KR20060115638A - Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same - Google Patents
Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same Download PDFInfo
- Publication number
- KR20060115638A KR20060115638A KR1020060040227A KR20060040227A KR20060115638A KR 20060115638 A KR20060115638 A KR 20060115638A KR 1020060040227 A KR1020060040227 A KR 1020060040227A KR 20060040227 A KR20060040227 A KR 20060040227A KR 20060115638 A KR20060115638 A KR 20060115638A
- Authority
- KR
- South Korea
- Prior art keywords
- steel sheet
- less
- precipitates
- rolled steel
- cold rolled
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0463—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0473—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
Abstract
Description
일본 공개특허공보 1998-280048호 Japanese Unexamined Patent Publication No. 1998-280048
일본 공개특허공보 1998-287954호 Japanese Unexamined Patent Publication No. 1998-287954
본 발명은 자동차, 가전제품 등의 소재로 사용되는 소부경화형 냉연강판에 관한 것으로, 보다 상세하게는 Ti와 Nb의 복합계 IF강에서 미세한 MnS석출물과 AlN석출물에 의해 항복강도와 면내이방성이 개선되는 냉연강판과 그 제조방법에 관한 것이다. The present invention relates to a hardened hardened cold rolled steel sheet used as a material for automobiles, home appliances, and more specifically, yield strength and in-plane anisotropy are improved by fine MnS precipitates and AlN precipitates in a composite IF steel of Ti and Nb. It relates to a cold rolled steel sheet and a method of manufacturing the same.
소부경화형 냉연강판은 주로 자동차 등의 외판소재에 이용되고 있다. 소부경화형 냉연강판은 강판중에 적정량의 고용탄소를 잔존시키고, 프레스 성형시에 생성된 전위를 도장소부시의 열을 이용하여 고용탄소로 고착하여 항복점을 높인 강이다.The hardened hardened cold rolled steel sheet is mainly used for outer plate materials such as automobiles. The hardened hardened cold rolled steel is a steel in which an appropriate amount of solid solution carbon remains in the steel sheet and the potential generated during press molding is fixed to solid solution carbon using heat from the coating furnace to increase the yield point.
소부경화형 냉연강판에는 상소둔재인 Al-Killed강과 IF강(Interstitial Free Steel)이 있다. There are Al-Killed steel and IF steel (Interstitial Free Steel).
상소둔재인 Al-Killed 강의 경우에는 적은 양의 고용탄소가 잔존하고 있어 내시효특성을 확보하면서 소부처리 후 10-20MPa 정도의 소부경화능을 가진다. 상소둔재의 경우에는 소부처리 후 상승하는 항복강도가 낮고, 장시간 소둔하므로 생산성이 낮은 단점이 있다. In the case of Al-Killed steel, which is an ordinary annealing material, a small amount of dissolved carbon remains, and it has a hardening hardening capacity of about 10-20 MPa after the calcination treatment while securing aging characteristics. In the case of the annealing material, the yield strength rising after the baking treatment is low, and there is a disadvantage in that the productivity is low because it is annealed for a long time.
IF강은 Ti, Nb을 첨가하여 강중에 고용된 탄소 또는 질소를 완전히 석출하여 성형성을 향상시킨 강종으로서, 이 IF강에 소부경화특성을 부여한 것이 소부경화형 IF강이다. 소부경화형 IF강은 Ti 또는 Nb의 첨가량과 탄소의 첨가량을 제어하여 적당한 양의 탄소를 강중에 잔존하게 하여 소부경화특성을 부여한 것이다. IF steel is a steel grade which adds Ti and Nb to improve the formability by completely depositing carbon or nitrogen dissolved in steel, and it is the hardening hardening IF steel that gives the hardening hardening characteristic to the IF steel. The baking hardening type IF steel controls the adding amount of Ti or Nb and the adding amount of carbon so that an appropriate amount of carbon remains in the steel to give the baking hardening characteristic.
이와 관련된 기술로는 일본 공개특허공보 1998-280048호와 1998-287954호가 있다. As related technologies, there are Japanese Patent Application Laid-Open Nos. 1998-280048 and 1998-287954.
상기 선행기술들은 Ti계 또는 Ti-Nb계 IF강으로서, C:0.005%이하, Mn:3%이하, S:0.08%이하, Al:0.01-0.2%, N:0.01%이하의 성분계에서 탄황화물(Ti-C-S계)을 확보하여 재가열소둔시에 탄화물을 용해하여 결정립계에 고용시킴으로서 BH량(소부전후의 항복강도차) 30MPa이상 확보하고 있다. 그러나, 이 냉연강판의 항복비(항복강도/인장강도)는 54%이하로 낮다. 또한, 상기 선행기술들에서는 면내이방성에 대한 검토도 없다. The prior arts are Ti-based or Ti-Nb-based IF steels, and Cs: 0.005% or less, Mn: 3% or less, S: 0.08% or less, Al: 0.01-0.2%, N: 0.01% or less By securing (Ti-CS system) and dissolving carbide during reheat annealing and dissolving it in the grain boundary, the amount of BH (yield strength difference before and after firing) is secured to 30 MPa or more. However, the yield ratio (yield strength / tensile strength) of this cold rolled steel sheet is low below 54%. In addition, there is no review of in-plane anisotropy in the prior arts.
동일강도 대비 항복강도(항복비)가 더 높으면 강판의 두께를 줄일 수 있어 경량화 효과가 있다. 면내이방성이 낮으면 가공시 주름 발생이 적어지고 가공후에는 귀(ear) 발생이 적은 장점이 있다. If the yield strength (yield ratio) is higher than the same strength, the thickness of the steel sheet can be reduced, thereby reducing the weight. When the in-plane anisotropy is low, wrinkles are less generated during processing, and there is less advantage of generating ears after processing.
본 발명은 소부경화형 IF강에서 MnS석출물과 AlN석출물에 의해 항복강도를 증진하면서 면내이방성을 낮출 수 있는 냉연강판과 그 제조방법을 제공하는데 그 목적이 있다. An object of the present invention is to provide a cold-rolled steel sheet and a method of manufacturing the same which can lower in-plane anisotropy while enhancing yield strength by MnS precipitates and AlN precipitates in small hardened IF steels.
상기 목적을 달성하기 위한 본 발명의 냉연강판은, Cold rolled steel sheet of the present invention for achieving the above object,
중량%로, C: 0.001-0.01%, Mn:0.01-0.3%, S:0.005-0.08%, Al:0.1%이하, N:0.004-0.02%, P:0.2%이하, B:0.0001-0.002%, Ti:0.005~0.15%, Nb:0.002-0.04%, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, By weight%, C: 0.001-0.01%, Mn: 0.01-0.3%, S: 0.005-0.08%, Al: 0.1% or less, N: 0.004-0.02%, P: 0.2% or less, B: 0.0001-0.002% , Ti: 0.005-0.15%, Nb: 0.002-0.04%, remaining Fe and other inevitable impurities,
상기 Mn, S, Al, N, Ti, Nb, C가 Mn, S, Al, N, Ti, Nb, C is
1≤(Mn/55)/(S★/32) ≤30, 1≤(Al/27)/(N★/14)≤10, Cs(solute carbon)가 5-30를 만족하며, 1≤ (Mn / 55) / (S ★ / 32) ≤30, 1≤ (Al / 27) / (N ★ / 14) ≤10, Cs (solute carbon) satisfies 5-30,
[여기서, S★=S-0.8x(Ti-0.8x(48/14)xN)x(32/48), [Where S ★ = S-0.8x (Ti-0.8x (48/14) xN) x (32/48),
N★=N-0.8x(Ti-0.8x(48/32)xS))x(14/48)N ★ = N-0.8x (Ti-0.8x (48/32) xS)) x (14/48)
Cs=(C-Nbx12/93-Ti★x12/48)x10000, Ti★=Ti-0.8x((48/14)xN+(48/32)xS) 단, Ti★<0일 경우 Ti★=0으로 함]Cs = (C-Nbx12 / 93 -Ti ★ x12 / 48) x10000, Ti ★ = Ti-0.8x ((48/14) xN + (48/32) xS) stage, Ti ★ <0, Ti ★ = 0 With]
MnS석출물과 AlN석출물의 평균크기가 0.2㎛이하로 이루어진다.The average size of MnS precipitates and AlN precipitates is less than 0.2㎛.
