A KR20110108110 A KR 20110108110A KR 20130043921 A KR20130043921 A KR 20130043921A
Authority
KR
South Korea
Prior art keywords
substrate
cell culture
culture substrate
microparticles
microstructure
Prior art date
Application number
KR1020110108110A
Other languages
English (en)
Other versions
KR101355001B1 (ko
Inventor
김재호
김효섭
이광
민병현
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Priority to KR1020110108110A priority Critical patent/KR101355001B1/ko
Publication of KR20130043921A publication Critical patent/KR20130043921A/ko
Application granted granted Critical
Publication of KR101355001B1 publication Critical patent/KR101355001B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/04Flat or tray type, drawers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Rheumatology (AREA)
  • Clinical Laboratory Science (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명의 세포배양 기판은, 3차원적 세포 배양 환경을 효과적으로 제공하기 위해 중요하게 고려되어야 할 몇 가지 관점을 만족시키는 미세구조를 갖는다. 이러한 미세구조는 꽃 유사 형상의 3차원 미소 펠렛 형태로 세포 배양 및 응집이 일어나며, 세포 배양시 탈분화를 억제하고 재분화를 촉진하고, 세포 골격 구조의 발달을 억제하며, 세포의 유동성 및 이동성을 증가시킨다.

Description

미세구조의 세포배양 기판{Fine-structured Substrate For Cell Culture}
본 발명은 세포 배양 특성이 우수한 미세구조를 갖는 세포배양 기판에 관한 것이다.
의료기술 및 생명공학 기술이 급속히 발전되면서 세포수준에서 생명활동을 관찰하고 특성을 부여하는 기술인 세포공학에 대한 연구가 활발히 이루어지고 있다. 최근의 세포공학관련 기술은 기초적인 배지조성 조절 및 약물처리를 통한 연구 단계에서 세포가 흡착하고 성장하는 지지체에 특수한 기능을 부여하는 단계로 변화되고 있다. 지지체에 대한 연구 방향은 기존의 세포의 흡착 및 증식을 돕도록 이온성 물질 및 생체 유래 물질을 플라스틱이나 무기물에 코팅하는 방법에서 미세 가공기술을 통해 지지체 표면에 미세구조를 형성시키고 이를 통해 세포의 특성을 조절하는 방법으로 빠르게 발전되고 있다.
세포의 생존을 위해서는 세포막을 통한 물질의 수송 및 세포막에 부유상태로 존재하는 막 단백질을 통한 신호전달이 필요하며, 지지체 표면의 미세구조는 이러한 세포막을 원하는 형태로 변형시켜 세포의 흡착 및 증식, 분화 특성을 조절하는 방법으로 이용이 가능하다. 이미 미세구조에 의해 세포의 흡착 및 증식을 조절하는 연구들이 2000년 중반 이후로 급속히 보고되고 있으며, 이러한 특성 조절이 기존의 약물과 병행하여 적용됨으로써 기존의 세포공학적인 한계점들을 해결할 수 있을 것으로 예견되어진다.
세포 배양을 위한 미세구조 지지체의 제조방법은 3가지 방법이 널리 이용되며 다음과 같은 특징을 지닌다.
1) Photo-lithography method : 기존 반도체 제조공정을 이용하여 원하는 형태로 최소 10 ~ 100 nm 수준의 선폭을 지니는 기판을 제작한다. 보통 수 μm 면적의 소형기판의 제작만이 가능하며, 높은 제조비용으로 인하여 세포 특성연구 분야에 제한적으로 사용된다.
2) Particle-coating method
: 수십 ~ 수백 nm의 구형 파티클을 기판위에 코팅하여 파티클에 의한 불규칙적인 구조를 가지는 기판을 제작한다. 스핀코팅 방법 등을 통해 ~ 15 cm 직경의 대형 기판 제작이 가능하고, 제조비용이 저렴하여 가장 상업적인 응용이 가능하다. 하지만 불규칙적인 구조를 지니며, 기판의 균일도 및 재현성이 떨어지는 문제가 있다.
3) Etching method
: 금속 표면을 전해질용액 상에서 전기를 흘려주어 산화된 금속 표면에 규칙적인 pore를 형성한다. 전압이나 전해질의 조성을 조절하여 다양한 크기의 pore를 제작할 수 있으나, pore의 직경이 증가할수록 세포가 흡착될 수 있는 면적이 급격히 감소되어 지지체로 사용이 어려워진다. 직경 조절 이외의 원하는 형태로의 구조형성은 불가능 하며, 제조비용은 저렴하다.
일본공개특허 제2010-193743호
