[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR100742930B1 - Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same - Google Patents

Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same Download PDF

Info

Publication number
KR100742930B1
KR100742930B1 KR1020060040208A KR20060040208A KR100742930B1 KR 100742930 B1 KR100742930 B1 KR 100742930B1 KR 1020060040208 A KR1020060040208 A KR 1020060040208A KR 20060040208 A KR20060040208 A KR 20060040208A KR 100742930 B1 KR100742930 B1 KR 100742930B1
Authority
KR
South Korea
Prior art keywords
less
cold rolled
steel sheet
rolled steel
aging
Prior art date
Application number
KR1020060040208A
Other languages
Korean (ko)
Other versions
KR20060115624A (en
Inventor
윤정봉
진현준
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of KR20060115624A publication Critical patent/KR20060115624A/en
Application granted granted Critical
Publication of KR100742930B1 publication Critical patent/KR100742930B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

Ti계 IF강에서 미세한 AlN석출물에 의해 항복강도와 면내이방성이 개선되는 냉연강판과 그 제조방법이 제공된다. Provided are a cold rolled steel sheet and a method of manufacturing the same, which yield strength and in-plane anisotropy by fine AlN precipitates in a Ti-based IF steel.

이 냉연강판은, 중량%로, C: 0.005%이하, S: 0.08%이하, Al:0.1%이하, N:0.004-0.02%, P:0.2%이하, B:0.0001-0.002%, Ti:0.005-0.15%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, The cold rolled steel sheet is, by weight, C: 0.005% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.004-0.02%, P: 0.2% or less, B: 0.0001-0.002%, Ti: 0.005 Contains -0.15% and is composed of the remaining Fe and other unavoidable impurities,

상기 Ti, N. C 가 다음의 관계, 1≤ (Al/27)/(N/14) ≤10, 0.8≤ (Ti/48)/(C/12) ≤5.0를 만족하며,The Ti, N. C satisfies the following relationship, 1≤ (Al / 27) / (N / 14) ≤10, 0.8≤ (Ti / 48) / (C / 12) ≤5.0,

[여기서, N=N-0.8x(Ti-0.8x(48/32)xS))x(14/48), Ti=Ti-0.8x((48/14)xN+(48/32)xS)]Where N = N-0.8x (Ti-0.8x (48/32) xS) x (14/48), Ti = Ti-0.8x ((48/14) xN + (48/32) xS )]

AlN석출물의 평균크기가 0.2㎛이하로 이루어진다. The average size of the AlN precipitates is less than 0.2 μm.

본 발명에서는 IF강에 미세한 AlN석출물을 분포시켜 면내이방성은 낮추면서 항복비를 높이는 것이다. In the present invention, the fine AlN precipitates are distributed in the IF steel to increase the yield ratio while lowering the in-plane anisotropy.

자동차소재, AlN석출물, 면내이방성, 항복강도, 상온 비시효 Automobile material, AlN precipitate, in-plane anisotropy, yield strength, room temperature non-aging

Description

고항복비의 비시효 냉연강판과 그 제조방법{NON-AGING TYPE COLD ROLLED STEEL SHEET WITH HIGH YIELD RATIO AND PROCESS FOR PRODUCING THE SAME}Non-aging cold rolled steel sheet with high yield ratio and its manufacturing method {NON-AGING TYPE COLD ROLLED STEEL SHEET WITH HIGH YIELD RATIO AND PROCESS FOR PRODUCING THE SAME}

일본 공개특허공보 소57-0413349호Japanese Laid-Open Patent Publication No. 57-0413349

일본 공개특허공보 평10-158783호 Japanese Unexamined Patent Publication No. 10-158783

본 발명은 자동차, 가전제품 등의 소재로 사용되는 비시효 냉연강판에 관한 것으로, 보다 상세하게는 Ti계 IF강에서 미세한 AlN석출물에 의해 항복강도와 면내이방성이 개선되는 냉연강판과 그 제조방법에 관한 것이다. The present invention relates to a non-aging cold rolled steel sheet used as a material for automobiles, home appliances, and more particularly, to a cold rolled steel sheet improved in yield strength and in-plane anisotropy by fine AlN precipitates in a Ti-based IF steel. It is about.

자동차, 가전제품에 사용되는 냉연강판에는 강도와 성형성의 확보와 더불어 비시효특성이 요구된다. 시효는 고용원소(C, N)가 전위에 고착함에 따라 경화가 일어나면서 스트레쳐 스트레인(Stretcher Strain)이라는 결함을 유발하는 일종의 변형시효 현상이다. Cold rolled steel sheets used in automobiles and home appliances require strength and formability as well as non-aging characteristics. Aging is a kind of strain aging that causes hardening as the solid elements (C, N) adhere to dislocations, leading to a defect called stretcher strain.

냉연강판의 비시효성은 알루미늄 킬드강의 상소둔에 의해 확보 가능하나, 상소둔은 소둔시간이 길어 생산성이 낮고 부위별로 재질편차가 심하다는 단점이 있다. The non-aging property of the cold rolled steel sheet can be secured by the annealing of the aluminum-kilted steel, but the annealing has the disadvantage that the annealing time is long and the productivity is low and the material deviation is severe for each part.

따라서, Ti, Nb과 같은 강력한 탄, 질화물 형성 원소를 첨가하고 연속소둔을 행하는 IF강(Interstitial Free Steel)을 주로 이용하고 있다. IF강은 고용탄소나 고용질소를 완전히 또는 일부를 제거하여 비시효성을 확보하고 있다.Therefore, IF steel (Interstitial Free Steel) which adds strong carbon and nitride forming elements such as Ti and Nb and performs continuous annealing is mainly used. IF steels have a non-aging effect by removing some or all of the carbon and nitrogen employed.

IF강의 고강도화 방안으로는 P에 의한 고용강화 기술이 있다. 일본 공개특허공보 소57-0413349호는 Ti첨가 IF강에서 P를 0.04~0.12%첨가하여 강도를 확보하고 있다. The high-strength method of IF steel is the employment strengthening technology by P. Japanese Laid-Open Patent Publication No. 57-0413349 secures strength by adding 0.04 to 0.12% of P in Ti-added IF steel.

일본 공개특허공보 평10-158783호에서는 P를 낮추면서 Mn, Si의 고용강화원소를 함께 이용하여 고강도를 확보하고 있다. 이 선행기술은 Ti 또는 Ti-Nb복합계에서 Mn 등을 고용강화원소로 이용하여 강도를 확보하면서 열간압연조건을 제어하여 미세조직을 관리함으로써 프레스성형성과 표면특성을 확보하고 있다. 이 선행기술은 Mn을 0.5%까지 고용강화원소 사용하고 있는데, Mn은 고품위여서 Mn의 다량 첨가에 의해 제조원가가 상승하고 특히, Mn의 함량이 많아지면 도금특성에도 좋지 않다. 이 선행기술에는 면내이방성과 항복강도의 특성에 대해서는 언급이 없다. Mn을 고용강화원소로 사용하는 측면을 고려할 때 고항복비의 특성을 얻을 수 없는 것이다. 선행기술에서 Al의 경우 탈산제로서 0.1% 첨가하고 있으며, N의 경우에는 불순물로서 0.01%이하로 관리하고 있다. 따라서, AlN석출물을 이용하고 있는 성분계가 아니다. In Japanese Unexamined Patent Publication No. Hei 10-158783, while lowering P, high strength is secured by using a solid solution strengthening element of Mn and Si together. This prior art secures press formability and surface characteristics by controlling hot rolling conditions while securing strength by using Mn as a solid solution strengthening element in Ti or Ti-Nb composite systems. This prior art uses a solid solution strengthening element up to 0.5%, Mn is of high quality, the production cost is increased by the addition of a large amount of Mn, in particular, if the content of Mn increases, the plating properties are not good. This prior art makes no mention of the characteristics of in-plane anisotropy and yield strength. Considering the use of Mn as an element for strengthening employment, the characteristics of high yield ratio cannot be obtained. In the prior art, Al is added 0.1% as a deoxidizer, and in the case of N it is managed to 0.01% or less as impurities. Therefore, it is not a component system which uses AlN precipitate.

본 발명은 미세한 AlN석출물에 의해 항복강도를 증진하면서 면내이방성을 낮출 수 있는 냉연강판과 그 제조방법을 제공하는데 그 목적이 있다. It is an object of the present invention to provide a cold rolled steel sheet and a method of manufacturing the same, which can lower in-plane anisotropy while enhancing yield strength by fine AlN precipitates.

