[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20090067954A - Post-treatment method of activated carbon for electrode production - Google Patents

Post-treatment method of activated carbon for electrode production Download PDF

Info

Publication number
KR20090067954A
KR20090067954A KR1020070135792A KR20070135792A KR20090067954A KR 20090067954 A KR20090067954 A KR 20090067954A KR 1020070135792 A KR1020070135792 A KR 1020070135792A KR 20070135792 A KR20070135792 A KR 20070135792A KR 20090067954 A KR20090067954 A KR 20090067954A
Authority
KR
South Korea
Prior art keywords
activated carbon
post
capacitance
heat treatment
cycle characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
KR1020070135792A
Other languages
Korean (ko)
Other versions
KR101429975B1 (en
Inventor
이성영
홍익표
박세민
Original Assignee
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항산업과학연구원 filed Critical 재단법인 포항산업과학연구원
Priority to KR1020070135792A priority Critical patent/KR101429975B1/en
Publication of KR20090067954A publication Critical patent/KR20090067954A/en
Application granted granted Critical
Publication of KR101429975B1 publication Critical patent/KR101429975B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 활성탄을 열처리온도까지 급승온시켜 열처리하고, 그 열처리 온도에서 짧은 시간 동안만 유지함으로써, 비표면적 및 정전용량의 감소폭을 줄이고, 사이클 특성을 증가시키는 활성탄의 후처리 방법을 제공한다.The present invention provides a post-treatment method of activated carbon in which the activated carbon is rapidly heated to a heat treatment temperature and heat-treated, and maintained only for a short time at the heat treatment temperature, thereby reducing a reduction in specific surface area and capacitance and increasing cycle characteristics.

Description

전극 제조를 위한 활성탄의 후처리 방법{METHOD FOR HEAT TREATMENT OF ACTIVATED CARBONS FOR ELECTRODES}Post-treatment method of activated carbon for electrode production {METHOD FOR HEAT TREATMENT OF ACTIVATED CARBONS FOR ELECTRODES}

본 발명은 활성탄 제조방법에 관한 것으로서, 보다 상세하게는 석탄계 또는 석유계 또는 목질계 탄소원료로부터 통상적인 방법에 의하여 제조된 활성탄을 급승온속도로 열처리온도까지 승온하여 열처리하고, 그 열처리온도에서 단시간 동안 유지함으로써, 높은 사이클특성을 갖는 활성탄을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing activated carbon, and more particularly, activated carbon produced by a conventional method from a coal-based or petroleum-based or wood-based carbon raw material is heated to a heat treatment temperature at a rapid temperature increase rate, and heat-treated, and for a short time at the heat treatment temperature. By maintaining during the above, the present invention relates to a method for producing activated carbon having high cycle characteristics.

커패시터의 정전용량은 전극의 표면적, 단위 면적당의 전극 저항 등에 의해 주로 지배되므로, 실용면에서는 단위 체적당의 정전용량을 높게 하고, 전기 이중층 커패시터의 체적을 적게 하기 위해서는 전극 자체의 밀도를 높이는 것이 중요하다.Since the capacitance of the capacitor is mainly governed by the surface area of the electrode, the electrode resistance per unit area, etc., it is important to increase the capacitance per unit volume in practical use and to increase the density of the electrode itself in order to reduce the volume of the electric double layer capacitor. .

종래 커패시터용으로 사용되는 활성탄은 석탄, 석탄 코크스, 목재, 야자껍질, 피치 등의 원료물질을 수증기, 가스 등의 산성 조건 하에서 활성화시키거나, 또는 수산화칼륨과 같은 강산화력을 갖는 약품에 의해 활성화시켜 제조하여 왔다. Activated carbon, which is conventionally used for capacitors, activates raw materials such as coal, coal coke, wood, coconut shell, and pitch under acidic conditions such as water vapor and gas, or by chemicals having strong oxidizing power such as potassium hydroxide. Has been manufactured.

활성탄의 전기화학적 특성으로는, 활성탄을 이용하여 제조된 전기 셀의 저항, 사이클릭 볼타메트리(Cyclic Voltametry), 정전용량 및 사이클 특성 등이 있 다. 이 중, 본 발명에서 정의하는 사이클 특성이라 함은 초기 정전용량 대비 20 사이클 이후에 유지된 정전용량의 백분율로 정의한다. Electrochemical characteristics of activated carbon include resistance, cyclic voltametry, capacitance, and cycle characteristics of an electric cell manufactured using activated carbon. Among these, the cycle characteristic defined in the present invention is defined as the percentage of the capacitance maintained after 20 cycles relative to the initial capacitance.

