KR20110059807A - Backside illuminated image sensor - Google Patents
Backside illuminated image sensor Download PDFInfo
- Publication number
- KR20110059807A KR20110059807A KR1020117011701A KR20117011701A KR20110059807A KR 20110059807 A KR20110059807 A KR 20110059807A KR 1020117011701 A KR1020117011701 A KR 1020117011701A KR 20117011701 A KR20117011701 A KR 20117011701A KR 20110059807 A KR20110059807 A KR 20110059807A
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- forming
- substrate
- alignment key
- receiving element
- Prior art date
Links
- 239000000758 substrate Substances 0.000 claims abstract description 99
- 238000002161 passivation Methods 0.000 claims abstract description 41
- 239000010410 layer Substances 0.000 claims description 385
- 238000000034 method Methods 0.000 claims description 96
- 230000008569 process Effects 0.000 claims description 55
- 239000004065 semiconductor Substances 0.000 claims description 45
- 239000011229 interlayer Substances 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 27
- 239000002184 metal Substances 0.000 claims description 27
- 238000009413 insulation Methods 0.000 claims description 12
- 239000012212 insulator Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 10
- 229920005591 polysilicon Polymers 0.000 claims description 10
- 238000000227 grinding Methods 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052721 tungsten Inorganic materials 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 4
- 229910052744 lithium Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910000510 noble metal Inorganic materials 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 15
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 150000004767 nitrides Chemical class 0.000 description 12
- 229910052814 silicon oxide Inorganic materials 0.000 description 12
- 239000004020 conductor Substances 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 229910052710 silicon Inorganic materials 0.000 description 9
- 239000010703 silicon Substances 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- -1 boron (B) Chemical class 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 125000006850 spacer group Chemical group 0.000 description 6
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000005380 borophosphosilicate glass Substances 0.000 description 4
- 239000005388 borosilicate glass Substances 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 239000005360 phosphosilicate glass Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000003667 anti-reflective effect Effects 0.000 description 3
- 238000000231 atomic layer deposition Methods 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000005137 deposition process Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 238000012858 packaging process Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000010970 precious metal Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 2
- XPDWGBQVDMORPB-UHFFFAOYSA-N Fluoroform Chemical compound FC(F)F XPDWGBQVDMORPB-UHFFFAOYSA-N 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910018503 SF6 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- PRPAGESBURMWTI-UHFFFAOYSA-N [C].[F] Chemical class [C].[F] PRPAGESBURMWTI-UHFFFAOYSA-N 0.000 description 1
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- YVQSLGWKPOKHFJ-UHFFFAOYSA-N bicyclo[4.2.0]octa-1,3,5-trien-7-yne Chemical compound C1=CC=C2C#CC2=C1 YVQSLGWKPOKHFJ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- QDMRQDKMCNPQQH-UHFFFAOYSA-N boranylidynetitanium Chemical compound [B].[Ti] QDMRQDKMCNPQQH-UHFFFAOYSA-N 0.000 description 1
- HGHPQUIZVKPZEU-UHFFFAOYSA-N boranylidynezirconium Chemical compound [B].[Zr] HGHPQUIZVKPZEU-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 1
- 229960000909 sulfur hexafluoride Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1464—Back illuminated imager structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/481—Internal lead connections, e.g. via connections, feedthrough structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/1462—Coatings
- H01L27/14621—Colour filter arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14625—Optical elements or arrangements associated with the device
- H01L27/14627—Microlenses
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14632—Wafer-level processed structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14601—Structural or functional details thereof
- H01L27/14636—Interconnect structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14685—Process for coatings or optical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14687—Wafer level processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14683—Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
- H01L27/14698—Post-treatment for the devices, e.g. annealing, impurity-gettering, shor-circuit elimination, recrystallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Light Receiving Elements (AREA)
Abstract
후면 조명된 이미지 센서는 기판, 기판의 후면상에 배치되는 후면 패시베이션층, 및 후면 패시베이션층상에 배치되는 투과성 도전층을 포함한다.The back illuminated image sensor includes a substrate, a back passivation layer disposed on the back side of the substrate, and a transparent conductive layer disposed on the back passivation layer.
Description
본 발명은 이미지 센서, 특히, 후면 조명된 이미지 센서의 조명된 후면과 관련된다.The present invention relates to an illuminated back of an image sensor, in particular a back illuminated image sensor.
일반적으로, 이하에서는 CMOS 이미지 센서로서 지칭될 수 있는 상보성 금속 산화물 반도체 능동 픽셀 센서(CMOS APS: Complementary Metal Oxide Semiconductor Active Pixel Sensor)에서, 광 수용 엘리먼트, 디지털 제어 블록, 및 아날로그-대-디지털 변환기와 같은 주변 회로는 칩 내의 제한된 영역에 정렬된다. 따라서, 칩 영역당 픽셀 어레이의 영역 비율은 약 40%로 제한된다. 또한, 픽셀 크기는 고품질 이미지들의 구현을 위해 크게 감소되기 때문에, 하나의 광 수용 엘리먼트가 수집할 수 있는 광의 양은 감소되고, 노이즈는 증가되어, 노이즈로부터 초래되는 이미지 손실과 같은 다양한 문제점들이 증가되게 된다.In general, in a Complementary Metal Oxide Semiconductor Active Pixel Sensor (CMOS APS), which may be referred to as CMOS image sensor in the following, the light receiving element, the digital control block, and the analog-to-digital converter The same peripheral circuitry is aligned in a limited area of the chip. Thus, the area ratio of the pixel array per chip area is limited to about 40%. In addition, since the pixel size is greatly reduced for the realization of high quality images, the amount of light that one light receiving element can collect is reduced and the noise is increased, thereby increasing various problems such as image loss resulting from the noise. .
본 발명의 실시예들은 후면-조명된 이미지 센서와 관련되며, 여기서 광은 (웨이퍼인) 기판의 후면을 조명한다.Embodiments of the present invention relate to a back-illuminated image sensor, where light illuminates the back side of the (wafer) substrate.
본 발명의 일 양상에 따라, 기판, 상기 기판의 후면상에 배치되는 후면 패시베이션층, 및 상기 후면 패시베이션층상에 배치되는 투과성 도전층을 포함하는, 후면 조명된 이미지 센서가 제공된다.According to one aspect of the invention, there is provided a back illuminated image sensor comprising a substrate, a back passivation layer disposed on the back side of the substrate, and a transmissive conductive layer disposed on the back passivation layer.
본 발명의 다른 양상에 따라, 제1 기판에 배치되는 광 수용 엘리먼트, 상기 광 수용 엘리먼트를 갖는 상기 제1 기판상에 배치되는 층간 절연층, 상기 광 수용 엘리먼트로부터 이격되고 상기 층간 절연층 및 상기 제1 기판을 통과하는 정렬 키(key), 상기 다중층 구조물의 상기 층간 절연층상에 배치되는 다수의 상호접속층들 ― 상기 최하위 상호접속층의 후면이 상기 정렬 키에 연결됨 ― , 상기 상호접속층들을 커버하는 전면 패시베이션층, 상기 제1 기판의 후면상에 배치되는 후면 패시베이션층, 상기 후면 패시베이션층상에 배치되고 상기 정렬 키에 연결되는 투과성 도전층, 및 상기 광 수용 엘리먼트에 면하도록 상기 투과성 도전층상에 배치되는 컬러 필터 및 마이크로렌즈를 포함하는, 후면 조명된 이미지 센서가 제공된다.According to another aspect of the present invention, there is provided a light receiving element disposed on a first substrate, an interlayer insulating layer disposed on the first substrate having the light receiving element, the interlayer insulating layer spaced apart from the light receiving element and the first layer. 1 an alignment key passing through the substrate, a plurality of interconnect layers disposed on the interlayer insulating layer of the multilayer structure, wherein a rear surface of the lowest interconnect layer is connected to the alignment key; A front passivation layer to cover, a back passivation layer disposed on the back side of the first substrate, a transparent conductive layer disposed on the back passivation layer and connected to the alignment key, and on the transmissive conductive layer to face the light receiving element. A back illuminated image sensor is provided, comprising a color filter and a microlens disposed thereon.
도 1은 본 발명의 일 실시예에 따른 후면 조명된 이미지 센서를 예시하는 횡단면도이다.
도 2a 내지 2j는 본 발명의 일 실시예에 따른 후면 조명된 이미지 센서를 제작하기 위한 방법을 개시하는 횡단면도들이다.
도 3은 음의 전압이 투과성 도전층에 인가될 때의 에너지 대역을 도시한다.
도 4는 후면 패시베이션층이 실리콘 질화물층일 때의 에너지 대역을 보여준다.1 is a cross-sectional view illustrating a back illuminated image sensor in accordance with one embodiment of the present invention.
2A-2J are cross-sectional views illustrating a method for manufacturing a back lit image sensor in accordance with one embodiment of the present invention.
3 shows an energy band when a negative voltage is applied to the transparent conductive layer.
4 shows the energy band when the back passivation layer is a silicon nitride layer.
본 발명의 실시예들은 본 발명의 일 실시예에 따른 후면 조명된 이미지 센서와 관련된다.Embodiments of the present invention relate to a back lit image sensor according to an embodiment of the present invention.
도면들을 참고하여, 층들 및 영역들의 조명된 두께는 설명을 용이하게 하기 위하여 과장된다. 제1 층이 제2 층"상에(on)" 또는 기판"상에" 있는 것으로 참조될 때, 이것은 제1층이 제2층 또는 기판상에 직접 형성되는 것을 의미할 수 있거나, 또는 제1층과 기판 사이에 제3 층이 존재할 수 있음을 또한 의미할 수 있다. 추가로, 본 발명의 다양한 실시예들 전반을 통한 동일하거나 유사한 참조 번호들은 상이한 도면들에서 동일하거나 유사한 엘리먼트들을 나타낸다.Referring to the drawings, the illuminated thickness of layers and regions is exaggerated to facilitate explanation. When referred to as being on a second layer "on" or on a substrate ", this may mean that the first layer is formed directly on the second layer or substrate, or the first It may also mean that there may be a third layer between the layer and the substrate. In addition, the same or similar reference numerals throughout the various embodiments of the present invention represent the same or similar elements in different drawings.
도 1은 본 발명의 일 실시예에 따른 후면 조명된 이미지 센서를 예증하는 횡단면도이다.1 is a cross-sectional view illustrating a back illuminated image sensor in accordance with one embodiment of the present invention.
편의를 위해 CMOS 이미지 센서의 단위 픽셀의 구동 트랜지스터의 게이트 전극 및 포토다이오드만이 도 1에 예시된다.For convenience, only the gate electrode and the photodiode of the driving transistor of the unit pixel of the CMOS image sensor are illustrated in FIG. 1.