상기 목적을 달성하기 위한 본 발명의 냉연강판은, 중량%로, C: 0.005%이하, S: 0.08%이하, Al:0.1%이하, N:0.004-0.02%, P:0.2%이하, B:0.0001-0.002%, Ti:0.005-0.15%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, Cold rolled steel sheet of the present invention for achieving the above object, in weight%, C: 0.005% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.004-0.02%, P: 0.2% or less, B: 0.0001-0.002%, Ti: 0.005-0.15%, and is composed of the remaining Fe and other unavoidable impurities,

상기 Ti, N. C 가 다음의 관계, 1≤ (Al/27)/(N/14) ≤10, 0.8≤ (Ti/48)/(C/12) ≤5.0를 만족하며,The Ti, N. C satisfies the following relationship, 1≤ (Al / 27) / (N / 14) ≤10, 0.8≤ (Ti / 48) / (C / 12) ≤5.0,

[여기서, N=N-0.8x(Ti-0.8x(48/32)xS))x(14/48), Ti=Ti-0.8x((48/14)xN+(48/32)xS)]Where N = N-0.8x (Ti-0.8x (48/32) xS) x (14/48), Ti = Ti-0.8x ((48/14) xN + (48/32) xS )]

AlN석출물의 평균크기가 0.2㎛이하로 이루어지는 것이다.  The average size of the AlN precipitates is 0.2 μm or less.

본 발명에서 상기 미세한 AlN석출물은 1X105개/mm2 이상, 보다 바람직하게는 1X106개/mm2 이상이 바람직하다. In the present invention, the fine AlN precipitate is preferably 1 × 10 5 / mm 2 or more, more preferably 1 × 10 6 / mm 2 or more.

본 발명의 냉연강판은 성분설계에 따라 280MPa급의 연질냉연강판과 340MPa이상의 고강도 냉연강판의 특성을 갖는다. The cold rolled steel sheet of the present invention has the characteristics of a soft cold rolled steel sheet of 280MPa grade and high strength cold rolled steel sheet of 340MPa or more according to the component design.

상기한 성분계에서 P의 함량은 0.015%이하로 하면 280MPa급의 연질냉연강판이 얻어 진다. 이 냉연강판에다 고용강화원소인 Si, Cr의 1종 또는 2종이 추가로 함유되거나 P의 함량이 0.015~0.2%로 하면 340MPa이상의 고강도 특성이 확보된다. P가 단독으로 함유되는 고강도 강의 경우에는 P의 함량은 0.03~0.2%가 바람직하다. Si의 경우에는 0.1-0.8%, Cr의 경우에는 0.2-1.2%가 바람직하다. Si과 Cr의 1종이상 함유되는 경우에 P의 함량은 0.2%이하의 범위에서 다양하게 설계될 수 있다. If the content of P in the above component system is 0.015% or less, a 280 MPa grade soft cold rolled steel sheet is obtained. The cold rolled steel sheet further contains one or two of the solid solution strengthening elements Si and Cr, or when the P content is 0.015 to 0.2%, high strength characteristics of 340 MPa or more are secured. In the case of high strength steel containing P alone, the content of P is preferably 0.03 to 0.2%. 0.1-0.8% for Si and 0.2-1.2% for Cr are preferred. In the case of containing at least one of Si and Cr, the content of P may be variously designed in the range of 0.2% or less.

본 발명의 냉연강판에서 가공성을 보다 개선하고자 한다면 Mo을 0.01~0.2%추가로 포함할 수 있다. If you want to improve the workability in the cold rolled steel sheet of the present invention may further comprise Mo 0.01 ~ 0.2%.

상기한 냉연강판의 제조방법은, 본 발명의 성분계를 만족하는 슬라브를 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 300℃/min이상의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 냉간 압연하고, 연속소둔하는 것이다. In the method for producing a cold rolled steel sheet, the slab that satisfies the component system of the present invention is reheated to a temperature of 1100 ° C. or higher, and then hot-rolled at a finish rolling temperature of Ar 3 or higher and cooled at a speed of 300 ° C./min or higher, and 700 ° C. After winding up at the following temperature, it cold-rolls and continuously anneales.

이하, 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.

본 발명은 Ti계 IF강에 미세한 AlN석출물이 확보되면 결정립이 미세하게 되어 항복강도가 증진되고 면내이방성지수가 낮아져 가공성이 개선된다는 연구결과에 기초하여 완성된 것이다. The present invention is completed on the basis of the research results that the fine grains of AlN precipitated in the Ti-based IF steel, the grain becomes fine, the yield strength is enhanced and the in-plane anisotropy index is lowered to improve the workability.

IF강에서 N은 불순물로서 관리된다. 일본 공개특허공보 평10-158783호에서도 N이 0.01%이하이나, 이는 불순물로서 관리되는 것이며, 적극적으로 미세한 AlN석출물을 이용하는 것이 아니다. 선행기술은 Ti계 IF강으로서 N이 TiN으로 석출되므로 N을 AlN으로 석출하기 위해서는 제반성분의 관리가 필요한데 그렇게 하지 않고 있고 결국 N은 불순물로서만 관리하고 있는 것이다. In the IF steel, N is managed as an impurity. In Japanese Unexamined Patent Application Publication No. Hei 10-158783, N is 0.01% or less, but this is managed as an impurity and does not actively use fine AlN precipitates. Prior art is a Ti-based IF steel, since N is precipitated as TiN, it is necessary to manage all the components in order to precipitate N into AlN, but N is managed only as impurities.

본 발명에서는 IF강에서 미세한 AlN를 확보하는 것이다. N은 Ti, Zr과 우선적으로 반응하여 대부분 석출된다. 본 발명의 IF강은 Ti 단독 첨가 IF강이므로 Ti가 C, N, S와 반응하게 된다. 따라서, N이 AlN으로 석출되도록 제반성분의 관리가 필요하다. In the present invention is to secure a fine AlN in the IF steel. N preferentially reacts with Ti and Zr to precipitate most of them. Since the IF steel of the present invention is Ti-added IF steel, Ti reacts with C, N, and S. Therefore, it is necessary to manage the general components so that N precipitates into AlN.

본 발명에 따라 미세한 AlN석출물에 의해 결정립이 미세화 되면 고용탄소는 결정립내 보다 결정립계에 더 많이 존재하게 되어 상온 비시효특성이 확보된다. 결정립내에 잔존하는 고용탄소는 이동이 비교적 자유롭기 때문에 가동전위와 결합하여 상온시효특성에 영향을 미치지 않는다. 또한, 본 발명에 따라 미세하게 분포하는 AlN석출물들은 석출강화에 의한 항복강도의 상승과 강도-연성 밸런스 특성의 개선 그리고, 면내이방성과 소성이방성에도 긍정적인 영향을 미친다. 이를 위해서는 AlN석출물이 미세하게 분포하여야 하면, 이는 Al, N, Ti, C의 함량과 이들의 성분비 조건 그리고, 열간압연이 끝난 후 냉각속도가 영향을 미친다. According to the present invention, when the grain is refined by the fine AlN precipitate, the solid solution carbon is more present in the grain boundary than in the grain, thereby ensuring room temperature non-aging characteristics. The dissolved carbon remaining in the grain is relatively free to move, so it does not affect the room temperature aging characteristics in combination with the operating potential. In addition, the finely distributed AlN precipitates according to the present invention have a positive effect on the increase in yield strength and the improvement of the strength-ductility balance characteristics, and the in-plane anisotropy and plastic anisotropy. To this end, AlN precipitates should be finely distributed, which affects the content of Al, N, Ti, C and their component ratios, and the cooling rate after hot rolling.

본 발명의 냉연강판은 항복강도가 높아 강판의 두께를 줄일 수 있어 경량화 효과가 있다. 또한, 면내이방성이 낮아 가공시 주름 발생이 적으며 가공후에는 귀(ear) 발생이 적은 장점이 있다. 이러한 본 발명의 냉연강판과 그 제조방법을 이하에서 구체적으로 설명한다. Cold rolled steel sheet of the present invention has a high yield strength can reduce the thickness of the steel sheet has a light weight effect. In addition, the in-plane anisotropy has the advantage of less wrinkles generated during processing and less ear generation after processing. The cold rolled steel sheet of the present invention and a manufacturing method thereof will be described in detail below.