활성탄의 후처리와 관련된 자료로서, 체적당 고정전용량 활성탄의 제조, 1A06, 제30회 탄소재료학회년회요지집(2003년, 일본탄소학회)에는, 탄소원료를 800℃에서 전처리한 후 700∼900℃에서 활성화하고, 800~1000℃에서 후처리를 하여 높은 정전용량을 갖는 활성탄을 제조하는 방법에 대하여 보고하고 있다. As data related to the post-treatment of activated carbon, the production of fixed-capacity activated carbon per volume, 1A06, the 30th Annual Meeting of Carbon Materials Society (2003, Japan Carbon Society), after pretreatment of carbon raw material at 800 ℃, 700 ~ 900 There is a report on a method of producing activated carbon having high capacitance by activating at 占 폚 and post-treatment at 800-1000 占 폚.

그러나, 이러한 제조방법으로 후처리를 할 경우, 사이클 특성은 개선이 될 수 있으나, 비표면적 및 정전용량이 급격히 감소하는 단점이 있다. However, when the post-treatment is performed by such a manufacturing method, the cycle characteristics may be improved, but the specific surface area and the capacitance are rapidly reduced.

일반적으로 활성탄이 고온에 장시간 노출될 경우 탄소구조체의 구조 변화에 의하여 이온을 흡착할 수 있는 기공의 크기가 감소하거나 기공을 구성하는 활성탄의 구조가 붕괴되어 비표면적 및 정전용량이 감소하는 것으로 알려져 있다. 또한, 전해질과 관능기와의 반응은 기공의 크기를 감소시키므로 결국에는 활성탄 전극의 사이클 특성을 악화시키게 되는데, 이러한 사이클특성을 개선하기 위한 방법으로서 관능기에 변화를 주어 전지 셀 내부의 전해질과 관능기와의 반응을 억제하는 것도 보고를 통하여 잘 알려져 있다. In general, when activated carbon is exposed to high temperature for a long time, it is known that the size of pores capable of adsorbing ions is reduced or the structure of activated carbon constituting the pores is collapsed due to the structural change of the carbon structure, thereby reducing the specific surface area and capacitance. . In addition, the reaction between the electrolyte and the functional group decreases the size of the pores, which ultimately worsens the cycle characteristics of the activated carbon electrode. As a method for improving the cycle characteristics, the functional group is changed to change the functional group to the electrolyte and the functional group in the battery cell. Inhibiting the reaction is also well known from the report.

상기와 같은 종래기술의 문제점을 해결하기 위하여, 본 발명에서는 활성탄을 급승온시켜 열처리하고, 그 열처리 온도에서 짧은 시간 동안만 유지함으로써, 높은 정전용량을 유지하면서 비표면적 및 정전용량의 감소폭을 줄이고 사이클 특성을 증가시키는 활성탄의 후처리 방법을 제공하는데 그 목적이 있다.In order to solve the problems of the prior art as described above, in the present invention, the activated carbon is rapidly heated and heat-treated, and maintained only for a short time at the heat treatment temperature, thereby reducing the reduction in specific surface area and capacitance while maintaining high capacitance It is an object of the present invention to provide a method for treating activated carbon after increasing its properties.

상기 목적을 달성하기 위해, 본 발명은In order to achieve the above object, the present invention

활성탄을 분당 30℃ 내지 100℃의 승온 속도로 400℃ 내지 600℃까지 승온하여 열처리하는 단계; 및 상기 열처리 후 열처리 온도에서 10분 내지 30분간 유지하는 단계;를 포함하는 전극재 제조를 위한 활성탄의 후처리 방법을 제공하며,Heating the activated carbon to 400 ° C. to 600 ° C. at a temperature increase rate of 30 ° C. to 100 ° C. per minute; It provides a post-treatment method of activated carbon for manufacturing an electrode material, including the step of maintaining for 10 minutes to 30 minutes at the heat treatment temperature after the heat treatment,

상기 활성탄은 석탄계, 석유계 또는 목질계 탄소원료로부터 얻어진 것임을 특징으로 하는 전극재 제조를 위한 활성탄의 후처리 방법을 제공한다.The activated carbon provides a post-treatment method of activated carbon for manufacturing an electrode material, characterized in that obtained from a coal-based, petroleum-based or wood-based carbon raw material.