본 발명에서 상기 미세한 MnS석출물과 AlN석출물은 1X105개/mm2 이상, 보다 바람직하게는 1X106개/mm2 이상이다. In the present invention, the fine MnS precipitates and AlN precipitates are 1 × 10 5 pieces / mm 2 or more, more preferably 1 × 10 6 pieces / mm 2 or more.
본 발명의 냉연강판은 성분설계에 따라 280MPa급의 연질냉연강판과 340MPa이상의 고강도 냉연강판의 특성을 갖는다. The cold rolled steel sheet of the present invention has the characteristics of a soft cold rolled steel sheet of 280MPa grade and high strength cold rolled steel sheet of 340MPa or more according to the component design.
상기한 성분계에서 P의 함량은 0.015%이하로 하면 280MPa급의 연질냉연강판이 얻어진다. 이 냉연강판에다 고용강화원소인 Si, Cr의 1종 또는 2종이 추가로 함유되거나 P의 함량이 0.015~0.2%로 하면 340MPa이상의 고강도 특성이 확보된다. P가 단독으로 함유되는 고강도 강의 경우에는 P의 함량은 0.03~0.2%가 바람직하다. Si의 경우에는 0.1-0.8%, Cr의 경우에는 0.2-1.2%가 바람직하다. Si과 Cr의 1종이상 함유되는 경우에 P의 함량은 0.2%이하의 범위에서 다양하게 설계될 수 있다. When the content of P in the above component system is 0.015% or less, a soft cold rolled steel sheet of 280 MPa grade is obtained. The cold rolled steel sheet further contains one or two of the solid solution strengthening elements Si and Cr, or when the P content is 0.015 to 0.2%, high strength characteristics of 340 MPa or more are secured. In the case of high strength steel containing P alone, the content of P is preferably 0.03 to 0.2%. 0.1-0.8% for Si and 0.2-1.2% for Cr are preferred. In the case of containing at least one of Si and Cr, the content of P may be variously designed in the range of 0.2% or less.
본 발명의 냉연강판에서 가공성을 보다 개선하고자 한다면 Mo을 0.01~0.2%추가로 포함할 수 있다. If you want to improve the workability in the cold rolled steel sheet of the present invention may further comprise Mo 0.01 ~ 0.2%.
상기한 냉연강판의 제조방법은, 본 발명의 성분계를 만족하는 슬라브를 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 300℃/min이상의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 냉간 압연하고, 연속소둔하는 것이다. In the method for producing a cold rolled steel sheet, the slab that satisfies the component system of the present invention is reheated to a temperature of 1100 ° C. or higher, and then hot-rolled at a finish rolling temperature of Ar 3 or higher and cooled at a speed of 300 ° C./min or higher, and 700 ° C. After winding up at the following temperature, it cold-rolls and continuously anneales.
이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명은 소부경화형 IF강에 미세한 MnS석출물과 AlN석출물이 확보되면 결정립이 미세하게 되어 항복강도가 증진되고 면내이방성지수가 낮아져 가공성이 개선된다는 연구결과에 기초하여 완성된 것이다. The present invention is completed on the basis of the results of the study that the fine grains of MnS and AlN precipitates are secured in the small hardening type IF steel to improve the yield strength and lower the in-plane anisotropy index to improve workability.
IF강에서 Mn은 고용강화원소로서 강도확보를 위해 대개 0.1%이상, 대개는 0.2%이상으로 첨가되고 있다. 일본 공개특허공보 1998-280048호와 1998-287954호에서도 Ti계 또는 Ti-Nb계 IF강에서 Mn의 함량을 3.0%이하로 제한하고 있으며, 그 실시예를 보면 0.1%이상으로 관리하고 있다. 또한, N은 불순물로서 0.01%이하로 제한하나, 그 실시예를 보면 0.002%이하로서 실제 저질소의 성분계이다. 이 선행기술에서는 탄화황물의 복합석출물(Ti4C2S2)을 이용하고 있다. In the IF steel, Mn is a solid solution element and is usually added at more than 0.1% and usually at least 0.2% to secure strength. Japanese Unexamined Patent Publication Nos. 1998-280048 and 1998-287954 also limit the content of Mn to 3.0% or less in Ti-based or Ti-Nb-based IF steels. In addition, N is limited to 0.01% or less as an impurity, but in the examples, it is 0.002% or less and is actually a component of low nitrogen. In this prior art, a composite precipitate of sulfur carbide (Ti 4 C 2 S 2 ) is used.
이와 달리, 본 발명에서는 IF강에서 미세한 MnS석출물과 AlN를 확보하는 것이다. Ti와 Nb의 복합계 IF강에서 MnS석출물을 확보하기 위해서는 MnS로 석출되는 S을 확 보하고 AlN석출물을 확보하기 위해서는 AlN으로 석출되는 N을 확보하여야 한다. Ti와 Nb의 복합계 IF강에서 Ti는 C, N, S와 반응하여 TiC, TiN, Ti(C,N), Ti4C2S2 등으로 석출되므로, S가 MnS로 그리고, N이 AlN으로 석출될 수 있도록 제반성분의 관리가 요구된다. In contrast, the present invention is to secure a fine MnS precipitate and AlN in the IF steel. In order to secure MnS precipitates in the composite IF steel of Ti and Nb, the S precipitated as MnS must be secured and the N precipitated as AlN must be secured to secure AlN precipitates. In the composite IF steel of Ti and Nb, Ti reacts with C, N, and S to precipitate TiC, TiN, Ti (C, N), Ti 4 C 2 S 2, etc., so that S is MnS and N is AlN. Management of various ingredients is required to be precipitated.
미세한 MnS석출물과 AlN석출물은 결정립을 미세하게 한다. 결정립이 미세하게 되면, Ti에 의해 석출하지 않은 고용탄소는 결정립내 보다 결정립계에 더 많이 존재하게 된다. 이에 따라, 상온 비시효특성이 확보되면서 소부경화특성을 개선하게 되는 것이다. 결정립내에 잔존하는 고용탄소는 이동이 비교적 자유롭기 때문에 가동전위와 결합하여 상온시효특성에 영향을 미치게 된다. 이에 반해, 결정립계나 석출물의 주변과 같이 보다 안정된 위치에 편석하는 고용탄소는 도장소부처리와 같은 고온에서 활성화되어 소부경화특성에 영향을 주게 된다. 이와 같이, 결정립내의 고용탄소량이 줄어든다는 것은 보다 안정된 위치 즉, 결정립계나 미세한 석출물들의 주변에서 탄소가 존재하여 소부경화특성에 영향을 미친다는 것이다.Fine MnS precipitates and AlN precipitates make grains fine. When the grains become fine, more dissolved carbon not precipitated by Ti is present in the grain boundaries than in the grains. Accordingly, while the room temperature non-aging characteristics are secured, the baking hardening characteristics are improved. The dissolved carbon remaining in the grains is relatively free to move, which affects the aging characteristics in combination with the operating potential. On the other hand, solid solution carbon segregating at a more stable position, such as grain boundaries or precipitates, is activated at high temperatures such as coating baking treatment, thereby affecting the baking hardening characteristics. As such, the decrease in the amount of solid solution carbon in the grains means that carbon exists in a more stable position, that is, around grain boundaries or fine precipitates, thereby affecting the hardening characteristic.
본 발명에 따라 미세하게 분포하는 MnS석출물과 AlN석출물들은 석출강화에 의한 항복강도의 상승과 강도-연성 밸런스 특성의 개선 그리고, 면내이방성 지수에도 긍정적인 영향을 미친다. 이를 위해서는 MnS석출물과 AlN석출물이 미세하게 분포하여야 하면, 이는 Mn, S, Al, N, Ti, Nb, C의 함량과 이들의 성분비 조건 그리고, 제조조 건 특히, 열간압연이 끝난 후 냉각속도가 영향을 미친다. According to the present invention, finely distributed MnS precipitates and AlN precipitates have a positive effect on the increase in yield strength and the strength-ductility balance characteristics and the in-plane anisotropy index. For this purpose, MnS precipitates and AlN precipitates should be finely distributed, which means that the contents of Mn, S, Al, N, Ti, Nb, C and their component ratio conditions, and manufacturing conditions, in particular, the cooling rate after hot rolling Affect
먼저, 기본성분이 되는 C, Mn, S, Al, P, N, B, Ti, Nb에 대해 설명한다. First, C, Mn, S, Al, P, N, B, Ti, and Nb as basic components will be described.
탄소(C)의 함량은 0.001-0.01%가 바람직하다.The content of carbon (C) is preferably 0.001-0.01%.
탄소(C)의 함량이 0.001%미만일 경우 소부경화량이 적고, 0.01%초과의 경우에는 성형성이 저하된다. 탄소의 함량이 높아질수록 소부경화량은 커진다. 이를 고려할 때 보다 바람직하게는 탄소(C)함량은 0.003-0.01%, 또는 0.005-0.01%로 하는 것이다. If the content of carbon (C) is less than 0.001%, the amount of hardening of baking is small, and if it is more than 0.01%, moldability is lowered. The higher the carbon content, the larger the hardened portion. Considering this, the carbon (C) content is more preferably 0.003-0.01%, or 0.005-0.01%.
망간(Mn)의 함량은 0.01-0.3%가 바람직하다. The content of manganese (Mn) is preferably 0.01-0.3%.
망간은 강중 고용상태의 황을 MnS로 석출하여 고용 황에 의한 적열취성(Hot shortness)을 방지하거나 고용강화원소로 알려져 있다. 이러한 기술적 관점에서는 망간의 함량을 높게 첨가하는 것이 일반적이다. 그러나, 본 발명에서는 망간의 함량을 낮추면서 황의 함량을 적절해지는 경우에 MnS가 매우 미세하게 석출되어 결정립 미세화에 의해 소성이방성, 면내이방성의 특성을 개선하고 석출강화에 의해 항복강도의 특성을 개선한다는 연구결과에 기초하여 망간의 함량을 0.3%이하, 보다 바람직하게는 0.2%이하로 한다. 이러한 특성을 확보하기 위해서는 망간의 함량이 0.01%이상이 되어야 하는데, 그 함량이 0.01%미만의 경우에는 고용 상태로 잔존하는 황의 함량이 많기 때문에 적열취성이 발생할 수 있으며, 망간의 함량이 0.3% 초과의 경우에는 망간의 함량이 높아 조대한 MnS석출물이 생성되어 강도확보가 곤란해 진다. 보다 바람직하게는 Mn의 함량을 0.2%이하로 하는 것이다. Manganese is known as MnS to prevent hot shortness caused by solid sulfur by precipitating sulfur in solid state in steel. From this technical point of view, it is common to add a high content of manganese. However, in the present invention, when the sulfur content is appropriate while lowering the content of manganese, MnS precipitates very finely, thereby improving the properties of plastic anisotropy and in-plane anisotropy by grain refinement and improving the yield strength by precipitation strengthening. Based on the results of the study, the content of manganese is less than 0.3%, more preferably less than 0.2%. In order to secure these characteristics, the content of manganese should be 0.01% or more. If the content is less than 0.01%, red brittleness may occur due to the large amount of sulfur remaining in the solid state, and the content of manganese exceeds 0.3%. In the case of, the content of manganese is high and coarse MnS precipitates are formed, making it difficult to secure strength. More preferably, the content of Mn is made 0.2% or less.
황(S)의 함량은 0.005-0.08%가 바람직하다.The content of sulfur (S) is preferably 0.005-0.08%.
황(S)은 Mn와 반응하여 미세한 MnS의 석출물을 형성한다. 이러한 S의 함량이 0.005%미만의 경우에는 상기한 석출물의 석출량이 적을 뿐만 아니라 석출되는 석출물의 숫자가 매우 적다. 황의 함량이 0.08% 초과의 경우에는 고용된 황의 함량이 많아 연성 및 성형성이 크게 낮아지며, 적열취성의 우려가 있기 때문이다. Sulfur (S) reacts with Mn to form fine MnS precipitates. When the content of S is less than 0.005%, not only the amount of precipitates precipitated is small but also the number of precipitates precipitated is very small. If the content of sulfur is more than 0.08%, the content of the solid solution of sulfur is so high that the ductility and formability is greatly lowered, there is a fear of red brittleness.
알루미늄(Al)의 함량은 0.1%이하가 바람직하다.The content of aluminum (Al) is preferably 0.1% or less.
Al은 N과 미세한 AlN석출물을 형성하여 결정립미세화와 더불어 석출강화에 의해 항복강도를 증진시킨다. 이를 위해 0.1%까지 첨가한다. Al의 함량이 0.1%초과되는 경우에는 고용상태의 Al의 함량이 많아 연성이 저하될 우려가 있다. Al forms fine AlN precipitates with N to enhance yield strength by grain refinement and precipitation strengthening. To this end, add up to 0.1%. When the Al content is more than 0.1%, there is a fear that the ductility decreases because the Al content is high in solid solution.
질소(N)의 함량은 0.004%초과-0.02%이하가 바람직하다. 보다 바람직하게는 0.005-0.02%로 하는 것이다. The content of nitrogen (N) is preferably more than 0.004% -0.02% or less. More preferably, it is 0.005-0.02%.
N함량이 0.004%미만의 경우에는 석출되는 AlN의 숫자가 적어 결정립미세화 및 석출강화의 효과가 적으며, 0.02%를 초과할 경우는 고용질소에 의한 시효보증이 곤란하므로 0.02%이하로 하는 것이 바람직하다. If the content of N is less than 0.004%, the number of precipitated AlN is small, so the effect of grain refinement and strengthening of precipitation is small. If it exceeds 0.02%, it is difficult to guarantee the aging by solid nitrogen, so it should be less than 0.02%. Do.
인(P)의 함량은 0.2%이하가 바람직하다. The content of phosphorus (P) is preferably 0.2% or less.
인은 고용강화효과가 높으면서 r값의 저하가 적은 원소로서 본 발명에 따라 석출물을 제어하는 강에서 고강도를 보증한다. 280Mpa급의 강도가 요구되는 강종에서 P의 함량은 0.015%이하로 하는 것이 좋다. 340Mpa급 이상의 고강도 강에서는 0.016~0.2%로 하는 것이 좋다. 이러한 P의 함량이 0.2% 초과의 경우에는 연성이 저하하여 상한 값을 0.2%로 제한하는 것이 바람직하다. 본 발명에서 Si, Cr이 첨가되는 경우에는 P의 함량을 0.2%이하의 범위로 하면서 다양한 강도의 설계가 가능하다. Phosphorus is an element having a high solid solution strengthening effect and a small decrease in r value, and guarantees high strength in steels for controlling precipitates according to the present invention. In steel grades requiring strength of 280 Mpa, the content of P should be less than 0.015%. For high strength steel of 340Mpa or higher, it is recommended to set it as 0.016 ~ 0.2%. If the content of P is more than 0.2%, it is preferable that the ductility is lowered to limit the upper limit to 0.2%. When Si and Cr are added in the present invention, the P content can be designed in various strengths while keeping the content of P or less within 0.2%.
보론(B)의 함량은 0.0001~0.002%가 바람직하다.The content of boron (B) is preferably 0.0001 to 0.002%.
보론은 2차가공취성을 방지하기 위해 첨가하는데 이를 위해 보론의 함량이 0.0001%이상인 것이 바람직하다. 보론의 함량이 0.002%를 초과하면 오무림 가공성(deep drawing)이 크게 저하될 수 있다. Boron is added to prevent secondary processing brittleness. For this purpose, the boron content is preferably 0.0001% or more. If the boron content exceeds 0.002%, deep drawing may be greatly degraded.
티타늄(Ti)의 함량은 0.005~0.15%가 바람직하다. The content of titanium (Ti) is preferably 0.005 to 0.15%.
티타늄은 비시효성 확보 및 성형성 향상을 목적으로 첨가하는데 티타늄은 강력한 탄화물 생성 원소로 강중에 첨가되어 TiC석출물을 석출시켜 고용 상태의 탄소를 석출하므로써 비시효성을 확보한다. 티타늄의 첨가량이 0.005%미만의 경우 TiC석출물의 석출량이 너무 적어 집합조직의 발달이 적어 오무림 가공성을 개선하는 효과가 거의 없다. Ti가 0.15%초과할 경우 TiC석출물의 크기 너무 커 결정립미세화 효가가 감소되어 면내이방성지수가 높아지며 항복강도도 저하하고 도금특성이 크게 저하한다. Titanium is added for the purpose of securing inaging and improving moldability. Titanium is a strong carbide-generating element and is added to steel to precipitate TiC precipitates to precipitate insoluble solids. If the addition amount of titanium is less than 0.005%, the precipitation amount of TiC precipitate is too small, and there is little effect of improving the processability of the soil because of less development of the texture. If Ti exceeds 0.15%, the TiC precipitates are too large to reduce the grain refining efficiency, resulting in an increase in in-plane anisotropy, lowering the yield strength and greatly degrading the plating properties.
니오븀(Nb)의 함량은 0.002~0.04%가 바람직하다.The content of niobium (Nb) is preferably 0.002 to 0.04%.
Nb은 비시효성 확보 및 성형성 향상을 목적으로 첨가한다. Nb은 강력한 탄화물 생성 원소로 강중에 첨가되어 NbC석출물을 석출시킨다. 또한 NbC석출물은 소둔중 집합조직을 발달하여 오무림 가공성을 크게 향상하는 효과가 있다. Nb의 첨가량이 0.002%이하의 경우 NbC석출물의 석출량이 너무 적어 집합조직의 발달이 적어 오무림 가공성을 개선하는 효과가 거의 없다. Nb가 0.04%초과할 경우 NbC석출물의 양이 너무 많아 오무림가공성 및 연신율이 낮아져 성형성이 크게 저하할 수 있다.Nb is added for the purpose of ensuring inaging and improving moldability. Nb is a strong carbide generating element that is added to steel to precipitate NbC precipitates. In addition, NbC precipitates have an effect of greatly improving the processing ability of the soil by developing the aggregated structure during annealing. If the amount of Nb added is less than 0.002%, the amount of precipitation of NbC precipitates is so small that there is little development of aggregates, and thus there is little effect of improving Omrim processability. When Nb exceeds 0.04%, the amount of NbC precipitates is too high, resulting in low rimability and low elongation, which may significantly reduce moldability.
본 발명에서는 냉연강판에 미세한 MnS석출물과 AlN 및 고용C를 확보하기 위한 관점에서 Mn, S, Al, N, Ti, Nb, C의 성분비를 제어하는데 특징이 있다. IF강에서 Ti은 TiC, TiN, TiS, Ti(C,N), Ti4C2S2등의 석출물을 석출하는 것으로 알려져 있고, 이러한 석출물을 활용하기 위하여 Ti, S, C, N의 성분관계를 제어하고 있다. 그러나 본 발명에서는 MnS석출물과 AlN석출물과 고용C를 확보하기 위하여, Mn, S, Al, N, Ti, Nb, C의 관계를 관리한다.The present invention is characterized in controlling the component ratios of Mn, S, Al, N, Ti, Nb, and C in terms of securing fine MnS precipitates, AlN and solid solution C in the cold rolled steel sheet. In IF steel, Ti is known to precipitate precipitates such as TiC, TiN, TiS, Ti (C, N), Ti 4 C 2 S 2, and the composition of Ti, S, C, and N in order to utilize these precipitates. Is controlling. However, in the present invention, the relationship between Mn, S, Al, N, Ti, Nb, C is managed in order to secure MnS precipitate, AlN precipitate and solid solution C.
[관계식 1][Relationship 1]
1≤(Mn/55)/(S★/32) ≤301≤ (Mn / 55) / (S ★ / 32) ≤30
여기서, S★=S-0.8x(Ti-0.8x(48/14)xN)x(32/48)임Where S ★ = S-0.8x (Ti-0.8x (48/14) xN) x (32/48)
[관계식 2][Relationship 2]
1≤(Al/27)/(N★/14)≤101≤ (Al / 27) / (N ★ / 14) ≤10
여기서, N★=N-0.8x(Ti-0.8x(48/32)xS))x(14/48)임Where N ★ = N-0.8x (Ti-0.8x (48/32) xS)) x (14/48)
[관계식 3][Relationship 3]
Cs(solute carbon):5-30Cs (solute carbon): 5-30
여기서,Cs=(C-Nbx12/93-Ti★x12/48)x10000, Ti★=Ti-0.8x((48/14)xN+(48/32)xS)임Where Cs = (C-Nbx12 / 93-Ti ★ x12 / 48) x10000, Ti ★ = Ti-0.8x ((48/14) xN + (48/32) xS)
Ti★가 음의 값일 경우는 0으로 한다.If Ti ★ is a negative value, 0.
상기 관계식에서 Mn, S, Al, Ti, C, N는 중량%이다. In the above relation, Mn, S, Al, Ti, C, N are weight percent.
관계식 1에서 S★은 냉연강판에서 총S의 함량에서 Mn와 반응하는 S의 함량을 나타내는 것으로, 미세한 MnS석출물을 확보하도록 하기 위해서 관계식 1의 값이 1-30을 만족하는 것이 바람직하다. 관계식 1의 값이 1이상이 되어야 유효한 MnS석출물이 석출하게 되며, 30초과의 경우에는 MnS석출물이 조대하여 가공성과 항복강도의 특성이 좋지 않다. In relation 1, S ★ represents the content of S reacting with Mn in the total S content in the cold rolled steel sheet, and in order to secure a fine MnS precipitate, the value of relation 1 preferably satisfies 1-30. When the value of relation 1 is greater than or equal to 1, effective MnS precipitates are precipitated, and in the case of more than 30, MnS precipitates are coarse, resulting in poor workability and yield strength.
관계식 2에서 N★은 총N의 함량에서 Ti와 반응하지 않는 N의 함량을 나타내는 것으로, 미세한 AlN석출물을 확보하도록 하기 위해서 관계식 2의 값이 1-10을 만족하는 것이 바람직하다. 관계식 2의 값이 1이상이 되어야 유효한 AlN석출물이 석출하게 되며, 10초과의 경우에는 AlN석출물이 조대하여 가공성과 항복강도의 특성이 좋지 않다. 보다 바람직하게는 관계식 2의 값이 1-8.2를 만족하는 것이다. In relation 2, N ★ represents the content of N that does not react with Ti in the total content of N. In order to secure fine AlN precipitates, the value of relation 2 preferably satisfies 1-10. When the value of relation 2 is greater than or equal to 1, effective AlN precipitates are precipitated, and in the case of more than 10, AlN precipitates are coarse, resulting in poor workability and yield strength. More preferably, the value of relation 2 satisfies 1-8.2.
관계식 3에서 Ti★은 총Ti의 함량에서 N, S와 반응하고 남은 Ti의 함량을 나타내는 것으로, Ti★가 음의값일경우는 0으로 하는데 이는 Ti★가 음의 값이 되는 경우는 고용 N과 S를 석출하기에도 Ti가 모자라는 것을 의미하는 것으로 고용 C가 새로 생성되는 것은 아니므로 그 값을 0으로 하는 것이다. 상기 Cs는 TiC와 NbC로 석출되지 않은 고용탄소의 함량을 나타내는 것이다. 즉, Cs(solute carbon)가 5-30을 만족하여야 한다. 관계식 3에서 Cs로 계산된 값 즉, 고용탄소의 함량 단위는 ppm이 된다. Cs값이 5ppm이상 되어야 소부경화량을 확보할 수 있으며, 30ppm을 초과할 경우에는 고용탄소의 함량이 높아서 비시효성을 확보하기 어렵다. In equation 3 represents the content of N, S and the reaction and the rest of Ti Ti ★ is in the content of total Ti, was dissolved N and if the Ti ★ value of the negative, which in the zero Ti ★ is a negative value It means that Ti is not enough to precipitate S, so that the employment C is not newly created, so the value is 0. The Cs represents the content of solid solution carbon not precipitated with TiC and NbC. That is, Cs (solute carbon) should satisfy 5-30. In relation 3, the value calculated as Cs, that is, the unit of content of solid carbon is ppm. If the Cs value is 5ppm or more, it is possible to secure the hardening of the baking. If it exceeds 30ppm, it is difficult to secure the non-aging due to the high content of solid solution carbon.
본 발명의 성분계에서 석출물은 미세하게 분포할수록 유리한데, 바람직하게는 MnS석출물과 AlN석출물의 평균크기가 0.2㎛이하이다. 본 발명의 연구결과에 따르면 석출물의 평균크기가 0.2㎛ 초과의 경우에는 특히 강도가 낮아지고, 면내이방성지수가 좋지 않다. In the component system of the present invention, the finer the distribution, the more advantageous. Preferably, the average size of the MnS precipitate and the AlN precipitate is 0.2 µm or less. According to the results of the present invention, especially when the average size of the precipitate is more than 0.2㎛, the strength is low, the in-plane anisotropy index is not good.
나아가, 본 발명의 성분계에서 0.2㎛이하의 석출물의 분포수가 mm2당 1X105개 이상 보다 바람직하게는 1X106개 이상일 때 소성이방성지수가 높아지고 오히려 면내이방성지수는 낮아져 가공성이 크게 개선된다. 일반적으로 소성이방성지수가 높아지면 면내이방성지수는 올라가서 가공성 측면에서 소성이방성지수를 높이는데 한계가 있다는 점을 감안할 때, 석출물의 분포수에 따라 소성이방성지수와 면내이방성지수의 특이한 변화는 주목할 만 하다. Furthermore, in the component system of the present invention, when the distribution number of precipitates of 0.2 μm or less is more than 1 × 10 5 per mm 2, more preferably 1 × 10 6 or more, the plastic anisotropy index is higher and the in-plane anisotropy index is lowered, thereby greatly improving workability. In general, when the plastic anisotropy index increases, the in-plane anisotropy index rises and there is a limit to increasing the plastic anisotropy index in terms of processability. .
본 발명에서는 340MPa급 이상의 고강도 강판으로 적용하는 경우에는 상기 P와 같은 고용강화원소 즉, P, Si, Cr의 1종 또는 2종이상을 첨가할 수 있다. P에 대해서는 상술한 바, 중복기재는 생략한다. In the present invention, when applied to a high-strength steel sheet of 340 MPa grade or more, one or two or more solid solution strengthening elements such as P, that is, P, Si, and Cr may be added. As described above with respect to P, redundant descriptions are omitted.
실리콘(Si)의 함량은 0.1-0.8%가 바람직하다.The content of silicon (Si) is preferably 0.1-0.8%.
Si은 고용강화효과가 높으면서 연신율의 저하가 낮은 원소로 본 발명에 따라 석출물을 제어하는 강에서 고강도를 보증한다. Si의 함량이 0.1%이상 되어야 강도를 확보할 수 있으며, 0.8%초과의 경우에는 연성이 저하한다. Si is an element having a high solid solution strengthening effect and a low drop in elongation, which ensures high strength in steels for controlling precipitates according to the present invention. When the content of Si is more than 0.1% to secure the strength, in the case of more than 0.8% ductility is reduced.
크롬(Cr)의 함량은 0.2~1.2%가 바람직하다.The content of chromium (Cr) is preferably 0.2 to 1.2%.
Cr은 고용강화효과가 높으면서 2차가공취성온도를 낮추며 Cr탄화물에 의해 시효지수를 낮추는 원소로서, 본 발명에 따라 석출물을 제어하는 강에서 고강도를 보증하며 면내이방성 지수도 낮게 한다. Cr의 함량이 0.2%이상 되어야 강도를 확보할 수 있으며, 1.2% 초과의 경우에는 연성이 저하한다.Cr is an element that lowers the secondary brittleness temperature and decreases the aging index by Cr carbide while having a high solid-solution strengthening effect, and assures high strength in steels for controlling precipitates according to the present invention and also lowers in-plane anisotropy index. The Cr content is more than 0.2% to secure the strength, in the case of more than 1.2% ductility is reduced.
본 발명의 냉연강판에서 몰리브덴(Mo)이 추가로 첨가될 수 있다. In the cold rolled steel sheet of the present invention, molybdenum (Mo) may be further added.
몰리브덴(Mo)의 함량은 0.01~0.2%가 바람직하다.The content of molybdenum (Mo) is preferably 0.01 to 0.2%.
Mo은 소성이방성지수를 높이는 원소로서 첨가되는데, 그 함량이 0.01%이상 되어야 소성이방성지수가 커지며, 0.2%를 초과하면 소성이방성지수는 더 이상 커지지 않고 열간취성을 일으킬 우려가 있다. Mo is added as an element to increase the plastic anisotropy index, the content of the plastic anisotropy index is increased when the content is more than 0.01%, if the content exceeds 0.2%, the plastic anisotropy index is no longer increased and there is a risk of causing hot brittleness.
[냉연강판의 제조방법][Manufacturing method of cold rolled steel sheet]
본 발명은 상기한 강조성을 만족하는 강을 열간압연과 냉간압연을 통해 냉간압연판에 MnS석출물과 AlN석출물의 평균크기가 0.2㎛ 이하를 만족하도록 하는데 특징이 있다. 냉간압연판에서 MnS석출물과 AlN석출물의 평균 크기는 성분설계와 함께 재가열온도, 권취온도 등의 제조공정에 영향을 받으나 특히 열간압연후의 냉각속도에 직접적인 영향을 받는다. The present invention is characterized in that the average size of MnS precipitates and AlN precipitates in a cold rolled sheet is hot and cold rolled to satisfy the above-mentioned emphasis. The average size of MnS and AlN precipitates in the cold rolled plate is affected by the manufacturing process such as reheating temperature and coiling temperature together with the component design, but especially by the cooling rate after hot rolling.
[열간압연조건][Hot Rolling Condition]
본 발명에서는 상기한 강조성을 만족하는 강을 재가열하여 열간압연한다. 재가열온도는 1100℃이상이 바람직하다. 재가열온도가 1100℃미만의 경우에는 재가열온도가 낮아 연속주조중에 생성된 조대한 석출물들이 완전히 용해되지 않은 상태로 남아 있어 열간압연후에도 조대한 석출물이 많이 남아있기 때문이다.In the present invention, the steel that satisfies the above-mentioned emphasis is reheated and hot rolled. The reheating temperature is preferably 1100 ° C or more. This is because when the reheating temperature is lower than 1100 ° C., the coarse precipitates generated during continuous casting remain completely insoluble due to the low reheating temperature, so that many coarse precipitates remain even after hot rolling.
열간압연은 마무리압연온도를 Ar3변태온도 이상의 조건에서 행하는 것이 바람직하다. 마무리압연온도가 Ar3변태온도 미만의 경우에는 압연립의 생성으로 가공성이 저하할 뿐만아니라 강도도 낮아지기 때문이다. Hot rolling is preferably performed at a finish rolling temperature above Ar 3 transformation temperature. This is because when the finish rolling temperature is lower than the Ar 3 transformation temperature, not only the workability is reduced by the formation of the rolled grain but also the strength is lowered.
열간압연후 권취전 냉각속도는 300℃/min 이상으로 하는 것이 바람직하다. 본 발명에 따라 미세한 석출물을 얻기 위하여 그 성분비를 제어하더라도 냉각속도가 300℃/min 미만이면 석출물의 평균크기가 0.2㎛를 초과할 수 있다. 즉, 냉각속도가 빨라질수록 많은 수의 핵이 생성하여 석출물이 미세해지기 때문이다. 냉각속도가 빨라질수록 석출물의 크기가 미세해지므로 냉각속도의 상한을 제한할 필요는 없으나, 냉각속도가 1000℃/min 보다 빨라지더라도 석출물 미세화 효과가 더 이상 커지지 않으므로 냉각속도는 300~1000℃/min이 보다 바람직하다. It is preferable that the cooling rate before winding after hot rolling shall be 300 degreeC / min or more. Even if the component ratio is controlled to obtain a fine precipitate according to the present invention, if the cooling rate is less than 300 ° C / min, the average size of the precipitate may exceed 0.2 ㎛. In other words, as the cooling rate increases, a large number of nuclei are generated and the precipitate becomes fine. The faster the cooling rate, the finer the precipitate is, so there is no need to limit the upper limit of the cooling rate. This is more preferable.
[권취조건][Coiling condition]
상기와 같이 열간압연한 다음에는 권취를 행하는데, 권취온도는 700℃이하가 바람직하다. 권취온도가 700℃초과의 경우에는 석출물이 너무 조대하게 성장하여 강도확보가 곤란하다.Winding is performed after hot rolling as above, but the winding temperature is preferably 700 ° C or lower. If the coiling temperature exceeds 700 ℃, precipitates grow too coarse, making it difficult to secure strength.
[냉간압연조건][Cold rolling condition]
냉간압연은 50~90%의 압하율로 행하는 것이 바람직하다. 냉간압하율이 50%미만의 경우에는 소둔재결정 핵생성양이 적기 때문에 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 성형성이 저하한다. 냉간압하율이 90%초과의 경우에는 성형성은 향상되지만 핵생성 양이 너무 많아 소둔 재결정립은 오히려 너무 미세하여 연성이 저하한다. Cold rolling is preferably performed at a reduction ratio of 50 to 90%. If the cold reduction rate is less than 50%, the amount of nucleation of the annealing recrystallization is small, so that grains grow too large during annealing, resulting in a decrease in strength and formability due to coarsening of the annealing recrystallization grains. If the cold reduction ratio is more than 90%, the moldability is improved, but the nucleation amount is too high, so the annealing recrystallized grain is too fine to decrease the ductility.
[연속소둔][Continuous Annealing]
연속소둔 온도는 제품의 재질을 결정하는 중요한 역할을 한다. 본 발명에서는 700~900℃의 온도범위에서 행하는 것이 바람직하다. 연속소둔 온도가 700℃미만의 경우에는 재결정이 완료되지 않아 목표로 하는 연성 값을 확보할 수 없으며, 소둔온도가 900℃초과의 경우에는 재결정립의 조대화로 강도가 저하된다. 연속소둔시간은 재결정이 완료되도록 유지하는데, 약 10초이상이면 재결정이 완료된다. 바람직하게는 연속소둔시간을 10초~30분의 범위내로 하는 것이다,Continuous annealing temperature plays an important role in determining the material of the product. In this invention, it is preferable to carry out in the temperature range of 700-900 degreeC. If the continuous annealing temperature is less than 700 ° C., recrystallization is not completed and the target ductility value cannot be secured. If the annealing temperature is more than 900 ° C., the strength decreases due to coarsening of the recrystallized grains. The continuous annealing time keeps the recrystallization complete. If it is about 10 seconds or more, the recrystallization is completed. Preferably the continuous annealing time is in the range of 10 seconds to 30 minutes,
이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예 1]Example 1
표 1의 강슬라브를 재가열하여 마무리열간압연하고 400℃/min 의 속도로 냉각하여 650℃에서 권취한 다음, 75%의 압하율로 냉간압연과 연속소둔처리하였다. 이때의 마무리압연온도는 Ar3변태점이상인 910℃이며, 연속소둔은 10℃/초의 속도로 830℃로 40초 동안 가열하여 행하였다. The steel slabs of Table 1 were reheated, hot rolled to finish, cooled to 400 ° C./min, wound up at 650 ° C., and then cold rolled and continuously annealed at a reduction rate of 75%. The finish rolling temperature of not less than Ar 3 transformation point is 910 ℃, continuous annealing was performed by heating for 40 seconds to 830 ℃ to 10 ℃ / second.
얻어진 소둔판은 기계적 특성을 조사하기 위해 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율, 소성이방성 지수(rm값), 면내이방성 지수(△r값) 및 시효평가지수를 측정하였다. 여기서 rm=(r0+2r45+r90)/4, △r=(r0-2r45+r90)/2이며, 시효평가지수는 소둔후 1.0% skin Pass압연한 시편을 100℃ X 2hr. 열처리후 측정된 항복점연신(Yield Point Elongation)율이다.The obtained annealing plate was processed into a standard specimen according to ASTM E-8 standard to investigate the mechanical properties. The specimen was measured for yield strength, tensile strength, elongation, plastic anisotropy index (r m value), in-plane anisotropy index (Δr value) and aging evaluation index using a tensile tester (INSTRON, Model 6025). Where r m = (r 0 + 2r 45 + r 90 ) / 4, △ r = (r 0 -2r 45 + r 90 ) / 2, and the aging evaluation index is 100 ° C for 1.0% skin pass-rolled specimen after annealing X 2hr. Yield point elongation rate measured after heat treatment.
소부경화특성은 시편에 2% 스트레인을 가한 후 170℃에서 20분간 열처리 후 항복강도를 측정하고, 측정된 항복강도 값에서 열처리전의 항복강도 값을 뺀 값을 BH값으로 한 것이다. The quench hardening properties were obtained by adding 2% strain to the specimen and measuring the yield strength after heat treatment at 170 ° C. for 20 minutes, and subtracting the yield strength value before heat treatment as the BH value.
본 발명에서 상기 실시형태는 하나의 예시로서, 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이어도 본 발명의 기술적 범위에 포함된다. In the present invention, the above embodiment is only one example, and the present invention is not limited thereto. Any thing that has substantially the same structure and the same effect as the technical idea described in the claim of the present invention is included in the technical scope of this invention.
상술한 바와 같이, 본 발명은 소부경화형 Ti와 Nb의 복합계 IF강에 미세한 MnS석출물과 AlN석출물을 분포시키는 것에 의해 결정립을 미세화시키고 이에 따라 면내이방성지수를 낮추고 또한, MnS석출물과 AlN석출강화에 의해 항복강도를 증진시키는 것이다.As described above, the present invention makes fine grains by distributing fine MnS precipitates and AlN precipitates in the small hardening type Ti and Nb composite IF steel. By increasing the yield strength.