먼저, 기본성분이 되는 C, S, Al, P, N, B, Ti에 대해 설명한다. First, C, S, Al, P, N, B, and Ti, which are basic components, will be described.

탄소(C)의 함량이 0.005%이하가 바람직하다.The content of carbon (C) is preferably 0.005% or less.

탄소의 함량이 0.005%를 초과할 경우 시효성 및 소성이방성을 크게 악화시키는 고용 탄소를 제거 하기 위해 고가의 Ti를 많이 첨가해야 한다. 이 경우 제조원가가 상승하며, 재결정온도가 높아진다. 따라서, 소둔온도를 높여야 하며 그렇지 않을 경우 소둔판의 결정립이 미세하게 되어 연성이 크게 낮아지며, 도금시 도금특성도 낮아진다. 보다 바람직한 탄소 (C)의 함량은 0.003%이하이다. 바람직하게는 탄소(C)함량의 하한을 0.0005%로 하는 것이다. 탄소(C)의 함량이 0.0005%미만의 경우에는 열연판의 결정립이 조대하여 강도가 낮아지고 면내이방성이 높아진다. When the carbon content exceeds 0.005%, a large amount of expensive Ti must be added to remove the solid solution carbon which greatly degrades aging and plastic anisotropy. In this case, the manufacturing cost rises and the recrystallization temperature increases. Therefore, the annealing temperature should be increased, otherwise the crystal grains of the annealing plate become fine and the ductility is greatly lowered, and the plating property is also lowered during plating. More preferable content of carbon (C) is 0.003% or less. Preferably, the lower limit of the content of carbon (C) is made 0.0005%. If the content of carbon (C) is less than 0.0005%, the grains of the hot rolled sheet are coarse to lower the strength and to increase the in-plane anisotropy.

황(S)의 함량은 0.08%이하가 바람직하다.The content of sulfur (S) is preferably 0.08% or less.

황(S)의 함량이 0.08% 초과의 경우에는 고용된 황의 함량이 많아 연성 및 성형성이 크게 낮아지며, 적열취성의 우려가 있다. When the content of sulfur (S) is more than 0.08%, the content of solute is high, so the ductility and formability are greatly lowered, and there is a fear of red brittleness.

알루미늄(Al)의 함량은 0.1%이하가 바람직하다.The content of aluminum (Al) is preferably 0.1% or less.

알루미늄은 N과 반응하여 미세한 AlN석출물을 형성하여 결정립미세화와 더불어 석출강화에 의해 항복강도를 증진시킨다. 보다 바람직한 Al의 함량은 0.01-0.1%이다.Aluminum reacts with N to form fine AlN precipitates to increase yield strength by grain refinement and precipitation strengthening. More preferred Al content is 0.01-0.1%.

질소(N)의 함량은 0.004-0.02%가 바람직하다. The content of nitrogen (N) is preferably 0.004-0.02%.

N의 함량이 0.004%미만의 경우에는 석출되는 AlN의 숫자가 적어 결정립미세화 및 석출강화의 효과가 적다. 질소의 함량이 0.02%를 초과할 경우는 고용질소에 의한 시효보증이 곤란하다. If the content of N is less than 0.004%, the number of precipitated AlN is small, so the effect of grain refinement and precipitation strengthening is small. When the nitrogen content exceeds 0.02%, aging guarantee by solid nitrogen is difficult.

인(P)의 함량은 0.2%이하가 바람직하다. The content of phosphorus (P) is preferably 0.2% or less.

인은 고용강화효과가 높으면서 r값의 저하가 적은 원소로서 본 발명에 따라 석출물을 제어하는 강에서 고강도를 보증한다. 280Mpa급의 강도가 요구되는 강종에서 P의 함량은 0.015%이하로 하는 것이 좋다. 340Mpa급 이상의 고강도 강에서는 0.015~0.2%로 하는 것이 좋다. 이러한 P의 함량이 0.2% 초과의 경우에는 연성이 저하하여 상한 값을 0.2%로 제한하는 것이 바람직하다. 본 발명에서 Si, Cr이 첨가되는 경우에는 P의 함량을 0.2%이하의 범위로 하면서 다양한 강도 설계가 가능하다. Phosphorus is an element having a high solid solution strengthening effect and a small decrease in r value, and guarantees high strength in steels for controlling precipitates according to the present invention. In steel grades requiring strength of 280 Mpa, the content of P should be less than 0.015%. In the high strength steel of 340Mpa grade or more, it is good to set it as 0.015 ~ 0.2%. If the content of P is more than 0.2%, it is preferable that the ductility is lowered to limit the upper limit to 0.2%. In the present invention, when Si and Cr are added, various strength designs are possible while the content of P is in the range of 0.2% or less.

보론(B)의 함량은 0.0001~0.002%가 바람직하다.The content of boron (B) is preferably 0.0001 to 0.002%.

보론은 2차가공취성을 방지하기 위해 첨가하는데 이를 위해 보론의 함량이 0.0001%이상인 것이 바람직하다. 보론의 함량이 0.002%를 초과하면 오무림 가공성(deep drawing)이 크게 저하될 수 있다. Boron is added to prevent secondary processing brittleness. For this purpose, the boron content is preferably 0.0001% or more. If the boron content exceeds 0.002%, deep drawing may be greatly degraded.

티타늄(Ti)의 함량은 0.005~0.15%로 하는 것이다. The content of titanium (Ti) is to be 0.005 ~ 0.15%.

티타늄은 비시효성 확보 및 성형성 향상을 목적으로 첨가하는데 티타늄은 강력한 탄화물 생성 원소로 강중에 첨가되어 TiC석출물을 석출시켜 고용 상태의 탄소를 석출하므로써 비시효성을 확보한다. 티타늄의 첨가량이 0.005%미만의 경우 TiC석출물의 석출량이 너무 적어 집합조직의 발달이 적어 오무림 가공성을 개선하는 효과가 거의 없다. Ti가 0.15%초과할 경우 TiC석출물의 크기 너무 커 결정립미세화 효가가 감소되어 면내이방성지수가 높아지며 항복강도도 저하하고 도금특성이 크게 저하한다. Titanium is added for the purpose of securing inaging and improving moldability. Titanium is a strong carbide-generating element and is added to steel to precipitate TiC precipitates to precipitate insoluble solids. If the addition amount of titanium is less than 0.005%, the precipitation amount of TiC precipitate is too small, and there is little effect of improving the processability of the soil because of less development of the texture. If Ti exceeds 0.15%, the TiC precipitates are too large to reduce the grain refining efficiency, resulting in an increase in in-plane anisotropy, lowering the yield strength and greatly degrading the plating properties.

본 발명에서는 AlN석출물을 확보하기 위하여 Ti, Al, N, C의 함량을 다음과 같이 관리한다. 아래의 관계식에서 각 성분은 중량%로 사용한다. In the present invention, the content of Ti, Al, N, C in order to secure AlN precipitates are managed as follows. In the following relationship, each component is used in weight%.

[관계식 1][Relationship 1]

1≤ (Al/27)/(N/14) ≤101≤ (Al / 27) / (N / 14) ≤10

[관계식 2][Relationship 2]

N=N-0.8x(Ti-0.8x(48/32)xS))x(14/48)N = N-0.8x (Ti-0.8x (48/32) xS)) x (14/48)

관계식 1은 미세한 AlN석출물을 확보하기 위한 것이다. 관계식 1에서 N*은 총N의 함 량에서 Ti와 반응하지 않고 남아서 Al과 반응하는 N의 함량이다. N*는 관계식 2에 의해 결정된다. 미세한 AlN석출물을 확보하도록 하기 위해서 관계식 1의 값이 1-10을 만족하는 것이 바람직하다. 관계식 1의 값이 1이상이 되어야 유효한 AlN석출물이 석출하게 되며, 10초과의 경우에는 AlN석출물이 조대하여 가공성과 항복강도의 특성이 좋지 않다. Relationship 1 is to secure a fine AlN precipitate. In Equation 1, N * is the content of N remaining in the total N content without reacting with Ti and remaining with Al. N * is determined by relation 2. In order to secure a fine AlN precipitate, it is preferable that the value of relation 1 satisfies 1-10. When the value of relation 1 is greater than or equal to 1, effective AlN precipitates are precipitated, and in the case of more than 10, AlN precipitates are coarse, so that the characteristics of workability and yield strength are not good.

본 발명에서는 탄소는 TiC로 석출된다. 따라서, TiC로 석출되지 않는 고용탄소의 조건에 따라 상온 내시효특성이 영향을 받는다. 이를 고려할 때 Ti와 C는 다음의 조건을 만족하는 것이 가장 바람직하다. In the present invention, carbon is precipitated as TiC. Therefore, the room temperature aging characteristics are affected by the conditions of the solid solution carbon not precipitated by TiC. In consideration of this, it is most preferable that Ti and C satisfy the following conditions.

[관계식 3] [Relationship 3]

0.8≤ (Ti/48)/(C/12) ≤5.0,0.8≤ (Ti / 48) / (C / 12) ≤5.0,

[관계식 4][Relationship 4]

Ti=Ti-0.8x((48/14)xN+(48/32)xS)Ti = Ti-0.8x ((48/14) xN + (48/32) xS)

관계식 3은 TiC를 석출하여 고용상태의 탄소를 제거하여 상온 비시효특성을 확보하기 위한 것이다. 관계식 3에서 Ti*은 총Ti의 함량에서 N, S와 반응하고 남아서 C와 반응하는 Ti의 함량이다. Ti*는 관계식 4에 의해 결정된다. Equation 3 is to secure room temperature non-aging characteristics by precipitating TiC to remove carbon in solid solution. In relation 3, Ti * is the content of Ti reacting with N and S in the total Ti content and remaining with C. Ti * is determined by the relation 4

관계식 3의 값이 0.8미만의 경우에는 상온 비시효 특성을 확보하기 어렵고, 관계식 3의 값이 5를 초과하면 강중에 고용 상태로 남아 있는 Ti의 양이 많아 연성이 저하된다. If the value of the relation 3 is less than 0.8, it is difficult to secure the room temperature non-aging characteristics, and if the value of the relation 3 exceeds 5, the amount of Ti remaining in the solid solution state in the steel is high, the ductility is lowered.

본 발명의 성분계에서 석출물은 미세하게 분포할수록 유리한데, 바람직하게는 AlN석출물의 평균크기가 0.2㎛이하이다. 본 발명의 연구결과에 따르면 석출물의 평균크기가 0.2㎛ 초과의 경우에는 특히 강도가 낮아지고, 면내이방성지수가 좋지 않다. In the component system of the present invention, the finer the distribution, the more advantageous. Preferably, the average size of the AlN precipitate is 0.2 μm or less. According to the results of the present invention, especially when the average size of the precipitate is more than 0.2㎛, the strength is low, the in-plane anisotropy index is not good.

나아가, 본 발명의 성분계에는 0.2㎛이하의 석출물이 다량 분포하는데, 그 분포수는 특별히 제한하지는 않는다. 바람직하게는 석출물의 분포수가 mm2당 1X105개 이상, 보다 바람직하게는 1X106개 이상이상이다. 석출물의 분포수가 커지면 소성이방성지수가 더욱 높아지고 면내이방성지수는 낮아져 가공성이 크게 개선된다. 일반적으로 소성이방성지수가 높아지면 면내이방성지수는 올라가서 가공성 측면에서 소성이방성지수를 높이는데 한계가 있다는 점을 감안할 때, 석출물의 분포수에 따라 소성이방성지수와 면내이방성지수의 특이한 변화는 주목할 만 하다. Furthermore, although the precipitate of 0.2 micrometer or less is distributed in a large amount in the component system of this invention, the distribution number is not specifically limited. Preferably, the number of distribution of precipitates is at least 1 × 10 5 , more preferably at least 1 × 10 6 per mm 2 . The larger the distribution number of precipitates, the higher the plastic anisotropy index and the lower in-plane anisotropy index are. In general, when the plastic anisotropy index increases, the in-plane anisotropy index rises and there is a limit to increasing the plastic anisotropy index in terms of processability. .

본 발명에서는 340MPa급 이상의 고강도 강판으로 적용하는 경우에는 상기 P와 같은 고용강화원소 즉, P, Si, Cr의 1종 또는 2종이상을 첨가할 수 있다. P에 대해서는 상술한 바, 중복기재는 생략한다. In the present invention, when applied to a high-strength steel sheet of 340 MPa grade or more, one or two or more solid solution strengthening elements such as P, that is, P, Si, and Cr may be added. As described above with respect to P, redundant descriptions are omitted.

실리콘(Si)의 함량은 0.1-0.8%가 바람직하다.The content of silicon (Si) is preferably 0.1-0.8%.

Si은 고용강화효과가 높으면서 연신율의 저하가 낮은 원소로 본 발명에 따라 석출물을 제어하는 강에서 고강도를 보증한다. Si의 함량이 0.1%이상 되어야 강도를 확보할 수 있으며, 0.8%초과의 경우에는 연성이 저하한다. Si is an element having a high solid solution strengthening effect and a low drop in elongation, which ensures high strength in steels for controlling precipitates according to the present invention. When the content of Si is more than 0.1% to secure the strength, in the case of more than 0.8% ductility is reduced.

크롬(Cr)의 함량은 0.2~1.2%가 바람직하다.The content of chromium (Cr) is preferably 0.2 to 1.2%.

Cr은 고용강화효과가 높으면서 2차가공취성온도를 낮추며 Cr탄화물에 의해 시효지수를 낮추는 원소로서, 본 발명에 따라 석출물을 제어하는 강에서 고강도를 보증하며 면내이방성 지수도 낮게 한다. Cr의 함량이 0.2%이상 되어야 강도를 확보할 수 있으며, 1.2% 초과의 경우에는 연성이 저하한다.Cr is an element that lowers the secondary brittleness temperature and decreases the aging index by Cr carbide while having a high solid-solution strengthening effect, and assures high strength in steels for controlling precipitates according to the present invention and also lowers in-plane anisotropy index. The Cr content is more than 0.2% to secure the strength, in the case of more than 1.2% ductility is reduced.

본 발명의 냉연강판에서 몰리브덴(Mo)이 추가로 첨가될 수 있다. In the cold rolled steel sheet of the present invention, molybdenum (Mo) may be further added.

몰리브덴(Mo)의 함량은 0.01~0.2%가 바람직하다.The content of molybdenum (Mo) is preferably 0.01 to 0.2%.

Mo은 소성이방성지수를 높이는 원소로서 첨가되는데, 그 함량이 0.01%이상 되어야 소성이방성지수가 커지며, 0.2%를 초과하면 소성이방성지수는 더 이상 커지지 않고 열간취성을 일으킬 우려가 있다. Mo is added as an element to increase the plastic anisotropy index, the content of the plastic anisotropy index is increased when the content is more than 0.01%, if the content exceeds 0.2%, the plastic anisotropy index is no longer increased and there is a risk of causing hot brittleness.

본 발명에 따라 얻어지는 냉연강판은 가공성(연성, 소성이방성지수)은 충분하면서 항복비(항복강도/인장강도)가 58%이상을 만족한다. The cold rolled steel sheet obtained according to the present invention satisfies 58% or more of yield ratio (yield strength / tensile strength) while sufficient workability (ductility, plastic anisotropy index).

[냉연강판의 제조방법][Manufacturing method of cold rolled steel sheet]

본 발명은 상기한 강조성을 만족하는 강을 열간압연과 냉간압연을 통해 냉간압연판에 AlN석출물의 평균크기가 0.2㎛ 이하를 만족하도록 하는데 특징이 있다. 냉간압연판에서 AlN석출물의 평균 크기는 성분설계와 함께 재가열온도, 권취온도 등의 제조공정에 영향을 받으나 특히 열간압연후의 냉각속도에 직접적인 영향을 받는다. The present invention is characterized in that an average size of AlN precipitates in a cold rolled sheet is hot and cold rolled to satisfy the above-described stress. The average size of AlN precipitates in the cold rolled plate is influenced by the component design and the manufacturing process such as reheating temperature and winding temperature, but especially by the cooling rate after hot rolling.

[열간압연조건][Hot Rolling Condition]

본 발명에서는 상기한 강조성을 만족하는 강을 재가열하여 열간압연한다. 재가열온도는 1100℃이상이 바람직하다. 재가열온도가 1100℃미만의 경우에는 재가열온도가 낮아 연속주조중에 생성된 조대한 석출물들이 완전히 용해되지 않은 상태로 남아 있어 열간압연후에도 조대한 석출물이 많이 남아있기 때문이다.In the present invention, the steel that satisfies the above-mentioned emphasis is reheated and hot rolled. The reheating temperature is preferably 1100 ° C or more. This is because when the reheating temperature is lower than 1100 ° C., the coarse precipitates generated during continuous casting remain completely insoluble due to the low reheating temperature, so that many coarse precipitates remain even after hot rolling.

열간압연은 마무리압연온도를 Ar3변태온도 이상의 조건에서 행하는 것이 바람직하다. 마무리압연온도가 Ar3변태온도 미만의 경우에는 압연립의 생성으로 가공성이 저하할 뿐만아니라 강도도 낮아지기 때문이다. Hot rolling is preferably carried out under the conditions of the finish rolling temperature higher than the Ar 3 transformation temperature. This is because when the finish rolling temperature is lower than the Ar 3 transformation temperature, not only the workability is reduced by the formation of the rolled grain but also the strength is lowered.

열간압연후 권취전 냉각속도는 300℃/min 이상으로 하는 것이 바람직하다. 본 발명에 따라 미세한 석출물을 얻기 위하여 그 성분비를 제어하더라도 냉각속도가 300℃/min 미만이면 석출물의 평균크기가 0.2㎛를 초과할 수 있다. 즉, 냉각속도가 빨 라질수록 많은 수의 핵이 생성하여 석출물이 미세해지기 때문이다. 냉각속도가 빨라질수록 석출물의 크기가 미세해지므로 냉각속도의 상한을 제한할 필요는 없으나, 냉각속도가 1000℃/min 보다 빨라지더라도 석출물 미세화 효과가 더 이상 커지지 않으므로 냉각속도는 300~1000℃/min이 보다 바람직하다. It is preferable that the cooling rate before winding after hot rolling shall be 300 degreeC / min or more. Even if the component ratio is controlled to obtain a fine precipitate according to the present invention, if the cooling rate is less than 300 ° C / min, the average size of the precipitate may exceed 0.2 ㎛. In other words, the faster the cooling rate, the greater the number of nuclei generated and the finer the precipitate. The faster the cooling rate, the finer the precipitate is, so it is not necessary to limit the upper limit of the cooling rate.However, even if the cooling rate is faster than 1000 ° C / min, the finer effect of the precipitate is no longer increased, so the cooling rate is 300 to 1000 ° C / min. This is more preferable.

[권취조건][Coiling condition]

상기와 같이 열간압연한 다음에는 권취를 행하는데, 권취온도는 700℃이하가 바람직하다. 권취온도가 700℃초과의 경우에는 석출물이 너무 조대하게 성장하여 강도확보가 곤란하다.Winding is performed after hot rolling as above, but the winding temperature is preferably 700 ° C or lower. If the coiling temperature exceeds 700 ℃, precipitates grow too coarse, making it difficult to secure strength.

[냉간압연조건][Cold rolling condition]

냉간압연은 50~90%의 압하율로 행하는 것이 바람직하다. 냉간압하율이 50%미만의 경우에는 소둔재결정 핵생성양이 적기 때문에 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 성형성이 저하한다. 냉간압하율이 90%초과의 경우에는 성형성은 향상되지만 핵생성 양이 너무 많아 소둔 재결정립은 오히려 너무 미세하여 연성이 저하한다. Cold rolling is preferably performed at a reduction ratio of 50 to 90%. If the cold reduction rate is less than 50%, the amount of nucleation of the annealing recrystallization is small, so that grains grow too large during annealing, resulting in a decrease in strength and formability due to coarsening of the annealing recrystallization grains. If the cold reduction ratio is more than 90%, the moldability is improved, but the nucleation amount is too high, so the annealing recrystallized grain is too fine to decrease the ductility.

[연속소둔][Continuous Annealing]

연속소둔 온도는 제품의 재질을 결정하는 중요한 역할을 한다. 본 발명에서는 700~900℃의 온도범위에서 행하는 것이 바람직하다. 연속소둔 온도가 700℃미만의 경우에는 재결정이 완료되지 않아 목표로 하는 연성 값을 확보할 수 없으며, 소둔온도가 900℃초과의 경우에는 재결정립의 조대화로 강도가 저하된다. 연속소둔시간은 재결정이 완료되도록 유지하는데, 약 10초이상이면 재결정이 완료된다. 바람직하게는 연속소둔시간을 10초~30분의 범위내로 하는 것이다,Continuous annealing temperature plays an important role in determining the material of the product. In this invention, it is preferable to carry out in the temperature range of 700-900 degreeC. If the continuous annealing temperature is less than 700 ° C., recrystallization is not completed and the target ductility value cannot be secured. If the annealing temperature is more than 900 ° C., the strength decreases due to coarsening of the recrystallized grains. The continuous annealing time keeps the recrystallization complete. If it is about 10 seconds or more, the recrystallization is completed. Preferably the continuous annealing time is in the range of 10 seconds to 30 minutes,

이하, 본 발명을 실시예를 통하여 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

[실시예 1]Example 1

표 1의 강슬라브를 재가열하여 마무리열간압연하고 400℃/min 의 속도로 냉각하여 650℃에서 권취한 다음, 75%의 압하율로 냉간압연과 연속소둔처리하였다. 이때의 마무리압연온도는 Ar3변태점이상인 910℃이며, 연속소둔은 10℃/초의 속도로 830℃로 40초 동안 가열하여 행하였다. The steel slabs of Table 1 were reheated, hot rolled to finish, cooled to 400 ° C./min, wound up at 650 ° C., and then cold rolled and continuously annealed at a reduction rate of 75%. The finish rolling temperature of not less than Ar 3 transformation point is 910 ℃, continuous annealing was performed by heating for 40 seconds to 830 ℃ to 10 ℃ / second.

얻어진 소둔판은 기계적 특성을 조사하기 위해 ASTM규격(ASTM E-8 standard)에 의한 표준시편으로 가공하였다. 시편은 인장시험기(INSTRON사, Model 6025)를 이용하여 항복강도, 인장강도, 연신율, 소성이방성 지수(rm값), 면내이방성 지수(△r값) 및 시효평가지수를 측정하였다. 여기서 rm=(r0+2r45+r90)/4, △r=(r0-2r45+r90)/2이며, 시효평가지수는 소둔후 1.0% skin Pass압연한 시편을 100℃ X 2hr. 열처리후 측정된 항복점연신(Yield Point Elongation)율이다.The obtained annealing plate was processed into a standard specimen according to ASTM E-8 standard to investigate the mechanical properties. The specimen was measured for yield strength, tensile strength, elongation, plastic anisotropy index (r m value), in-plane anisotropy index (Δr value) and aging evaluation index using a tensile tester (INSTRON, Model 6025). Where r m = (r 0 + 2r 45 + r 90 ) / 4, △ r = (r 0 -2r 45 + r 90 ) / 2, and the aging evaluation index is 100 ° C for 1.0% skin pass-rolled specimen after annealing X 2hr. Yield point elongation rate measured after heat treatment.

시료sample 화학성분(중량%)Chemical composition (% by weight) CC PP SS AlAl TiTi BB NN 기타Etc A1A1 0.00080.0008 0.0080.008 0.0230.023 0.0420.042 0.0590.059 0.00070.0007 0.01030.0103 A2A2 0.00170.0017 0.0350.035 0.0250.025 0.0440.044 0.0740.074 0.0010.001 0.01350.0135 Si:0.13Si: 0.13 A3A3 0.00250.0025 0.0610.061 0.0340.034 0.0390.039 0.0950.095 0.00090.0009 0.0150.015 Si:0.24Si: 0.24 A4A4 0.00120.0012 0.0850.085 0.0250.025 0.0240.024 0.0660.066 0.00070.0007 0.01170.0117 Si:.11 Mo:0.06Si: .11 Mo: 0.06 A5A5 0.00060.0006 0.120.12 0.0230.023 0.0380.038 0.0610.061 0.00080.0008 0.01120.0112 Cr:0.13Cr: 0.13 A6A6 0.00380.0038 0.0420.042 0.0130.013 0.0320.032 00 0.00050.0005 0.00120.0012 A7A7 0.00140.0014 0.120.12 0.0090.009 0.0550.055 0.140.14 0.00050.0005 0.0120.012 Si:0.13Si: 0.13

시료sample (Ti/48)/(C/12)(Ti / 48) / (C / 12) N N (Al/27)/(N/14)(Al / 27) / (N / 14) 석출물의 평균크기 (㎛)Average size of precipitates (㎛) 석출물 수 (개/mm2)Number of precipitates (pcs / mm 2 ) A1A1 0.670.67 0.0030.003 7.327.32 0.050.05 6.3X105 6.3 X 10 5 A2A2 1.031.03 0.00320.0032 7.067.06 0.050.05 6.3X105 6.3 X 10 5 A3A3 1.311.31 0.00240.0024 8.598.59 0.050.05 8.4X106 8.4X10 6 A4A4 0.810.81 0.00330.0033 3.773.77 0.050.05 7.3X106 7.3 X 10 6 A5A5 1.121.12 0.00340.0034 5.785.78 0.050.05 6.2X106 6.2 X 10 6 A6A6 -1.2-1.2 0.00480.0048 3.433.43 0.050.05 4.5X105 4.5 X 10 5 A7A7 17.217.2 -0.018-0.018 -1.6-1.6 0.280.28 3.5X103 3.5 X 10 3 Ti=Ti-0.8x((48/14)xN+(48/32)xS) N=N-0.8x(Ti-0.8x(48/32)xS))x(14/48)Ti = Ti-0.8x ((48/14) xN + (48/32) xS) N = N-0.8x (Ti-0.8x (48/32) xS)) x (14/48)

시료번호  Sample Number 기계적 성질 Mechanical properties 비고    Remarks 항복강도 (MPa)Yield strength (MPa) 인장강도 (MPa)Tensile Strength (MPa) 연신율 (%)Elongation (%) 소성이방성 지수(rm)  Plastic Anisotropy Index (r m ) 면내이방성 지수 (Δr)  In-plane anisotropy index (Δr) 2차가공취성 (DBTT-℃)2nd processing brittleness (DBTT- ℃) 시효평가지수 (%)  Aging Evaluation Index (%)   A1A1 209209 349349 4444 2.032.03 0.250.25 -60-60 00 발명강Invention steel A2A2 282282 399399 3737 1.721.72 0.240.24 -50-50 00 발명강Invention steel A3A3 339339 457457 3434 1.731.73 0.270.27 -50-50 00 발명강Invention steel A4A4 219219 360360 4242 2.212.21 0.290.29 -50-50 00 발명강Invention steel A5A5 354354 449449 3333 1.731.73 0.210.21 -60-60 00 발명강Invention steel A6A6 189189 348348 4545 1.321.32 0.430.43 -40-40 0.940.94 비교강Comparative steel A7A7 335335 457457 2626 1.531.53 0.240.24 -40-40 00 비교강Comparative steel

본 발명에서 상기 실시형태는 하나의 예시로서, 본 발명이 여기에 한정되는 것은 아니다. 본 발명의 특허청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용효과를 이루는 것은 어떠한 것이어도 본 발명의 기술적 범위에 포함된다. In the present invention, the above embodiment is only one example, and the present invention is not limited thereto. Anything that has substantially the same configuration as the technical idea described in the claims of the present invention and achieves the same operation and effect is included in the technical scope of the present invention.

상술한 바와 같이, 본 발명은 IF강에 미세한 AlN석출물을 분포시키는 것에 의해 결정립을 미세화시키고 이에 따라 면내이방성지수를 낮추고 또한, AlN에 의한 석출강화에 의해 항복강도를 증진시키는 것이다.As described above, the present invention is intended to refine the grains by distributing fine AlN precipitates in the IF steel, thereby lowering the in-plane anisotropy index and increasing yield strength by strengthening precipitation by AlN.

Claims (8)

삭제delete 중량%로, C: 0.005%이하, S: 0.08%이하, Al:0.1%이하, N:0.004-0.02%, P:0.2%이하, B:0.0001-0.002%, Ti:0.005-0.15%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, By weight percent, C: 0.005% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.004-0.02%, P: 0.2% or less, B: 0.0001-0.002%, Ti: 0.005-0.15% And remaining Fe and other inevitable impurities, 상기 Ti, N. C 가 다음의 관계, 1≤ (Al/27)/(N/14) ≤10, 0.8≤ (Ti/48)/(C/12) ≤5.0를 만족하며,The Ti, N. C satisfies the following relationship, 1≤ (Al / 27) / (N / 14) ≤10, 0.8≤ (Ti / 48) / (C / 12) ≤5.0, [여기서, N=N-0.8x(Ti-0.8x(48/32)xS)x(14/48), Ti=Ti-0.8x((48/14)xN+(48/32)xS)]Where N = N-0.8x (Ti-0.8x (48/32) xS) x (14/48), Ti = Ti-0.8x ((48/14) xN + (48/32) xS) ] AlN석출물의 평균크기가 0.2㎛이하이며,The average size of AlN precipitates is less than 0.2㎛ 상기 석출물수는 1X106개/mm2이상임을 특징으로 하는 고항복비의 비시효 냉연강판. The precipitate water is 1 X 10 6 / mm 2 or more, characterized in that the non-aging cold rolled steel sheet. 제 2항에 있어서, 추가로 Si:0.1~0.8%, Cr:0.2~1.2%의 1종 또는 2종이 포함되는 것을 특징으로 하는 고항복비의 비시효 냉연강판. The non-aging cold rolled steel sheet according to claim 2, further comprising one or two of Si: 0.1 to 0.8% and Cr: 0.2 to 1.2%. 제 2항 또는 제 3항에 있어서, 추가로 Mo이 추가로 0.01~0.2% 포함되는 것을 특징으로 하는 고항복비의 비시효 냉연강판. The non-aging cold rolled steel sheet according to claim 2 or 3, wherein Mo is further added in an amount of 0.01 to 0.2%. 삭제delete 중량%로, C: 0.005%이하, S: 0.08%이하, Al:0.1%이하, N:0.004-0.02%, P:0.2%이하, B:0.0001-0.002%, Ti:0.005-0.15%를 포함하고, 나머지 Fe 및 기타 불가피한 불순물로 조성되고, By weight percent, C: 0.005% or less, S: 0.08% or less, Al: 0.1% or less, N: 0.004-0.02%, P: 0.2% or less, B: 0.0001-0.002%, Ti: 0.005-0.15% And remaining Fe and other inevitable impurities, 상기 Ti, N. C 가 다음의 관계, 1≤ (Al/27)/(N/14) ≤10, 0.8≤ (Ti/48)/(C/12) ≤5.0를 만족하는 슬라브를,A slab in which Ti and N.C satisfy the following relationship, 1≤ (Al / 27) / (N / 14) ≤10, 0.8≤ (Ti / 48) / (C / 12) ≤5.0, [여기서, N=N-0.8x(Ti-0.8x(48/32)xS)x(14/48), Ti=Ti-0.8x((48/14)xN+(48/32)xS)]Where N = N-0.8x (Ti-0.8x (48/32) xS) x (14/48), Ti = Ti-0.8x ((48/14) xN + (48/32) xS) ] 1100℃이상의 온도로 재가열한 후 마무리 압연온도를 Ar3변태점 이상으로 하여 열간압연하고 300℃/min이상의 속도로 냉각하고 700℃이하의 온도에서 권취한 다음, 50~90%의 압하율로 냉간 압연하고, 700~900℃의 온도범위에서 10초~30분 동안 연속소둔하여 평균크기가 0.2㎛이하의 AlN석출물이 1X106개/mm2이상 분포하는 고항복비의 비시효 냉연강판의 제조방법.After reheating to 1100 ℃ or higher, hot rolling with finishing rolling temperature above Ar 3 transformation point, cooling at 300 ℃ / min or higher, winding at temperature below 700 ℃, and cold rolling at 50 ~ 90% reduction rate And annealing continuously for 10 seconds to 30 minutes in a temperature range of 700 to 900 ° C., in which the AlN precipitate having an average size of 0.2 μm or less is distributed 1 × 10 6 / mm 2 or more. 제 6항에 있어서, 추가로 Si:0.1~0.8%, Cr:0.2~1.2%의 1종 또는 2종이 포함되는 것을 특징으로 하는 고항복비의 비시효 냉연강판의 제조방법. The method for producing a high yielding ratio non-aging cold rolled steel sheet according to claim 6, further comprising one or two of Si: 0.1 to 0.8% and Cr: 0.2 to 1.2%. 제 6항 또는 제 7항에 있어서, 추가로 Mo이 추가로 0.01~0.2% 포함되는 것을 특징으로 하는 고항복비의 비시효 냉연강판의 제조방법. The method for producing a high yielding ratio non-aging cold rolled steel sheet according to claim 6 or 7, further comprising 0.01% to 0.2% of Mo.
KR1020060040208A 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same KR100742930B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050037183 2005-05-03
KR1020050037183 2005-05-03

Publications (2)

Publication Number Publication Date
KR20060115624A KR20060115624A (en) 2006-11-09
KR100742930B1 true KR100742930B1 (en) 2007-07-25

Family

ID=37652804

Family Applications (42)

Application Number Title Priority Date Filing Date
KR1020050130130A KR100723216B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anisotropy and process for producing the same
KR1020050129241A KR100723160B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anistropy and process for producing the same
KR1020050129235A KR100723165B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anisotropy and process for producing the same
KR1020050129238A KR100723182B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anistropy and process for producing the same
KR1020050130131A KR100742818B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129236A KR100723164B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129237A KR100723163B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020050129239A KR100723181B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129242A KR100723159B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129243A KR100723158B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050130132A KR100742819B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020050129240A KR100723180B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020060040211A KR100742933B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040069A KR100742926B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040205A KR100742918B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040229A KR100742948B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same
KR1020060040240A KR100742955B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040212A KR100742934B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040238A KR100742953B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040217A KR100742939B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040227A KR100742945B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040206A KR100742917B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020060040218A KR100742940B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040209A KR100742931B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040215A KR100742937B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020060040070A KR100742927B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040239A KR100742954B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040207A KR100742929B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040228A KR100742947B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040236A KR100742951B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040224A KR100742941B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040235A KR100742950B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same
KR1020060040214A KR100742936B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040226A KR100742944B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020060040216A KR100742938B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040210A KR100742932B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040230A KR100742949B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040071A KR100742919B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040237A KR100742952B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same
KR1020060040213A KR100742935B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040225A KR100742943B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040208A KR100742930B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same

Family Applications Before (41)

Application Number Title Priority Date Filing Date
KR1020050130130A KR100723216B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anisotropy and process for producing the same
KR1020050129241A KR100723160B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anistropy and process for producing the same
KR1020050129235A KR100723165B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anisotropy and process for producing the same
KR1020050129238A KR100723182B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having increased plastic anistropy and process for producing the same
KR1020050130131A KR100742818B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129236A KR100723164B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129237A KR100723163B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020050129239A KR100723181B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129242A KR100723159B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050129243A KR100723158B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020050130132A KR100742819B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020050129240A KR100723180B1 (en) 2005-05-03 2005-12-26 Cold rolled steel sheet having good formability and process for producing the same
KR1020060040211A KR100742933B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040069A KR100742926B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040205A KR100742918B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040229A KR100742948B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same
KR1020060040240A KR100742955B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040212A KR100742934B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040238A KR100742953B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040217A KR100742939B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040227A KR100742945B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040206A KR100742917B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020060040218A KR100742940B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040209A KR100742931B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040215A KR100742937B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020060040070A KR100742927B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040239A KR100742954B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040207A KR100742929B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040228A KR100742947B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040236A KR100742951B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040224A KR100742941B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040235A KR100742950B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same
KR1020060040214A KR100742936B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040226A KR100742944B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having reduced plane anisotropy and process for producing the same
KR1020060040216A KR100742938B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040210A KR100742932B1 (en) 2005-05-03 2006-05-03 Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040230A KR100742949B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having good formability and process for producing the same
KR1020060040071A KR100742919B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040237A KR100742952B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet having increased yield strength and process for producing the same
KR1020060040213A KR100742935B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same
KR1020060040225A KR100742943B1 (en) 2005-05-03 2006-05-03 Baking hardening type cold rolled steel sheet with high yield ratio and process for producing the same

Country Status (6)

Country Link
US (2) US20090126837A1 (en)
JP (3) JP4954980B2 (en)
KR (42) KR100723216B1 (en)
CN (3) CN101184858B (en)
MX (3) MX2007013676A (en)
TW (3) TWI346141B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775338B1 (en) * 2006-11-21 2007-11-08 주식회사 포스코 Cold rolled steel sheet having high yield ratio and excellent formability and the method for manufacturing the same
KR100957960B1 (en) * 2007-12-26 2010-05-17 주식회사 포스코 Cold rolled steel sheet having good formability and surface quality and process for producing the same
KR101030898B1 (en) * 2008-08-28 2011-04-22 현대제철 주식회사 solid carbon/nitrogen composition bake hardenable steel sheet, and method for producing the same
CN101348884B (en) * 2008-09-11 2010-05-12 北京科技大学 440MPa grade niobium-containing high-strength IF steel and manufacturing method thereof
JP5272714B2 (en) * 2008-12-24 2013-08-28 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing
KR101121829B1 (en) * 2009-08-27 2012-03-21 현대제철 주식회사 Hot-rolled steel sheet having high strength, and method for producing the same
CN102747281B (en) * 2012-07-31 2014-10-29 首钢总公司 Production method of batch annealing interstitial-free (IF) steel
CN102925796B (en) * 2012-10-30 2014-07-09 鞍钢股份有限公司 Non-alloyed ultra-low carbon cold-rolled sheet for structure and production method thereof
KR101318060B1 (en) 2013-05-09 2013-10-15 현대제철 주식회사 Hot stamping product with advanced toughness and method of manufacturing the same
KR101611762B1 (en) * 2014-12-12 2016-04-14 주식회사 포스코 Cold rolled steel sheet having excellent bendability and crash worthiness and method for manufacturing the same
DE102016110661A1 (en) * 2016-06-09 2017-12-14 Salzgitter Flachstahl Gmbh Process for producing a cold-rolled steel strip from a high-strength, manganese-containing steel
CN110026433B (en) * 2019-03-20 2021-07-23 首钢集团有限公司 Method for improving surface quality of P-containing high-strength IF steel continuous annealing plate
CN114599804B (en) * 2019-11-13 2024-03-29 日本制铁株式会社 Steel material
KR102566353B1 (en) 2021-08-26 2023-08-14 현대제철 주식회사 Cold-rolled steel sheet with excellent plastic anisotropy and strength and method of manufacturing the same

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825436A (en) * 1981-08-10 1983-02-15 Kawasaki Steel Corp Manufacture of deep drawing cold rolling steel plate having slow aging property and small anisotropy
JPS5884929A (en) * 1981-11-17 1983-05-21 Nippon Steel Corp Production of cold-rolled steel plate for deep drawing having excellent nonaging property and curing performance for baked paint
JPS5967322A (en) * 1982-10-08 1984-04-17 Kawasaki Steel Corp Manufacture of cold rolled steel plate for deep drawing
JPH01191765A (en) * 1988-01-26 1989-08-01 Nippon Steel Corp High-tensile steel for low temperature use excellent in toughness in weld zone and containing dispersed fine-grained titanium oxide and sulfide
JPH07116509B2 (en) * 1989-02-21 1995-12-13 日本鋼管株式会社 Non-oriented electrical steel sheet manufacturing method
JPH05339640A (en) * 1990-12-10 1993-12-21 Kobe Steel Ltd Production of cold rolled steel sheet reduced in plastic anisotropy
US5200005A (en) * 1991-02-08 1993-04-06 Mcgill University Interstitial free steels and method thereof
EP0559225B1 (en) * 1992-03-06 1999-02-10 Kawasaki Steel Corporation Producing steel sheet having high tensile strength and excellent stretch flanging formability
JP3096165B2 (en) * 1992-08-18 2000-10-10 川崎製鉄株式会社 Manufacturing method of cold rolled steel sheet with excellent deep drawability
JP3219220B2 (en) * 1993-03-31 2001-10-15 住友金属鉱山株式会社 Air electrode precursor green sheet and molten carbonate fuel cell using the same
CA2149522C (en) * 1993-10-05 1999-08-24 Yoshihiro Hosoya Continuously annealed cold-rolled steel sheet excellent in balance between deep drawability and resistance to secondary-work embrittlement and method for manufacturing same
JPH07179946A (en) * 1993-12-24 1995-07-18 Kawasaki Steel Corp Production of high workability high tensile strength cold rolled steel plate excellent in secondary working brittleness resistance
JPH08283909A (en) * 1995-04-17 1996-10-29 Nippon Steel Corp Cold rolled steel sheet excellent in uniformity of workability and its production
JP3420370B2 (en) * 1995-03-16 2003-06-23 Jfeスチール株式会社 Thin steel sheet excellent in press formability and method for producing the same
JP3293450B2 (en) * 1996-02-27 2002-06-17 日本鋼管株式会社 Manufacturing method of cold-rolled steel sheet for deep drawing
DE19628714C1 (en) 1996-07-08 1997-12-04 Mannesmann Ag Process for the production of precision steel tubes
JP3745496B2 (en) * 1997-04-18 2006-02-15 新日本製鐵株式会社 Manufacturing method of cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet with excellent paint bake hardening performance
JPH11241140A (en) * 1998-02-26 1999-09-07 Nippon Steel Corp Hot dip galvanized steel sheet high in yield strength at 800 to 850×c and excellent in roll formability and its production
JPH11269625A (en) * 1998-03-25 1999-10-05 Sumitomo Metal Ind Ltd Hot dip galvannealed steel sheet and its production
JP4301638B2 (en) * 1999-05-27 2009-07-22 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent high temperature strength
JP2000345293A (en) * 1999-06-08 2000-12-12 Nippon Steel Corp Cold rolled steel sheet for deep drawing, excellent in hardenability by nitriding
KR100430981B1 (en) * 1999-08-10 2004-05-14 제이에프이 엔지니어링 가부시키가이샤 Method for producing cold rolled steel sheet having excellent deep drawing property
WO2001064967A1 (en) * 2000-02-29 2001-09-07 Kawasaki Steel Corporation High tensile cold-rolled steel sheet having excellent strain aging hardening properties
JP4069591B2 (en) * 2000-02-29 2008-04-02 Jfeスチール株式会社 Manufacturing method of cold-rolled steel sheet with excellent workability and low anisotropy
WO2001098552A1 (en) * 2000-06-20 2001-12-27 Nkk Corporation Thin steel sheet and method for production thereof
JP2002155489A (en) * 2000-11-15 2002-05-31 Shikibo Ltd Dryer canvas for paper manufacturing
KR100482208B1 (en) * 2000-11-17 2005-04-21 주식회사 포스코 Method for manufacturing steel plate having superior toughness in weld heat-affected zone by nitriding treatment
JP2002327257A (en) * 2001-04-26 2002-11-15 Nippon Steel Corp Hot-dip aluminized steel sheet superior in press formability, and manufacturing method therefor
JP4319817B2 (en) * 2001-11-19 2009-08-26 新日本製鐵株式会社 Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint
JP2003041342A (en) * 2002-05-29 2003-02-13 Nkk Corp Cold rolled steel sheet superior in stamping property
US20040250930A1 (en) * 2002-06-28 2004-12-16 Hee-Jae Kang Super formable high strength steel sheet and method of manufacturing thereof
KR100928797B1 (en) * 2002-12-26 2009-11-25 주식회사 포스코 Ultra low carbon bainite steel with excellent toughness of high heat input welding heat affected zone and manufacturing method
JP4341396B2 (en) * 2003-03-27 2009-10-07 Jfeスチール株式会社 High strength hot rolled steel strip for ERW pipes with excellent low temperature toughness and weldability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
미국 특허공보 6290788(2001.09.18)호

Also Published As

Publication number Publication date
KR20060115623A (en) 2006-11-09
KR20060115309A (en) 2006-11-08
KR100723181B1 (en) 2007-05-29
KR20060115625A (en) 2006-11-09
KR20060115632A (en) 2006-11-09
KR20060115646A (en) 2006-11-09
KR100723164B1 (en) 2007-05-30
KR100742933B1 (en) 2007-07-25
KR100742950B1 (en) 2007-07-25
KR100742939B1 (en) 2007-07-25
KR100742935B1 (en) 2007-07-25
KR100723165B1 (en) 2007-05-30
KR100723180B1 (en) 2007-05-30
KR100742818B1 (en) 2007-07-25
KR20060115320A (en) 2006-11-08
KR20060115621A (en) 2006-11-09
KR100742948B1 (en) 2007-07-25
KR20060115637A (en) 2006-11-09
KR100742934B1 (en) 2007-07-25
KR20060115631A (en) 2006-11-09
CN101184858B (en) 2010-12-08
KR20060115313A (en) 2006-11-08
KR20060115311A (en) 2006-11-08
KR100742918B1 (en) 2007-07-25
KR20060115636A (en) 2006-11-09
US20090126837A1 (en) 2009-05-21
TW200702456A (en) 2007-01-16
KR20060115644A (en) 2006-11-09
CN101184858A (en) 2008-05-21
KR100742953B1 (en) 2007-07-25
KR100742938B1 (en) 2007-07-25
JP4964870B2 (en) 2012-07-04
JP4954980B2 (en) 2012-06-20
KR20060115630A (en) 2006-11-09
KR100742941B1 (en) 2007-07-25
KR100742944B1 (en) 2007-07-25
KR100742947B1 (en) 2007-07-25
KR100723160B1 (en) 2007-05-30
KR100742940B1 (en) 2007-07-25
KR20060115622A (en) 2006-11-09
KR20060115640A (en) 2006-11-09
KR20060115317A (en) 2006-11-08
KR20060115616A (en) 2006-11-09
KR100742927B1 (en) 2007-07-25
TWI346141B (en) 2011-08-01
KR20060115639A (en) 2006-11-09
MX2007013675A (en) 2008-01-28
TW200702444A (en) 2007-01-16
KR100742917B1 (en) 2007-07-25
KR20060115641A (en) 2006-11-09
KR100742937B1 (en) 2007-07-25
KR20060115319A (en) 2006-11-08
JP4954981B2 (en) 2012-06-20
TWI327171B (en) 2010-07-11
KR100723159B1 (en) 2007-05-30
KR20060115315A (en) 2006-11-08
KR20060115634A (en) 2006-11-09
KR100742949B1 (en) 2007-07-25
MX2007013677A (en) 2008-01-28
KR20060115626A (en) 2006-11-09
KR20060115633A (en) 2006-11-09
KR20060115645A (en) 2006-11-09
MX2007013676A (en) 2008-01-28
KR100723182B1 (en) 2007-05-29
CN100557058C (en) 2009-11-04
KR20060115312A (en) 2006-11-08
KR20060115314A (en) 2006-11-08
KR20060115318A (en) 2006-11-08
KR20060115629A (en) 2006-11-09
KR100742932B1 (en) 2007-07-25
JP2008540825A (en) 2008-11-20
KR100742951B1 (en) 2007-07-25
KR100742929B1 (en) 2007-07-25
KR100742819B1 (en) 2007-07-25
US20080185077A1 (en) 2008-08-07
KR20060115614A (en) 2006-11-09
KR20060115627A (en) 2006-11-09
KR100723163B1 (en) 2007-05-30
KR100742926B1 (en) 2007-07-25
KR20060115310A (en) 2006-11-08
JP2008540827A (en) 2008-11-20
KR20060115615A (en) 2006-11-09
KR20060115642A (en) 2006-11-09
KR20060115624A (en) 2006-11-09
KR20060115316A (en) 2006-11-08
CN101171355A (en) 2008-04-30
KR100742954B1 (en) 2007-07-25
TW200702455A (en) 2007-01-16
KR100742919B1 (en) 2007-07-25
KR20060115628A (en) 2006-11-09
KR20060115647A (en) 2006-11-09
KR100723158B1 (en) 2007-05-30
JP2008540826A (en) 2008-11-20
KR100742955B1 (en) 2007-07-25
KR100742936B1 (en) 2007-07-25
KR20060115638A (en) 2006-11-09
KR20060115643A (en) 2006-11-09
KR20060115635A (en) 2006-11-09
KR100742945B1 (en) 2007-07-25
KR100742931B1 (en) 2007-07-25
KR100742952B1 (en) 2007-07-25
CN101171356A (en) 2008-04-30
KR100723216B1 (en) 2007-05-29
TWI309263B (en) 2009-05-01
KR100742943B1 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
KR100742930B1 (en) Non-aging type cold rolled steel sheet with high yield ratio and process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
G170 Re-publication after modification of scope of protection [patent]
FPAY Annual fee payment

Payment date: 20120702

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20130708

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140721

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150720

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20160719

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20170720

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20180719

Year of fee payment: 12