종래의 단층배양환경의 세포 배양 기판은 세포배양 중 세포가 빠르게 고유 특성을 상실하는 (탈분화) 문제점이 있으며, 이는 세포 골격 구조의 발달로 인한 세포의 유동성 및 이동성이 저하되는 특징이 수반된다.
본 발명은 상기의 문제점을 개선할 수 있는, 세포 배양시 세포 고유특성을 유지하거나 또는 원하는 방향으로 세포의 분화를 촉진하는 특징을 가지는 세포 배양 기판을 제공하는 것을 목적으로 한다.
세포의 성장 및 분화에 있어서 세포는 수십 nm 이하의 단백질 및 세포막 구조를 통해서 주변 환경을 인식하고 그에 맞추어 자신의 상태를 결정하게 된다. 세포 배양시 탈분화를 억제하고 재분화를 촉진하기 위해서, 세포들이 서로 접촉할 수 있는 3차원적 환경을 제공하는 것이 중요하다.
3차원적 환경을 제공하기 위한 방법으로서, 기판 표면에 미세입자를 도포함으로써 미세구조를 도입하는 것을 고려하였다. 이에 대해 연구하던 중 몇 가지 인자들이 세포 배양에 있어 중요하게 작용할 수 있음을 발견하였다(본 명세서에서의 “미세”란 용어는 나노 크기부터 마이크로 크기 범위내 인 것을 의미한다).
그 하나로서, 기판 표면에 도포된 미세입자의 입경과 표면 거칠기의 상관관계가 중요함을 발견하였다. 미세입자의 입경 대비 표면 거칠기가 특정 범위를 넘어서는 경우에는 미세입자의 불규칙한 배열로 인해 세포들에게 고른 표면환경을 제공하기 어려워 우수한 재현성 확보가 어려운 점 등 세포 배양 특성이 떨어지는 것으로 나타났다. 이에 비해 미세입자의 입경 대비 표면 거칠기가 특정값보다 낮은 경우 재현성 등 세포 배양 특성이 우수한 것으로 나타났다.
미세입자의 입경과 표면 거칠기의 상관관계는 다음과 같은 것이 좋다. 즉, 기재상에 미세입자가 배열되어 형성된 박막이 구비된 세포 배양기판으로서, 구형의 미세입자 배열에 의해 얻어지는 표면 특성이 다음을 만족하는 세포 배양기판인 것이 좋다.
Rq ≤0.13D
여기서, Rq는 표면 거칠기(Surface Roughness)이며, D는 미세입자의 평균입경을 나타낸다. 상기 범위를 벗어나는 경우 불규칙한 배열이 늘어나고 배양과정에서 세포 간 노출환경이 변화되어 재현성 있는 결과 도출이 어렵게 된다. 재현성에 문제가 있는 경우에는 상용화에 큰 걸림돌이 될 수 있기 때문에 중요한 요소가 된다.
보다 바람직하기로는 다음의 식을 만족하는 것이 좋다.
Rq ≤0.12D
특히, 탈분화 억제, 재분화 유도, 및/또는 세포 골격 구조 발달의 억제, 3차원 미소 펠렛 형성 유도 등 세포 배양 특성을 더욱 우수하게 가져가기 위해서는 다음의 조건을 만족하는 것이 좋다. 상기 미세입자의 평균입경은 250nm ~ 10㎛의 범위, 더 좋기로는 300nm ~ 3㎛ 범위인 것이 좋다. 상기 범위 미만에서는 도 11에서와 같이 세포의 골격구조 발달 형성 저해 효과가 줄어들어서 연골세포로 재분화 되는 효과가 감소한다. 상기 범위를 초과하는 경우 산란에 의한 위상차 현미경의 관찰이 어려워져서 배양시 세포상태의 실시간 관찰을 할 수 없다. 또한, 세포의 직경(5 ~ 30 ㎛)과 유사한 수준의 구조 직경으로 인해 구조위에 세포가 자라는 형태가 아닌 세포가 구조 사이에 갇힐 가능성이 높아진다.
표면 거칠기(Surface Roughness)는 25nm ~ 1000nm범위가 좋으며, 더욱 바람직하기로는 표면 거칠기가 30nm ~ 300nm 범위가 좋다. 상기 범위 미만에서는 전술한 바와 같이, 세포의 골격구조 발달 형성 저해 효과가 줄어들어서 연골세포로 재분화 되는 효과가 감소하며, 상기 범위를 초과하는 경우 배양시 세포상태의 실시간 관찰이 어렵고, 세포가 구조 사이에 갇힐 가능성이 높아진다.
표면 단차는 170nm ~ 10 ㎛가 좋으며, 특히 200nm ~ 1.5 ㎛ 범위가 좋다. 상기 범위 미만에서는 세포의 골격구조 발달 형성 저해 효과가 줄어들어서 연골세포로 재분화 되는 효과가 감소하며, 상기 범위를 초과하는 경우 배양시 세포상태의 실시간 관찰이 어렵고, 구조위에 세포가 자라는 형태가 아닌 세포가 구조 사이에 갇힐 가능성이 높아진다.
미세입자의 재질은 제한되지 않는다. 무기물, 유기물, 또는 금속이거나 이들의 복합체일 수 있다. 바람직하기로는 실리카 입자가 좋다. 실리카 입자에는 표면 코팅되거나 표면처리되어 개질된 것도 포함된다.
또 다른 인자로서, 미세입자 1개가 6개의 미세입자로 둘러싸여 있는 형상, 특히 헥사고날 형태로 배열되는 것이 세포 골격 구조의 발달을 저하시킬 수 있는 것을 발견하였다. 헥사고날 형태에서는 세포 골격 구조의 형성을 촉진하는 유효한 면적의 일직선 구조가 발달되어 있지 않기 때문에 세포 배양에 좋은 구조로 확인되었다.
또 다른 인자로서, 미세입자의 배열에 있어서, 주로 5~6개의 홀(hole)이 미세입자 주변에 존재하는 구조가 좋을 수 있다. 세포의 포디아(podia)가 상기 홀에 앤코링(anchoring)될 수 있어 세포의 초기 흡착 특성을 우수하게 할 수 있다. 또한, 표면 구조가 더욱 3차원적이므로 세포 골격 구조 형성을 억제시킬 수 있고 3차원 미소 펠렛 형성을 촉진할 수 있다.