상술한 바와 같이 본 발명에 따른 전극 제조를 위한 활성탄의 후처리 방법에 의하면, 석탄계 또는 석유계 또는 목질계 탄소원료로부터 통상적인 방법에 의하여 제조된 활성탄을 급승온시켜 열처리하고, 그 열처리 온도에서 짧은 시간 동안만 유지함으로써 비표면적 및 정전용량의 감소폭이 줄어들어, 높은 사이클특성을 갖는 활성탄을 제조할 수 있다.According to the post-treatment method of activated carbon for electrode production according to the present invention as described above, the activated carbon produced by a conventional method from a coal-based or petroleum-based or wood-based carbon raw material is rapidly heated and heat treated, and the heat treatment temperature is short. By maintaining only for a time, the reduction in specific surface area and capacitance is reduced, and activated carbon having high cycle characteristics can be produced.

본 발명은 활성탄을 열처리온도까지 급승온시키고, 열처리 온도에서 단시간 유지하는 활성탄의 후처리방법을 제공한다.The present invention provides a post-treatment method of activated carbon in which the activated carbon is rapidly heated up to a heat treatment temperature and maintained at a heat treatment temperature for a short time.

이하 본 발명을 더욱 상세히 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 활성탄 후처리 방법은 활성탄을 급승온시켜 열처리하는 단계를 포함한다.Activated carbon after-treatment method of the present invention includes the step of heat-treating the activated carbon rapidly.

여기서 활성탄의 승온 속도는 분당 30℃ 내지 100℃의 승온속도를 가지며, 이와 같은 승온 속도로 400℃ 내지 600℃까지 승온하여 열처리한다. 상기 승온속도가 분당 30℃ 이하이거나 열처리온도가 600℃ 이상일 경우에는, 활성탄이 고온에서 유지되는 시간이 길어져 관능기가 변화됨은 물론, 활성탄의 구조에까지 영향을 미치므로 바람직하지 않으며, 승온속도가 분당 100℃ 이상이거나 열처리온도가 400℃ 이하일 경우, 활성탄 내의 관능기에 변화를 주기에 충분한 시간 및 에너지를 공급하지 못하므로 바람직하지 못하다.Here, the temperature increase rate of activated carbon has a temperature increase rate of 30 ° C to 100 ° C per minute, and the temperature is raised to 400 ° C to 600 ° C and heat treated at this temperature increase rate. When the temperature increase rate is 30 ℃ or less per minute or the heat treatment temperature is 600 ℃ or more, the longer the time that the activated carbon is maintained at a high temperature changes the functional group, as well as affects the structure of the activated carbon is not preferable, the temperature increase rate is 100 per minute If the temperature is higher than or equal to 400 ° C. or lower than 400 ° C., it is not preferable because sufficient time and energy are not supplied to change the functional groups in activated carbon.

상기와 같이 열처리한 후, 그 열처리 온도에서 단시간 유지하는 단계를 포함한다. 상기 열처리 온도에서 유지하는 시간은 10분 내지 30분이 바람직하다. 열처리 온도에서 유지하는 것은 열처리 유지시간은 관능기에 변화를 주기에 충분한 시간 및 에너지를 공급하기 위한 것이다. 따라서 그 유지 시간이 10분 미만이면 관능기에 변화를 주기에 부족하며, 또한 이에 필요한 충분한 에너지를 공급하지 못하므로 바람직하지 못하다. 반면, 상기 유지 시간이 30분을 초과하면, 관능기가 변화되는 것은 물론, 활성탄의 구조에까지 영향을 미치므로 바람직하지 않다.After the heat treatment as described above, the step of maintaining for a short time at the heat treatment temperature. The time maintained at the heat treatment temperature is preferably 10 minutes to 30 minutes. Maintaining at the heat treatment temperature is intended to supply sufficient time and energy to change the functional group. Therefore, if the holding time is less than 10 minutes, it is insufficient to change the functional group, and it is not preferable because it does not supply enough energy required for it. On the other hand, when the holding time exceeds 30 minutes, the functional group is not only changed, but also affects the structure of activated carbon, which is not preferable.

