KR100723121B1 - Method for manufacturing activated carbons with high activation yield - Google Patents
Method for manufacturing activated carbons with high activation yield Download PDFInfo
- Publication number
- KR100723121B1 KR100723121B1 KR1020050129561A KR20050129561A KR100723121B1 KR 100723121 B1 KR100723121 B1 KR 100723121B1 KR 1020050129561 A KR1020050129561 A KR 1020050129561A KR 20050129561 A KR20050129561 A KR 20050129561A KR 100723121 B1 KR100723121 B1 KR 100723121B1
- Authority
- KR
- South Korea
- Prior art keywords
- raw material
- carbon raw
- carbon
- reactor
- activator
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
본 발명에 따라 제공되는 활성탄 제조방법은 탄소원료의 입도를 조절하는 단계; 반응기 내에 장입된 탄소원료에 대하여 수산화나트륨 또는 수산화칼륨을 1:2 내지 1:6의 중량비율로 첨가 혼합하는 단계; 상기 혼합물을 400∼500℃ 온도로 유지하여 활성화제를 탄소원료에 흡수시키는 단계; 및 반응기 내의 온도를 600∼900℃로 승온시켜 활성화시키는 단계로 이루어진다. 이와 같이 탄소원료의 입도를 일정한 범위로 조절함에 따라 온도 상승시 반응기내의 폭발적인 비등을 억제하여 특수 반응기의 부피를 줄일 수 있을 뿐만 아니라 탄소원료와 활성화제 간의 안정적인 접촉 시간을 늘려 비표면적 및 정전용량이 높은 활성탄을 제조할 수 있다. Activated carbon production method provided according to the present invention comprises the steps of adjusting the particle size of the carbon raw material; Adding and mixing sodium hydroxide or potassium hydroxide in a weight ratio of 1: 2 to 1: 6 with respect to the carbon raw material charged in the reactor; Maintaining the mixture at a temperature of 400 to 500 ° C. to absorb the activator into the carbon raw material; And activating by raising the temperature in the reactor to 600 ~ 900 ℃. As such, by controlling the particle size of the carbon raw material to a certain range, it is possible to reduce the volume of the special reactor by suppressing the explosive boiling in the reactor when the temperature rises, and to increase the stable contact time between the carbon raw material and the activator to increase the specific surface area and capacitance. High activated carbon can be produced.
활성탄, 수산화나트륨, 수산화칼륨, 입도조절 Activated carbon, sodium hydroxide, potassium hydroxide, particle size control
Description
도1은 본 발명에 따른 활성탄 제조방법의 순서도이다.1 is a flowchart of a method of manufacturing activated carbon according to the present invention.
본 발명은 활성탄 제조방법에 관한 것으로서, 보다 상세하게는 입도 조절된 탄소원료에 수산화나트륨 또는 수산화칼륨을 일정한 비율로 첨가하여 고수율로 활성탄을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing activated carbon, and more particularly, to a method for producing activated carbon in a high yield by adding sodium hydroxide or potassium hydroxide in a constant ratio to a particle size controlled carbon raw material.
일반적으로 활성탄은 촉매나 촉매 담체 용도 외에 우수한 흡착성능을 이용하여, 공기정화, 용제회수, 배연탈황, 탈질, 각종 산업 배수처리 등의 용도로 사용되고 있다. 최근에는, 백업 전원, 보조 전원으로서 전기 이중층 캐패시터가 주목받고 있으며, 활성탄을 전기 이중층 캐패시터의 전극으로 착안한 개발이 널리 이루어지고 있다. In general, activated carbon has been used in applications such as air purification, solvent recovery, flue gas desulfurization, denitrification, and various industrial drainage treatments by using excellent adsorption performance in addition to catalysts and catalyst carriers. In recent years, electric double layer capacitors have attracted attention as backup power sources and auxiliary power sources, and developments focusing on activated carbon as an electrode of electric double layer capacitors have been widely made.