또 다른 인자로서, 배열된 미세입자의 전체 개수 대비 50% 이상은 기재와 접촉되어 있는, 더 나아가 미세입자 박막이 실질적으로 단층인 것이 미세입자의 규칙적인 배열 및 재현성을 높이기 위해 유리하다. 또는, 상기 미세입자가 규칙적으로 배열되어 기재와 접촉될 수 있는 이론적인 최대 부착 개수 대비 50% 이상, 특히 80% 이상은 기재와 접촉되어 있는 것이 좋다. 이론적인 최대 부착 개수는 벌집구조의 배열형태에서 나올 수 있다. 이론적인 최대 부착 개수에 근접할수록 미세입자가 결여된 빈공간이 발생하는 것을 줄일 수 있다.
본 발명에서, 상기 3차원적 미소 펠렛(pellet)이란 대체로 수백 ㎛ ~ 수 mm의 크기로 세포들이 3차원적으로 뭉쳐서 배양되는 형태를 의미한다. 이러한 3차원적 미소 펠렛이 자라면서 인접 미소 펠렛과 접하게 되고 함께 응집되어 세포가 배양되게 된다.
상기 3차원적 미소 펠렛은 초반에 꽃 유사 형상을 나타낼 수 있다. 꽃 유사 형상이란 중앙에 세포들이 응집되어 있는 코어 영역을 주변 세포들이 삐죽한 형태로 둘러싼 형상을 의미한다. 이러한 형태가 나타나는 이유는 본 발명의 미세구조 특성상 내부 골격 구조의 발달이 억제되고, 세포의 유동성이 증가되어 세포가 뭉쳐지는 특성이 나타나기 때문이다.
본 발명의 세포배양기판의 표면 구조에서 배양되는 경우, 세포 배양 속도는 평탄한 기판에 비하여 떨어지는 면이 있다. 이는 세포가 안정적인 내부 골격구조를 이루지 못하여, 세포간 응집체가 이루어진 후 증식이 시작되기 때문인 것으로 예상된다. 그러나 탈분화된 세포가 평탄한 2차원 배양기판인 TCPS 기판과 달리 연골세포로 재분화되며, 이를 통해 더 많은 차례의 계대배양을 더 진행할 수 있다. 이러한 특징으로 배양시간이나 계대배양 횟수를 늘림으로써 최종적으로 더욱 많은 유효 세포수를 얻을 수 있다.
일례로, 연골세포를 배양하는 경우 콜라겐 type 2의 mRNA 발현값(연골세포 마커임)이 TCPS 기판과는 비교할 수 없을 정도로 우수한 것을 확인할 수 있다. 이는 3차원적 구조의 세포 배양시 분화 특성이 우수한 다른 세포의 경우에도 마찬가지로 적용된다. 일례로 중간엽 줄기세포, 근육 유래 줄기세포 등을 들 수 있다.
본 발명의 세포 배양기판의 미세구조는 연골세포 배양 테스트시 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 30% 이상을 제공할 수 있다. 미세입자의 입경에 따라서는 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 70% 이상, 많기로는 100% 이상의 제공도 가능하다.
본 발명의 미세구조의 세포배양기판의 제조방법으로서, 제조 방법이 제한되지 않으나 랭뮤어-블러젯 기법을 통해 제조하는 것이 좋다. 기존의 스핀코터 방식은 상기 미세구조를 제공하기 어렵다. 랭뮤어-블러젯(Langmuir-Blodgett, LB) 기법은 면적이 50 ~ 200㎠ 범위인 대면적의 배양기판을 쉽고 간편하게 제공할 수 있다. 그 이상의 대면적도 가능하리라 예상된다. 본 발명은 일례로서, 구형의 실리카 파티클을 표면개질하여 실리카 파티클 랭뮤어-블러젯 박막을 기판에 제조하는 방법을 제공한다. 실리카 파티클은 Stober 방법에 기반하여 최소 10 nm에서 최대 3 ㎛의 직경을 가지는 구형의 파티클로 합성되며, 제조 조건에 따라서 다양한 직경을 가진 균일한 파티클을 대량으로 만들 수 있다. 제조된 실리카 파티클은 화학적인 표면처리를 통해 표면 극성 조절 및 기능기의 도입이 가능하며, 열처리 및 자외선(UV) 조사, 강한 산화 조건 등을 통해 수차례의 표면 특성을 원상복구 시킬 수 있다. 열적 안정성이 높아 1500 도 이하의 열처리를 통해 제조된 기판의 물리적 안정성을 높일 수 있으며, 내화학성 및 기계적 강도가 높아서 금속제 몰드 제작도 용이하다. 실리카 파티클의 LB막은 수용액상에 잠길 수 있는 (녹지 않는) 모든 재질 및 형태의 기판상에 코팅이 가능하며, 여러 층의 코팅도 가능하다. 실리카 LB 코팅을 하기 전 기판상에 추후 제거가 가능한 패턴을 미리 형성시키거나 코팅후에 패턴된 폴리디메팅실록산 (polydimethylsiloxane, PDMS) 몰드를 통해 영역별 실리카 파티클의 제거도 가능하다. 랭뮤어-블러젯 기법은 제조예에서 추가 설명한다.
한편, 상기 미세입자가 배열되어 미세구조가 형성된 세포 배양기판은 유기 분자, 생체 유래 물질, 또는 폴리머로 표면처리할 수 있다. 이 경우에도 3차원적 배양이 이루어질 수 있다. 구체적으로, 아민 화합물, 하이드록시 화합물, 카르복실 화합물, 티올 화합물, 콜라겐, 피브로넥틴, 펩타이드, 또는 Poly-L-Lysine 등으로 표면 처리할 수 있다. 또한, 실리카 미세 박막상에 세포 배양시 표면 친수성을 증가시키기 위해 UV/Ozone 처리를 통한 산화 처리도 가능하며, 추가적으로 실란 (silane)계열의 표면처리도 가능하다. 실란 계열의 표면 처리를 비롯하여 다양한 표면 처리는 기판 표면과 세포와의 상호작용에 영향을 주어서 다양한 세포의 성장 및 분화 방향을 제어할 수 있다. 예를 들어, 기판과 강한 결합을 유도하는 물질을 코팅하거나 특정한 분화 유도 물질을 코팅하여 일반적인 평탄한 기판에서는 나타날 수 없는 방향으로 세포의 성장 및 분화를 유도할 수 있을 것으로 기대된다.