이와 같이 본 발명의 방법에 따라 활성탄을 후처리하면, 활성탄의 기존 구조 에 큰 변화를 주지 않고 관능기의 변화를 유도하여, 전지 셀 내에서 전해질과 활성탄의 관능기와의 화학반응을 억제함으로써, 사이클 특성이 우수한 활성탄을 제조할 수 있는 방법을 제공하고 있다.The post-treatment of activated carbon according to the method of the present invention thus induces a change in the functional group without making a large change in the existing structure of the activated carbon, thereby suppressing the chemical reaction between the electrolyte and the functional group of the activated carbon in the battery cell, thereby improving cycle characteristics. A method for producing this excellent activated carbon is provided.

이하 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 그러나, 이하의 실시예에 의해 본 발명을 한정하고자 하는 것이 아니다. The present invention will be described in more detail with reference to the following Examples. However, the following examples are not intended to limit the present invention.

비교예Comparative example 1 One

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄에 대하여 후처리를 거치지 않고 정전용량 및 사이클특성을 측정하였다. 그 결과를 다음 표 1에 기재하였다.The activated carbon produced from coal-based pitches by chemical activation was measured for capacitance and cycle characteristics without undergoing post-treatment. The results are shown in Table 1 below.

비교예Comparative example 2 2

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 20℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 1에 기재하였다.Activated carbon prepared from coal-based pitch by chemical activation was heated to 500 ° C. at a rate of 20 ° C. per minute, and then heat treated, and then maintained at 500 ° C. for 20 minutes to perform post-treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 1 below.

실시예Example 1 One

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 30℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 1에 기재하였다.Activated carbon prepared from coal-based pitch by chemical activation was heated to 500 ° C. at a temperature increase rate of 30 ° C. per minute, followed by heat treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 1 below.

실시예Example 2 2

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 1에 기재하였다.Activated carbon prepared from coal-based pitch by chemical activation was heated to 500 ° C. at a rate of 50 ° C. per minute, and then heat treated, and then maintained at 500 ° C. for 20 minutes to perform post-treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 1 below.

실시예Example 3 3

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 100℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 1에 기재하였다.The activated carbon produced from the coal-based pitch by chemical activation was heated to 500 ° C. at a heating rate of 100 ° C. per minute, and then heat-treated. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 1 below.

비교예Comparative example 3 3

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 120℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 1에 기재하였다.The activated carbon produced from the coal-based pitch by chemical activation was heated to 500 ° C. at a heating rate of 120 ° C. per minute, and then heat-treated. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 1 below.

후처리 공정 조건Post-Processing Conditions 정전용량 (F/cc)Capacitance (F / cc) 사이클 특성 (%)Cycle Characteristics (%) 승온 속도 (℃/분)Temperature rise rate (℃ / min) 열처리 온도 (℃)Heat treatment temperature (℃) 유지시간 (분)Retention time (minutes) 비교예 1Comparative Example 1 -- -- -- 67.267.2 92.192.1 비교예 2Comparative Example 2 2020 500  500 20  20 60.460.4 98.498.4 실시예 1Example 1 3030 63.763.7 97.097.0 실시예 2Example 2 5050 64.664.6 97.297.2 실시예 3Example 3 100100 65.465.4 96.496.4 비교예 3Comparative Example 3 120120 67.267.2 95.195.1

상기 표로부터 보는 바와 같이, 후처리를 수행하지 않은 경우(비교예 1)에는 높은 정전용량 및 낮은 사이클특성의 경향을 보였다. As can be seen from the table, when the post-treatment was not performed (Comparative Example 1), high capacitance and low cycle characteristics were observed.

나아가, 승온속도가 본 발명에서 한정하는 범위를 벗어나, 분당 20℃의 승온속도로 승온한 경우(비교예 2)에는 사이클 특성은 우수하였으나, 정전용량의 감소폭이 크고, 분당 120℃의 승온속도로 승온한 경우(비교예 3)의 경우에는 정전용량의 감소는 없었으나, 사이클 특성이 실시예 1 내지 3과 비교하여 상대적으로 낮은 값을 나타내었다. Furthermore, when the temperature increase rate is outside the range defined by the present invention and the temperature is increased at a temperature increase rate of 20 ° C. per minute (Comparative Example 2), the cycle characteristics are excellent, but the reduction in capacitance is large, and the temperature increase rate is 120 ° C. per minute. In the case of the temperature increase (Comparative Example 3), there was no reduction in capacitance, but the cycle characteristics were relatively low compared with Examples 1 to 3.

승온속도를 분당 30℃ 이상 및 100℃ 이하로 승온하여 후처리한 활성탄의 경우(실시예 1 내지 3)에는 정전용량의 감소폭이 작고, 양호한 정전용량 값을 가지며, 나아가 우수한 사이클특성 값을 나타내었다.In the case of activated carbon after raising the temperature increase rate to 30 ° C. or more and 100 ° C. or less (Examples 1 to 3), the decrease in the capacitance was small, the capacitance value was good, and the cycle characteristics were excellent. .

비교예Comparative example 4 4

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 350℃까지 승온하여 열처리를 한 후, 그 온도 350℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.The activated carbon produced from the coal-based pitch by chemical activation was heated to 350 ° C. at a temperature rising rate of 50 ° C. per minute, followed by heat treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

실시예Example 4 4

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 40℃까지 승온하여 열처리를 한 후, 그 온도 400℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.Activated carbon prepared from coal-based pitch by chemical activation was heated to 40 ° C. at a rate of 50 ° C. per minute, followed by heat treatment, and then maintained at 400 ° C. for 20 minutes to perform post-treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

실시예Example 5 5

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 600℃까지 승온하여 열처리를 한 후, 그 온도 600℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.Activated charcoal prepared from coal-based pitch by chemical activation was heated to 600 ° C. at an elevated rate of 50 ° C. per minute, followed by heat treatment, and then maintained at 600 ° C. for 20 minutes to perform post treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

비교예Comparative example 5 5

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 700℃까지 승온하여 열처리를 한 후, 그 온도 700℃에서 20분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.The activated carbon produced from the coal-based pitch by chemical activation was heated to 700 ° C. at a heating rate of 50 ° C. per minute, and then heat-treated. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

후처리 공정 조건Post-Processing Conditions 정전용량 (F/cc)Capacitance (F / cc) 사이클 특성 (%)Cycle characteristic (%) 승온 속도 (℃/분)Temperature rise rate (℃ / min) 열처리 온도 (℃)Heat treatment temperature (℃) 유지시간 (분)Retention time (minutes) 비교예 4Comparative Example 4 50 50 350350 20 20 67.567.5 91.791.7 실시예 4Example 4 400400 65.665.6 96.396.3 실시예 5Example 5 600600 65.465.4 97.197.1 비교예 5Comparative Example 5 700700 56.456.4 98.798.7

상기 표에 보이는 바와 같이 400℃ 이하의 열처리온도에서는 후처리를 수행하지 않은 경우(비교예 1)와 비교해 볼 때, 정전용량 및 사이클특성에 있어서 큰 변화가 없었다. 결국 낮은 열처리온도는 후처리 효과가 전혀 없음을 알 수 있다. As shown in the table above, at the heat treatment temperature of 400 ° C. or lower, there was no significant change in capacitance and cycle characteristics as compared with the case where the post-treatment was not performed (Comparative Example 1). As a result, it can be seen that the low heat treatment temperature has no post-treatment effect.

또한 600℃ 이상의 열처리온도에서는 사이클특성이 큰 폭으로 개선되었으나, 정전용량이 큰 감소폭을 보임을 알 수 있다.In addition, although the cycle characteristics were greatly improved at the heat treatment temperature of 600 ° C. or higher, it can be seen that the capacitance showed a large decrease.

반면, 400℃ 및 600℃에서 열처리한 경우(실시예 4 및 5)의 경우에는 정전용량의 감소폭이 작음은 물론, 사이클 특성이 향상되어 우수한 값을 나타냄을 확인할 수 있다.On the other hand, in the case of heat treatment at 400 ° C and 600 ° C (Examples 4 and 5) it can be seen that the reduction of the capacitance is small, as well as the cycle characteristics are improved to show an excellent value.