Claims (8)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20050037183 | 2005-05-03 | ||
KR1020050037183 | 2005-05-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060115638A true KR20060115638A (en) | 2006-11-09 |
KR100742945B1 KR100742945B1 (en) | 2007-07-25 |
Family
ID=37652804
Family Applications (42)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050130130A KR100723216B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having increased plastic anisotropy and process for producing the same |
KR1020050129241A KR100723160B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having reduced plane anistropy and process for producing the same |
KR1020050129235A KR100723165B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having increased plastic anisotropy and process for producing the same |
KR1020050129238A KR100723182B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having increased plastic anistropy and process for producing the same |
KR1020050130131A KR100742818B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129236A KR100723164B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129237A KR100723163B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020050129239A KR100723181B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129242A KR100723159B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129243A KR100723158B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050130132A KR100742819B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020050129240A KR100723180B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020060040211A KR100742933B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040069A KR100742926B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040205A KR100742918B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040229A KR100742948B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same |
KR1020060040240A KR100742955B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040212A KR100742934B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040238A KR100742953B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040217A KR100742939B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040227A KR100742945B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040206A KR100742917B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020060040218A KR100742940B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040209A KR100742931B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040215A KR100742937B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020060040070A KR100742927B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040239A KR100742954B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040207A KR100742929B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040228A KR100742947B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040236A KR100742951B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040224A KR100742941B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040235A KR100742950B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same |
KR1020060040214A KR100742936B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040226A KR100742944B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020060040216A KR100742938B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040210A KR100742932B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040230A KR100742949B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040071A KR100742919B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040237A KR100742952B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same |
KR1020060040213A KR100742935B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040225A KR100742943B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040208A KR100742930B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
Family Applications Before (20)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050130130A KR100723216B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having increased plastic anisotropy and process for producing the same |
KR1020050129241A KR100723160B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having reduced plane anistropy and process for producing the same |
KR1020050129235A KR100723165B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having increased plastic anisotropy and process for producing the same |
KR1020050129238A KR100723182B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having increased plastic anistropy and process for producing the same |
KR1020050130131A KR100742818B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129236A KR100723164B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129237A KR100723163B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020050129239A KR100723181B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129242A KR100723159B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050129243A KR100723158B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020050130132A KR100742819B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020050129240A KR100723180B1 (en) | 2005-05-03 | 2005-12-26 | Cold rolled steel sheet having good formability and process for producing the same |
KR1020060040211A KR100742933B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040069A KR100742926B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040205A KR100742918B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040229A KR100742948B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same |
KR1020060040240A KR100742955B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040212A KR100742934B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040238A KR100742953B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040217A KR100742939B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
Family Applications After (21)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060040206A KR100742917B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020060040218A KR100742940B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040209A KR100742931B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040215A KR100742937B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020060040070A KR100742927B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040239A KR100742954B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040207A KR100742929B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040228A KR100742947B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040236A KR100742951B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040224A KR100742941B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040235A KR100742950B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same |
KR1020060040214A KR100742936B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040226A KR100742944B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same |
KR1020060040216A KR100742938B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040210A KR100742932B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040230A KR100742949B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having good formability and process for producing the same |
KR1020060040071A KR100742919B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040237A KR100742952B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same |
KR1020060040213A KR100742935B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040225A KR100742943B1 (en) | 2005-05-03 | 2006-05-03 | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
KR1020060040208A KR100742930B1 (en) | 2005-05-03 | 2006-05-03 | Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same |
Country Status (6)
Country | Link |
---|---|
US (2) | US20090126837A1 (en) |
JP (3) | JP4954980B2 (en) |
KR (42) | KR100723216B1 (en) |
CN (3) | CN101184858B (en) |
MX (3) | MX2007013676A (en) |
TW (3) | TWI346141B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100775338B1 (en) * | 2006-11-21 | 2007-11-08 | 주식회사 포스코 | Cold rolled steel sheet having high yield ratio and excellent formability and the method for manufacturing the same |
KR100957960B1 (en) * | 2007-12-26 | 2010-05-17 | 주식회사 포스코 | Cold rolled steel sheet having good formability and surface quality and process for producing the same |
KR101030898B1 (en) * | 2008-08-28 | 2011-04-22 | 현대제철 주식회사 | solid carbon/nitrogen composition bake hardenable steel sheet, and method for producing the same |
CN101348884B (en) * | 2008-09-11 | 2010-05-12 | 北京科技大学 | 440MPa grade niobium-containing high-strength IF steel and manufacturing method thereof |
JP5272714B2 (en) * | 2008-12-24 | 2013-08-28 | Jfeスチール株式会社 | Manufacturing method of steel plate for can manufacturing |
KR101121829B1 (en) * | 2009-08-27 | 2012-03-21 | 현대제철 주식회사 | Hot-rolled steel sheet having high strength, and method for producing the same |
CN102747281B (en) * | 2012-07-31 | 2014-10-29 | 首钢总公司 | Production method of batch annealing interstitial-free (IF) steel |
CN102925796B (en) * | 2012-10-30 | 2014-07-09 | 鞍钢股份有限公司 | Non-alloyed ultra-low carbon cold-rolled sheet for structure and production method thereof |
KR101318060B1 (en) | 2013-05-09 | 2013-10-15 | 현대제철 주식회사 | Hot stamping product with advanced toughness and method of manufacturing the same |
KR101611762B1 (en) * | 2014-12-12 | 2016-04-14 | 주식회사 포스코 | Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same |
DE102016110661A1 (en) * | 2016-06-09 | 2017-12-14 | Salzgitter Flachstahl Gmbh | Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel |
CN110026433B (en) * | 2019-03-20 | 2021-07-23 | 首钢集团有限公司 | Method for improving surface quality of P-containing high-strength IF steel continuous annealing plate |
CN114599804B (en) * | 2019-11-13 | 2024-03-29 | 日本制铁株式会社 | Steel material |
KR102566353B1 (en) | 2021-08-26 | 2023-08-14 | 현대제철 주식회사 | Cold-rolled steel sheet with excellent plastic anisotropy and strength and method of manufacturing the same |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5825436A (en) * | 1981-08-10 | 1983-02-15 | Kawasaki Steel Corp | Manufacture of deep drawing cold rolling steel plate having slow aging property and small anisotropy |
JPS5884929A (en) * | 1981-11-17 | 1983-05-21 | Nippon Steel Corp | Production of cold-rolled steel plate for deep drawing having excellent nonaging property and curing performance for baked paint |
JPS5967322A (en) * | 1982-10-08 | 1984-04-17 | Kawasaki Steel Corp | Manufacture of cold rolled steel plate for deep drawing |
JPH01191765A (en) * | 1988-01-26 | 1989-08-01 | Nippon Steel Corp | High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide |
JPH07116509B2 (en) * | 1989-02-21 | 1995-12-13 | 日本鋼管株式会社 | Non-oriented electrical steel sheet manufacturing method |
JPH05339640A (en) * | 1990-12-10 | 1993-12-21 | Kobe Steel Ltd | Production of cold rolled steel sheet reduced in plastic anisotropy |
US5200005A (en) * | 1991-02-08 | 1993-04-06 | Mcgill University | Interstitial free steels and method thereof |
EP0559225B1 (en) * | 1992-03-06 | 1999-02-10 | Kawasaki Steel Corporation | Producing steel sheet having high tensile strength and excellent stretch flanging formability |
JP3096165B2 (en) * | 1992-08-18 | 2000-10-10 | 川崎製鉄株式会社 | Manufacturing method of cold rolled steel sheet with excellent deep drawability |
JP3219220B2 (en) * | 1993-03-31 | 2001-10-15 | 住友金属鉱山株式会社 | Air electrode precursor green sheet and molten carbonate fuel cell using the same |
CA2149522C (en) * | 1993-10-05 | 1999-08-24 | Yoshihiro Hosoya | Continuously annealed cold-rolled steel sheet excellent in balance between deep drawability and resistance to secondary-work embrittlement and method for manufacturing same |
JPH07179946A (en) * | 1993-12-24 | 1995-07-18 | Kawasaki Steel Corp | Production of high workability high tensile strength cold rolled steel plate excellent in secondary working brittleness resistance |
JPH08283909A (en) * | 1995-04-17 | 1996-10-29 | Nippon Steel Corp | Cold rolled steel sheet excellent in uniformity of workability and its production |
JP3420370B2 (en) * | 1995-03-16 | 2003-06-23 | Jfeスチール株式会社 | Thin steel sheet excellent in press formability and method for producing the same |
JP3293450B2 (en) * | 1996-02-27 | 2002-06-17 | 日本鋼管株式会社 | Manufacturing method of cold-rolled steel sheet for deep drawing |
DE19628714C1 (en) | 1996-07-08 | 1997-12-04 | Mannesmann Ag | Process for the production of precision steel tubes |
JP3745496B2 (en) * | 1997-04-18 | 2006-02-15 | 新日本製鐵株式会社 | Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance |
JPH11241140A (en) * | 1998-02-26 | 1999-09-07 | Nippon Steel Corp | Hot dip galvanized steel sheet high in yield strength at 800 to 850×c and excellent in roll formability and its production |
JPH11269625A (en) * | 1998-03-25 | 1999-10-05 | Sumitomo Metal Ind Ltd | Hot dip galvannealed steel sheet and its production |
JP4301638B2 (en) * | 1999-05-27 | 2009-07-22 | 新日鐵住金ステンレス株式会社 | High purity ferritic stainless steel with excellent high temperature strength |
JP2000345293A (en) * | 1999-06-08 | 2000-12-12 | Nippon Steel Corp | Cold rolled steel sheet for deep drawing, excellent in hardenability by nitriding |
KR100430981B1 (en) * | 1999-08-10 | 2004-05-14 | 제이에프이 엔지니어링 가부시키가이샤 | Method for producing cold rolled steel sheet having excellent deep drawing property |
WO2001064967A1 (en) * | 2000-02-29 | 2001-09-07 | Kawasaki Steel Corporation | High tensile cold-rolled steel sheet having excellent strain aging hardening properties |
JP4069591B2 (en) * | 2000-02-29 | 2008-04-02 | Jfeスチール株式会社 | Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy |
WO2001098552A1 (en) * | 2000-06-20 | 2001-12-27 | Nkk Corporation | Thin steel sheet and method for production thereof |
JP2002155489A (en) * | 2000-11-15 | 2002-05-31 | Shikibo Ltd | Dryer canvas for paper manufacturing |
KR100482208B1 (en) * | 2000-11-17 | 2005-04-21 | 주식회사 포스코 | Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment |
JP2002327257A (en) * | 2001-04-26 | 2002-11-15 | Nippon Steel Corp | Hot-dip aluminized steel sheet superior in press formability, and manufacturing method therefor |
JP4319817B2 (en) * | 2001-11-19 | 2009-08-26 | 新日本製鐵株式会社 | Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint |
JP2003041342A (en) * | 2002-05-29 | 2003-02-13 | Nkk Corp | Cold rolled steel sheet superior in stamping property |
US20040250930A1 (en) * | 2002-06-28 | 2004-12-16 | Hee-Jae Kang | Super formable high strength steel sheet and method of manufacturing thereof |
KR100928797B1 (en) * | 2002-12-26 | 2009-11-25 | 주식회사 포스코 | Ultra low carbon bainite steel with excellent toughness of high heat input welding heat affected zone and manufacturing method |
JP4341396B2 (en) * | 2003-03-27 | 2009-10-07 | Jfeスチール株式会社 | High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability |
-
2005
- 2005-12-26 KR KR1020050130130A patent/KR100723216B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129241A patent/KR100723160B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129235A patent/KR100723165B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129238A patent/KR100723182B1/en active IP Right Grant
- 2005-12-26 KR KR1020050130131A patent/KR100742818B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129236A patent/KR100723164B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129237A patent/KR100723163B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129239A patent/KR100723181B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129242A patent/KR100723159B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129243A patent/KR100723158B1/en active IP Right Grant
- 2005-12-26 KR KR1020050130132A patent/KR100742819B1/en active IP Right Grant
- 2005-12-26 KR KR1020050129240A patent/KR100723180B1/en active IP Right Grant
-
2006
- 2006-05-02 TW TW095115562A patent/TWI346141B/en not_active IP Right Cessation
- 2006-05-02 TW TW095115563A patent/TWI327171B/en active
- 2006-05-02 TW TW095115565A patent/TWI309263B/en not_active IP Right Cessation
- 2006-05-03 KR KR1020060040211A patent/KR100742933B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040069A patent/KR100742926B1/en active IP Right Grant
- 2006-05-03 CN CN2006800153918A patent/CN101184858B/en active Active
- 2006-05-03 CN CNB2006800153833A patent/CN100557058C/en active Active
- 2006-05-03 KR KR1020060040205A patent/KR100742918B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040229A patent/KR100742948B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040240A patent/KR100742955B1/en active IP Right Grant
- 2006-05-03 JP JP2008509934A patent/JP4954980B2/en active Active
- 2006-05-03 US US11/913,175 patent/US20090126837A1/en not_active Abandoned
- 2006-05-03 MX MX2007013676A patent/MX2007013676A/en active IP Right Grant
- 2006-05-03 KR KR1020060040212A patent/KR100742934B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040238A patent/KR100742953B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040217A patent/KR100742939B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040227A patent/KR100742945B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040206A patent/KR100742917B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040218A patent/KR100742940B1/en active IP Right Grant
- 2006-05-03 JP JP2008509935A patent/JP4964870B2/en active Active
- 2006-05-03 KR KR1020060040209A patent/KR100742931B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040215A patent/KR100742937B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040070A patent/KR100742927B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040239A patent/KR100742954B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040207A patent/KR100742929B1/en active IP Right Grant
- 2006-05-03 MX MX2007013675A patent/MX2007013675A/en active IP Right Grant
- 2006-05-03 KR KR1020060040228A patent/KR100742947B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040236A patent/KR100742951B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040224A patent/KR100742941B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040235A patent/KR100742950B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040214A patent/KR100742936B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040226A patent/KR100742944B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040216A patent/KR100742938B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040210A patent/KR100742932B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040230A patent/KR100742949B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040071A patent/KR100742919B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040237A patent/KR100742952B1/en active IP Right Grant
- 2006-05-03 KR KR1020060040213A patent/KR100742935B1/en active IP Right Grant
- 2006-05-03 MX MX2007013677A patent/MX2007013677A/en active IP Right Grant
- 2006-05-03 KR KR1020060040225A patent/KR100742943B1/en active IP Right Grant
- 2006-05-03 US US11/913,174 patent/US20080185077A1/en not_active Abandoned
- 2006-05-03 KR KR1020060040208A patent/KR100742930B1/en active IP Right Grant
- 2006-05-03 JP JP2008509936A patent/JP4954981B2/en active Active
- 2006-05-03 CN CNA2006800152811A patent/CN101171355A/en active Pending
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100742945B1 (en) | Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Re-publication after modification of scope of protection [patent] | ||
FPAY | Annual fee payment |
Payment date: 20120702 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20130703 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20140721 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20150720 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20160719 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20170720 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20180719 Year of fee payment: 12 |