한편, 캐패시터의 정전용량은 전극의 표면적, 단위 면적당의 전극 저항등에 의해 주로 지배되므로, 실용면에서는 단위 체적당의 정전용량을 높게 하고, 전기 이중층 캐패시터의 체적을 적게 하기 위해서는 전극 자체의 밀도를 높이는 것이 중요하다. 종래 캐패시터용으로 사용되는 활성탄은 석탄, 석탄 코크스, 목재, 야자껍질, 피치 등의 원료물질을 수증기, 가스 등의 산성 조건하에서 활성화시키거나 또는 수산화칼륨과 같은 강산화력을 갖는 약품에 의해 활성화시켜 제조하였다. On the other hand, since the capacitance of the capacitor is mainly dominated by the surface area of the electrode, the electrode resistance per unit area, etc., in practice, it is necessary to increase the capacitance per unit volume and to increase the density of the electrode itself in order to reduce the volume of the electric double layer capacitor. It is important. Activated carbon, which is conventionally used for capacitors, is prepared by activating raw materials such as coal, coal coke, wood, coconut shell, and pitch under acidic conditions such as water vapor and gas, or by chemicals having strong oxidizing power such as potassium hydroxide. It was.
그러나 이러한 방법으로 얻어진 활성탄을 사용하는 경우에는 캐패시터용 전극에 사용할 수 있는 충분한 정전용량을 얻을 수 없고, 이에 따라 필요한 정전용량을 얻기 위해서는 대형화 장치로 제조되어야 하는 문제가 있다. 일반적으로, 정전용량은 활성탄의 비표면적이 클수록, 활성화 반응에 의해 만들어지는 메조 기공이 많을수록 높아진다고 알려져 있다. However, in the case of using the activated carbon obtained by such a method, there is a problem that a sufficient capacitance that can be used for an electrode for a capacitor cannot be obtained, and therefore, a large sized device must be manufactured in order to obtain the required capacitance. In general, it is known that the larger the specific surface area of activated carbon, the higher the number of mesopores produced by the activation reaction.
일본 공개특허 평6-144817호에는 활성탄의 정전용량을 높이는 방법이 개시되어 있다. 이 특허에서는 고비표면적의 활성탄을 제조하기 위해 탄소원료와 수산화칼륨 등의 활성화제를 1:2 내지 1:8의 중량비율로 공급하고, 불활성 가스 분위기 또는 감압 하에서 450∼550℃ 이하의 온도로 연속처리를 행한 후 다시 불활성 가스 분위기 하에서 600∼1000℃ 이하의 온도로 연속 활성화 처리함으로써 고비표면적의 활성탄을 연속식으로 제조함을 개시하고 있다. Japanese Patent Laid-Open No. 6-144817 discloses a method of increasing the capacitance of activated carbon. In this patent, a carbonaceous material and an activator such as potassium hydroxide are supplied at a weight ratio of 1: 2 to 1: 8 in order to prepare activated carbon having a high specific surface area, and continuously at a temperature of 450 to 550 캜 or lower under an inert gas atmosphere or reduced pressure. It is disclosed that the activated carbon having a high specific surface area is continuously produced by subjecting the treatment to continuous activation treatment at a temperature of 600 to 1000 ° C. or lower again under an inert gas atmosphere.
그러나, 이 제조방법의 경우에는 600℃ 부근에서 탄소원료와 활성화제로 이루어진 슬러리가 폭발적으로 비등하여 넘쳐흐르게 되고, 그 결과 활성화 수율 및 비표면적을 감소시켜 결국 정전용량을 저하시키는 문제점이 있다. 또한, 이러한 폭발적인 비등에 대비하여 탄소원료의 무게(g)에 대비하여 100배의 부피(ml)를 갖는 특수 반응기를 사용하여야 하는데 이는 제조 설비 비용 등의 생산 비용을 증가시켜 제품 경쟁력을 떨어뜨리는 것이다. However, in the case of this manufacturing method, the slurry composed of the carbon raw material and the activator is explosively boiled and overflowed in the vicinity of 600 ° C., and as a result, the activation yield and the specific surface area are reduced, resulting in a decrease in capacitance. In addition, to prepare for such an explosive boiling, a special reactor having a volume of 100 times (ml) relative to the weight (g) of the carbon raw material should be used, which increases the production cost such as the cost of manufacturing equipment, thereby lowering the product competitiveness. .
이에 본 발명에서는 이러한 문제점을 해결하기 위하여, 탄소원료의 입도를 일정하게 조절함에 따라 온도 상승시 반응기내의 폭발적인 비등을 억제하여 특수 반응기의 부피를 줄일 수 있을 뿐만 아니라 탄소원료와 활성화제 간의 안정적인 접촉 시간을 늘려 비표면적 및 정전용량이 높은 활성탄을 제조하는 방법을 제공하는데 그 목적이 있다.In order to solve this problem, in the present invention, by controlling the particle size of the carbon raw material constantly, it is possible to reduce the volume of the special reactor by suppressing the explosive boiling in the reactor when the temperature rises, as well as stable contact time between the carbon raw material and the activator The purpose of the present invention is to provide a method for producing activated carbon having a high specific surface area and high capacitance.
본 발명에 따라서, According to the invention,
탄소원료의 입도를 조절하는 단계; Adjusting the particle size of the carbon raw material;
반응기 내에 입도 조절된 탄소원료를 장입하고 탄소원료에 대하여 수산화나트륨 또는 수산화칼륨을 1:2 내지 1:6의 중량비율로 첨가 혼합하는 단계; Charging a particle size controlled carbon raw material into the reactor and adding and mixing sodium hydroxide or potassium hydroxide in a weight ratio of 1: 2 to 1: 6 with respect to the carbon raw material;
상기 혼합물을 400∼500℃ 온도로 유지하여 활성화제를 탄소원료에 흡수시키 는 단계; 및 Maintaining the mixture at a temperature of 400 to 500 ° C. to absorb the activator into the carbon raw material; And
반응기 내의 온도를 600∼900℃로 승온시켜 활성화시키는 단계Activating by raising the temperature in the reactor to 600 ~ 900 ℃
를 포함하는 고수율 활성탄 제조방법이 제공된다. Provided is a high yield activated carbon manufacturing method comprising a.
이하 본 발명을 보다 상세히 설명하고자 하며, 이로써 본 발명을 제한하는 것은 아니다. Hereinafter, the present invention will be described in more detail, and the present invention is not limited thereto.
활성화 반응이란, 탄소원료에 활성화제를 첨가한 후 승온시켜 활성탄의 표면에 메조 기공 등을 형성시킴으로써, 활성탄이 캐패시터의 전극재로 사용될 때 우수한 정전용량을 가질 수 있게 해주는 것을 말한다.The activation reaction refers to adding an activator to a carbon raw material and then raising the temperature to form mesopores on the surface of the activated carbon, thereby enabling the activated carbon to have an excellent capacitance when used as an electrode material of a capacitor.
본 발명에서의 활성화 반응은 크게 탄소원료의 입도 조절 단계, 활성화제와 탄소원료의 혼합 단계, 활성화제의 흡수 단계, 및 활성화 단계로 이루어진다.The activation reaction in the present invention consists of a particle size control step of the carbon raw material, a mixing step of the activator and the carbon raw material, an absorption step of the activator, and an activation step.
본 발명의 활성탄 제조방법에 사용되는 탄소원료로는 이로써 제한하는 것은 아니나, 석탄계 반성코크스 또는 석탄계 및 석유계 고연화점 피치가 사용될 수 있다. 이러한 탄소원료는 표준체 4 내지 100 메쉬를 사용하여 통상적인 방법으로 분급되며, 본 발명에서는 표준체 0.149mm 통과분 ~ 표준체 4.76mm 통과분으로 입도를 조절한다. 이 때, 탄소원료의 입도가 표준체 0.149mm 통과분 이하인 경우에는, 입도가 미세하여 온도 상승시에 반응기내에서 폭발적인 비등이 일어나게 되며 이에 따라 제조되는 활성탄의 비표면적이 작아지는 문제가 있으며, 탄소원료 입도가 표준체 4.76mm 통과분 이상인 경우에는 활성화조제가 입도가 큰 탄소원료의 내부까지 영향을 미칠 수 없기 때문에 비표면적이 작아지게 된다. The carbon raw material used in the method for producing activated carbon of the present invention is not limited thereto, but coal-based semi-coke or coal-based and petroleum-based softening point pitch may be used. This carbon raw material is classified in a conventional manner using standard 4 to 100 mesh, in the present invention, the particle size is adjusted to 0.149mm pass through ~ 4.76mm pass through the standard. At this time, when the particle size of the carbon raw material is 0.149 mm or less of the standard body, the particle size is fine and explosive boiling occurs in the reactor when the temperature rises, thereby reducing the specific surface area of the activated carbon produced. Is less than 4.76mm of standard, the specific surface area becomes small because the activating aid can not affect the inside of the large-size carbon raw material.
이와 같이 입도 조절된 탄소 원료를 반응기에 장입시키고 탄소원료에 활성화제인 수산화나트륨 또는 수산화칼륨을, 탄소원료와 활성화제의 중량비율이 1:2 내지 1:6이 되도록 함께 첨가 혼합한다. 활성화제가 탄소원료에 대해 중량비율로 1:2 보다 적게 첨가되면 활성화제의 종류에 관계없이 활성화 반응율이 너무 낮아 메조 기공 등의 형성이 저조하게 되므로 기준치 이상의 정전용량을 얻지 못하며, 활성화제가 탄소원료에 대해 중량비율로 1:6보다 많이 첨가되면 활성화 반응율이 너무 높아 활성화 수율이 저하된다. 실험 결과 탄소원료와 활성화제의 중량비율이 1:4인 경우에 가장 높은 활성화 반응율을 보였다. The carbon raw material having the particle size adjusted in this way is charged to the reactor, and sodium hydroxide or potassium hydroxide, which is an activator, is added and mixed together so that the weight ratio of the carbon raw material and the activator is 1: 2 to 1: 6. When the activator is added less than 1: 2 in weight ratio to the carbon raw material, the activation reaction rate is too low regardless of the type of activator, resulting in the formation of mesopores, etc., so that the capacities above the standard value cannot be obtained. When the amount is added more than 1: 6 by weight, the activation reaction rate is too high and the activation yield is lowered. The experimental results showed the highest activation reaction when the weight ratio of carbon material and activator is 1: 4.
탄소원료와 수산화나트륨 또는 수산화칼륨과 같은 활성화제를 혼합한 후에 활성화제가 탄소원료에 완전히 흡수될 수 있도록 반응기 내의 온도를 400∼500℃로 유지시킨다. 활성화 반응은 600℃ 이상의 온도에서 일어나지만 활성화제를 반응기 내에 첨가한 후 바로 600℃ 이상으로 승온시키면 활성화제가 탄소원료의 표면과 충분히 반응하지 못하기 때문에 충분한 활성화 반응율을 얻지 못하게 되며, 이는 최종 정전용량에 부정적인 영향을 준다. 따라서, 활성화제가 탄소원료의 표면과 충분히 접촉할 때까지 일정한 온도로 유지시켜야 한다. After mixing the carbon raw material with an activator such as sodium hydroxide or potassium hydroxide, the temperature in the reactor is maintained at 400 to 500 ° C. so that the activator can be completely absorbed by the carbon raw material. The activation reaction occurs at a temperature above 600 ° C, but if the temperature is raised above 600 ° C immediately after the addition of the activator into the reactor, the activator does not sufficiently react with the surface of the carbon raw material and thus does not obtain a sufficient activation reaction rate. Negatively affects. Therefore, the activator must be maintained at a constant temperature until it is sufficiently in contact with the surface of the carbon raw material.
이때, 유지온도가 400℃ 미만인 경우에는 활성화제의 활동도가 저하되고 500℃를 초과하는 경우에는 활성화제가 탄소원료의 표면과 충분히 접촉하지 못한 채로 활성화 반응이 일어날 우려가 있다. 또한, 이러한 흡수 단계는 0.5∼1.5시간동안 이루어지는 것이 바람직한데, 유지 시간이 0.5 시간 미만이면 활성화제가 탄소원료와 충분히 접촉할 수 없으며, 1.5 시간 이상의 유지시간은 불필요하게 제조 공정을 지연시키므로 바람직하지 않다.At this time, if the holding temperature is less than 400 ℃ activity of the activator is lowered, if it exceeds 500 ℃ there is a fear that the activation reaction occurs without the activator is not in sufficient contact with the surface of the carbon raw material. In addition, the absorption step is preferably performed for 0.5 to 1.5 hours. If the holding time is less than 0.5 hours, the activator may not be in sufficient contact with the carbon raw material, and the holding time of 1.5 hours or more is not preferable because it unnecessarily delays the manufacturing process. .