본 발명은 또한, 전술한 세포 배양기판을 이용하여 세포를 배양하는 방법을 포함한다. 세포 배양 방법은 제한되지 않으며 공지의 방법을 이용할 수 있다. 구체적 일례는 실시예에서 후술한다.
상기의 특징을 갖는 본 발명에 따른 세포배양 기판은, 3차원적 세포 배양 환경을 효과적으로 제공하기 위해 중요하게 고려되어야 할 몇 가지 관점을 만족시키는 미세구조를 갖는다. 이러한 미세구조는 다음의 효과를 선택적으로 제공한다. 첫째, 꽃 유사 형상의 3차원 미소 펠렛 형태로 세포 배양 및 응집이 일어난다. 둘째, 세포 배양시 탈분화를 억제하고 재분화를 촉진한다. 셋째, 세포 골격 구조의 발달을 억제한다. 넷째, 세포의 유동성 및 이동성을 증가시킨다.
본 발명은 특히 실제 임상치료에서 문제가 되는 연골세포 배양의 탈분화 현상을 배양기판의 특수 구조설계를 통하여 극복하고, 세포의 성장 및 분화가 조절 가능함을 보여준 가치 있는 결과를 보여주었다.
도 1은 합성된 실리카 파티클을 랭뮤어-블러젯 기법을 이용하여 기판상에 배열된 단층박막으로 형성하고 열처리를 통해 안정화 하는 과정의 모식도이다.
도 2는 유리기판과 다양한 직경(60 ~ 700 nm)의 실리카 파티클로 제작된 단층 박막의 atomic force microscpoy (AFM) 이미지(왼쪽)와 기판 별 실리카 파티클 크기에 따른 측정된 표면 거칠기를 정리한 표(오른쪽)이다. 아래 사진은 실제 제작되어 실험에 사용된 실리카 파티클이 코팅된 기판이다.
도 3은 각 제작된 기판별로 연골세포를 4시간 동안 배양한 후 측정된 위상차현미경 이미지(왼쪽)와 이미지를 분석한 세포 흡착률을 정리한 표(오른쪽)이다.
도 4는 각 기판별로 연골세포를 1일간 배양 후 측정된 형광염색 현미경 이미지이다. 붉은색은 골격구조(actin), 푸른색은 핵을 나타낸다.
도 5a는 각 기판별로 연골세포를 3일간 배양 후 측정된 형광염색 현미경 이미지이다. 붉은색은 골격구조(actin), 푸른색은 핵을 나타낸다.
도 5b는 TCPS와 본 발명의 세포배양 기판에서 연골세포를 3일간 배양 후 측정된 현미경 이미지이다.
도 6은 각 기판별로 연골세포를 1일간 배양 후 측정된 공초점 레이저 주사 현미경 이미지이다.
도 7은 각 기판별로 연골세포를 1일간 배양 후 측정된 atomic force microscpoy (AFM) 이미지이다. 각 기판별 이미지가 없고, 하나의 사진만 있네요.
도 8은 각 기판별로 연골세포를 7일동안 배양 하며 측정된 초기 대비 대사도 평가 그래프이다.
도 9는 각 기판별로 연골세포를 7일동안 배양 하며 측정된 TCPS 기판 대비 대사도 평가 그래프이다.
도 10은 각 기판별로 연골세포를 7일동안 배양후 세포수를 측정한 그래프이다.
도 11은 연골세포의 배양 단계 별 및 passage 3단계에서 각 기판별 세포의 collagen I 과 II의 mRNA 발현양을 정리한 그래프이다.
도 12는 Passage 3 단계에서 연골세포의 배양시 표면의 화학 특성에 대한 영향을 평가하기 위해 glass기판과 700 nm 실리카 기판에 아민기를 코팅한 기판을 추가하여 진행한 collagen I 과 II의 mRNA 발현양을 정리한 그래프이다.
도 13은 Passage 0인 연골세포를 glass기판과 300 nm 실리카 기판상에 5주간 계대배양하며 collagen II mRNA 발현양의 변화를 측정한 전기영동 이미지이다. 연골세포 마커인 Collagen II 는 위쪽, 보정용 마커인 GAPDH는 아래쪽이다.
도 14는 3차례 TCPS에서 계대배양하여 탈분화된 연골세포를 4번째 계대배양 단계에서 TCPS와 미세구조체 기판에서 배양한 후, pellet 형태로 1주일간 배양하여 ECM 형성을 관찰한 이미지이다. ECM은 염색물질인 safranin O를 이용하여 붉게 처리하였다.
도 15는 TCPS와 표면개질된 유리, 실리카 기판의 연골세포 배양시 1시간동안 흡착되는 세포수를 평가한 그래프이다. 기판 이름에 아민처리기판은 A, 결합유도 펩티드인 RGD는 R로 표기하였다.
도 16은 TCPS와 700 nm, 3,000 nm 직경의 실리카 기판에서 배양 중인 세포의 위상차 현미경 이미지 이다.
도 17은 쥐 근육유래 줄기세포를 TCPS기판과 미세구조체 기판에서 14일간 배양 후 측정한 위상차 현미경 이미지이다.
실리카 미세 막상에서 연골세포를 중심적으로 배양하고 특성을 분석하였으나, 인간유래 중간엽줄기세포 (hMSC)와 쥐유래 근육줄기세포(rMDSC) 등의 다양한 세포에서 세포의 배양 및 특성 조절이 가능함을 확인하였다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 하나, 하기한 실시예는 본 발명을 예증하기 위한 것일 뿐, 본 발명을 제한하는 것은 아님을 이해하여만 할 것이다.
제조예: 실리카 미세 박막을 구비한 세포 배양기판의 제조
도 1과 같이 실리카 미세 박막을 제조하였다.
랭뮤어-블러젯 방법은 수면 상에 외압을 주는 조건에서 수면 상에 존재하는 물질이 균일한 단층이 형성되도록 유도하는 방법으로서, 다음의 랭뮤어-블러젯 방법을 기초로 하여 실리카 입자를 기판위에 고정한다.
먼저, 실리카 입자를 제조한다. 실리카 입자의 구조를 이루게 되는 단량체인 테트라에틸오르토실리케이트(tetraethylorthosilicate: TEOS)를 활성화하기 위한 촉매인 암모니아수를 에탄올과 물에 희석하고 교반기에 의하여 교반하면서 TEOS 용액을 첨가한다. 2시간 동안 교반을 하면 TEOS의 에톡시기들이 암모니아와 물에 의하여 활성화되면서 자기 조립 반응을 하게 되며, 이로써 실리카 입자가 형성된다. 사용되는 TEOS, 암모니아수등의 상대농도, 비율 및 반응조건을 조절하여 입자의 크기를 조절할 수 있다. 예컨대, 300nm 크기의 실리카 입자를 합성하기 위해서는, 실온에서 에탄올 40㎖에 암모니아수 8.3㎖, 증류수1.7㎖를 섞은 용액을 플라스크 안에서 교반하면서 TEOS 1㎖를 첨가한 후 2시간 동안 반응시켜 제조한다. 이와 유사한 방식으로 700nm 크기의 실리카 입자 및 마이크로 크기의 입자를 제조할 수 있다. 이외에도 공지의 다양한 방법으로 실리카 입자를 제조할 수 있으며 제한되지 않는다.
다음으로, 위에서 형성된 실리카 입자를 원심분리기에 의하여 원심분리하여 침지시킨 후, 상층액을 버리고 오븐에서 110℃로 약 12시간 정도 건조한다.
다음으로, 유기용매에서 분산될 수 있도록 실리카 입자들의 표면을 개질하기 위한 단계를 수행한다. 유기용매로는 클로로포름을 사용하는 것이 특히 적합하다.
실리카 입자의 표면 개질로서, 합성된 실리카 입자 용액에 화학적인 촉매 작용을 위하여 주로 사용되는 EDC/NHS 물질을 아미노벤조싸이올(aminobenzothiol: ABT)이라는 아민기와 싸이올 그룹을 가지고 있는 물질과 초음파를 가하면서 반응시킴으로써 실리카 입자 표면에 ABT가 고정화된 실리카 입자가 제조되고 이에 따라 유기용매에 균일하게 분산된 용액, 즉, 싸이올기를 가진 짧은 유기분자로 표면이 개질된 실리콘입자들이 유기용매 상에 고르게 분산된 용액이 준비된다.
다음으로, ABT가 고정된 실리카 입자 분산용액을 원심분리 과정에 의하여 에탄올과 클로로포름으로 세척함으로써 랭뮤어-블러젯 공정용으로 사용되는 일정한 크기를 가지는 실리카 미세입자-분산 용액이 제조된다. 이와 같은 프로세스를 사용하는 것은 반응 공정이 비교적 간단할 뿐만 아니라 상기한 바와 같이, TEOS 및 암모니아수의 농도와 반응조건들을 조절함에 의하여 다양한 입자 크기의 실리카를 합성할 수 있어 바람직하다.
이로써, 상기 실리카 입자 분산용액을 사용하여 랭뮤어-블러젯 방법을 기초로 유기 기능기 표면 개질된 실리카 입자 단일막을 준비할 수 있다.
먼저, 상기 실리카 입자 분산용액을 수면위에 살포한다. 여기서 상기 실리카 입자 분산용액은 싸이올기를 가진 유기분자로 표면이 개질된 실리카 입자들이 클로로포름에 고르게 분산된 상태이다.
이때, 상기 수면의 표면에 배리어(barrier)를 두고 상기 배리어를 실리카 입자들이 서로 모여지는 방향으로 움직여 실리카 입자가 떠 있는 면적을 서서히 감소시킴으로 인하여 실리카 입자들이 박막형태로 모여진다. 이 때 실리카 입자들의 배열상태와 막 형성상태를 표면압으로 실리카 막의 구조를 조절한다. 배리어에 가해지는 압력을 전이압력이라 칭하는데, 이 압력을 10 mN/m ~ 60 mN/m 범위로 유지하여 실리카 입자를 균일한 단층으로 형성하여 세포 배양기판을 제조한다.
제조된 실리카 미세 기판은 원자력 현미경 (atomic force microscopy)를 이용하여 실리카 파티클 직경별로 표면구조를 측정하고 표면 거칠기를 정량적으로 평가하였다(도 2). 도 2에 도시된 바와 같이 본 발명에 따른 실리카 미세 기판은 표면 거칠기 평가 결과가 Rq ≤0.13D, 특히 Rq ≤0.12D 를 만족하였다.
제조된 실리카 미세 기판은 550도에서 3시간동안 열처리를 하여 기계적 내구성을 향상시켰다. 또한, 표면 친수성 향상을 위하여 UV/Ozone 클리너 상에서 1시간 30분 동안 처리하였다.
실시예: 실리카 미세 박막상에서의 연골세포 등의 배양
생후 4주경의 토끼연골에서 분리한 연골세포를 콜라겐 분해효소를 통해 개별화 시킨 후, 일반적인 TCPS (tissue-cultured polystyrene) 기판상에서 2차례에 걸쳐 계대배양 하였다. 모든 세포배양은 10% 소혈청과 1 % 페니실린/스트렙토마이신을 첨가한 high glucose 배지를 넣고 37 ℃ 항온 유지와 5% 이산화탄소가 공급되는 배양기에서 진행하였다.
그 후 TCPS 기판에서 2번의 계대배양을 진행한 세포를 가지고 3 번째 계대배양하였으며, 대조군인 TCPS(SPL Life science사, 20100 모델(세포배양 표면 처리된 100 mm 직경의 멸균 디쉬임)), 유리(glass)기판과 제조예로부터 제조된 60, 300, 700 nm 직경의 실리카 파티클 박막이 구비된 세포 배양기판상에 배양하였다.
배양과정에서 초기 흡착정도에서 큰 직경의 실리카 미세 기판이 우수한 세포 흡착능을 보이는 것을 확인하였고(도 3), 실리카 파티클 직경에 따라서 세포 흡착능이 조절됨을 확인 하였다.
세포의 내부 골격 구조상 차이를 관찰하기 위하여 형광염색 현미경을 통해 1일과 3일의 세포를 관찰하였다. 1일에는 실리카 미세 기판에서 세포들의 actin골격이 세포 말단에 뭉치며 선형으로 성장하지 않는 것을 확인하였다(도 4). 또한 3일에는 실리카 미세 기판에서 세포들이 뭉쳐서 자라는, 3차원 미소 펠렛의 존재를 확인하였으며, 그러한 특성이 실리카 파티클의 직경이 커질수록 증가함을 관찰하였다(도 5a). 3차원 미소 펠렛은 TCPS 기판과 대비하여 보면 확연히 꽃 유사 형상을 띈다(도 5b 참고).
세포의 미세 구조를 확인하기 위하여 공초점 레이저 주사 현미경을 이용하여 고정된 세포를 관찰하였다. 측정된 이미지를 나타낸 도 6에서 평탄한 유리기판상에서 세포들이 넓게 퍼져 자라며 미세한 포디아(podia)들이 형성된 것을 볼 수 있으나, 실리카 기판에서는 굵고 강하게 당겨지는 느낌의 껌과 같은 형태의 두꺼운 포디아(podia)들만이 형성된 채 세포들이 좁게 퍼져 자라는 것을 관찰 하였다. 실리카 기판상 배양된 연골세포가 매우 얇은 두께(30 ~ 200 nm)로 실리카 구조 표면을 따라서 세포막을 형성하는 것을 관찰하였다. 이러한 세포막의 실리카 구조를 따른 휘어짐은 세포막내의 세포골격구조 형성을 억제하여 세포들의 응집을 돕고 탈분화를 억제하는 효과를 나타낸다.
연골세포의 배양 중 대사도 및 증식 상태를 평가하기 위해 날짜별 MTT 분석을 진행하였으며, 2일 차 대비 TCPS과 다른 기판들이 유사한 양상을 보여주고 있어 정상적인 대사 및 증식이 이루어짐을 확인할 수 있다(도 8). 날짜별 TCPS 대비 대사도 평가 결과에서는 실리카 기판에서 30 ~ 50 % 수준의 대사도 평가가 나타났으며, 이는 상대적인 세포의 증식 속도가 더딘 것이 주요원인으로 해석된다(도 9).
세포 배양 7일 후의 세포의 단위면적당 수를 평가한 결과, 큰 직경의 실리카 기판에서 TCPS 대비 70 % 수준의 세포수를 나타내었으며, 이는 세포가 뭉쳐자라는 과정에서 일부 영역에 세포가 자라지 않은 부분이 존재하였기 때문이다(도 10).
연골세포의 분화특성을 나타내는 collagen I 과 II의 mRNA 분석을 각 계대배양 단계별 세포들과 7일동안 TCPS, 유리, 실리카 미세 기판상에서 배양한 세포들에서 진행하였다. 결과를 정리한 도 11에서 계대배양중 감소하는 collagen II가 실리카 미세 기판상에서 배양됨에 따라 다시 회복되는 것을 관찰할 수 있었으며, 탈분화 진행의 마커인 collagen I은 실리카 미세 기판에서 감소하는 것으로 나타났다. 이를 통해 실리카 미세 기판이 탈분화된 연골세포를 재분화가 되도록 유도하는 것을 확인하였으며, 큰 직경의 실리카 기판이 더욱 효과적임을 확인하였다.
또한 이러한 재분화 유도 특성이 실리카 표면의 화학적 특성에서 나타나는 것이 아님을 확인하기 위하여 유리 기판과 700 nm 실리카 미세 기판상에 aminopropyltriethoxysilane (APTES)처리를 통해 표면상 아민 작용기를 도입하는 기판에서 연골세포의 재분화 특성을 mRNA 분석을 통해 평가하였다. 결과적으로 도 12에서와 같이 아민기가 도입된 기판에서도 표면처리되지 않은 기판과 같이 collagen II가 증가됨을 확인하였다. 이를 통해 다양한 재질 및 특성의 표면에서도 미세구조에 의해 연골세포의 재분화가 유도될 수 있음을 확인하였다.
그리고 이러한 재분화 특성이 여러차례의 계대배양에서도 효과가 있는지 확인하기 위하여 5주간의 유리기판과 300 nm 직경의 실리카 미세 기판상에서 연골세포를 지속적으로 계대배양한 결과 도 13과 같이 실리카 미세 기판상에 배양한 연골세포가 collagen II의 발현이 높게 지속됨을 확인 할 수 있었다. 또한, 도 14에서 나타나듯이 pellet 배양할 경우 미세구조체에서 배양을 거친 경우 연골세포의 특성을 결정하는 세포외기질(ECM)의 분비가 활발해짐을 관찰 할 수 있었다. 미세구조기판상에서 세포 배양시 연골세포를 탈분화시키지 않고 여러 차례 계대배양 할 수 있음을 확인하였다.
그리고 연골세포의 세포흡착능이 아민표면 처리 및 RGD 펩타이드 처리 등을 통해 더욱 개선될 수 있음을 1시간 배양 후 면적당 흡착 세포수를 평가하여 정리한 도 15에서 확인하였으며, 아민 처리된 700 nm 직경의 실리카 미세 기판의 경우 TCPS 기판 대비 4배 이상의 높은 흡착효율을 나타내었다.
세포배양에 있어서 세포의 실시간적인 상태 분석에 있어서 중요한 위상차 현미경을 통한 관찰은 도 16에서와 같이 700 nm 직경 수준에서는 TCPS와 같이 선명한 이미지를 얻을 수 있었다. 하지만 3,000 nm 이상의 직경 수준이 되면 산란 효과 및 큰 높이 단차 등으로 인해 세포의 관찰이 어려워지는 것으로 나타났다.
한편, 미세구조 기판에서 근육유래 줄기세포를 14일 동안 배양시 TCPS 기판과 달리 신경세포와 같은 외형적인 형태로 세포가 변화됨을 도 17을 통해서 확인하였다. 이를 통해 연골세포가 아닌 다른 다양한 세포에 있어서도 미세구조가 세포상태 변화에 영향을 줌을 예상할 수 있었다.

Claims (27)

  1. 기재상에 미세입자가 배열되어 형성된 박막이 구비된 세포 배양기판으로서, 구형의 미세입자 배열에 의해 얻어지는 표면 특성이 다음을 만족하는 세포 배양기판.
    Rq ≤0.13D
    (여기서, Rq는 표면 거칠기(Surface Roughness)이며, D는 미세입자의 평균입경을 나타낸다.)
  2. 제1항에 있어서, 상기 미세입자의 평균입경은 250nm ~ 10㎛의 범위인 세포 배양기판.
  3. 제1항에 있어서, 상기 미세입자의 평균입경은 300nm ~ 3㎛ 범위인 세포 배양기판.
  4. 제1항에 있어서, 표면 거칠기(Surface Roughness)는 25nm ~ 1000nm이며, 표면 단차는 170nm ~ 10 ㎛인 세포 배양기판.
  5. 제1항에 있어서, 표면 거칠기(Surface Roughness)는 30nm ~ 300nm이며, 표면 단차는 200nm ~ 1.5 ㎛인 세포 배양기판.
  6. 제1항에 있어서,
    다음 식을 더욱 만족하는 세포 배양기판.
    Rq ≤0.12D
    (여기서, Rq는 표면 거칠기(Surface Roughness)이며, D는 미세입자의 평균입경을 나타낸다.)
  7. 제1항에 있어서,
    면적이 50 ~ 200㎠ 인 대면적 세포 배양기판.
  8. 기재상에 미세입자가 배열되어 형성된 박막이 구비된 세포 배양기판으로서, 박막 표면의 AFM 이미지상, 주로 구형의 미세입자 1개가 6개의 미세입자로 둘러싸여 있는 형상인 세포 배양기판.
  9. 제8항에 있어서,
    박막 표면의 AFM 이미지상, 주로 어느 하나의 미세입자가 주변 미세입자와 부분적으로 접촉되어 헥사고날 형태를 이루는 형상인 세포 배양기판.
  10. 제8항에 있어서,
    상기 배열된 미세입자의 전체 개수 대비 50% 이상은 기재와 접촉되어 있는 세포 배양기판.
  11. 제8항에 있어서,
    상기 미세입자가 규칙적으로 배열되어 기재와 접촉될 수 있는 이론적인 최대 부착 개수 대비 50% 이상은 기재와 접촉되어 있는 세포 배양기판.
  12. 제8항에 있어서,
    상기 박막은 실질적으로 단층인 세포 배양기판.
  13. 제8항에 있어서,
    박막 표면의 AFM 이미지상, 주로 5~6개의 홀(hole)이 미세입자 주변에 존재하는 형상인 세포 배양기판.
  14. 기재상에 미세입자가 배열되어 형성된 박막이 구비된 세포 배양기판으로서, TCPS 기판과 대비할 때, 다수의 3차원적 미소 펠렛(pellet)이 형성되면서 세포가 배양되는 특성을 갖는 세포 배양기판.
  15. 제14항에 있어서,
    상기 3차원적 미소 펠렛은 초기에 꽃 유사 형상을 갖는 세포 배양기판.
  16. 제14항에 있어서,
    TCPS 기판과 대비할 때, 초기 세포 배양 속도는 늦고, 재분화율은 높은 특성의 미세구조를 갖는 세포 배양기판.
  17. 제14항에 있어서,
    TCPS 기판과 대비할 때, 탈분화가 억제되는 특성의 미세구조를 갖는 세포 배양기판.
  18. 제14항에 있어서,
    연골세포를 배양하는 경우, 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 30% 이상을 나타내는 특성의 미세구조를 갖는 세포 배양기판.
  19. 제14항에 있어서,
    연골세포를 배양하는 경우, 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 70% 이상을 나타내는 특성의 미세구조를 갖는 세포 배양기판.
  20. 제14항에 있어서,
    연골세포를 배양하는 경우, 콜라겐 type 2의 mRNA 발현값이 배양 초기 대비 100% 이상을 나타내는 특성의 미세구조를 갖는 세포 배양기판.
  21. 제14항에 있어서,
    연골세포를 배양하는 경우, TCPS 기판과 대비할 때 세포외기질(ECM)의 분비가 더 활발한 특성의 미세구조를 갖는 세포 배양기판.
  22. 제14항에 있어서,
    TCPS 기판과 대비할 때, 세포 골격 구조의 형성이 억제되는 미세구조를 갖는 세포 배양기판.
  23. 제1항 내지 제22항 중 어느 한 항에 있어서,
    상기 미세입자가 배열된 기재를 유기 분자, 금속, 무기물, 생체 유래 물질, 또는 폴리머로 표면처리한 세포 배양기판.
  24. 제23항에 있어서,
    아민 화합물, 하이드록시 화합물, 카르복실 화합물, 티올 화합물, 콜라겐, 피브로넥틴, 펩타이드, Poly-L-Lysine, 또는 Ti로 표면처리한 세포 배양기판.
  25. 제1항 내지 제22항 중 어느 한 항에 있어서,
    상기 미세입자는 무기물, 유기물, 또는 금속이거나 이들의 복합체인 세포 배양기판.
  26. 제1항 내지 제22항 중 어느 한 항에 있어서,
    배양 대상 세포는 연골세포, 중간엽 줄기세포, 또는 근육 유래 줄기세포인 세포 배양기판.
  27. 제1항 내지 제22항 중 어느 한 항의 세포 배양기판을 이용하여 세포를 배양하는 방법.
KR1020110108110A 2011-10-21 2011-10-21 미세구조의 세포배양 기판 KR101355001B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110108110A KR101355001B1 (ko) 2011-10-21 2011-10-21 미세구조의 세포배양 기판

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110108110A KR101355001B1 (ko) 2011-10-21 2011-10-21 미세구조의 세포배양 기판

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020130093600A Division KR20130108223A (ko) 2013-08-07 2013-08-07 미세구조의 세포배양 기판

Publications (2)

Publication Number Publication Date
KR20130043921A true KR20130043921A (ko) 2013-05-02
KR101355001B1 KR101355001B1 (ko) 2014-01-27

Family

ID=48656563

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110108110A KR101355001B1 (ko) 2011-10-21 2011-10-21 미세구조의 세포배양 기판

Country Status (1)

Country Link
KR (1) KR101355001B1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142564A (ko) 2014-06-10 2015-12-22 한국과학기술원 세포배양 기판, 이의 제조방법 및 용도
WO2017095333A1 (en) * 2015-11-30 2017-06-08 Agency For Science, Technology And Research A cell culture substrate and method of making thereof
KR20200117266A (ko) * 2019-04-03 2020-10-14 이화여자대학교 산학협력단 올리고펩타이드를 이용한 줄기세포의 연골세포로의 분화 유도 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100740228B1 (ko) 2005-07-11 2007-07-16 연세대학교 산학협력단 세포고정용 생체물질을 패터닝하는 장치와 방법 및 이러한방법에 의하여 제조된 세포칩
KR20070074049A (ko) * 2006-01-06 2007-07-12 삼성전자주식회사 세포 배양에 사용되는 기판의 패터닝 방법
JP4689475B2 (ja) 2006-01-11 2011-05-25 ニプロ株式会社 核酸固定用成形体および核酸固定化方法
KR101171774B1 (ko) * 2009-11-30 2012-08-06 아주대학교산학협력단 탄소나노튜브를 줄기세포의 배양 지지체로 사용하는 방법 및 탄소나노튜브를 포함하는 배양 지지체

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150142564A (ko) 2014-06-10 2015-12-22 한국과학기술원 세포배양 기판, 이의 제조방법 및 용도
WO2017095333A1 (en) * 2015-11-30 2017-06-08 Agency For Science, Technology And Research A cell culture substrate and method of making thereof
US10975350B2 (en) 2015-11-30 2021-04-13 Agency For Science, Technology And Research Cell culture substrate and method of making thereof
KR20200117266A (ko) * 2019-04-03 2020-10-14 이화여자대학교 산학협력단 올리고펩타이드를 이용한 줄기세포의 연골세포로의 분화 유도 방법

Also Published As

Publication number Publication date
KR101355001B1 (ko) 2014-01-27

Similar Documents

Publication Publication Date Title
KR102234887B1 (ko) 세포배양 기판
Liu et al. Three-dimensional nano-biointerface as a new platform for guiding cell fate
Kuo et al. Investigation of size–dependent cell adhesion on nanostructured interfaces
US20100129908A1 (en) Spaced projection substrates and devices for cell culture
WO2015012415A1 (ja) 細胞の培養方法、細胞培養装置及びキット
JP2012249547A (ja) 細胞培養用基材及びその製造方法
US9469839B2 (en) Cell culture support and associated method for cell growth and release
Yap et al. Assembly of polystyrene microspheres and its application in cell micropatterning
JPWO2006093207A1 (ja) 細胞の分化/増殖を制御するための基材
Ino et al. Application of magnetic force‐based cell patterning for controlling cell–cell interactions in angiogenesis
WO2008042640A1 (en) The use of topographic cues to modulate stem cell behaviors
US20140141503A1 (en) Cell culture substrate having uniform surface coating
US20130029422A1 (en) Composite Substrate for 3D Cell Culture
KR101355001B1 (ko) 미세구조의 세포배양 기판
KR20210011340A (ko) 세포 배양용 마이크로 캐리어, 이의 제조방법 및 이를 이용하는 세포 배양 방법
Wang et al. Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids
Gayathri et al. Single-cell patterning: a new frontier in bioengineering
CA2772248A1 (en) Methods and kits for cell release
Kim et al. Three‐dimensional patterning of the ECM microenvironment using magnetic nanoparticle self assembly
CA3170695C (en) Multilayered membrane for spheroid culture
WO2010032595A1 (ja) 任意の分布形状と分布密度を有する分子または粒子の集団を同時に多種大量生成する方法とその方法に使用するマスク材
KR102137166B1 (ko) 세포배양 기판
KR102075035B1 (ko) 나노패턴시트와 3차원 세포공배양분화용기를 이용한 연골세포 펠렛의 제조방법
JP5098007B2 (ja) 非スフェロイド化幹細胞の調製方法
KR20130108223A (ko) 미세구조의 세포배양 기판

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20171226

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 7