비교예Comparative example 6 6

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 5분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.Activated carbon prepared from coal-based pitch by chemical activation was heated to 500 ° C. at a rate of 50 ° C. per minute, and then heat treated, and then maintained at 500 ° C. for 5 minutes to perform post-treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

실시예Example 6 6

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 10분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.Activated carbon prepared from coal-based pitch by chemical activation was heated to 500 ° C. at a heating rate of 50 ° C. per minute, followed by heat treatment, and then maintained at 500 ° C. for 10 minutes to perform post-treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

실시예Example 7 7

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 30분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.The activated carbon produced from the coal-based pitch by chemical activation was heated to 500 ° C. at a rate of 50 ° C. per minute, followed by heat treatment, and then maintained at 500 ° C. for 30 minutes to perform post-treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

비교예Comparative example 7 7

약품활성화에 의하여 석탄계 핏치로부터 제조된 활성탄을 분당 50℃의 승온속도로 500℃까지 승온하여 열처리를 한 후, 그 온도 500℃에서 40분간 유지하여 후처리를 수행하였다. 후처리된 활성탄의 정전용량 및 사이클특성을 측정하여 그 결과를 다음 표 2에 기재하였다.Activated carbon prepared from coal-based pitch by chemical activation was heated to 500 ° C. at a rate of 50 ° C. per minute, and then heat treated, and then maintained at 500 ° C. for 40 minutes to perform post-treatment. The capacitance and cycle characteristics of the post-treated activated carbon were measured and the results are shown in Table 2 below.

후처리 공정 조건Post-Processing Conditions 정전용량 (F/cc)Capacitance (F / cc) 사이클 특성 (%)Cycle characteristic (%) 승온 속도 (℃/분)Temperature rise rate (℃ / min) 열처리 온도 (℃)Heat treatment temperature (℃) 유지시간 (분)Retention time (minutes) 비교예 6Comparative Example 6 50 50 500 500 55 67.467.4 93.693.6 실시예 6Example 6 1010 65.865.8 96.896.8 실시예 7Example 7 3030 64.264.2 97.097.0 비교예 7Comparative Example 7 4040 55.555.5 98.598.5

상기 표에 보이는 바와 같이 유지시간이 본 발명의 범위 10분 내지 30분을 벗어나 짧은 경우(비교예 6)에는 후처리의 효과가 전혀 없었으며, 유지시간이 30분을 초과하는 경우(비교예 7)에는 후처리가 과도하게 되어, 사이클 특성을 현저히 개선되었으나, 정전용량이 대폭 감소하였다.As shown in the table above, when the holding time was short beyond the range of 10 minutes to 30 minutes of the present invention (Comparative Example 6), there was no effect of the post-treatment, and the holding time exceeded 30 minutes (Comparative Example 7). ), Excessive post-treatment resulted in markedly improved cycle characteristics, but significantly reduced capacitance.

반면, 본 발명의 범위 10분 내지 30분의 유지시간 동안 열처리 온도에서 유지한 경우(실시예 6 및 7)에는 정전용량의 감소폭이 작음은 물론, 사이클 특성이 대폭 개선되었음을 확인할 수 있다.On the other hand, when maintained at the heat treatment temperature for a holding time of 10 minutes to 30 minutes of the scope of the present invention (Examples 6 and 7) it can be seen that the reduction of the capacitance is small, as well as the cycle characteristics significantly improved.

Claims (2)

활성탄을 분당 30℃ 내지 100℃의 승온 속도로 400℃ 내지 600℃까지 승온하여 열처리하는 단계; 및Heating the activated carbon to 400 ° C. to 600 ° C. at a temperature increase rate of 30 ° C. to 100 ° C. per minute; And 상기 열처리 후 열처리 온도에서 10분 내지 30분간 유지하는 단계;10 minutes to 30 minutes at the heat treatment temperature after the heat treatment; 를 포함하는 전극재 제조를 위한 활성탄의 후처리 방법.Post-treatment method of activated carbon for the production of an electrode material comprising a. 제 1항에 있어서, 상기 활성탄은 석탄계, 석유계 또는 목질계 탄소원료로부터 얻어진 것임을 특징으로 하는 전극재 제조를 위한 활성탄의 후처리 방법.The method according to claim 1, wherein the activated carbon is obtained from a coal-based, petroleum-based, or wood-based carbon raw material.
KR1020070135792A 2007-12-21 2007-12-21 Post-treatment method of activated carbon for electrode manufacturing Expired - Fee Related KR101429975B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070135792A KR101429975B1 (en) 2007-12-21 2007-12-21 Post-treatment method of activated carbon for electrode manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070135792A KR101429975B1 (en) 2007-12-21 2007-12-21 Post-treatment method of activated carbon for electrode manufacturing

Publications (2)

Publication Number Publication Date
KR20090067954A true KR20090067954A (en) 2009-06-25
KR101429975B1 KR101429975B1 (en) 2014-08-18

Family

ID=40995615

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070135792A Expired - Fee Related KR101429975B1 (en) 2007-12-21 2007-12-21 Post-treatment method of activated carbon for electrode manufacturing

Country Status (1)

Country Link
KR (1) KR101429975B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379646B (en) * 2019-07-25 2021-04-02 中南林业科技大学 Preparation method of asymmetric supercapacitor based on molybdenum diselenide/charcoal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05275284A (en) * 1992-03-27 1993-10-22 Isuzu Motors Ltd Manufacture of active carbon electrode of electric double layer capacitor
JP4701484B2 (en) 2000-08-30 2011-06-15 中央電気工業株式会社 Graphite powder suitable for negative electrode of secondary battery, its production method and use
WO2003089371A1 (en) * 2002-04-22 2003-10-30 Kuraray Chemical Co.,Ltd. Process for producing active carbon, polarizable electrode and electric double layer capacitor
JP4392223B2 (en) * 2003-10-31 2009-12-24 Jfeケミカル株式会社 Activated carbon manufacturing method and manufacturing apparatus thereof

Also Published As

Publication number Publication date
KR101429975B1 (en) 2014-08-18

Similar Documents

Publication Publication Date Title
JP7236391B2 (en) Method for producing activated carbon
US20070060476A1 (en) Modified activated carbon for capacitor electrodes and method of fabrication thereof
CN111453726A (en) A nitrogen-doped porous carbon material and its preparation method and application
KR20080085605A (en) Ultra-High Specific Surface Activated Carbon Using Corn and Its Manufacturing Method
CN107039193A (en) A kind of garlic skin matrix activated carbon electrode material and preparation method for ultracapacitor
CN106517183A (en) A low-cost simple preparing method for nitrogen-doped porous charcoal with a high specific surface area
JP2011046584A (en) Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method
CN103426650A (en) Asymmetric electrochemical supercapacitor on basis of rice-husk-based activated carbon materials
KR20210110198A (en) Preparation method for activated carbon with multi pore structure and activated carbon with multi pore structure prepared by the same
KR20090067954A (en) Post-treatment method of activated carbon for electrode production
KR20180065296A (en) High performance mesoporous activated carbon and method for preparing the same
CN113200545B (en) Capacitance carbon and preparation method thereof
KR101462578B1 (en) Method for manufacturing carbon material for electrochemical device electrode
KR101352089B1 (en) A method of manufacturing graphene, graphene manufactured by the same, and supercapacitor comprising the graphene
CN110723734B (en) Method for preparing activated carbon composite material by using corncob acid hydrolysis residues
KR20090067953A (en) Method of pretreatment of carbon raw material for production of activated carbon
KR102173010B1 (en) Method for manufacturing electrode material for capacitors
CN101269811A (en) A kind of preparation method of pitch-based spherical activated carbon with high carbon yield
Kikuchi et al. Pore structures and electric double layer properties of activated carbon derived from demineralized spent coffee grounds
KR20080060026A (en) Pretreatment method of carbon raw material and carbon material for capacitor electrode manufactured using the same
KR20230093802A (en) Method for low-temperature oxidative stabilized pitch and activated carbon by the method
KR101441329B1 (en) Method for manufacturing mesoporous active carbon fiber for super capacitor
KR100723121B1 (en) High yield activated carbon manufacturing method
KR101350445B1 (en) A method of post-heat treatment of carbon material and a carbon material for electrode of capacitor prepared by the same
KR102020126B1 (en) Method for manufacturing activated carbon for electrode material

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20071221

PG1501 Laying open of application
A201 Request for examination
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20121101

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20071221

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20140115

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20140729

PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20140807

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20140808

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20170804

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20170804

Start annual number: 4

End annual number: 4

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee