KR20040106399A - High energy density capacitors - Google Patents
High energy density capacitors Download PDFInfo
- Publication number
- KR20040106399A KR20040106399A KR10-2004-7017255A KR20047017255A KR20040106399A KR 20040106399 A KR20040106399 A KR 20040106399A KR 20047017255 A KR20047017255 A KR 20047017255A KR 20040106399 A KR20040106399 A KR 20040106399A
- Authority
- KR
- South Korea
- Prior art keywords
- capacitors
- electrically conductive
- conductive layer
- capacitor
- porous body
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 38
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract description 11
- 238000004146 energy storage Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000009499 grossing Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 230000007704 transition Effects 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000011800 void material Substances 0.000 claims 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 239000003985 ceramic capacitor Substances 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940087654 iron carbonyl Drugs 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- UUCCCPNEFXQJEL-UHFFFAOYSA-L strontium dihydroxide Chemical compound [OH-].[OH-].[Sr+2] UUCCCPNEFXQJEL-UHFFFAOYSA-L 0.000 description 1
- 229910001866 strontium hydroxide Inorganic materials 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- -1 titanium alkoxide Chemical class 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/162—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
Abstract
본 발명은 제1 전기 전도성 층, 제2 티탄산바륨 층 및 추가 전기 전도성 층이 도포된, 불활성 다공체를 포함하는 커패시터를 제공한다.The present invention provides a capacitor comprising an inert porous body to which a first electrically conductive layer, a second barium titanate layer and an additional electrically conductive layer are applied.
Description
본 발명은 제1 전기 전도성 층, 제2 티탄산바륨 층 및 추가 전기 전도성 층이 도포된, 불활성 다공체 (porous shaped body)를 포함하는 커패시터에 관한 것이다.The present invention relates to a capacitor comprising an inert porous body, to which a first electrically conductive layer, a second barium titanate layer and an additional electrically conductive layer are applied.
커패시터는 정보 기술 및 전기 에너지 공학 분야에서 많은 역할을 수행한다. 최근에는 고에너지밀도를 갖고, 전지로서 역할을 수행할 수 있거나 단기 고부하 요건을 충족시키는데 사용될 수 있는 커패시터가 연구되고 있다.Capacitors play many roles in information technology and electrical energy engineering. Recently, capacitors have been studied that have high energy density and can serve as cells or be used to meet short term high load requirements.
문헌[Electrohemica Acta 45 (2000), 2483 내지 2498]에 전기화학적 또는 이중층 커패시터가 개시되어 있다. 또한, 슈퍼커패시터 또는 울트라커패시터라고도 알려진 이들 디바이스는 직렬로 연결된 2개의 커패시터에 전기 에너지를 저장하고, 각각은 전해질 내에 2개의 전극 사이에 형성된 전기 이중층 및 이온을 갖는다. 전하 분리가 일어나는 거리는 단지 수 옹스트롬이다. 전해질로서 2,500 ㎡/g 이하의 내부 표면적을 갖는 고도의 다공성 탄소가 사용된다. 커패시터 수학식 C = E0ㆍEㆍA/d에서 나타낸 바와 같이, 넓은 면적 A 및 작은 간격 d에서 100 farad/㎤ 이하의 정전용량이 가능하다.Electrohemica Acta 45 (2000), 2483-2498 discloses electrochemical or double layer capacitors. Also known as supercapacitors or ultracapacitors, these devices store electrical energy in two capacitors connected in series, each having an electrical double layer and ions formed between two electrodes in the electrolyte. The distance at which charge separation occurs is only a few angstroms. As the electrolyte, highly porous carbon having an internal surface area of 2,500 m 2 / g or less is used. Capacitor Equation C = E0100 farad / cm 3 at large area A and small distance d, as indicated by E · A / d The following capacitances are possible.
상기 식에서,Where
C는 정전용량이고, E0는 절대 유전상수이며, E는 유전체의 유전상수이고, A는 커패시터의 면적이며, d는 전극 사이의 거리이다.C is the capacitance, E 0 is the absolute dielectric constant, E is the dielectric constant of the dielectric, A is the area of the capacitor, and d is the distance between the electrodes.