도 1을 참고하여, 본 발명의 실시예에 따른 후면 조명된 이미지 센서는 제2 반도체 패턴(100-3A), 제 반도체 패턴(100-3A)의 후면상에 배치되는 후면 패시베이션층(125), 및 후면 패시베이션층(125)상에 배치되는 투과성 도전층(326)을 포함한다.Referring to FIG. 1, a back-illuminated image sensor according to an embodiment of the present invention may include a
제2 반도체 패턴(100-3A)은 p-타입 도전성 물질(이하에서, 제1 도전성 물질)을 포함한다. 제2 반도체 패턴(100-3A)은 주기율표에서 3족의 멤버인 붕소(B)와 같은 p-타입 불순물 이온들로 도핑된다. 제2 반도체 패턴(100-3A)은 실리콘(Si)층, 게르마늄(Ge)층, 실리콘 게르마늄(SiGe)층, 갈륨 인화물(GaP)층, 갈륨 비화물(GaAs)층, 실리콘 탄화물(SiC)층, 실리콘 게르마늄 탄소(SiGeC)층, 인듐 비화물(InAs)층, 및 이들의 적층 구조물로 이루어진 그룹으로부터 선택되는 하나의 층을 포함할 수 있다. 바람직하게, 제2 반도체 패턴(100-3A)은 Si 층을 포함할 수 있다. 제2 반도체 패턴(100-3A)은 실리콘 온 절연체(SOI) 층의 매립 절연층 위에 형성되는 기판 또는 벌크 기판일 수 있다. 또한, 제2 반도체 패턴(100-3A)은 SOI 기판상에 배치되는 에피택셜층일 수 있다. 본 실시예에서, 기판은 SOI 기판의 매립 절연층 위에 형성되는 SOI 기판이다.The second semiconductor pattern 100-3A includes a p-type conductive material (hereinafter, referred to as a first conductive material). The second semiconductor pattern 100-3A is doped with p-type impurity ions such as boron (B), which is a member of
후면 패시베이션층(125)은 반사방지층으로서 기능한다. 후면 패시베이션층(125)은 광학 표면 위에 형성되는 유전체 코팅층이다. 반사방지층은 미리 결정된 범위의 광학 표면의 광 반사 전력을 감소시킨다. 일반적으로, 광 반사 전력의 감소의 동작 원리는 다른 인터페이스들로부터 반사하는 파장들이 파괴적 간섭에 의하여 제거된다는 것이다. 가장 단순한 경우에, 수직 입사를 위해 설계되는 반사방지층은 1/4-파장 층을 갖는 물질을 포함한다. 물질의 굴절률은 2개의 이웃 매체의 지리학적 평균에 근접한다. 이러한 경우에, 동일한 각도(degree)의 2개의 반사물(reflection)들이 2개의 매체의 인터페이스상에 생성되고, 그 후, 이들 사이에 파괴적 간섭에 의해 제거된다.The
후면 패시베이션층(125)은 상이한 굴절률들을 갖는 물질들이 적층되는 다중층 구조물을 갖는다. 다중층 구조물을 위한 층들의 개수는 제한되지 않고, 층들은 후면 패시베이션층(125)의 반사 특성들을 개선하는 범위에서 선택될 수 있다. 후면 패시베이션층(125)은 제2 반도체 패턴(100-3A)보다 낮은 굴절률을 갖는 층을 포하한다. 또한, 후면 패시베이션층(125)이 적층 구조를 가질 때, 층이 제2 반도체 패턴(100-3A)의 후면에 더 근접함에 따라, 층들은 낮은 굴절률을 갖기 시작한다.The
예를 들어, 후면 패시베이션층(125)은 제1 절연층 및 제2 절연층을 포함한다. 제1 절연층은 제2 절연층과 제2 반도체 패턴(100-3A) 사이에 형성된다. 제2 절연층은 질화물층을 포함한다. 바람직하게, 제2 절연층은 실리콘 질화물 화합물을 포함한다. 보다 바람직하게, 제2 절연층은 실리콘 질화물층 또는 실리콘 산-질화물층을 포함한다. 여기서, 질화물층은 대략 50 nm 내지 대략 500 nm의 두께를 갖도록 형성된다. 제1 절연층은 제2 절연층보다 낮고 제2 반도체 패턴(100-3A)보다 낮은 굴절률을 갖는 물질을 포함한다. 바람직하게, 제1 절연층은 산화물층을 포함한다. 보다 바람직하게, 제1 절연층은 실리콘 산화물층을 포함한다. 실리콘 산화물층은 자연적 실리콘 산화물층, 성장된 실리콘 산화물층, 및 증착된 실리콘 산화물층으로 이루어진 그룹으로부터 선택된 것일 수 있다. 여기서, 실리콘 산화물층은 대략 2 nm 내지 대략 50 nm의 두께를 갖도록 형성된다.For example, the
투과성 도전층(126)은 투과성 도전성 산화물(TCO: Transparent Conductive Oxide)들을 포함한다. 투과성 도전층(126)은 인듐 주석(ITO)층, 아연 산화물(ZnO, ZO 포함)층, 주석 산화물(SnO, TO 포함)층 및 아연 주석 산화물(ZTO)층으로 이루어진 그룹으로부터 선택되는 것을 포함할 수 있다. ITO층은 코발트(CO), 티타늄(Ti), 텅스텐(W), 몰리브덴(Mo) 및 크롬(Cr)으로 이루어진 그룹으로부터 선택된 것으로 도핑될 수 있다. ZO층은 마그네슘(Mg), 지르코늄(Zr) 및 리튬(Li)으로 이루어진 그룹으로부터 선택된 것으로 도핑된다. TCO층은 대략 10 nm 내지 대략 500 nm의 두께를 갖도록 형성된다. 투과성 도전층(126)은 폴리실리콘층 또는 금속층을 포함할 수 있다. 폴리실리콘층 및 금속층은 제2 반도체 패턴(100-3A)에 입사광을 전달하기 위한 얇은 두께를 갖도록 형성된다. 예를 들어, 폴리실리콘층은 대략 40 nm 이하의 두께를 갖도록 형성된다. 바람직하게, 폴리실리콘층은 대략 1 nm 내지 대략 40 nm의 두께를 갖도록 형성된다. 금속층은 귀금속을 포함한다. 예를 들어, 귀금속은 금(Au) 또는 백금(Pt)을 포함한다. 귀금속은 대략 1 nm 이하의 두께를 갖도록 형성된다. 귀금속은 대략 0.1 nm 내지 대략 1 nm의 두께를 갖도록 형성될 수 있다.The transparent
본 발명의 제1 실시예에 따른 후면 조명된 이미지 센서는, 제1 기판, 이를테면 제2 반도체 패턴(100-3A)에 형성되는 광 수용 엘리먼트(106), 제2 기판 패턴(100-3A) 위에 형성되는 제1 층간 절연 패턴(108A), 광 수용 엘리먼트(106)로부터 이격되고 제1 층간 절연 패턴(108A) 및 제1 반도체 패턴(100-1A)을 통과하는 정렬 키(112), 다중층 구조의 제1 층간 절연 패턴(108A) 위에 형성되는 제1 내지 제4 상호접속층들(113, 116, 119 및 122) ― 제1 내지 제4 상호접속층들(113, 116, 119 및 122) 중에서 제1 상호접속층(113)의 후면은 정렬 키(112)에 연결됨 ― , 상호접속층들(113, 116, 119 및 122)을 커버하는 패시베이션층(124), 제1 기판의 후면상에 배치되는 후면 패시베이션층(125), 정렬 키(112)에 접속되도록 제1 기판의 후면상에 형성되는 투과성 도전층(126), 및 투과성 도전층(126)상에 배치되는 광 수용 엘리먼트(106)에 중첩하는 컬러 필터(128) 및 마이크로렌즈(130)를 포함한다.A back-illuminated image sensor according to a first embodiment of the present invention is provided on a
제1 기판(100)(도 2a 참고)은 벌크 기판, 에피택셜 기판, 또는 실리콘-온-절연체(SOI) 기판일 수 있다. 소자 특징들을 고려하여, 제1 반도체층, 매립 절연층, 제2 반도체층이 적층되는 SOI 기판이 제1 기판(100)으로서 사용되고, 상대적으로 저렴한 벌크 기판이 제2 기판(200)으로서 사용된다(도 2e 참고). 본 발명에서, 제1 및 제2 기판들(100 및 200)은 SOI 기판들이다.The first substrate 100 (see FIG. 2A) may be a bulk substrate, an epitaxial substrate, or a silicon-on-insulator (SOI) substrate. In consideration of device features, an SOI substrate on which a first semiconductor layer, a buried insulating layer, and a second semiconductor layer are stacked is used as the
정렬 키(112)는 컬러 필터(128) 및 마이크로렌즈(130) 형성 프로세스 동안에 정렬 마크로서 기능한다. 다수의 정렬 키(112)가 제공된다. 다수의 정렬 키들(112)의 후면은 투과성 도전층(126)에 연결된다. 정렬 키(112)의 최상부 표면은 제1 내지 제4 상호접속층들(113, 116, 119 및 122) 중에 제1 상호접속층(113)에 연결되고, 정렬 키(112)는 음의 전압 인가 유닛(300)(도 3 참조)으로부터 인가되는 음의 전압을 투과성 도전층(126)에 전달한다. 정렬 키(112)는 도전성 물질, 예를 들어, 금속 또는 합금으로 형성될 수 있다. 또한, 정렬 키(112)는 원형, 타원형, 또는 다각형(삼각형, 직사각형, 팔각형 등과 같은) 형태로 형성될 수 있다. 정렬 키(112)의 개수 및 크기(폭)에 대한 제한이 존재하지 않는다.Alignment key 112 functions as an alignment mark during the process of forming
본 발명의 제1 실시예에 따른 후면 조명된 이미지 센서는 제1 기판(100)의 후면을 반전시키기 위하여 음의 전압 인가 유닛(300) 대신에 정렬 키(112) 또는 투과성 도전층(126)에 양의 전압(+)을 인가하는 양의 전압 인가 유닛(미도시)을 포함할 수 있다.The back-illuminated image sensor according to the first embodiment of the present invention is provided to the
또한, 본 발명의 제1 실시예에 따른 후면 조명된 이미지 센서는 정렬 키(112)의 외벽을 둘러싸는 배리어층(미도시)을 더 포함한다. 배리어층(미도시)은 금속층 또는 절연체층을 포함할 수 있다. 특히, 금속층은 Ti/TiN층을 포함할 수 있고, 절연체층은 질화물층, 예를 들어 실리콘 질화물층, 산화물층, 예를 들어 실리콘 산화물층, 또는 이들의 적층 구조물, 예를 들어, 산화물/질화물층을 포함할 수 있다.Further, the back illuminated image sensor according to the first embodiment of the present invention further includes a barrier layer (not shown) surrounding the outer wall of the
또한, 본 발명의 실시예에 따른 후면 조명된 이미지 센서는 광 수용 엘리먼트(106)의 광학 신호들을 전달하고 증폭시키기 위하여 다수의 트랜지스터들을 더 포함한다. 예를 들어, 구동 트랜지스터는 제1 기판 패턴(100A), 제 기판 패턴(100A)과 제1 층간 절연 패턴(108A) 사이에 형성되는 게이트 전극(104), 게이트 전극(104)의 양쪽 측면들 모두상에 노출되는 제1 기판(100)에 형성된 소스 및 드레인 영역들(107)을 포함한다.In addition, the back-illuminated image sensor according to an embodiment of the present invention further includes a plurality of transistors to transmit and amplify the optical signals of the
본 발명의 실시예에 따른 후면 조명된 이미지 센서는 음의 전압 인가 유닛(300)을 더 포함한다. 음의 전압 인가 유닛(300)은 투과성 도전층(126)에 음의 전압을 직접 제공한다. 음의 전압 인가 유닛(300)은 또한 투과성 도전층(126)에 연결되는 정렬 키(112)를 통해 투과성 도전층(126)에 음의 전압을 제공한다. 음의 전압 인가 유닛(300)은 제2 기판(200)에 형성될 수 있다.The back lit image sensor according to an embodiment of the present invention further includes a negative
도 4는 후면 패시베이션층이 실리콘 질화물층일 때 에너지 대역을 도시한다.4 shows the energy band when the back passivation layer is a silicon nitride layer.
도 4를 참고하여, 실리콘 질화물층은 음의 전하를 포함한다. 양의 전하들을 포함하는 실리콘 질화물층은 노출된 반도체층의 후면을 반전시킨다. 기판의 반전된 후면은 표면 재결합 및 표면 생성을 감소시킨다. 표면 재결합의 감소는 양자 효율을 증가시키고, 표면 생성의 감소는 음전하 누설(dark current leakage)을 감소시킨다.Referring to FIG. 4, the silicon nitride layer includes a negative charge. The silicon nitride layer containing positive charges reverses the backside of the exposed semiconductor layer. The reversed backside of the substrate reduces surface recombination and surface generation. Reduced surface recombination increases quantum efficiency, and reduced surface production reduces dark current leakage.
실리콘 질화물층이 평형 상태에서 기판(또는 실리콘 산화물층 및 기판)에 연결될 때, (전자들인) 전하는 실리콘 질화물층의 양의 전하로 인하여 실리콘 질화물층과 기판 사이에 인터페이스에서 축적된다. 따라서, 원자가 전자대(Ev)는 실리콘 질화물층과 기판 사이의 인터페이스에서 페르미 준위(Ef)로부터 추가로 떨어지게 된다. 즉, 반전 상태가 달성된다. 반전 상태는 페르미 준위(Ef)에 가까워지는 전도대(Ec)를 초래한다. 광이 반전 상태에서 조명될 때, 전하(전자들), 즉, 광전류가 생성된다. 이것은 광 수용 엘리먼트를 향해 확산할 수 있는 반전층에 훨씬 많은 전자들을 초래하고, 전하(전자들)는 광 수용 엘리먼트로 용이하게 흐른다. 즉, 인터페이스에서 생성되는 광전류는 광 수용 엘리먼트로 용이하게 흐른다. 대안적으로, 양의 전압이 후면을 반전시키기 위하여 투과성 도전층(126)에 인가될 수 있다.When the silicon nitride layer is connected to the substrate (or silicon oxide layer and substrate) in equilibrium, charge (which is electrons) accumulates at the interface between the silicon nitride layer and the substrate due to the positive charge of the silicon nitride layer. Thus, the valence electron band Ev is further separated from the Fermi level Ef at the interface between the silicon nitride layer and the substrate. In other words, an inversion state is achieved. The inverted state results in a conduction band Ec approaching the Fermi level Ef. When light is illuminated in an inverted state, charge (electrons), i.e. photocurrent, is generated. This results in much more electrons in the inversion layer that can diffuse towards the light receiving element, and charge (electrons) easily flows into the light receiving element. That is, the photocurrent generated at the interface easily flows to the light receiving element. Alternatively, a positive voltage can be applied to the transparent
도 3은 음의 전압이 투과성 도전층에 인가될 때 에너지 대역을 도시한다.3 shows an energy band when a negative voltage is applied to the transparent conductive layer.
도 3을 참고하여, 평형 상태에서, 원자가 전자대(Ev)는 페르미 준위(Ef)에 가까워진다. 음의 전압이 투과성 도전층에 인가될 때, 페르미 준위(Ef)와 전도대 사이의 전위차는 높아진다. 전하(전자들), 즉, 음전류를 생성하는 것을 어려워지고, 따라서, 음전류는 광 수용 엘리먼트로 흐를 수 없다. 광이 이러한 상태에서 조명될 때, 전하(전자들), 즉, 광전류가 생성되고, 광 수용 엘리먼트를 향해 확산할 수 있다. 즉, 인터페이스에서 생성되는 광전류는 광 수용 엘리먼트로 용이하게 흐른다. 도 2a 내지 2j는 본 발명의 제2 실시예에 따른 후면 조명된 이미지 센서를 제작하기 위한 방법의 횡단면도들이다. 이러한 실시예에서, 기판은 SOI 기판이다.Referring to FIG. 3, in equilibrium, the valence electron band Ev approaches the Fermi level Ef. When a negative voltage is applied to the transparent conductive layer, the potential difference between the Fermi level Ef and the conduction band becomes high. It becomes difficult to generate charges (electrons), i.e. negative currents, and therefore negative currents cannot flow to the light receiving element. When light is illuminated in this state, a charge (electrons), i.e. a photocurrent, is generated and can diffuse towards the light receiving element. That is, the photocurrent generated at the interface easily flows to the light receiving element. 2A-2J are cross-sectional views of a method for manufacturing a back lit image sensor according to a second embodiment of the present invention. In this embodiment, the substrate is an SOI substrate.
본 발명의 제2 실시예에 따른 후면 조명된 이미지 센서는 소자 웨이퍼 및 핸들 웨이퍼(200)가 함께 부착되는 구조를 갖는다. 소자 웨이퍼는 포토다이오드와 같은 광 수용 엘리먼트가 형성되고, 디지털 블록 및 아날로그-대-디지털 변기와 같은 주변 회로들이 형성되는 웨이퍼이다. 다음의 설명에서, 소자 웨이퍼 및 핸들 웨이퍼는 각각 제1 기판 및 제2 기판으로서 지칭될 것이다.The back illuminated image sensor according to the second embodiment of the present invention has a structure in which the device wafer and the
도 2a를 참고하여, 제1 기판(100)은 SOI 기판이다. SOI 기판은 제1 반도체층(100-1), 매립 절연층(100-2), 및 제2 반도체층(100-3)을 포함한다. 제2 반도체층(100-3)은 제1 도전성 타입 및 제2 도전성 타입으로 도핑될 수 있다. 예를 들어, 제2 반도체층(100-3)은 제1 도전성 타입으로 도핑된다. 또한, 매립 절연층(100-2)은 대략 500 Å 내지 대략 10,000 Å의 두께를 갖도록 형성될 수 있으며, 제2 반도체층(100-3)은 대략 1 μm 내지 대략 10 μm의 두께를 갖도록 형성될 수 있다.Referring to FIG. 2A, the
절연층(101)은 제1 기판(100)에 국부적으로 형성된다. 절연층(101)은 얕은 트렌치 절연(STI: Shallow Trench Isolation) 프로세스 또는 실리콘의 로컬 산화(LOCOS: LOCaI Oxidation of Silicon) 프로세스를 통해 형성될 수 있으나, 절연층(101)은 도 2a에 예시되는 바와 같이 고 직접도의 실현에 바람직한 STI 프로세스를 사용하여 형성되는 것이 바람직하다. STI 프로세스가 수행되는 경우, 절연층(101)은 고 종횡비를 위한 우수한 충진 특성, 또는 HDP층 또는 스핀 온 절연체(SOD:spin on insulation)층의 적층 구조를 갖는 고밀도 플라즈마(HDP: High Density Plasma)층을 포함할 수 있다.The insulating
게이트 절연층(102) 및 게이트 도전층(103)이 제1 기판(100) 위에 형성되고, 그 후 구동 트랜지스터의 게이트 전극(104)을 형성하기 위하여 에칭된다. 동시에, 도시되지 않았으나, CMOS 이미지 센서의 단위 픽셀을 구성하는 전송 트랜지스터, 리셋 트랜지스터, 및 선택 트랜지스터의 게이트 전극들이 형성될 수 있다.A
스페이서(105)는 게이트 전극(104)의 양 측벽들상에 형성될 수 있다. 스페이서들(105)은 산화물층, 질화물층, 또는 이들의 적층 구조를 포함할 수 있다.The
스페이서들(105)이 형성되기 이전에, 게이트 전극(104)이 형성된다. n-타입(이하에서, 제2 도전성 타입)으로 도핑되는 약하게 도핑된 드레인(LDD: lightly doped drain) 영역(미도시)이 게이트 전극(104)의 양 측면들상에 노출되어 제1 기판(100)에 형성된다.Before the
광 수용 엘리먼트(106)로서 기능하는 포토다이오드가 이온 주입 프로세스를 통해 제1 기판(100)에 형성된다. 이러한 경우에, 광 수용 엘리먼트(106)는 제2 도전성 타입으로 도핑된다. 포토다이오드는 도 2a의 상대적으로 얇은 도핑 프로파일을 갖는다. 그러나, 이것은 편의를 위한 것이며, 도핑 프로파일(깊이, 폭)은 적절히 변화될 수 있다.A photodiode that functions as the
제2 도전성 타입으로 도핑되는 소스 및 드레인 영역들(107)은 스페이서들(105)의 양쪽 측면들상에 노출되어 제1 기판(100)에 형성된다. 소스 및 드레인 영역들(107)은 LDD 영역 및 광 수용 엘리먼트(105)보다 더 높은 도핑 농도를 갖는다.Source and
광 수용 엘리먼트(106)의 표면 노이즈를 방지하기 위하여, 제1 도전성 타입으로 도핑되는 도핑 영역(미도시)은 광 수용 엘리먼트(106)의 최상부 표면을 커버하기 위하여 추가로 형성될 수 있다.To prevent surface noise of the
게이트 전극(104), 스페이서들(105), 광 수용 엘리먼트(106) 및 소스 및 드레인 영역들(107)이 순차적으로 형성되는 것으로 상기 설명되었으나, 이들의 형성 순서는 상기 실시예로 제한되지 않고, 제작 프로세스들에 따라 적절히 변화될 수 있다.Although it has been described above that the
제1 층간 절연층(108)은 게이트 전극(104), 스페이서들(105), 포토다이오드(106), 및 소스 및 드레인 영역(107)를 포함하는 제1 기판(100)을 커버하도록 형성된다. 제1 층간 절연층(108)은 산화물층, 예를 들어, 실리콘 산화물층(SiO2)을 포함할 수 있다. 특히, 제1 층간 절연층(108)은 보로포스포실리케이트 글래스(BPSG: BoroPhosphoSilicate Glass)층, 포스포실리케이트 글래스(PSG:PhosphoSilicate Glass)층, 보로실리케이트 글래스(BSG: BoroSilicate Glass)층, 비-도핑된 실리케이트 글래스(USG:Un-doped Silicate Glass)층, 테트라 에틸 오르토 실리케이트(TEOS: Tetra Ethyle Ortho Silicate)층, HDP 층, 이들의 적층된 층으로 이루어진 그룹으로부터 선택되는 하나의 층을 포함할 수 있다. 또한, 제1 층간 절연층(108)은 스핀 코팅 프로세스에 의하여 증착되는 스핀 온 유전체(SOD: Spin On Dielectric)층과 같은 층을 포함할 수 있다.The first
도 2b를 참고하여, 소스 및 드레인 영역들(107)을 노출시키는 콘택 홀(109)을 형성하기 위하여 제1 층간 절연층(108)을 국부적으로 에칭하기 위해 에치 프로세스가 수행된다. 에치 프로세스는 건식 에치 프로세스 또는 습식 에치 프로세스를 사용하여 수행될 수 있다. 수직으로 에칭된 표면이 획득될 수 있도록 건식 에칭 프로세스를 수행하는 것이 바람직하다.Referring to FIG. 2B, an etch process is performed to locally etch the first
제1 층간 절연층(108) 및 제1 기판(100)은 국부적으로 에칭된다. 이하에서, 에칭된 제1 층간 절연층(108) 및 제1 기판(100)은 각각 제1 층간 절연 패턴(108A) 및 제1 기판 패턴(100A)으로 불린다. 따라서, 제1 층간 절연 패턴(108A)으로부터 제1 반도체 패턴(100-1A)으로 연장되는 비아 홀(110)이 형성된다. 이때에, 다수의 비아 홀들(110)이 매트릭스 구성으로 형성될 수 있다.The first
특히, 비아 홀(110)은 대략 88 도 내지 대략 90 도의 수직각 및 제1 층간 절연 패턴(108A)의 최상부 표면으로부터 대략 20,000 Å, 바람직하게는 대략 4,000 Å 내지 대략 20,000 Å의 깊이를 갖는다. 보다 바람직하게, 비아 홀(110)은 제2 반도체 패턴(100-3A)의 최상부 표면으로부터 대략 1,000 Å 내지 대략 10,000 Å의 깊이로 형성된다. 또한, 비아 홀(110)은 대략 0.1 μm 내지 대략 2.0 μm의 임계 치수(CD)를 갖는다. 비아 홀(110)은 대략 1.6 μm 미만, 바람직하게는 대략 1.0 μm 내지 대략 1.6 μm의 바닥부 폭을 갖는다. 다수의 비아 홀들(110)이 형성될 때, 그들의 각도들, 깊이들 및 폭들의 편차는 4% 미만인 것이 바람직하다. 추가로, 비아 홀(110)의 개수 및 형태에 대한 제한은 없다. 특히, 비아 홀(110)은 다양한 형태들, 예를 들어, 원형 또는 다각(삼각, 직사각, 오각, 팔각 등) 형태로 형성될 수 있다.In particular, the via
한편, 콘택 홀(109) 및 비아 홀(110)의 형성 순서에 대한 제한은 없다. 콘택 홀(109)은 비아 홀(110)을 형성한 이후에 형성될 수 있다. 또한, 콘택 홀(109) 및 비아 홀(110)은 동일한 플라즈마 에칭 장치 내에 인-시튜로 형성될 수 있다.On the other hand, there is no restriction on the order in which the contact holes 109 and the via holes 110 are formed. The contact hole 109 may be formed after the via
예를 들어, 비아 홀(110)은 2 단계로 건식 에칭 프로세스를 사용하여 형성된다.For example, via
제1 단계는 제1 층간 절연층(108)을 에칭하는 것이다. 에칭 프로세스는 제1 층간 절연층(108) 대 포토레지스트 패턴(미도시)의 에치 선택도가 5 : 1 내지 2 : 1, 바람직하게는 2.4 : 1의 범위인 조건들 하에서 수행된다. 또한, 에치 레이트는 대략 7,000 Λ/min 내지 대략 8,000 Å/min, 바람직하게는 7,200 Å/min의 범위에 있다. 에칭 조건들로서, 압력은 대략 100 mTorr 내지 대략 200 mTorr의 범위에 있고, 소스 전력은 대략 100 W 내지 대략 2,000 W의 범위에 있다. 탄소 불소 화합물, 예를 들어, 플루오로포름(CHF3) 또는 테트라플루오로메탄(CF4)은 소스 가스로서 사용되고, 아르곤(Ar)이 에칭 속도 및 비등방성을 증가시키기 위하여 소스 가스에 추가로 부가된다. CHF3의 유량은 대략 5 sccm 내지 대략 200 sccm의 범위이고, CF4의 유량은 대략 20 sccm 내지 대략 200 sccm의 범위이며, Ar의 유량은 대략 100 sccm 내지 대략 2,000 sccm의 범위이다.The first step is to etch the first
제2 단계는 제1 기판(100)을 에칭하는 것이다. 제2 단계에서, 에치 레이트는 대략 1,000 λ/min 내지 대략 3,000 Å/min, 바람직하게는 2,000 Å/min의 범위이다. 에칭 조건들로서, 압력은 대략 15 mTorr 내지 대략 30 mTorr의 범위이다. 소스 전력(예를 들어, RF 전력)은 대략 400 W 내지 대략 600 W의 범위이고, 이온들의 직진도(straightness)를 개선하기 위한 바이어스 전력은 대략 80 W 내지 대략 120 W의 범위이다. 황 헥사플루오르화물(SF6) 및 O2가 소스 가스로서 사용된다. SF6의 유량은 대략 5 sccm 내지 대략 200 sccm의 범위이고, O2의 유량은 대략 1 sccm 내지 대략 100 sccm의 범위이다.The second step is to etch the
제2 단계에서, 에치 프로세스는 매립 절연층(100-2)의 일부를 에칭하거나 또는 매립 절연층(100-2) 및 제1 반도체층(100-1)의 일부를 에칭하기 위하여 수행될 수 있다. 전자의 경우에, 매립 절연층(100-2)은 대략 100 Å 내지 대략 4,000 Å만큼 과도하게 에칭될 수 있다. 이하에서, 에칭된 매립 절연층(100-2) 및 에칭된 제1 반도체층(100-1)은 각각 매립 절연 패턴(100-2A) 및 제1 반도체 패턴(100-1A)으로 불린다.In a second step, an etch process may be performed to etch a portion of the buried insulating layer 100-2 or to etch a portion of the buried insulating layer 100-2 and the first semiconductor layer 100-1. . In the former case, the buried insulating layer 100-2 may be excessively etched by about 100 kPa to about 4,000 kPa. Hereinafter, the etched buried insulating layer 100-2 and the etched first semiconductor layer 100-1 are referred to as a buried insulating pattern 100-2A and a first semiconductor pattern 100-1A, respectively.