또한, 상기 흡수 단계에서는 반응기 내에 불활성 가스를 주입하는데, 질소, 아르곤, 헬륨과 같은 불활성 가스는 비산화성 분위기를 형성하여 탄소원료가 승온 과정에서 산화되는 것을 방지해 주는 역할을 한다. In addition, the absorption step injects an inert gas into the reactor, the inert gas such as nitrogen, argon, helium forms a non-oxidizing atmosphere to prevent the carbon raw material is oxidized during the temperature increase process.
마지막으로, 활성화 단계에서는 활성화제가 탄소원료와 충분히 접촉한 상태에서 반응기 내의 온도를 600∼900℃가 되도록 승온하여 활성화 반응이 일어나게 해주는 단계이다. 온도가 600℃ 미만이 되면 활성화 반응율이 너무 낮아 기준치 이상의 정전용량을 얻을 수 없으며, 900℃를 초과하게 되면 활성화 반응율이 너무 높아 활성화 수율이 저하되므로 활성화 반응은 상기 600∼900℃ 범위에서 이루어지는 것이 바람직하다.Finally, in the activation step, the activation reaction occurs by raising the temperature in the reactor to 600 to 900 ° C. while the activator is in sufficient contact with the carbon raw material. If the temperature is less than 600 ℃ activation reaction rate is too low to obtain a capacitance higher than the reference value, if it exceeds 900 ℃ the activation reaction rate is too high and the activation yield is lowered, the activation reaction is preferably made in the above 600 ~ 900 ℃ range Do.
이와 같이 본 발명에 따라 제공되는 활성탄의 제조방법은 탄소원료의 입도를 조절함에 따라 온도 상승시 반응기내의 폭발적인 비등을 억제하여 특수 반응기의 부피를 줄일 수 있을 뿐만 아니라 탄소원료와 활성화제 간의 안정적인 접촉 시간을 늘려 비표면적 및 정전용량이 높은 활성탄을 제조할 수 있으며, 이에 따라 제공되는 활성탄은 캐패시터의 전극으로 사용시 충분한 정전용량을 얻을 수 있다. As described above, the method for preparing activated carbon provided in accordance with the present invention may not only reduce the volume of a special reactor by suppressing explosive boiling in the reactor when the temperature rises by controlling the particle size of the carbon raw material, but also provide stable contact time between the carbon raw material and the activator. It is possible to manufacture activated carbon having a high specific surface area and a high capacitance by increasing the active carbon, and thus the activated carbon provided can obtain sufficient capacitance when used as an electrode of a capacitor.
이하 실시예를 통하여 본 발명을 보다 상세히 설명하고자 하며 이로써 본 발명을 제한하는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the following examples, which do not limit the present invention.
실시예Example
석유계 고연화점 핏치(연화점 263℃)를 150mesh 통과분 ~ 2½ mesh 통과분으로 각각 분급하여 탄소원료:수산화칼륨을 중량비율로 1:4로 하여 반응기에 장입하고 질소 가스를 주입하면서 500℃에서 1시간 동안 유지시킨 후에 10℃/min의 승온속도로 800℃까지 온도를 상승시킨 상태에서 활성화 반응을 시켜 얻은 생성물을 증류수로 세정한 후 건조시켜 활성탄을 제조한 후 각각의 물성을 측정하였는 바, 그 결과는 다음 표 1와 같다.The petroleum-based high softening point pitch (softening point 263 ℃) is classified into 150mesh ~ 2½ mesh passages, and the carbon raw material: potassium hydroxide is 1: 4 in a weight ratio. After maintaining for a time, the product obtained by the activation reaction in the state of raising the temperature to 800 ℃ at a temperature increase rate of 10 ℃ / min washed with distilled water and dried to prepare activated carbon and then measured the respective physical properties The results are shown in Table 1 below.
[표 1]TABLE 1
*활성화 수율 : (활성화 완료 후 남은 활성탄) Ⅹ 100 / (투입된 탄소원료) * Activation yield: (Activated carbon remaining after completion of activation) Ⅹ 100 / (Injected carbon raw material)
상기 표에서 보는 바와 같이 비교예 1의 경우는 150mesh를 통과한 탄소원료를 사용한 경우이며, 탄소원료가 미세하기 때문에 활성화시 수산화칼륨의 폭발적인 비등(boiling)에 의하여 탄소원료가 반응기 외부로 넘치게 되어 수율이 낮아짐을 알 수 있다. 또한, 수산화칼륨과 탄소원료와의 접촉이 원활하지 않기 때문에 비표면적 또한 낮아지고, 이에 따라 정전용량도 낮아짐을 알 수 있다. 실시예 1 내지 6의 경우에는 탄소원료의 입자크기가 증가함에 따라 수산화칼륨의 비등시 탄소원료의 입자들 사이에 형성된 기공으로 인하여 탄소원료-수산화칼륨 용해 슬러리의 부푸는 현상이 감소하게 되어 활성화 수율은 증가하게 되고 탄소입자의 크기가 증가함에 따라(실시예 5 내지 6의 경우) 수산화칼륨과 탄소입자 중심부의 탄소원료와의 접촉 기회가 줄어들게 되므로 비표면적 및 정전용량은 실시예 1 내지 4에 비해 줄어드는 경향을 나타낸다. 한편, 비교예 2 - 3의 경우에는 활성화 수율은 높아지지만, 비표면적 및 정전용량 값이 충분하지 못함을 알 수 있다. As shown in the table, Comparative Example 1 is a case where a carbon raw material passed through 150mesh is used, and since the carbon raw material is fine, the carbon raw material overflows to the outside of the reactor due to the explosive boiling of potassium hydroxide upon activation. It can be seen that this is lowered. In addition, since the contact between potassium hydroxide and the carbon raw material is not smooth, the specific surface area is also lowered, and thus the capacitance is also lowered. In Examples 1 to 6, as the particle size of the carbon raw material increases, the swelling phenomenon of the carbon raw material-potassium hydroxide dissolved slurry decreases due to the pores formed between the particles of the carbon raw material when the potassium hydroxide is boiled, thereby activating yield. As the carbon particles increase and the size of the carbon particles increases (in Examples 5 to 6), the chance of contact between potassium hydroxide and the carbon raw material at the center of the carbon particles decreases, so that the specific surface area and capacitance are lower than those of Examples 1 to 4. It shows a tendency to shrink. On the other hand, in the case of Comparative Examples 2-3, the activation yield is high, but it can be seen that the specific surface area and the capacitance values are not sufficient.
상술한 바와 같이 본 발명에 따른 활성화 수율이 높은 활성탄 제조방법에 의하면, 탄소원료의 입도를 표준체 0.149mm 통과분 ~ 4.76mm 통과분으로 조절한 후 활성화함으로써 보다 우수한 정전용량을 가지는 활성탄을 제조할 수 있다.As described above, according to the method of manufacturing activated carbon having high activation yield according to the present invention, the activated carbon having a better capacitance can be manufactured by adjusting the particle size of the carbon raw material to 0.149 mm through 4.76 mm through. have.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050129561A KR100723121B1 (en) | 2005-12-26 | 2005-12-26 | Method for manufacturing activated carbons with high activation yield |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020050129561A KR100723121B1 (en) | 2005-12-26 | 2005-12-26 | Method for manufacturing activated carbons with high activation yield |
Publications (1)
Publication Number | Publication Date |
---|---|
KR100723121B1 true KR100723121B1 (en) | 2007-05-30 |
Family
ID=38278616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050129561A KR100723121B1 (en) | 2005-12-26 | 2005-12-26 | Method for manufacturing activated carbons with high activation yield |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100723121B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101790686B1 (en) * | 2015-12-07 | 2017-10-27 | 충북대학교 산학협력단 | synthesis method of CO gas by CO2 conversion technology |
KR20230012182A (en) * | 2021-07-15 | 2023-01-26 | 한국광해관리공단 | And method for producting carbon material from anthracite |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960041055A (en) * | 1995-05-17 | 1996-12-17 | 박영태 | Granulated activated carbon production apparatus and its manufacturing method |
KR20010104899A (en) * | 2000-05-16 | 2001-11-28 | 이장수 | Biological activated carbon for advanced water purification treatment and method for preparing the same |
KR20020032859A (en) * | 2000-10-27 | 2002-05-04 | 김연기 | Method of making activated carbons using pulp sludges containing lignin produced as by products when making corncob pulp |
KR20030086066A (en) * | 2002-05-03 | 2003-11-07 | 주식회사 바이오카본텍 | The manufacturing method of cement using activated carbon |
KR20030093444A (en) * | 2002-06-03 | 2003-12-11 | 한국화학연구원 | Process for preparing spherical activated carbon |
-
2005
- 2005-12-26 KR KR1020050129561A patent/KR100723121B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR960041055A (en) * | 1995-05-17 | 1996-12-17 | 박영태 | Granulated activated carbon production apparatus and its manufacturing method |
KR20010104899A (en) * | 2000-05-16 | 2001-11-28 | 이장수 | Biological activated carbon for advanced water purification treatment and method for preparing the same |
KR20020032859A (en) * | 2000-10-27 | 2002-05-04 | 김연기 | Method of making activated carbons using pulp sludges containing lignin produced as by products when making corncob pulp |
KR20030086066A (en) * | 2002-05-03 | 2003-11-07 | 주식회사 바이오카본텍 | The manufacturing method of cement using activated carbon |
KR20030093444A (en) * | 2002-06-03 | 2003-12-11 | 한국화학연구원 | Process for preparing spherical activated carbon |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101790686B1 (en) * | 2015-12-07 | 2017-10-27 | 충북대학교 산학협력단 | synthesis method of CO gas by CO2 conversion technology |
KR20230012182A (en) * | 2021-07-15 | 2023-01-26 | 한국광해관리공단 | And method for producting carbon material from anthracite |
KR102623008B1 (en) | 2021-07-15 | 2024-01-08 | 한국광해광업공단 | And method for producting carbon material from anthracite |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102113719B1 (en) | Activated carbon and its manufacturing method | |
EP3445712B1 (en) | Method of making activated carbons with high surface areas | |
JP3446339B2 (en) | Activated carbon production method | |
EP2362851B1 (en) | Process for making porous activated carbon | |
JP2011046584A (en) | Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method | |
EP3285272A1 (en) | A method for making activated nano-porous carbon | |
KR102181729B1 (en) | Activated carbon and its manufacturing method | |
JPH07155589A (en) | Production of carbon material having large specific surface area | |
KR100723121B1 (en) | Method for manufacturing activated carbons with high activation yield | |
CN112299410A (en) | High-purity and high-conductivity porous carbon and preparation method thereof | |
KR101910461B1 (en) | Manufacturing method of activated carbon and activated carbon for electric double-layer capacitor electrode manufactured thereby | |
US11369941B2 (en) | Method for preparing porous carbon material by using coal tar generated in COG process | |
KR100650618B1 (en) | Method for manufacturing activated carbons with high specific surface area as an electrodes of capacitors | |
KR102522123B1 (en) | Method of manufacturing activated carbon having high meso pore volume and specific surface area and activated carbon produced using the same | |
KR20190073710A (en) | Method for manufacturing activated carbon for electrode material | |
JP5563239B2 (en) | Method for producing porous carbon material | |
CN108455555B (en) | High-volume specific-capacity coal-based supercapacitor electrode material and preparation method thereof | |
KR102173010B1 (en) | Method for manufacturing electrode material for capacitors | |
KR100476713B1 (en) | Method for preparing activated carbon using a porous polymer material | |
KR101441329B1 (en) | Method for manufacturing mesoporous active carbon fiber for super capacitor | |
KR101429975B1 (en) | Method for heat treatment of activated carbons for electrodes | |
KR101350445B1 (en) | A method of post-heat treatment of carbon material and a carbon material for electrode of capacitor prepared by the same | |
KR102687312B1 (en) | Method of Preparing Highly Mesoporous Activated Carbon | |
KR102674629B1 (en) | Method for manufacturing activated carbon for supercapacitor electrode using low grade petroleum coke, and activated carbon for supercapacitor electrode manufactured thereby and supercapacitor | |
KR102614590B1 (en) | High specific surface area activated carbon based on chemically-stabilized biomass and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130521 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140522 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150521 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160523 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170518 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180521 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20190521 Year of fee payment: 13 |