현재, 그러한 이중층 커패시터 (슈퍼커패시터)의 에너지 밀도는 종래 전지의 에너지 밀도 (리튬 이온 전지의 경우, 150 내지 200 Wh/㎏)보다 훨씬 낮은, 3 내지 7 Wh/㎏ 또는 Wh/ℓ이다. 이는 최대 가능 전압 부하가 전해질의 전기화학적 안정성에 의해 약 3.5 V로 제한되기 때문이다.Currently, the energy density of such double layer capacitors (supercapacitors) is 3 to 7 mWW / kg or Wh / L, much lower than the energy density of conventional cells (150 to 200 mWh / kg for lithium ion cells). This is because the maximum possible voltage load is limited to about 3.5 kV by the electrochemical stability of the electrolyte.
한편, 고압에서 작동되는 커패시터의 유형, 즉 티탄산바륨 기재의 유전체를 포함하는 세라믹 커패시터가 있다.On the other hand, there are ceramic capacitors that include a type of capacitor that operates at high pressure, that is, a dielectric based on barium titanate.
200 V/0.1 ㎛ 이하의 티타네이트의 높은 유전체 파괴 저항성 때문에 높은 작동 전압에서 작동되고, 티탄산바륨 기재의 유전체를 포함하는 세라믹 커패시터가 선행 기술에 공지되어 있다. 그러나, 세라믹 커패시터는 비교적 낮은 정전용량을 갖는다.Ceramic capacitors which operate at high operating voltages and contain a barium titanate based dielectric due to the high dielectric breakdown resistance of titanate of 200 μV / 0.1 μm or less are known in the prior art. However, ceramic capacitors have a relatively low capacitance.
본 발명의 목적은 상기 언급된 단점을 개선하는 것이다.It is an object of the present invention to ameliorate the above mentioned disadvantages.
본 발명자들은 상기 목적이 제1 전기 전도성 층, 제2 티탄산바륨 층 및 추가 전기 전도성 층이 도포된, 불활성 다공체를 포함하는 신규하고 개선된 커패시터에 의해 달성됨을 발견하였다.The inventors have found that this object is achieved by a new and improved capacitor comprising an inert porous body applied with a first electrically conductive layer, a second barium titanate layer and an additional electrically conductive layer.
본 발명의 커패시터는 다음과 같이 제조될 수 있다.The capacitor of the present invention can be manufactured as follows.
제1 단계에서, 불활성 다공체에 제1 전기 전도성 층을 제공하고, 제1 전기 전도성 층에 접촉부 (contact)를 제공할 수 있다. 제2 티탄산바륨 층을 제1 층의상부에 도포할 수 있고, 마지막으로 다른 전기 전도성 층을 상기 티타네이트 층의 상부에 도포하고 접촉부를 제공할 수 있다. 상기 방식으로 수득된 커패시터를 전기 접촉부를 제외하고 밀봉, 예를 들면 캡슐화시킬 수 있다.In a first step, a first electrically conductive layer can be provided to the inert porous body, and a contact can be provided to the first electrically conductive layer. A second barium titanate layer may be applied on top of the first layer, and finally another electrically conductive layer may be applied on top of the titanate layer and provide a contact. The capacitor obtained in this way can be sealed, for example encapsulated, with the exception of the electrical contacts.
적합한 다공체는 BET 표면적이 0.1 내지 20 ㎡/g , 바람직하게는 0.5 내지 10 ㎡/g, 특히 바람직하게는 1 내지 5 ㎡/g이고, 공극 함량이 10 내지 90 부피%, 바람직하게는 30 내지 85 부피%, 특히 바람직하게는 50 내지 80 부피%이며, 공극 크기가 0.01 내지 100 ㎛, 바람직하게는 0.1 내지 30 ㎛, 특히 바람직하게는 1 내지 10 ㎛인, 일반적으로 촉매 지지 물질, 예를 들어 금속 산화물, 예를 들면 산화알루미늄, 이산화규소, 이산화티타늄, 이산화지르코늄, 산화크롬 또는 그의 혼합물, 바람직하게는 산화알루미늄, 이산화규소, 이산화티타늄, 이산화지르코늄 또는 그의 혼합물, 특히 바람직하게는 산화알루미늄, 이산화지르코늄 또는 그의 혼합물, 또는 카바이드, 바람직하게는 실리콘 카바이드를 기재로 한 것이다.Suitable porous bodies have a BET surface area of 0.1 to 20 m 2 / g. , Preferably 0.5 to 10 m 2 / g, particularly preferably 1 to 5 m 2 / g, with a pore content of 10 to 90% by volume, preferably 30 to 85% by volume, particularly preferably 50 to 80% by volume. Generally a catalyst support material, for example a metal oxide such as aluminum oxide, silicon dioxide, dioxide dioxide, with a pore size of 0.01 to 100 micrometers, preferably 0.1 to 30 micrometers, particularly preferably 1 to 10 micrometers Titanium, zirconium dioxide, chromium oxide or mixtures thereof, preferably aluminum oxide, silicon dioxide, titanium dioxide, zirconium dioxide or mixtures thereof, particularly preferably aluminum oxide, zirconium dioxide or mixtures thereof, or carbides, preferably silicon carbide It is based on.
다공체는 임의의 형상, 예를 들어 일반적으로 임의의 크기 (직경, 가장 긴 모서리 길이)의 환형, 펠릿형, 성형, 마차 바퀴형, 벌집형, 바람직하게는 입방형, 원통형, 직사각형 또는 상자형일 수 있다. 정보 기술 분야의 커패시터의 경우, 예를 들어 크기는 일반적으로 1 내지 10 ㎜의 범위이다. 에너지 공학 분야에서는 보다 큰 치수가 필요하다.The porous body can be of any shape, for example generally annular, pellet, shaped, wagon wheel, honeycomb, preferably cubic, cylindrical, rectangular or box-shaped of any size (diameter, longest edge length). have. In the case of capacitors in the field of information technology, the size, for example, generally ranges from 1 to 10 mm 3. In the field of energy engineering, larger dimensions are needed.
다공체상에 제1 전도성 층을 생성하기 위해, 금속, 예를 들면 구리, 니켈, 크롬 또는 그의 혼합물을 임의의 층 두께, 일반적으로 10 ㎚ 내지 1,000 ㎚, 바람직하게는 50 ㎚ 내지 500 ㎚, 특히 바람직하게는 100 ㎚ 내지 200 ㎚로 도포할 수 있다.In order to produce the first conductive layer on the porous body, a metal, for example copper, nickel, chromium or a mixture thereof, may be used in any layer thickness, generally 10 nm to 1,000 nm, preferably 50 nm to 500 nm, particularly preferred. Preferably, it can apply | coat to 100 micrometers-200 micrometers.
다공체에 전기 전도성 층의 도포는 공지된 모든 방법, 예를 들면 증착, 스퍼터링 또는 무전해 도금, 바람직하게는 무전해 도금을 사용하여 수행할 수 있다. 무전해 도금에서, 적합한 시판 도금액을 다공체에 침투시키거나 또는 함침시키고, 100 ℃ 미만의 온도로 가열하여 금속을 침착시킨다. 금속 침착 후, 액체, 보통 물을 승온 및 필요할 경우, 감압하에 제거할 수 있다.The application of the electrically conductive layer to the porous body can be carried out using all known methods, for example deposition, sputtering or electroless plating, preferably electroless plating. In electroless plating, a suitable commercial plating solution is impregnated or impregnated into the porous body and heated to a temperature below 100 ° C. to deposit the metal. After metal deposition, the liquid, usually water, can be removed at elevated temperature and, if necessary, under reduced pressure.
또한, 예를 들어 철 또는 니켈의 경우, 철 카르보닐 또는 니켈 카르보닐 증기에서 다공체를 가열함으로써 제1 전도성 층을 생성할 수 있다. 철의 경우, 약 150 내지 200 ℃로, 니켈의 경우 50 내지 100 ℃로 다공체를 가열할 수 있다.In addition, for example iron or nickel, the first conductive layer can be created by heating the porous body in iron carbonyl or nickel carbonyl vapor. In the case of iron, the porous body can be heated to about 150 to 200 ° C., and to 50 to 100 ° C. for nickel.
바람직한 실시양태에서, 다공체를 불활성 분위기 (예를 들면, 질소 또는 아르곤)에서 50 내지 100 ℃의 승온으로 가열하여 균질한 금속 층을 생성할 수 있다. 유사하게 적합한 액체 (위 참조)로 함침시킴으로써, 결정화 핵, 예를 들면 백금 금속 기재의 핵을 도포하는 것이 유리할 수 있다.In a preferred embodiment, the porous body can be heated to an elevated temperature of 50 to 100 ° C. in an inert atmosphere (eg nitrogen or argon) to produce a homogeneous metal layer. By impregnation with a similarly suitable liquid (see above), it may be advantageous to apply a crystallization nucleus, for example a nucleus of a platinum metal substrate.
마지막으로, 제1 금속 층에 접촉부를 제공할 수 있다. 이것은 예를 들어 금속-코팅된 다공체 영역상에 금속박을 납땜함으로써 수행할 수 있다 (제1 전극의 제조).Finally, a contact can be provided to the first metal layer. This can be done, for example, by brazing a metal foil on a metal-coated porous body region (preparation of a first electrode).
이어서, 처음에 생성된 전극의 상부에 유전체를 도포할 수 있다. 이것은 알코올 중에 크기가 10 ㎚ 미만인 결정성 티타네이트 입자의 분산액을 사용하여 유리하게 수행된다. 상기 분산액은 독일출원 제102 21 499.9호 (O.Z. 0050/53537)에기재된 바와 같이, 티타늄 알콕시드와 알코올성 용액 중 수산화바륨 또는 수산화스트론튬을 반응시켜 제조할 수 있다.The dielectric may then be applied on top of the electrode initially produced. This is advantageously done using a dispersion of crystalline titanate particles of less than 10 nm in size in alcohol. The dispersion may be prepared by reacting titanium alkoxide with barium hydroxide or strontium hydroxide in an alcoholic solution, as described in German Application No. 102 21 499.9 (O.Z. 0050/53537).
5 내지 60 중량%, 바람직하게는 10 내지 40 중량%의 티타네이트 입자를 함유할 수 있는 상기 분산액을 다공체에 침투시키거나 또는 함침시킨 후, 온도를 30 내지 100 ℃, 바람직하게는 50 내지 80 ℃로 증가시키고, 필요할 경우 주변 압력을 감소시켜 알코올을 제거하여 제1 전극상에 티타늄 입자를 침착시킬 수 있다.After permeating or impregnating the dispersion, which may contain 5 to 60% by weight, preferably 10 to 40% by weight, of the titanate particles, the temperature is 30 to 100 ° C, preferably 50 to 80 ° C. And, if necessary, the ambient pressure can be reduced to remove alcohol to deposit titanium particles on the first electrode.
균질하고 치밀한 유전체 층을 생성하기 위해, 다공체를 불활성 가스 분위기에서 700 내지 1,200 ℃, 바람직하게는 900 내지 1,100 ℃로 가열하여 티타네이트 입자를 함께 소결시킴으로써 치밀한 막을 형성시킬 수 있다.To produce a homogeneous and dense dielectric layer, the porous body can be heated to 700 to 1,200 ° C., preferably 900 to 1,100 ° C., in an inert gas atmosphere to sinter the titanate particles together to form a dense film.
층 두께를 증가시키기 위해, 티타네이트 분산액에 의한 함침 및 소결을 수 회 반복할 수 있다. 층 두께는 일반적으로 10 내지 1,000 ㎚, 바람직하게는 20 내지 500 ㎚, 특히 바람직하게는 100 내지 300 ㎚이다.To increase the layer thickness, impregnation and sintering with titanate dispersion can be repeated several times. The layer thickness is generally 10 to 1,000 nm, preferably 20 to 500 nm and particularly preferably 100 to 300 nm.
마지막으로, 제1 전극 층에서 사용된 것과 유사한 방식으로 제2 전극 층을 도포할 수 있다.Finally, the second electrode layer can be applied in a manner similar to that used for the first electrode layer.
제2 전극 층을 도포한 후, 제1 접촉부 맞은 편 면상에 접촉부를 제공하여 커패시터를 생성할 수 있다. 보호 및 절연을 목적으로 커패시터를 밀폐적으로 캡슐화할 수 있다.After applying the second electrode layer, a contact can be provided on a surface opposite the first contact to create a capacitor. Capacitors can be encapsulated encapsulated for protection and insulation purposes.
본 발명의 커패시터는 전기 에너지 공학 분야에서 스무딩 (smoothing) 커패시터 또는 에너지 저장 커패시터 또는 상 전이 커패시터로서, 정보 기술 분야에서 커플링 커패시터, 필터 커패시터 또는 소형 에너지 저장 커패시터로서 적합하다.The capacitor of the present invention is a smoothing capacitor or an energy storage capacitor or a phase transition capacitor in the field of electrical energy engineering, and is suitable as a coupling capacitor, a filter capacitor or a small energy storage capacitor in the information technology field.
본 발명의 커패시터는 하기와 같이 예시될 수 있다.The capacitor of the present invention can be illustrated as follows.
상대적 유전상수 5,000에서 2 ㎡/g의 다공체의 비표면적 (BET 표면적) 및 0.1 ㎛의 티탄산바륨 층 두께 (문헌["The Effect of Grain Size on the Dielectric Properties of Barium Titanate Ceramic", A.J. Bell and A.J. Moulson, in Electrical Ceramics", British Ceramic Proceedings No. 36, October 1985, pages 57-65])는 1페이지, 16행 내지 17행의 수학식에 따라 계산된 약 1 farad/㎤의 정전용량을 제공한다. 그러한 커패시터는 200 V의 전압으로 충전될 수 있고, 이 경우 그의 에너지 밀도는 20,000 Ws/㎤ 또는 약 5.5 kWh/ℓ이다.Specific surface area (BET surface area) of porous body of relative dielectric constant 5,000 to 2 m 2 / g and barium titanate layer thickness of 0.1 μm (“The Effect of Grain Size on the Dielectric Properties of Barium Titanate Ceramic”, AJ Bell and AJ Moulson , in Electrical Ceramics ", British Ceramic Proceedings No. 36, October 1985, pages 57-65) provide a capacitance of about 1 dB farad / cm 3 calculated according to the equation in page 1, rows 16 to 17. Such a capacitor may be charged to a voltage of 200 kVV, in which case its energy density is 20,000 kWW / cm 3 or about 5.5 kW kWh / l.
Claims (6)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10221498.0 | 2002-05-14 | ||
DE10221498A DE10221498A1 (en) | 2002-05-14 | 2002-05-14 | High energy density capacitors |
PCT/EP2003/004928 WO2003096362A2 (en) | 2002-05-14 | 2003-05-12 | High energy density capacitors |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040106399A true KR20040106399A (en) | 2004-12-17 |
Family
ID=29413822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2004-7017255A KR20040106399A (en) | 2002-05-14 | 2003-05-12 | High energy density capacitors |
Country Status (9)
Country | Link |
---|---|
US (2) | US7023687B2 (en) |
EP (1) | EP1506555A2 (en) |
JP (1) | JP2005525700A (en) |
KR (1) | KR20040106399A (en) |
CN (1) | CN1653566A (en) |
AU (1) | AU2003242534A1 (en) |
DE (1) | DE10221498A1 (en) |
TW (1) | TW200401314A (en) |
WO (1) | WO2003096362A2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1362830B1 (en) * | 2002-05-14 | 2006-11-29 | Basf Aktiengesellschaft | Method for producing barium- or strontium titanate with average diameters lower than 10 nanometer |
DE102004052086A1 (en) * | 2004-10-26 | 2006-04-27 | Basf Ag | High energy density capacitors |
WO2007125026A2 (en) * | 2006-04-26 | 2007-11-08 | Basf Se | Method for the production of a coating of a porous, electrically conductive support material with a dielectric, and production of capacitors having high capacity density with the aid of said method |
US8259432B2 (en) * | 2009-02-02 | 2012-09-04 | Space Charge, LLC | Capacitors using preformed dielectric |
US20100200393A1 (en) * | 2009-02-09 | 2010-08-12 | Robert Chow | Sputter deposition method and system for fabricating thin film capacitors with optically transparent smooth surface metal oxide standoff layer |
WO2011050374A1 (en) | 2009-10-30 | 2011-05-05 | Franz Oberthaler | Electrical capacitor having a high energy density |
DK2630811T3 (en) * | 2010-10-19 | 2016-02-08 | Sonova Ag | A hearing instrument, comprising a rechargeable power source |
DE102010043748A1 (en) | 2010-11-11 | 2012-05-16 | Robert Bosch Gmbh | Method for producing a capacitive storage element, storage element and its use |
US9396880B2 (en) | 2011-11-16 | 2016-07-19 | Martin A. Stuart | High energy density storage device |
CN103946937B (en) * | 2011-11-16 | 2017-03-15 | M·A·斯图尔特 | high energy density storage device |
US9287701B2 (en) | 2014-07-22 | 2016-03-15 | Richard H. Sherratt and Susan B. Sherratt Revocable Trust Fund | DC energy transfer apparatus, applications, components, and methods |
CN105161304A (en) * | 2015-06-22 | 2015-12-16 | 广东明路电力电子有限公司 | Honeycomb electrode capacitor |
KR101912286B1 (en) * | 2017-03-27 | 2018-10-29 | 삼성전기 주식회사 | Capacitor Component |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4061584A (en) * | 1974-12-13 | 1977-12-06 | General Electric Company | High dielectric constant ink for thick film capacitors |
EP0146284B1 (en) | 1983-11-29 | 1988-06-29 | Sony Corporation | Methods of manufacturing dielectric metal titanates |
JPH0653253B2 (en) | 1986-11-08 | 1994-07-20 | 松下電工株式会社 | Roughening method of ceramic substrate |
US4766522A (en) * | 1987-07-15 | 1988-08-23 | Hughes Aircraft Company | Electrochemical capacitor |
JP2787953B2 (en) | 1989-08-03 | 1998-08-20 | イビデン株式会社 | Electronic circuit board |
JP2536458B2 (en) * | 1994-08-16 | 1996-09-18 | 日本電気株式会社 | Disulfonic acid compound, conductive polymer using it as a dopant, conductive material, and solid electrolytic capacitor using the same |
EP0714108B1 (en) * | 1994-11-25 | 1999-11-03 | Nec Corporation | Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same |
US5600535A (en) * | 1994-12-09 | 1997-02-04 | The United States Of America As Represented By The Secretary Of The Army | Amorphous thin film electrode materials from hydrous metal oxides |
US5790368A (en) * | 1995-06-27 | 1998-08-04 | Murata Manufacturing Co., Ltd. | Capacitor and manufacturing method thereof |