도 2c를 참고하여, 배리어층들(미도시)은 비아 홀(110)(도 2b 참고) 및 콘택 홀(109)(도 2b 참고)의 내부 표면들상에 형성될 수 있다. 배리어층은 티타늄(Ti)층, 티타늄 질화물(TiN)층, 탄탈룸(Ta)층, 탄탈룸 질화물(TaN)층, 알루미늄 실리콘 티타늄 질화물(AlSiTiN)층, 니켈 티타늄(Niti)층, 티타늄 붕소 질화물(TiBN)층, 지르코늄 붕소 질화물(ZrBN)층, 티타늄 알루미늄 질화물(TiAlN)층, 티타늄 다이보라이드(TiB2)층, 및 이들의 적층 구조물, 예를 들어, Ti/TiN 층 및 Ta/Tan 층으로 이루어진 그룹으로부터 선택되는 하나의 층을 포함할 수 있다. 콘택 홀(109), 특히 비아 홀(110)의 폭의 감소를 최소화시키기 위하여, 배리어층은 우수한 단계 커버리지를 갖는 원자층 증착(ALD) 프로세스를 사용하여 100 Å 미만, 바람직하게는 대략 50 Å 내지 대략 100 Å의 두께로 형성된다. 또한, 배리어층은 금속 유기 화학 기상 증착(MOCVD: metal organic chemical vapor deposition) 프로세스 또는 물리 기상 증착(PVD: physical vapor deposition) 프로세스를 통해 형성될 수 있다.Referring to FIG. 2C, barrier layers (not shown) may be formed on the inner surfaces of the via hole 110 (see FIG. 2B) and the contact hole 109 (see FIG. 2B). The barrier layer is a titanium (Ti) layer, titanium nitride (TiN) layer, tantalum (Ta) layer, tantalum nitride (TaN) layer, aluminum silicon titanium nitride (AlSiTiN) layer, nickel titanium (Niti) layer, titanium boron nitride (TiBN) ) Layer, a zirconium boron nitride (ZrBN) layer, a titanium aluminum nitride (TiAlN) layer, a titanium diboride (TiB 2 ) layer, and laminated structures thereof, such as a Ti / TiN layer and a Ta / Tan layer. It may comprise one layer selected from the group. In order to minimize the reduction in the width of the contact holes 109, in particular the via holes 110, the barrier layer may be less than 100 GPa, preferably approximately 50 GPa, using an atomic layer deposition (ALD) process with good step coverage. It is formed to a thickness of approximately 100
추가로, 배리어층은 배리어층은 산화물층, 예컨대 실리콘 산화물층, 질화물층, 예컨대 실리콘 질화물층, 및 이들의 적층 구조물, 예컨대 질화물/산화물층을 포함할 수 있다. 질화물/산화물층의 경우에, 산화물층 및 질화물층은 질화물/산화물층이 200 Å 미만의 전체 두께를 갖도록 라이너에 형성된다. 이러한 방식으로, 비아 홀(110)의 폭의 감소는 최소화된다.In addition, the barrier layer may include an oxide layer such as a silicon oxide layer, a nitride layer such as a silicon nitride layer, and a stacked structure thereof such as a nitride / oxide layer. In the case of a nitride / oxide layer, the oxide layer and nitride layer are formed in the liner such that the nitride / oxide layer has an overall thickness of less than 200 GPa. In this way, the reduction in the width of the via
콘택 홀(109) 및 비아 홀(110)은 제1 콘택 플러그(111) 및 정렬 키(112)를 형성하기 위하여 도전성 물질로 충진된다. 도전성 물질은 구리(Cu), 백금(Pt), 텅스틴(W), 알루미늄(Al) 및 이들의 합금으로 이루어진 그룹으로부터 선택되는 하나의 물질을 포함할 수 있다. 도전성 물질은 상기 열거된 물질들로 제한되지 않으나, 도전성 특성들을 갖는 임의의 금속 또는 금속 합금을 포함한다. W가 도전성 물질로서 사용될 때, 화학 기상 증착(CVD) 프로세스 또는 ALD 프로세스가 수행된다. Al이 도전성 물질로서 사용될 때, CVD 프로세스가 사용된다. 구리(Cu)가 도전성 물질로서 사용될 때, 전기도금 프로세스 또는 CVD 프로세스가 수행된다.The contact hole 109 and the via
상기 개시되는 바와 같이, 제1 콘택 플러그(111) 및 정렬 키(112)는 동시에 형성될 수 있다. 또한, 정렬 키(112)는 제1 콘택 플러그(111)를 형성한 이후에 형성될 수 있으며, 또는 반대로 형성하기 이전에 형성될 수도 있다. 제1 콘택 플러그(111) 및 정렬 키(112)가 동시에 형성되지 않을 대, 이들은 상이한 물질들로 형성될 수 있다. 예를 들어, 제1 콘택 플러그(111)는 불순물-도핑된 폴리실리콘으로 형성되고, 정렬 키(112)는 상기 개시되는 물질로 형성된다.As disclosed above, the
도 2d를 참고하여, 제1 내지 제4 상호접속층들(113, 116, 119 및 122), 제2 내지 제4 콘택 플러그들(115, 118 및 121), 제2 내지 제5 층간 절연층들(114, 117, 120 및 123)이 형성된다. 예를 들어, 제1 내지 제4 상호접속층들(113, 116, 119 및 122) 중에서 제1 상호접속층(113)의 일부가 제1 콘택 플러그(111)로부터 전기적으로 분리되고 제1 콘택 플러그(111)에 연결되며, 제1 상호접속층(113)의 다른 부분이 정렬 키(112)에 연결된다.Referring to FIG. 2D, first to fourth interconnect layers 113, 116, 119 and 122, second to fourth contact plugs 115, 118 and 121, and second to fifth
제1 내지 제4 상호접속층들(113, 116, 119 및 122)은 증착 프로세스 및 에칭 프로세스를 통해 형성된다. 제1 내지 제4 상호접속층들(113, 116, 119 및 122)은 도전성 물질, 예를 들어, 금속 또는 적어도 2개의 금속들을 함유하는 합금으로 형성된다. 바람직하게, 제1 내지 제4 상호접속층들(113, 116, 119 및 122)은 알루미늄(Al)으로 형성된다. 제2 내지 제4 콘택 플러그들(115, 118 및 121)은 다마신 프로세스를 통해 제2 내지 제5 층간 절연층들(114, 117, 120 및 123)에 형성된다. 수직으로 적층되는 제1 내지 제4 상호접속층들(113, 116, 119 및 122)을 전기적으로 접속시키기 위하여, 제2 내지 제4 콘택 플러그들(115, 118 및 121)은 도전성 물질, 예를 들어, 불순물-도핑된 폴리실리콘 및 금속, 또는 적어도 2개의 금속들을 함유하는 합금으로 형성된다. 바람직하게, 제2 내지 제4 콘택 플러그들(115, 118 및 121)은 텅스텐(W)으로 형성된다. 제2 내지 제5 층간 절연층들(114, 117, 120 및 123)은 BPSG층, PSG층, BSG층, USG층, TEOS층, HDP층, 및 이들의 적층 구조물로 이루어진 그룹으로부터 선택되는 산화물층을 포함할 수 있다. 또한, 제2 내지 제4 층간 절연층들(114, 117 및 120)은 CMP 프로세스를 사용하여 평탄화될 수 있다.The first through fourth interconnect layers 113, 116, 119 and 122 are formed through a deposition process and an etching process. The first through fourth interconnect layers 113, 116, 119 and 122 are formed of a conductive material, for example a metal or an alloy containing at least two metals. Preferably, the first to fourth interconnect layers 113, 116, 119 and 122 are formed of aluminum (Al). The second to fourth contact plugs 115, 118, and 121 are formed in the second to fifth
제1 내지 제4 상호접속층들(113, 116, 119 및 122) 및 제2 내지 제4 콘택 플러그들(115, 118 및 121)의 층 개수 및 구조에 대한 제한은 존재하지 않는다. 상호접속층들 및 콘택 플러그들의 층 개수 및 구조는 소자 설계에 따라 다양하게 변화될 수 있다.There is no restriction on the number and structure of layers of the first to fourth interconnect layers 113, 116, 119 and 122 and the second to fourth contact plugs 115, 118 and 121. The number and structure of layers of interconnect layers and contact plugs can vary widely depending on the device design.
전면 패시베이션층(124)은 제5 층간 절연층(123) 위에 형성된다. 전면 패시베이션층(124)은 BPSG층, PSG층, BSG층, USG층, TEOS층, 및 HDP층으로 이루어진 그룹으로부터 선택되는 하나의 층을 포함할 수 있다. 바람직하게, 전면 패시베이션층(124)은 TEOS층 또는 HDP층을 사용하여 대략 1,000 Å 내지 대략 40,000 Å의 두께로 형성된다. 또한, 전면 패시베이션층(124)은 질화물층 또는 산화물층 및 질화물층의 적층 구조물을 포함할 수 있다.The
전면 패시베이션층(124)은 평탄화된다. 평탄화 프로세스는 화학 기계적 연마(CMP) 프로세스를 통해 수행될 수 있다.
열적 처리는 전면 패시베이션층(124)을 치밀화(densify)하기 위하여 수행될 수 있다. 열적 처리는 퍼니스를 사용하여 어닐링 프로세스를 통해 수행될 수 있다.Thermal treatment may be performed to densify
도 2e를 참고하여, 도 2a 내지 2d의 프로세스들을 통해 제작되는 제1 기판 패턴(100A)은 제2 기판(200)에 결합된다. 결합 프로세스는 산화물/산화물 결합, 산화물/실리콘 결합, 산화물/금속 결합, 산화몰/접착제/산화물 결합, 및 산화물/접착제/실리콘 결합으로 이루어진 그룹으로부터 선택되는 하나의 방법을 사용하여 수행된다.Referring to FIG. 2E, the
예를 들어, 산화물/산화물(제2 기판(200) 위에 형성됨) 결합 및 산화물/실리콘(실리콘 기판) 결합은 O2 또는 N2를 사용하는 플라즈마 처리 및 수 처리(water treatment) 이후에 2개의 기판들을 결합하는 것이다. 수 처리 이후에 2개의 기판들을 결합하는 방법 이외에, 2개의 기판들은 아민을 사용하는 화학 처리 이후에 함께 결합될 수 있다. 산화물/금속(제2 기판(200) 위에 형성됨) 결합에서, 금속층은 티타늄(Ti), 알루미늄(Al) 또는 구리(Cu)와 같은 금속으로 형성될 수 있다. 산화물/접착제/산화물 결합 및 산화물/접착제/실리콘 결합에서, 벤조 시클로 부틴(BCB)이 접착 부재로서 사용될 수 있다.For example, the oxide / oxide (formed on the second substrate 200) bond and the oxide / silicon (silicon substrate) bond are two substrates after plasma treatment and water treatment using O 2 or N 2 . To combine them. In addition to the method of joining two substrates after water treatment, the two substrates may be joined together after chemical treatment with amines. In an oxide / metal (formed on second substrate 200) bond, the metal layer may be formed of a metal such as titanium (Ti), aluminum (Al) or copper (Cu). In oxide / adhesive / oxide bonds and oxide / adhesive / silicone bonds, benzocyclobutyne (BCB) can be used as the adhesive member.
도 2f를 참고하여, 백 그라인딩(back grinding) 프로세스는 제1 기판 패턴(100A)의 후면을 그라인딩하기 위하여 수행된다(도 2e 참고). 이러한 경우에, 정렬 키(112)기 매립 절연 패턴(100-2A)을 통과하도록 형성된다면, 정렬 키(112)는 매립 절연 패턴(100-2A)이 노출될 때가지 백 그라인딩 프로세스를 수행함으로써 노출된다. 이러한 프로세스 동안에, 매립 절연 패턴(100-2A)은 미리 결정된 두께만큼 제거될 수 있다. 한편, 정렬 키(112)가 매립 절연 패턴(100-2A)을 통과하지 않도로고 형성된다면, 즉, 정렬 키(112)가 미리 결정된 깊이만큼 매립 절연 패턴(100-2A)으로 연장된다면, 매립 절연 패턴(100-2A)은 정렬 키(112)를 노출시키기 위하여 부분적으로 또는 완전히 제거될 수 있다. 대안적으로, 매립 절연 패턴(100-2A)은 개별적인 에치 프로세스를 통해 에칭될 수 있다.Referring to FIG. 2F, a back grinding process is performed to grind the back surface of the
도 2g를 참고하여, 제2 반도체 패턴(100-3A)상에 남아있는 매립 절연 패턴(100-2A)(도 2f 참고)은 국부적으로 제거된다. 제거 프로세스는 습식 에치 프로세스를 통해 수행된다. 예를 들어, 매립 절연 패턴(100-2A)이 실리콘 질화물층을 포함할 때, 습식 에치 프로세스는 버퍼링된 산화물 에칭제(BOE: Buffered Oxide Etchant) 또는 희석된 HF(DHF)를 사용하여 수행된다. Referring to FIG. 2G, the buried insulation pattern 100-2A (see FIG. 2F) remaining on the second semiconductor pattern 100-3A is locally removed. The removal process is performed through a wet etch process. For example, when the buried insulation pattern 100-2A includes a silicon nitride layer, a wet etch process is performed using a buffered oxide etchant (BOE) or diluted HF (DHF).
도 2h를 참고하여, 후면 패시베이션층(125)은 매립 절연 패턴(100-2A)(도 2f 참고)이 제거되는 제2 반도체 패턴(100-3A) 위에 형성된다. 후면 패시베이션층(125)은 상이한 굴절률들을 갖는 제1 절연층 및 제2 절연층의 적층 구조를 갖는다. 실리콘 산화물층은 자연적 산화물층, 성장된 산화물층, 및 증착 산화물층으로 이루어진 그룹으로부터 선택된 것일 수 있다. 성장된 산화물층은 건식 산화 프로세스, 습식 산화 프로세스, 및 방사 이온 산화 프로세스 중 하나를 통해 형성된다. 증착 산화층은 화학 기상 증착(CVD) 프로세스를 통해 형성된다. 실리콘 산화물층 및 실리콘 질화물층은 각각 대략 2 nm 내지 대략 50 nm 및 대략 100 nm 내지 대략 500 nm의 두께를 갖도록 형성된다.Referring to FIG. 2H, the
한편, 다중층 구조를 갖는 후면 패시베이션층(125)의 증착 프로세스는 제작 프로세스의 증가된 안정성 및 감소된 프로세싱 시간을 획득하기 위하여 동일한 챔버 내에서 인-시튜로 수행될 수 있다. 인-시튜 프로세스가 불가능하다면, 증착 프로세스는 상이한 챔버에서 엑스-시튜(ex-situ)로 수행될 수 있다.On the other hand, the deposition process of the
후면 패시베이션층(125)에서, 실리콘 질화물층은 정렬 키(112)의 후면상에 증착된다. 그러나, 에치-백 프로세스 또는 CMP 프로세스는 정렬 키(112)의 후면상에 증착되는 일부분을 선택적으로 제거하기 위하여 부가적으로 수행된다. 따라서, 정렬 키(112)의 후면이 노출된다.In the
도 2i를 참고하여, 투과성 도전층(126)이 후면 패시베이션층(125) 위에 형성된다. 투과성 층(126)은 TCO층이다. 투과성 층(126)은 ITO층, ZO층, SnO 및 ZTO층으로 이루어진 그룹으로부터 선택된 것을 포함할 수 있다. ITO층은 CO, Ti, W, Mo, 및 Cr로 이루어진 그룹으로부터 선택된 것으로 도핑된다. ZO층은 Mg, Zr, 및 Li로 이루어진 그룹으로부터 선택된 것으로 도핑될 수 있다. TCO층은 대략 10 nm 내지 대략 500 nm의 두께를 갖도록 형성된다. 투과성 도전층(126)은 폴리실리콘층 또는 금속층을 포함할 수 있다. 폴리실리콘층은 광 투과를 위해 대략 1 nm 내지 대략 40 nm의 두께를 갖도록 형성된다. 금속층은 금(Au) 또는 백금(Pt)일 수 있다. 금속층은 대략 0.1 nm 내지 대략 1 nm의 두께를 갖도록 형성된다.Referring to FIG. 2I, a transparent
도 2j를 참고하여, 제1 평탄화층(127)은 투과성 도전층(126) 위에 형성될 수 있다. 제1 평탄화층(127)은 유기 물질로 형성될 수 있다.Referring to FIG. 2J, the
컬러 필터(128) 및 마이크로렌즈(130)는 제1 평탄화층(127) 위에 형성된다. 제2 평탄화층(129)은 컬러 필터(128)와 마이크로렌즈(130) 사이에 형성될 수 있다. 제2 평탄화층(129)은 유기 물질로 형성될 수 있다.The
그 후, 저온 산화물(LTO: low temperature oxide)층(130)이 마이크로렌즈(130)를 커버하기 위하여 형성된다.Thereafter, a low temperature oxide (LTO)
제1 기판 패턴(100A) 및 제2 기판(200)은 패키징 프로세스에 의하여 패키징된다. 패키징 프로세스는 와이어 결합 프로세스 및 쏘잉(sawing) 프로세스를 포함한다. 와이어 결합은 와이어를 통해 외부 칩에 패드를 결합함으로써 달성된다. 투과성 도전성 산화물보다는 결합 패드로의 상호접속부(112)를 통한 실리콘 관통 연결이 종래의 기술들에 의하여 달성된다.The
본 발명의 실시예들은 하기의 효과들을 달성할 수 있다.Embodiments of the present invention can achieve the following effects.
첫째로, 통상적인 CMOS 이미지 센서(전면 조명된 이미지 센서)와 비교하여, 기판(예를 들어, 반도체 소자)의 후면으로부터 광이 조명되는 후면 조명된 이미지 센서는 광 수용 엘리먼트로 입사하는 광의 손실을 최소화시킬 수 있어, 광 수용 효과를 증가시킨다.First, compared to conventional CMOS image sensors (front-illuminated image sensors), a back-illuminated image sensor that is illuminated from the back of a substrate (e.g., a semiconductor device) provides for the loss of light incident to the light receiving element. Can be minimized, increasing the light receiving effect.
둘째로, 후면 패시베이션층은 기판의 후면으로 입사하는 광의 반사를 방지하기 위하여 형성된다. 따라서, 광 수용 엘리먼트의 광 수집 효율은 광 수용 효율을 개선하기 위하여 증가될 수 있다.Secondly, a back passivation layer is formed to prevent reflection of light incident on the back of the substrate. Therefore, the light collection efficiency of the light receiving element can be increased to improve the light receiving efficiency.
셋째로, 투과성 도전층은 기판(예를 들어, 반도체층)의 후면 패시베이션층상에 형성된다. 음의 전압 (-)은 투과성 도전층에 인가된다. 따라서, 암전류의 생성을 최소화하고 기판의 후면으로부터의 암전류가 광 수용 엘리먼트로 흐르는 것을 방지하는 것이 가능하다. 대안적으로 양의 전압 (+)은 기판의 후면으로부터의 암전류를 방지하기 위하여 후면을 반전시키기 위해 투과성 도전층에 인가된다.Third, the transparent conductive layer is formed on the back passivation layer of the substrate (eg, semiconductor layer). A negative voltage (-) is applied to the transparent conductive layer. Thus, it is possible to minimize the generation of dark currents and to prevent dark currents from the backside of the substrate from flowing to the light receiving element. Alternatively a positive voltage (+) is applied to the transparent conductive layer to invert the back side to prevent dark current from the back side of the substrate.
넷째로, 백 그라인딩 프로세스를 사용하여 후면 조명된 이미지 센서를 제작하기 위한 방법에서, 비아 홀 형태를 갖는 정렬 키가 기판의 후면을 그라인딩하는 백 그라인딩 프로세스 이전에 기판에 형성되고, 기판의 후면 그라인딩 타겟이 백 그라인딩 프로세스 동안에 제어된다. 따라서, 백 그라인딩 프로세스의 제어가 용이해진다.Fourth, in a method for fabricating a back-illuminated image sensor using a back grinding process, an alignment key having a via hole shape is formed in the substrate before the back grinding process of grinding the back side of the substrate, and the back grinding target of the substrate. This is controlled during the back grinding process. Thus, control of the back grinding process is facilitated.
다섯번째로, 정렬 키의 후면이 투과성 도전층에 연결된다. 따라서, 음의 인가 유닛에 의하여 인가되는 음의 전압이 정렬 키를 통해 투과성 도전층에 전달된다. 음의 전압 인가 유닛은 제1 기판이 아닌 제2 기판상에 배치될 수 있다. 다양한 설계들이 패키징 프로세스에서 가능하다.Fifth, the rear side of the alignment key is connected to the transparent conductive layer. Thus, the negative voltage applied by the negative applying unit is transmitted to the transparent conductive layer through the alignment key. The negative voltage applying unit may be disposed on the second substrate rather than the first substrate. Various designs are possible in the packaging process.
특정 실시예들에 관련하여 본 발명이 설명되었으나, 본 발명의 상기 실시예들은 제한이 아닌 예시를 위한 것이다. 특히, 본 발명이 실시예에서 CMOS 이미지에 적용되었으나, 본 발명은 임의의 다른 전하 결합 소자(CCD), 후면조명된 이미지 센서들, 또는 3D 구조 집적 소자들로 적용될 수 있다.Although the present invention has been described with reference to specific embodiments, the above embodiments of the present invention are for illustration and not limitation. In particular, although the invention has been applied to a CMOS image in an embodiment, the invention can be applied to any other charge coupled device (CCD), backlit image sensors, or 3D structured integrated devices.
본 기술분야의 당업자들에게는 하기의 청구항들에 정의되는 바와 같은 본 발명의 정신 및 범위를 벗어나지 않고 다양한 변화들 및 변형들이 이루어질 수 있다는 것이 명백할 것이다.
It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention as defined in the claims below.
Claims (26)
기판의 전면(front side)에 근접한 수광(light-receiving) 엘리먼트를 형성하는 단계;
상기 기판의 전면 위에 상호접속층을 형성하는 단계;
상기 기판의 후면에 상기 수광 엘리먼트에 근접한 투과성 도전성층을 형성하는 단계; 및
상기 상호접속층 및 상기 투과성 도전성층을 전기적으로 연결하는 도전성 정렬 키를 형성하는 단계 ― 상기 도전성 정렬 키는 상기 기판을 통해 상기 상호접속층과 상기 투과성 도전성층 사이로 연장됨 ―
를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.A method for manufacturing a back lit image sensor,
Forming a light-receiving element proximate the front side of the substrate;
Forming an interconnect layer over the front surface of the substrate;
Forming a transparent conductive layer proximate to the light receiving element on a back surface of the substrate; And
Forming a conductive alignment key electrically connecting the interconnect layer and the transparent conductive layer, the conductive alignment key extending between the interconnect layer and the transparent conductive layer through the substrate;
And a method for fabricating a back lit image sensor.
상기 상호접속층을 형성하는 단계는 패터닝된 금속층 및 패터닝된 절연층을 형성하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 1,
Forming the interconnect layer comprises forming a patterned metal layer and a patterned insulating layer.
상기 패터닝된 금속층 및 패터닝된 절연층을 형성하는 단계는 다수의 패터닝된 금속층들 및 다수의 패터닝된 절연층들을 형성하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 2,
Forming the patterned metal layer and the patterned insulating layer comprises forming a plurality of patterned metal layers and a plurality of patterned insulating layers.
상기 상호접속층을 형성하는 단계는 다수의 패터닝된 금속층들을 형성하는 단계를 포함하며, 상기 도전성 정렬 키는 상기 기판의 상기 전면으로부터 가장 먼 패터닝된 금속층에 전기적으로 연결되는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 1,
Forming the interconnect layer includes forming a plurality of patterned metal layers, wherein the conductive alignment key is electrically connected to a patterned metal layer furthest from the front side of the substrate. How to make it.
상기 투과성 도전성층을 형성하는 단계는 ITO, ZO, SnO, 및 ZTO로 이루어진 그룹으로부터 선택되는 물질로부터 상기 투과성 도전성층을 형성하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 1,
Forming the transmissive conductive layer comprises forming the transmissive conductive layer from a material selected from the group consisting of ITO, ZO, SnO, and ZTO.
상기 투과성 도전성층은 ITO층을 포함하며, 상기 방법은 Co, Ti, W, Mo 및 Cr로 구성되는 불순물들의 그룹로부터 선택되는 불순물로 상기 ITO층을 도핑하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 5,
Wherein the transmissive conductive layer comprises an ITO layer, the method further comprising doping the ITO layer with an impurity selected from the group of impurities consisting of Co, Ti, W, Mo, and Cr. Method for manufacturing the sensor.
상기 투과성 도전성층은 ZO층을 포함하며, 상기 방법은 Mg, Zr 및 Li로 구성되는 불순물들의 그룹으로부터 선택되는 불순물로 상기 ZO층을 도핑하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 5,
The transmissive conductive layer comprises a ZO layer, the method further comprising doping the ZO layer with an impurity selected from the group of impurities consisting of Mg, Zr, and Li. Way.
상기 투과성 도전성층은 폴리실리콘층, 귀금속층, 또는 둘 모두를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 1,
Wherein said transmissive conductive layer comprises a polysilicon layer, a noble metal layer, or both.
상기 수광 엘리먼트를 형성하는 단계는 상기 기판에 포토다이오드를 형성하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 1,
Forming the light receiving element comprises forming a photodiode on the substrate.
상기 수광 엘리먼트에 근접하게 상기 투과성 도전성층 위에 컬러 필터 및 마이크로렌즈 모두를 형성하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 1,
And forming both a color filter and a microlens on the transparent conductive layer in proximity to the light receiving element.
기판에 수광 엘리먼트를 형성하는 단계;
상기 수광 엘리먼트에 근접하게 상기 기판 위에 층간 절연층을 형성하는 단계;
상기 수광 엘리먼트로부터 이격되고 상기 층간 절연층 및 상기 기판을 통과하는 정렬 키를 형성하는 단계;
상기 층간 절연층 위에 다중층 구조로 다수의 상호접속층들을 형성하는 단계 ― 상기 다중층 구조의 금속층은 상기 정렬 키에 전기적으로 연결됨 ― ;
상기 다수의 상호접속층들의 전면 가장바깥쪽 층 위에 전면 패시베이션층을 형성하는 단계;
상기 기판 위에 후면 패시베이션층을 형성하는 단계;
상기 수광 엘리먼트에 근접하게 상기 후면 패시베이션층 위에 투과성 도전성층을 형성하는 단계 ― 상기 투과성 도전성층은 상기 정렬 키에 전기적으로 연결되도록 형성됨 ―
를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.A method for manufacturing a back lit image sensor,
Forming a light receiving element on the substrate;
Forming an interlayer insulating layer over said substrate in proximity to said light receiving element;
Forming an alignment key spaced apart from the light receiving element and passing through the interlayer insulating layer and the substrate;
Forming a plurality of interconnect layers in a multilayer structure over the interlayer dielectric layer, wherein the metal layer of the multilayer structure is electrically connected to the alignment key;
Forming a front passivation layer over the frontmost outermost layer of the plurality of interconnect layers;
Forming a back passivation layer on the substrate;
Forming a transmissive conductive layer over the back passivation layer proximate the light receiving element, the transmissive conductive layer being formed to be electrically connected to the alignment key;
And a method for fabricating a back lit image sensor.
상기 수광 엘리먼트에 근접하게 상기 투과성 도전성층 위에 컬러 필터 및 마이크로렌즈 모두를 형성하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 11,
And forming both a color filter and a microlens on the transparent conductive layer in proximity to the light receiving element.
상기 전면 패시베이션층 위에 추가적 기판을 형성하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 11,
Forming a further substrate over the front passivation layer.
상기 후면 패시베이션층을 형성하는 단계는 상이한 굴절률들을 갖는 물질들로부터 형성된 층들을 포함하는 다중층 구조물을 형성하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 13,
Forming the back passivation layer comprises forming a multilayer structure comprising layers formed from materials having different indices of refraction.
상기 후면 패시베이션층은 상기 기판보다 낮은 굴절률을 갖는 층을 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 11,
And the back passivation layer comprises a layer having a lower index of refraction than the substrate.
상기 후면 패시베이션층은 상기 기판보다 낮은 굴절률을 갖는 층을 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 13,
And the back passivation layer comprises a layer having a lower index of refraction than the substrate.
상기 전면 패시베이션층에 근접하게 추가적 기판을 결합하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 11,
Coupling an additional substrate in close proximity to the front passivation layer.
상기 추가적 기판은 실리콘-온-절연체(silicon-on-insulator) 기판을 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 17,
Wherein the additional substrate comprises a silicon-on-insulator substrate.
상기 투과성 도전성층을 형성하는 단계는 ITO, ZO, SnO, 및 ZTO로 이루어진 그룹으로부터 선택되는 물질로부터 상기 투과성 도전성층을 형성하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 11,
Forming the transmissive conductive layer comprises forming the transmissive conductive layer from a material selected from the group consisting of ITO, ZO, SnO, and ZTO.
상기 투과성 도전성층은 ITO층을 포함하며, 상기 방법은 Co, Ti, W, Mo 및 Cr로 구성되는 불순물들의 그룹으로부터 선택되는 불순물로 상기 ITO층을 도핑하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 19,
The transmissive conductive layer comprises an ITO layer, the method further comprising doping the ITO layer with an impurity selected from the group of impurities consisting of Co, Ti, W, Mo, and Cr. Method for manufacturing the sensor.
상기 투과성 도전성층은 ZO층을 포함하며, 상기 방법은 Mg, Zr 및 Li로 구성되는 불순물들의 그룹으로부터 선택되는 불순물로 상기 ZO층을 도핑하는 단계를 더 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 19,
The transmissive conductive layer comprises a ZO layer, the method further comprising doping the ZO layer with an impurity selected from the group of impurities consisting of Mg, Zr, and Li. Way.
상기 투과성 도전성층은 폴리실리콘층, 귀금속층, 또는 둘 모두를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 11,
Wherein said transmissive conductive layer comprises a polysilicon layer, a noble metal layer, or both.
실리콘-온-절연체 기판을 통해 정렬 키를 형성하는 단계 ― 상기 실리콘-온-절연체 기판은 제1 반도체층, 제2 반도체층, 상기 제1 반도체층과 상기 제2 반도체층 사이에 배치되는 매립 절연체층을 포함하고, 상기 정렬 키는 상기 제2 반도체층, 상기 매립 절연체층을 통과하고, 상기 제1 반도체층을 부분적으로 통과함 ― ;
상기 제2 반도체층에 수광 엘리먼트를 형성하는 단계;
상기 제2 반도체층의 후면에 근접하게 패터닝된 금속층을 형성하는 단계 ― 상기 패터닝된 금속층은 상기 정렬 키에 전기적으로 연결되도록 형성됨 ― ;
상기 정렬 키 및 상기 매립 절연층을 노출시키기 위하여 상기 제1 반도체층을 제거하는 단계; 및
상기 정렬 키의 노출된 부분들을 일반적으로 온전하게 남겨두면서 상기 매립 절연층을 선택적으로 제거하는 하나 이상의 프로세스들을 사용하여 상기 정렬 키를 노출시키기 위하여 상기 매립 절연층을 제거하는 단계
를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.A method for manufacturing a back lit image sensor,
Forming an alignment key through a silicon-on-insulator substrate, wherein the silicon-on-insulator substrate is a buried insulator disposed between a first semiconductor layer, a second semiconductor layer, the first semiconductor layer and the second semiconductor layer A layer, wherein the alignment key passes through the second semiconductor layer, the buried insulator layer, and partially passes through the first semiconductor layer;
Forming a light receiving element in the second semiconductor layer;
Forming a patterned metal layer proximate a rear surface of the second semiconductor layer, the patterned metal layer being formed to be electrically connected to the alignment key;
Removing the first semiconductor layer to expose the alignment key and the buried insulating layer; And
Removing the buried insulation layer to expose the alignment key using one or more processes to selectively remove the buried insulation layer while leaving exposed portions of the alignment key generally intact.
And a method for fabricating a back lit image sensor.
상기 제1 반도체층을 제거하는 단계는 상기 매립 절연층 및 정렬 키가 노출될 때까지 미리 결정된 양만큼 상기 제1 반도체층을 백-그라인딩(back-grinding)하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.The method of claim 23, wherein
Removing the first semiconductor layer comprises back-grinding the first semiconductor layer by a predetermined amount until the buried insulating layer and the alignment key are exposed. Method for manufacturing the sensor.
상기 매립 절연층을 제거하는 단계는 에칭 프로세스를 사용하여 상기 제2 반도체층으로부터 상기 매립 절연층의 부분들을 선택적으로 제거하는 단계를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.25. The method of claim 24,
Removing the buried insulator layer comprises selectively removing portions of the buried insulator layer from the second semiconductor layer using an etching process.
상기 에칭하는 단계는 습식 에치 프로세스를 포함하는, 후면 조명된 이미지 센서를 제작하기 위한 방법.
The method of claim 25,
Wherein the etching comprises a wet etch process.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/255,194 | 2008-10-21 | ||
US12/255,194 US7875948B2 (en) | 2008-10-21 | 2008-10-21 | Backside illuminated image sensor |
PCT/US2009/061488 WO2010048291A1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020117011521A Division KR101266414B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137013574A Division KR101373233B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110059807A true KR20110059807A (en) | 2011-06-03 |
KR101339958B1 KR101339958B1 (en) | 2013-12-10 |
Family
ID=41365270
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137029880A KR101448284B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
KR1020117011701A KR101339958B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
KR1020137013574A KR101373233B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
KR1020117011521A KR101266414B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137029880A KR101448284B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020137013574A KR101373233B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
KR1020117011521A KR101266414B1 (en) | 2008-10-21 | 2009-10-21 | Backside illuminated image sensor |
Country Status (6)
Country | Link |
---|---|
US (4) | US7875948B2 (en) |
EP (2) | EP2565926A1 (en) |
JP (3) | JP5458103B2 (en) |
KR (4) | KR101448284B1 (en) |
CN (3) | CN102263118B (en) |
WO (1) | WO2010048291A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8716823B2 (en) | 2011-11-08 | 2014-05-06 | Aptina Imaging Corporation | Backside image sensor pixel with silicon microlenses and metal reflector |
KR20220031762A (en) * | 2013-03-27 | 2022-03-11 | 퀄컴 인코포레이티드 | Semiconductor―on―insulator integrated circuit with interconnect below the insulator |
Families Citing this family (120)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7442629B2 (en) | 2004-09-24 | 2008-10-28 | President & Fellows Of Harvard College | Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate |
US7057256B2 (en) | 2001-05-25 | 2006-06-06 | President & Fellows Of Harvard College | Silicon-based visible and near-infrared optoelectric devices |
US7964926B2 (en) * | 2005-02-02 | 2011-06-21 | Samsung Electronics Co., Ltd. | Image sensing devices including image sensor chips, image sensor package modules employing the image sensing devices, electronic products employing the image sensor package modules, and methods of fabricating the same |
US8257997B2 (en) * | 2007-10-17 | 2012-09-04 | Sifotonics Technologies (Usa) Inc. | Semiconductor photodetectors |
US8212328B2 (en) * | 2007-12-05 | 2012-07-03 | Intellectual Ventures Ii Llc | Backside illuminated image sensor |
JP2011512006A (en) | 2008-01-30 | 2011-04-14 | デジタル オプティクス インターナショナル,リミティド ライアビリティ カンパニー | Thin lighting system |
US8721149B2 (en) | 2008-01-30 | 2014-05-13 | Qualcomm Mems Technologies, Inc. | Illumination device having a tapered light guide |
KR20090128899A (en) * | 2008-06-11 | 2009-12-16 | 크로스텍 캐피탈, 엘엘씨 | Backside illuminated image sensor and method for manufacturing the same |
JP5367323B2 (en) * | 2008-07-23 | 2013-12-11 | ラピスセミコンダクタ株式会社 | Semiconductor device and manufacturing method of semiconductor device |
WO2010042216A2 (en) * | 2008-10-10 | 2010-04-15 | Digital Optics International, Llc | Distributed illumination system |
KR20110081270A (en) * | 2008-10-10 | 2011-07-13 | 퀄컴 엠이엠스 테크놀로지스, 인크. | Distributed lighting control system |
US7875948B2 (en) * | 2008-10-21 | 2011-01-25 | Jaroslav Hynecek | Backside illuminated image sensor |
KR101545638B1 (en) * | 2008-12-17 | 2015-08-19 | 삼성전자 주식회사 | Image sensor and fabricating method thereof device comprising the image sensor and fabricating method thereof |
WO2010082952A1 (en) * | 2009-01-13 | 2010-07-22 | Qualcomm Mems Technologies, Inc. | Large area light panel and screen |
KR101550866B1 (en) * | 2009-02-09 | 2015-09-08 | 삼성전자주식회사 | Method for manufacturing a image sensor by filling a upper part of dielectric trench and forming air gap to improve optical cross-talk |
JP5347999B2 (en) * | 2009-03-12 | 2013-11-20 | ソニー株式会社 | Solid-state imaging device, manufacturing method thereof, and imaging apparatus |
US8604405B2 (en) * | 2009-03-31 | 2013-12-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Backside illuminated image sensor device with refractive index dependent layer thicknesses and method of forming the same |
US9406561B2 (en) * | 2009-04-20 | 2016-08-02 | International Business Machines Corporation | Three dimensional integrated circuit integration using dielectric bonding first and through via formation last |
US20100302218A1 (en) | 2009-05-29 | 2010-12-02 | Qualcomm Mems Technologies, Inc. | Illumination devices and methods of fabrication thereof |
US9123653B2 (en) * | 2009-07-23 | 2015-09-01 | Sony Corporation | Solid-state imaging device, method of manufacturing the same, and electronic apparatus |
JP5418049B2 (en) * | 2009-08-03 | 2014-02-19 | ソニー株式会社 | Solid-state imaging device, manufacturing method thereof, and imaging apparatus |
US9911781B2 (en) | 2009-09-17 | 2018-03-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
KR101893331B1 (en) * | 2009-09-17 | 2018-08-30 | 사이오닉스, 엘엘씨 | Photosensitive imaging devices and associated methods |
US8476681B2 (en) * | 2009-09-17 | 2013-07-02 | Sionyx, Inc. | Photosensitive imaging devices and associated methods |
US9673243B2 (en) | 2009-09-17 | 2017-06-06 | Sionyx, Llc | Photosensitive imaging devices and associated methods |
JP5663925B2 (en) * | 2010-03-31 | 2015-02-04 | ソニー株式会社 | Solid-state imaging device, manufacturing method thereof, and electronic apparatus |
US8692198B2 (en) | 2010-04-21 | 2014-04-08 | Sionyx, Inc. | Photosensitive imaging devices and associated methods |
US8587081B2 (en) * | 2010-04-28 | 2013-11-19 | Calvin Yi-Ping Chao | Back side illuminated image sensor with back side pixel substrate bias |
EP2583312A2 (en) | 2010-06-18 | 2013-04-24 | Sionyx, Inc. | High speed photosensitive devices and associated methods |
TWI484568B (en) * | 2010-07-16 | 2015-05-11 | Unimicron Technology Corp | Electronic device and fabrication method thereof |
US8956909B2 (en) | 2010-07-16 | 2015-02-17 | Unimicron Technology Corporation | Method of fabricating an electronic device comprising photodiode |
TWI534995B (en) * | 2010-07-16 | 2016-05-21 | 欣興電子股份有限公司 | Electronic device and fabrication method thereof |
US9013612B2 (en) * | 2010-08-20 | 2015-04-21 | Semiconductor Components Industries, Llc | Image sensors with antireflective layers |
US8402647B2 (en) | 2010-08-25 | 2013-03-26 | Qualcomm Mems Technologies Inc. | Methods of manufacturing illumination systems |
JP5722008B2 (en) * | 2010-11-24 | 2015-05-20 | 株式会社日立国際電気 | Semiconductor device manufacturing method, semiconductor device, and substrate processing apparatus |
JP2012124299A (en) * | 2010-12-08 | 2012-06-28 | Toshiba Corp | Back irradiation type solid-state imaging device and method of manufacturing the same |
KR101745638B1 (en) * | 2011-01-12 | 2017-06-09 | 삼성전자 주식회사 | Photodiode device based on wide band-gap material layer, and back side illumination(BSI) CMOS image sensor and solar cell comprising the photodiode device |
US8455971B2 (en) * | 2011-02-14 | 2013-06-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and method for improving charge transfer in backside illuminated image sensor |
JP2012175078A (en) * | 2011-02-24 | 2012-09-10 | Sony Corp | Solid state image pickup device, manufacturing method of solid state image pickup device, electronic apparatus, and semiconductor device |
FR2974237A1 (en) * | 2011-04-12 | 2012-10-19 | St Microelectronics Crolles 2 | REAR-SIDED IMAGE SENSOR WITH TRANSPARENT ELECTRODE |
JP2012234968A (en) * | 2011-04-28 | 2012-11-29 | Sharp Corp | Solid state image pickup device, manufacturing method of the same and electronic information apparatus |
WO2012164809A1 (en) * | 2011-05-31 | 2012-12-06 | パナソニック株式会社 | Solid-state imaging device and manufacturing method therefor |
US9496308B2 (en) | 2011-06-09 | 2016-11-15 | Sionyx, Llc | Process module for increasing the response of backside illuminated photosensitive imagers and associated methods |
US9793673B2 (en) | 2011-06-13 | 2017-10-17 | Kla-Tencor Corporation | Semiconductor inspection and metrology system using laser pulse multiplier |
CN102856247B (en) * | 2011-06-30 | 2015-07-08 | 中芯国际集成电路制造(上海)有限公司 | Back silicon through hole making method |
EP2732402A2 (en) | 2011-07-13 | 2014-05-21 | Sionyx, Inc. | Biometric imaging devices and associated methods |
US8564085B2 (en) * | 2011-07-18 | 2013-10-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS image sensor structure |
US8604576B2 (en) * | 2011-07-19 | 2013-12-10 | Opitz, Inc. | Low stress cavity package for back side illuminated image sensor, and method of making same |
CN102299164A (en) * | 2011-09-13 | 2011-12-28 | 上海中科高等研究院 | Image sensor and manufacturing method thereof |
FR2980304A1 (en) * | 2011-09-20 | 2013-03-22 | St Microelectronics Crolles 2 | Method for manufacturing image sensor illuminated by rear face of semiconductor substrate, involves applying potential difference in opening between electrodes formed in free face and rear face to store loads in intermediate layer |
US10197501B2 (en) | 2011-12-12 | 2019-02-05 | Kla-Tencor Corporation | Electron-bombarded charge-coupled device and inspection systems using EBCCD detectors |
KR20130099425A (en) | 2012-02-29 | 2013-09-06 | 삼성전자주식회사 | Image sensor |
US9064764B2 (en) | 2012-03-22 | 2015-06-23 | Sionyx, Inc. | Pixel isolation elements, devices, and associated methods |
US9496425B2 (en) | 2012-04-10 | 2016-11-15 | Kla-Tencor Corporation | Back-illuminated sensor with boron layer |
US8563403B1 (en) | 2012-06-27 | 2013-10-22 | International Business Machines Corporation | Three dimensional integrated circuit integration using alignment via/dielectric bonding first and through via formation last |
KR102023623B1 (en) * | 2012-07-03 | 2019-09-23 | 삼성전자 주식회사 | Methods of Fabricating Semiconductor Devices |
US9601299B2 (en) | 2012-08-03 | 2017-03-21 | Kla-Tencor Corporation | Photocathode including silicon substrate with boron layer |
JP2014053591A (en) * | 2012-08-08 | 2014-03-20 | Sony Corp | Image pickup element, image pickup device, manufacturing apparatus and method |
US8669135B2 (en) | 2012-08-10 | 2014-03-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for fabricating a 3D image sensor structure |
CN102800686B (en) * | 2012-08-28 | 2016-12-21 | 豪威科技(上海)有限公司 | Back-illuminated type CMOS |
US8796805B2 (en) | 2012-09-05 | 2014-08-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Multiple metal film stack in BSI chips |
US9151940B2 (en) | 2012-12-05 | 2015-10-06 | Kla-Tencor Corporation | Semiconductor inspection and metrology system using laser pulse multiplier |
US9529182B2 (en) | 2013-02-13 | 2016-12-27 | KLA—Tencor Corporation | 193nm laser and inspection system |
JP6466346B2 (en) | 2013-02-15 | 2019-02-06 | サイオニクス、エルエルシー | High dynamic range CMOS image sensor with anti-blooming characteristics and associated method |
KR102083402B1 (en) * | 2013-02-25 | 2020-03-02 | 삼성전자주식회사 | Image sensor and method of forming the same |
KR102034482B1 (en) | 2013-03-04 | 2019-10-21 | 삼성전자주식회사 | Image sensor and method of forming the same |
US20150187701A1 (en) * | 2013-03-12 | 2015-07-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor Devices and Methods of Manufacture Thereof |
US9939251B2 (en) | 2013-03-15 | 2018-04-10 | Sionyx, Llc | Three dimensional imaging utilizing stacked imager devices and associated methods |
US9608399B2 (en) | 2013-03-18 | 2017-03-28 | Kla-Tencor Corporation | 193 nm laser and an inspection system using a 193 nm laser |
US9478402B2 (en) | 2013-04-01 | 2016-10-25 | Kla-Tencor Corporation | Photomultiplier tube, image sensor, and an inspection system using a PMT or image sensor |
US9209345B2 (en) | 2013-06-29 | 2015-12-08 | Sionyx, Inc. | Shallow trench textured regions and associated methods |
CN103400940A (en) * | 2013-07-30 | 2013-11-20 | 信利半导体有限公司 | Cathode, OLED (Organic Light Emitting Diode) device, manufacturing method of OLED device and OLED display device |
CN104465492B (en) * | 2013-09-23 | 2018-03-16 | 中芯国际集成电路制造(上海)有限公司 | The forming method and method for manufacturing integrated circuit of through-silicon-via structure |
US9425084B2 (en) * | 2013-10-17 | 2016-08-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Mechanisms for forming protection layer on back side of wafer |
US9667900B2 (en) | 2013-12-09 | 2017-05-30 | Optiz, Inc. | Three dimensional system-on-chip image sensor package |
US10056353B2 (en) | 2013-12-19 | 2018-08-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | 3DIC interconnect apparatus and method |
US9347890B2 (en) | 2013-12-19 | 2016-05-24 | Kla-Tencor Corporation | Low-noise sensor and an inspection system using a low-noise sensor |
EP2889901B1 (en) | 2013-12-27 | 2021-02-03 | ams AG | Semiconductor device with through-substrate via and corresponding method |
US9748294B2 (en) | 2014-01-10 | 2017-08-29 | Hamamatsu Photonics K.K. | Anti-reflection layer for back-illuminated sensor |
US9410901B2 (en) | 2014-03-17 | 2016-08-09 | Kla-Tencor Corporation | Image sensor, an inspection system and a method of inspecting an article |
US9804101B2 (en) | 2014-03-20 | 2017-10-31 | Kla-Tencor Corporation | System and method for reducing the bandwidth of a laser and an inspection system and method using a laser |
US9184206B1 (en) * | 2014-05-05 | 2015-11-10 | Omnivision Technologies, Inc. | Backside illuminated color image sensors and methods for manufacturing the same |
US9293488B2 (en) * | 2014-05-07 | 2016-03-22 | Visera Technologies Company Limited | Image sensing device |
JP6457755B2 (en) * | 2014-07-10 | 2019-01-23 | キヤノン株式会社 | Solid-state imaging device |
US9449914B2 (en) | 2014-07-17 | 2016-09-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Stacked integrated circuits with redistribution lines |
KR102268707B1 (en) | 2014-07-28 | 2021-06-28 | 삼성전자주식회사 | Image sensor |
US9767986B2 (en) | 2014-08-29 | 2017-09-19 | Kla-Tencor Corporation | Scanning electron microscope and methods of inspecting and reviewing samples |
US9748729B2 (en) | 2014-10-03 | 2017-08-29 | Kla-Tencor Corporation | 183NM laser and inspection system |
US10727122B2 (en) | 2014-12-08 | 2020-07-28 | International Business Machines Corporation | Self-aligned via interconnect structures |
EP3294407B1 (en) | 2015-05-12 | 2020-02-26 | Pixium Vision SA | Photosensitive pixel structure with wrapped resistor |
US9860466B2 (en) | 2015-05-14 | 2018-01-02 | Kla-Tencor Corporation | Sensor with electrically controllable aperture for inspection and metrology systems |
EP3104414B1 (en) * | 2015-06-10 | 2020-05-06 | Fundació Institut de Ciències Fotòniques | Image sensor, optoelectronic system comprising said image sensor, and method for manufacturing said image sensor |
EP4129395A1 (en) | 2015-06-24 | 2023-02-08 | Pixium Vision SA | Photosensitive pixel structure with increased light absorption and photosensitive implant |
US10462391B2 (en) | 2015-08-14 | 2019-10-29 | Kla-Tencor Corporation | Dark-field inspection using a low-noise sensor |
EP3144032A1 (en) * | 2015-09-15 | 2017-03-22 | Pixium Vision SA | Photosensitive pixel structure with front side coating |
US11522098B2 (en) * | 2016-04-01 | 2022-12-06 | Trustees Of Dartmouth College | UV/VIS/IR backside-illuminated photon-counting sensor |
US10313622B2 (en) | 2016-04-06 | 2019-06-04 | Kla-Tencor Corporation | Dual-column-parallel CCD sensor and inspection systems using a sensor |
US10778925B2 (en) | 2016-04-06 | 2020-09-15 | Kla-Tencor Corporation | Multiple column per channel CCD sensor architecture for inspection and metrology |
JPWO2017183383A1 (en) * | 2016-04-21 | 2019-01-17 | パナソニック・タワージャズセミコンダクター株式会社 | Solid-state imaging device and manufacturing method thereof |
US10475835B2 (en) * | 2016-09-05 | 2019-11-12 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device structure and manufacturing process thereof |
KR102444733B1 (en) * | 2016-10-27 | 2022-09-16 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | Imaging devices and electronic devices |
US20180158860A1 (en) * | 2016-12-01 | 2018-06-07 | Stmicroelectronics (Crolles 2) Sas | Stacked image sensor with interconnects made of doped semiconductor material |
US10175555B2 (en) | 2017-01-03 | 2019-01-08 | KLA—Tencor Corporation | 183 nm CW laser and inspection system |
EP3427790A1 (en) | 2017-07-14 | 2019-01-16 | Pixium Vision SA | Photosensitive array |
CN110098203B (en) * | 2018-01-30 | 2024-09-24 | 维深半导体公司 | Backside illuminated image sensor and preparation thereof |
CN108470711B (en) * | 2018-02-12 | 2020-10-02 | 上海集成电路研发中心有限公司 | Manufacturing method of deep groove and silicon through hole of image sensor |
CN108511474A (en) * | 2018-04-04 | 2018-09-07 | 武汉新芯集成电路制造有限公司 | A kind of preparation method of the device proximity structure of imaging sensor |
US11114489B2 (en) | 2018-06-18 | 2021-09-07 | Kla-Tencor Corporation | Back-illuminated sensor and a method of manufacturing a sensor |
KR102553314B1 (en) | 2018-08-29 | 2023-07-10 | 삼성전자주식회사 | Image sensor |
US10943760B2 (en) | 2018-10-12 | 2021-03-09 | Kla Corporation | Electron gun and electron microscope |
CN109192745A (en) * | 2018-10-16 | 2019-01-11 | 德淮半导体有限公司 | Back side illumination image sensor and forming method thereof |
US11114491B2 (en) | 2018-12-12 | 2021-09-07 | Kla Corporation | Back-illuminated sensor and a method of manufacturing a sensor |
KR102386104B1 (en) | 2018-12-21 | 2022-04-13 | 삼성전자주식회사 | Back side illumination image sensors and electronic device including the same |
CN110085616A (en) * | 2019-05-22 | 2019-08-02 | 德淮半导体有限公司 | The forming method of imaging sensor |
TWI750828B (en) * | 2019-10-03 | 2021-12-21 | 精材科技股份有限公司 | Chip package and manufacturing method thereof |
JP2021082803A (en) * | 2019-11-18 | 2021-05-27 | ソニーセミコンダクタソリューションズ株式会社 | Imaging element and method for manufacturing imaging element |
US11848350B2 (en) | 2020-04-08 | 2023-12-19 | Kla Corporation | Back-illuminated sensor and a method of manufacturing a sensor using a silicon on insulator wafer |
US11670567B2 (en) * | 2020-07-09 | 2023-06-06 | United Microelectronics Corp. | Semiconductor structure and method of wafer bonding |
US20220231074A1 (en) * | 2021-01-19 | 2022-07-21 | Visera Technologies Company Limited | Image sensor |
KR20220126135A (en) * | 2021-03-08 | 2022-09-15 | 삼성전자주식회사 | semiconductor chip structure |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4750980A (en) * | 1986-11-07 | 1988-06-14 | Texas Instruments Incorporated | Process for etching tin oxide |
US4708766A (en) * | 1986-11-07 | 1987-11-24 | Texas Instruments Incorporated | Hydrogen iodide etch of tin oxide |
US5688715A (en) * | 1990-03-29 | 1997-11-18 | The United States Of America As Represented By The Secretary Of The Navy | Excimer laser dopant activation of backside illuminated CCD's |
US5365092A (en) * | 1993-02-08 | 1994-11-15 | California Institute Of Technology | Frontside illuminated charge-coupled device with high sensitivity to the blue, ultraviolet and soft X-ray spectral range |
US5292682A (en) * | 1993-07-06 | 1994-03-08 | Eastman Kodak Company | Method of making two-phase charge coupled device |
JPH08204165A (en) * | 1995-01-23 | 1996-08-09 | Nippon Hoso Kyokai <Nhk> | Multilayered solid-state image sensing device |
US5825840A (en) * | 1996-04-23 | 1998-10-20 | Eastman Kodak Company | Interline sensor employing photocapacitor gate |
US5891752A (en) * | 1997-04-24 | 1999-04-06 | Eastman Kodak Company | Method for making charge coupled device with all electrodes of transparent conductor |
US7791116B1 (en) * | 1998-10-14 | 2010-09-07 | Micron Technology, Inc. | CMOS imager having a nitride dielectric |
US6587146B1 (en) * | 1998-11-20 | 2003-07-01 | Eastman Kodak Company | Three transistor active pixel sensor architecture with correlated double sampling |
US6380564B1 (en) * | 2000-08-16 | 2002-04-30 | United Epitaxy Company, Ltd. | Semiconductor light emitting device |
US6454912B1 (en) * | 2001-03-15 | 2002-09-24 | Micron Technology, Inc. | Method and apparatus for the fabrication of ferroelectric films |
JP4556407B2 (en) * | 2002-10-04 | 2010-10-06 | 住友金属鉱山株式会社 | Oxide transparent electrode film and method for producing the same, transparent conductive substrate, solar cell, and photodetector |
US6809008B1 (en) * | 2003-08-28 | 2004-10-26 | Motorola, Inc. | Integrated photosensor for CMOS imagers |
KR20050041183A (en) * | 2003-10-30 | 2005-05-04 | 매그나칩 반도체 유한회사 | Fabricating method for image sensor using casein |
US7166878B2 (en) * | 2003-11-04 | 2007-01-23 | Sarnoff Corporation | Image sensor with deep well region and method of fabricating the image sensor |
JP4046069B2 (en) | 2003-11-17 | 2008-02-13 | ソニー株式会社 | Solid-state imaging device and manufacturing method of solid-state imaging device |
FR2863773B1 (en) | 2003-12-12 | 2006-05-19 | Atmel Grenoble Sa | PROCESS FOR THE PRODUCTION OF AMINCI SILICON ELECTRONIC CHIPS |
JP4211696B2 (en) * | 2004-06-30 | 2009-01-21 | ソニー株式会社 | Method for manufacturing solid-state imaging device |
US7297995B2 (en) * | 2004-08-24 | 2007-11-20 | Micron Technology, Inc. | Transparent metal shielded isolation for image sensors |
JP5244390B2 (en) * | 2004-09-17 | 2013-07-24 | カリフォルニア インスティテュート オブ テクノロジー | Manufacturing method of back-illuminated CMOS image sensor (IMAGER) made of SOI wafer |
JP4501633B2 (en) * | 2004-10-28 | 2010-07-14 | ソニー株式会社 | Solid-state imaging device and manufacturing method thereof |
JP4725095B2 (en) * | 2004-12-15 | 2011-07-13 | ソニー株式会社 | Back-illuminated solid-state imaging device and manufacturing method thereof |
JP2006202865A (en) * | 2005-01-19 | 2006-08-03 | Sony Corp | Solid-state image pickup device and its manufacturing method |
TWI292631B (en) * | 2005-02-05 | 2008-01-11 | Epistar Corp | Light emitting diode and method of the same |
JP2006261638A (en) * | 2005-02-21 | 2006-09-28 | Sony Corp | Solid state imaging device, and driving method thereof |
CN100442530C (en) * | 2005-02-21 | 2008-12-10 | 索尼株式会社 | Solid-state imager device, drive method of solid-state imager device and camera apparatus |
KR100636393B1 (en) * | 2005-02-24 | 2006-10-18 | (주)실리콘화일 | Image sensor |
US7749799B2 (en) * | 2005-11-15 | 2010-07-06 | California Institute Of Technology | Back-illuminated imager and method for making electrical and optical connections to same |
KR100749263B1 (en) * | 2005-12-29 | 2007-08-13 | 매그나칩 반도체 유한회사 | Complementary metal oxide semiconductor image sensor and method for manufacturing the same |
JP4992446B2 (en) * | 2006-02-24 | 2012-08-08 | ソニー株式会社 | Solid-state imaging device, manufacturing method thereof, and camera |
US7648851B2 (en) * | 2006-03-06 | 2010-01-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating backside illuminated image sensor |
US7582161B2 (en) * | 2006-04-07 | 2009-09-01 | Micron Technology, Inc. | Atomic layer deposited titanium-doped indium oxide films |
EP1873836B1 (en) * | 2006-06-28 | 2009-08-19 | St Microelectronics S.A. | Back illuminated image sensor |
KR100805837B1 (en) * | 2006-08-07 | 2008-02-21 | 삼성전자주식회사 | Image sensor and method of forming the same |
KR20080062792A (en) * | 2006-12-29 | 2008-07-03 | 삼성테크윈 주식회사 | Image sensor module and camera module comprising the same |
US7727910B2 (en) * | 2007-02-13 | 2010-06-01 | Micron Technology, Inc. | Zirconium-doped zinc oxide structures and methods |
US7498650B2 (en) * | 2007-03-08 | 2009-03-03 | Teledyne Licensing, Llc | Backside illuminated CMOS image sensor with pinned photodiode |
JP4659783B2 (en) * | 2007-06-14 | 2011-03-30 | 富士フイルム株式会社 | Manufacturing method of back-illuminated image sensor |
US20090124038A1 (en) * | 2007-11-14 | 2009-05-14 | Mark Ewing Tuttle | Imager device, camera, and method of manufacturing a back side illuminated imager |
US7588993B2 (en) * | 2007-12-06 | 2009-09-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Alignment for backside illumination sensor |
US8212901B2 (en) * | 2008-02-08 | 2012-07-03 | Omnivision Technologies, Inc. | Backside illuminated imaging sensor with reduced leakage photodiode |
US8197908B2 (en) * | 2008-03-14 | 2012-06-12 | Hestia Tec, Llc | Method for preparing electrically conducting materials |
US7875948B2 (en) * | 2008-10-21 | 2011-01-25 | Jaroslav Hynecek | Backside illuminated image sensor |
-
2008
- 2008-10-21 US US12/255,194 patent/US7875948B2/en not_active Expired - Fee Related
-
2009
- 2009-10-21 CN CN201110205267.0A patent/CN102263118B/en not_active Expired - Fee Related
- 2009-10-21 WO PCT/US2009/061488 patent/WO2010048291A1/en active Application Filing
- 2009-10-21 KR KR1020137029880A patent/KR101448284B1/en active IP Right Grant
- 2009-10-21 CN CN201310245920.5A patent/CN103400844B/en not_active Expired - Fee Related
- 2009-10-21 KR KR1020117011701A patent/KR101339958B1/en active IP Right Grant
- 2009-10-21 KR KR1020137013574A patent/KR101373233B1/en active IP Right Grant
- 2009-10-21 KR KR1020117011521A patent/KR101266414B1/en active IP Right Grant
- 2009-10-21 JP JP2011532348A patent/JP5458103B2/en active Active
- 2009-10-21 EP EP12194890A patent/EP2565926A1/en not_active Withdrawn
- 2009-10-21 CN CN200980151457.XA patent/CN102257618B/en not_active Expired - Fee Related
- 2009-10-21 EP EP09741160.7A patent/EP2361440B1/en not_active Not-in-force
-
2010
- 2010-12-15 US US12/969,321 patent/US8420438B2/en active Active
-
2012
- 2012-02-06 JP JP2012023246A patent/JP5437410B2/en not_active Expired - Fee Related
-
2013
- 2013-04-09 US US13/859,055 patent/US9553122B2/en active Active
- 2013-10-09 JP JP2013211704A patent/JP5684877B2/en active Active
-
2015
- 2015-11-18 US US14/944,975 patent/US10020338B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8716823B2 (en) | 2011-11-08 | 2014-05-06 | Aptina Imaging Corporation | Backside image sensor pixel with silicon microlenses and metal reflector |
KR101458271B1 (en) * | 2011-11-08 | 2014-11-04 | 앱티나 이미징 코포레이션 | Backside image sensor pixel with silicon microlenses and metal reflector |
KR20220031762A (en) * | 2013-03-27 | 2022-03-11 | 퀄컴 인코포레이티드 | Semiconductor―on―insulator integrated circuit with interconnect below the insulator |
Also Published As
Publication number | Publication date |
---|---|
JP2012506623A (en) | 2012-03-15 |
US7875948B2 (en) | 2011-01-25 |
EP2565926A1 (en) | 2013-03-06 |
KR101339958B1 (en) | 2013-12-10 |
EP2361440B1 (en) | 2013-11-20 |
US20130237004A1 (en) | 2013-09-12 |
CN102257618A (en) | 2011-11-23 |
KR20110073605A (en) | 2011-06-29 |
US20110223707A1 (en) | 2011-09-15 |
WO2010048291A1 (en) | 2010-04-29 |
JP2012099858A (en) | 2012-05-24 |
JP5458103B2 (en) | 2014-04-02 |
JP5437410B2 (en) | 2014-03-12 |
CN103400844B (en) | 2016-05-25 |
CN102263118A (en) | 2011-11-30 |
KR20130131496A (en) | 2013-12-03 |
US8420438B2 (en) | 2013-04-16 |
CN102263118B (en) | 2015-09-09 |
EP2361440A1 (en) | 2011-08-31 |
JP2014042046A (en) | 2014-03-06 |
JP5684877B2 (en) | 2015-03-18 |
KR20130064147A (en) | 2013-06-17 |
US9553122B2 (en) | 2017-01-24 |
US20160071900A1 (en) | 2016-03-10 |
CN103400844A (en) | 2013-11-20 |
KR101373233B1 (en) | 2014-03-11 |
US20100096718A1 (en) | 2010-04-22 |
KR101266414B1 (en) | 2013-05-22 |
US10020338B2 (en) | 2018-07-10 |
KR101448284B1 (en) | 2014-10-13 |
CN102257618B (en) | 2014-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101266414B1 (en) | Backside illuminated image sensor | |
JP5731024B2 (en) | Back-illuminated image sensor and manufacturing method thereof | |
US8772072B2 (en) | Backside illuminated image sensor | |
TWI520319B (en) | Semiconductor device and method for fabricating the same | |
JP2022169429A (en) | Image sensor and forming method thereof | |
TW202229937A (en) | Semiconductor image sensor | |
KR100938723B1 (en) | Backside illuminated image sensor and method for manufacturing the same | |
TW202312473A (en) | Image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20161125 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170929 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180928 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190924 Year of fee payment: 7 |