US5825611A (en) * | 1997-01-29 | 1998-10-20 | Vishay Sprague, Inc. | Doped sintered tantalum pellets with nitrogen in a capacitor |
JP3391269B2 (en) * | 1998-01-20 | 2003-03-31 | 株式会社村田製作所 | Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method |
DE19943103A1 (en) * | 1999-09-09 | 2001-03-15 | Wacker Chemie Gmbh | Highly filled SiO2 dispersion, process for its production and use |
US6519136B1 (en) * | 2002-03-29 | 2003-02-11 | Intel Corporation | Hybrid dielectric material and hybrid dielectric capacitor |
-
2002
- 2002-05-14 DE DE10221498A patent/DE10221498A1/en not_active Withdrawn
-
2003
- 2003-05-12 AU AU2003242534A patent/AU2003242534A1/en not_active Abandoned
- 2003-05-12 EP EP03749884A patent/EP1506555A2/en not_active Withdrawn
- 2003-05-12 US US10/513,361 patent/US7023687B2/en not_active Expired - Fee Related
- 2003-05-12 KR KR10-2004-7017255A patent/KR20040106399A/en not_active Application Discontinuation
- 2003-05-12 US US10/435,081 patent/US20030214776A1/en not_active Abandoned
- 2003-05-12 CN CNA03810573XA patent/CN1653566A/en active Pending
- 2003-05-12 WO PCT/EP2003/004928 patent/WO2003096362A2/en active Application Filing
- 2003-05-12 JP JP2004504248A patent/JP2005525700A/en active Pending
- 2003-05-13 TW TW092112940A patent/TW200401314A/en unknown
Also Published As
Publication number | Publication date |
---|---|
CN1653566A (en) | 2005-08-10 |
AU2003242534A8 (en) | 2003-11-11 |
DE10221498A1 (en) | 2003-12-04 |
US20050152090A1 (en) | 2005-07-14 |
EP1506555A2 (en) | 2005-02-16 |
TW200401314A (en) | 2004-01-16 |
WO2003096362A3 (en) | 2004-08-26 |
US7023687B2 (en) | 2006-04-04 |
JP2005525700A (en) | 2005-08-25 |
AU2003242534A1 (en) | 2003-11-11 |
US20030214776A1 (en) | 2003-11-20 |
WO2003096362A2 (en) | 2003-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghaffari et al. | High‐Volumetric Performance Aligned Nano‐Porous Microwave Exfoliated Graphite Oxide‐based Electrochemical Capacitors | |
US10644324B2 (en) | Electrode material and energy storage apparatus | |
KR20040106399A (en) | High energy density capacitors | |
US9496090B2 (en) | Method of making graphene electrolytic capacitors | |
CN101689429A (en) | Electrode foil, process for producing the electrode foil, and electrolytic capacitor | |
KR20070084572A (en) | Capacitors having a high energy density | |
US3330999A (en) | Electrolytic capacitor with dielectric film formed on ceramic material | |
GB2530576A (en) | Method of forming a dielectric layer on an electrode | |
RU2686690C1 (en) | Film capacitor | |
US3373320A (en) | Solid aluminum capacitor with aluminum felt electrodes | |
Zou et al. | Development of the 40 V hybrid super-capacitor unit | |
RU2528010C2 (en) | Solid-state multi-component oxide-based supercapacitor | |
US9312076B1 (en) | Very high energy-density ultracapacitor apparatus and method | |
JP2005142381A (en) | Electric double layer capacitor and method for manufacturing same | |
KR20050055271A (en) | Super electrochemical capacitor having different electric charge of electrode plate | |
Kumari et al. | High dielectric materials for supercapacitors | |
JPH02185008A (en) | Electric double layer capacitor | |
RU2718532C1 (en) | Film capacitor | |
EP4078634B1 (en) | An electrode for a supercapacitor comprising a grass like dielectric | |
JP3417206B2 (en) | Activated carbon material for electric double layer capacitors | |
RU2729880C1 (en) | Solid-state capacitor-ionistor with dielectric layer made of dielectric nanopowder | |
US4950080A (en) | Metallic strip designed for the manufacture of solid electrolyte capacitors, manufacturing method thereof, and capacitors obtained thereby | |
JPS6042809A (en) | Electric double layer capacitor | |
JPS6323647B2 (en) | ||
JP2003224037A (en) | Electric double layer capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |