WO2011050374A1 - Electrical capacitor having a high energy density - Google Patents
Electrical capacitor having a high energy density Download PDFInfo
- Publication number
- WO2011050374A1 WO2011050374A1 PCT/AT2009/000420 AT2009000420W WO2011050374A1 WO 2011050374 A1 WO2011050374 A1 WO 2011050374A1 AT 2009000420 W AT2009000420 W AT 2009000420W WO 2011050374 A1 WO2011050374 A1 WO 2011050374A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitors
- electrode
- capacitor
- activated carbon
- energy density
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 36
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 35
- 229910002113 barium titanate Inorganic materials 0.000 claims abstract description 11
- 239000000919 ceramic Substances 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000009499 grossing Methods 0.000 claims 1
- 239000006262 metallic foam Substances 0.000 claims 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 abstract description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 4
- 238000004870 electrical engineering Methods 0.000 abstract 1
- 238000009768 microwave sintering Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000006070 nanosuspension Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/008—Selection of materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/1209—Ceramic dielectrics characterised by the ceramic dielectric material
- H01G4/1218—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
- H01G4/1227—Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
Definitions
- the present invention relates to capacitors in which an electrode is made of activated carbon having a high surface area, which is coated with a thin layer of titanium oxide or barium titanate. In turn, an electrically conductive layer is applied as a second electrode to this layer.
- Object of the invention in question is to satisfy the demand for energy storage with the highest possible energy density.
- this technology it is possible to store such large amounts of energy that use in power engineering is possible and intended.
- existing batteries are to be replaced and exceeded in their properties by far.
- Double-layer capacitors are known. Such capacitors are commercially available from several manufacturers worldwide and are easily available to the end user. Such double-layer capacitors, also referred to as supercaps, gold caps or ultracaps, work with an electrolyte which only allows a dielectric strength of a few volts (eg 2.5 V) and thus greatly limits the energy content that can be achieved despite a very high capacity. Double-layer capacitors also have activated carbon as electrodes with very large internal surfaces (1000-2500 m 2 / g). Due to the ions of the electrolyte and the applied voltage, a charge carrier layer of different polarity forms on both activated carbon electrodes and simultaneously acts as a dielectric of a few molecule layers in thickness. Thus, in principle, two capacitors are connected in series, which are separated from each other by an ion-permeable separator.
- the company BASF has developed a patent (DE 102 21 498 A 1) which describes a special design of such a capacitor.
- Barium titanate is proposed as the dielectric.
- the capacitors described consist of an inert, porous shaped body, to which a first electrically conductive layer is applied as a first electrode, then a second layer of barium titanate and finally a further electrically conductive layer as a second electrode.
- the present invention proposes a solution that allows the current-carrying components (electrodes) in any size and design.
- the active capacitor area can be increased.
- an electrode consists of activated carbon (inner surface up to 1000 m 2 / g), which is preferably coated with barium titanate as a dielectric. But there are also all other types of electroceramics possible, which can be processed in a nanotechnotogical way ⁇ z. B Ti02). On this layer is then the second electrode of z. As copper applied and contacted. In contrast to the BASF patent is thus dispensed with a first electrically conductive layer on an inert molded body and instead of the arbitrary shaped body of activated carbon itself used as a first electrode.
- the powdered activated carbon used as an electrode is first pressed with connection contacts to an arbitrary shaped body.
- To improve the electrical conductivity of the activated carbon may possibly be added graphite powder.
- a barium titanate layer or another preferably ferroelectric electroceramic material is then applied to this activated carbon compact (0.1-1 pm).
- the compact is soaked in a dispersion of nanoparticles (10-100 nm grain size) of the electroceramic. In this case, a large part of the inner surface of the activated carbon is coated with the nanoparticles.
- the dispersion liquid water or alcohols
- the ceramic particles can be sintered onto the activated carbon electrode (about 1000 ° C).
- the sintering process must be kept very short. Due to the very low layer thickness and grain size, this goal is achieved, in which the sintering process is preferably carried out in the microwave for a short time (10-30 min at 1000 W). If necessary, the process can be repeated more often to achieve a dense dielectric layer. It must also be mentioned at this point that in principle all known methods for applying thin layers can be used. These are z. As vapor deposition, sputtering or Electrofess Piating.
- the capacitors according to the invention are intended primarily for use in energy systems. They should take over the function of all previously known batteries and accumulators. Special applications are mainly small electrical appliances such as laptops, battery-powered power tools, mobile phones and the like. Due to the high achievable energy density but is expected as the largest and most important application area of the automotive industry and renewable energy (photovoltaic).
- the assumed value for the effective surface area of the activated carbon is rather low.
- the dielectric strength of barium titanate is about 200 V / 0.1 pm.
- the dielectric strength at a layer thickness of 0.2 pm would therefore be about 400 V.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
The invention relates to a capacitor having a very high energy density that can be industrially produced in a relatively easy manner, said capacitor comprising an electrode made of activated carbon, a ferroelectric electroceramic (for example, TiO2, BaTiO3) as a dielectric, and a counter-electrode. In general, the invention is based on the BASF patent DE 10221 498 A 1. Nevertheless, said invention differs fundamentally in the design and partially in the materials used. It should be kept in mind that barium titanate and other ferroelectric ceramics have been used in electrical engineering for a long time. The achieveable energy density of the capacitors may come to lie above 10 kWh/liter. The described patent claims apply to the fundamental design of the capacitors, wherein contrary to the description, activated carbon is not specified as the first porous electrode having a large surface. Another special feature is the microwave sintering.
Description
Elektrischer Kondensator mit einer hohen Energiedichte Electric capacitor with a high energy density
Patentbeschreibung Patent Description
Die vorliegende Erfindung betrifft Kondensatoren, bei denen eine Elektrode aus Aktivkohle mit großer Oberfläche ausgeführt ist, die mit einer dünnen Schicht aus Titanoxid oder Bariumtitanat überzogen wird. Auf diese Schicht wiederum wird eine elektrisch leitende Schicht als zweite Elektrode aufgetragen. The present invention relates to capacitors in which an electrode is made of activated carbon having a high surface area, which is coated with a thin layer of titanium oxide or barium titanate. In turn, an electrically conductive layer is applied as a second electrode to this layer.
Aufgabe der betreffenden Erfindung ist, die Nachfrage nach Energiespeichern mit einer möglichst hohen Energiedichte zu befriedigen. Mit dieser Technologie ist es möglich, so große Energiemengen zu speichern, dass eine Verwendung in der Energietechnik möglich und vorgesehen ist. Dabei sollen bisherige Batterien ersetzt und in deren Eigenschaften bei weitem übertroffen werden. Object of the invention in question is to satisfy the demand for energy storage with the highest possible energy density. With this technology, it is possible to store such large amounts of energy that use in power engineering is possible and intended. In this case, existing batteries are to be replaced and exceeded in their properties by far.
Bereits seit langem sind die sogenannten Doppelschichtkondensatoren bekannt. Solche Kondensatoren werden von mehreren Herstellern weltweit kommerziell angeboten und sind für den Endkunden leicht zu beziehen. Solche Doppelschichtkondensatoren, auch als Supercaps, Goldcaps oder Ultracaps bezeichnet, arbeiten mit einem Elektrolyten, der nur eine Spannungsfestigkeit von wenigen Volt (z. B. 2,5 V) gestattet und somit den erreichbaren Energieinhalt trotz sehr hoher Kapazität stark nach unten begrenzt. Doppelschichtkondensatoren besitzen als Elektroden ebenfalls Aktivkohle mit sehr großen inneren Oberflächen (1000-2500 m2/g). An beiden Aktivkohleelektroden bildet sich bedingt durch die Ionen des Elektrolyten und der angelegten Spannung eine Ladungsträgerschicht unterschiedlicher Polarität aus und wirkt gleichzeitig als Dielektrikum von wenigen Moleküllagen Dicke. Es sind also im Prinzip zwei Kondensatoren in Reihe geschaltet, die durch einen ionendurchlässigen Separator voneinander getrennt sind. For a long time, the so-called double-layer capacitors are known. Such capacitors are commercially available from several manufacturers worldwide and are easily available to the end user. Such double-layer capacitors, also referred to as supercaps, gold caps or ultracaps, work with an electrolyte which only allows a dielectric strength of a few volts (eg 2.5 V) and thus greatly limits the energy content that can be achieved despite a very high capacity. Double-layer capacitors also have activated carbon as electrodes with very large internal surfaces (1000-2500 m 2 / g). Due to the ions of the electrolyte and the applied voltage, a charge carrier layer of different polarity forms on both activated carbon electrodes and simultaneously acts as a dielectric of a few molecule layers in thickness. Thus, in principle, two capacitors are connected in series, which are separated from each other by an ion-permeable separator.
Kondensatorformel C=Eo x E x ^ Condenser formula C = Eo x E x ^
α α
C... Kapazität C ... capacity
Eo... absolute Dielektrizitätskonstante (8,854188x10 2) Eo ... absolute dielectric constant (8,854188x10 2)
E... Dielektrizitätskonstante des Dielektrikums E ... Dielectric constant of the dielectric
F... Fläche des Kondensators F ... area of the capacitor
d... Abstand zwischen den Elektroden d ... distance between the electrodes
Energieinhalt eines Kondensators Energy content of a capacitor
W=% x C U2 W =% x CU 2
W... Energieinhalt W ... energy content
C... Kapazität C ... capacity
U... Ladespannung U ... charging voltage
Aus den oben angeführten Formeln geht hervor, wie die sehr große Kapazität bei diesen Kondensatoren erreicht wird (große Oberflächen der Aktivkohleelektroden, sehr .dünne" Dielektrizitätsschicht von wenigen Moleküllagen). Aufgrund der geringen zulässigen Ladespannung erreicht man jedoch nur eine sehr kleine Energiedichte von derzeit bis maximal ca. 7 Wh/kg. Herkömmliche Batterien erreichen Werte bis etwa 200 Wh/kg. The above formulas show how to achieve the very large capacitance of these capacitors (large surfaces of the activated carbon electrodes, very thin dielectric layer of a few molecular layers), but due to the low allowable charging voltage, only a very low energy density is achieved from present to 7 Wh / kg maximum, conventional batteries reach values of up to 200 Wh / kg.
Ein Schlüssel zur Erreichung hoher Energiedichten ist also eine deutliche Erhöhung der Spannung bei gleichzeitig möglichst hohen Kapazitätswerten. Es gibt bereits Bauarten von A key to achieving high energy densities is thus a significant increase in the voltage with simultaneously high capacity values. There are already types of
ERSATZBLATT (REGhL 2&)
Kondensatoren für hohe Spannungen. Diese Kondensatoren sind sogenannte Keramikkondensatoren mit spezieilen Keramiken. SUBSTITUTE SHEET (REGhL 2 & ) Capacitors for high voltages. These capacitors are so-called ceramic capacitors with special ceramics.
Die Firma BASF hat ein Patent entwickelt (DE 102 21 498 A 1), das eine spezielle Bauform eines solchen Kondensators beschreibt. Als Dielektrikum wird dabei Bariumtitanat vorgeschlagen. Im Aufbau bestehen die beschriebenen Kondensatoren aus einem inerten, porösen Formkörper, auf den eine erste elektrisch leitende Schicht als erste Elektrode aufgebracht wird, anschließend eine zweite Schicht aus Bariumtitanat und schließlich eine weitere elektrisch leitende Schicht als zweite Elektrode. The company BASF has developed a patent (DE 102 21 498 A 1) which describes a special design of such a capacitor. Barium titanate is proposed as the dielectric. In the construction, the capacitors described consist of an inert, porous shaped body, to which a first electrically conductive layer is applied as a first electrode, then a second layer of barium titanate and finally a further electrically conductive layer as a second electrode.
Bis heute gibt es jedoch noch keinen Kondensator nach dieser beschriebenen Bauart auf dem Markt. Ein Grund dafür könnte eine zu erwartende geringe Stromtragfähigkeit sein aufgrund der sehr dünnen Eiektrodenflächen von nur ca. 50-500 nm. Die Elektrodenfläche muss deshalb so dünn sein, damit die Mikroporen des keramischen Grundkörpers auch nach der Bariumtitanatschicht noch für die zweite Elektrode als Fläche verfügbar sind. To date, however, there is still no capacitor according to this type described on the market. One reason for this could be expected low current carrying capacity due to the very thin Eiektrodenflächen of only about 50-500 nm. The electrode surface must therefore be so thin that the micropores of the ceramic body even after the barium titanate still available for the second electrode as a surface are.
Die vorliegende Erfindung schlägt eine Lösung vor, die die stromführenden Bauteile (Elektroden) in beliebiger Größe und Ausführung erlauben. Außerdem kann die aktive Kondensatorfläche noch vergrößert werden. The present invention proposes a solution that allows the current-carrying components (electrodes) in any size and design. In addition, the active capacitor area can be increased.
Es wird im Folgenden eine Bauform beschrieben, bei der eine Elektrode aus Aktivkohle besteht (innere Oberfläche bis 1000 m2/g), die vorzugsweise mit Bariumtitanat als Dielektrikum beschichtet wird. Es sind aber auch alle anderen Arten von Elektrokeramiken möglich, die auf nanotechnotogische Weise verarbeitet werden können <z. B Ti02). Auf diese Schicht wird anschließend die zweite Elektrode aus z. B. Kupfer aufgebracht und kontaktiert. Im Gegensatz zum BASF Patent wird also auf eine erste elektrisch leitende Schicht auf einem inerten Formkörper verzichtet und stattdessen der beliebige Formkörper aus Aktivkohle selbst als erste Elektrode verwendet. In the following, a design is described in which an electrode consists of activated carbon (inner surface up to 1000 m 2 / g), which is preferably coated with barium titanate as a dielectric. But there are also all other types of electroceramics possible, which can be processed in a nanotechnotogical way <z. B Ti02). On this layer is then the second electrode of z. As copper applied and contacted. In contrast to the BASF patent is thus dispensed with a first electrically conductive layer on an inert molded body and instead of the arbitrary shaped body of activated carbon itself used as a first electrode.
Die verwendete pulverförmige Aktivkohle als Elektrode wird zunächst mit Anschlußkontakten zu einem beliebigen Formkörper gepresst. Zur Verbesserung der elektrischen Leitfähigkeit kann der Aktivkohle eventuell Graphitpulver beigemengt werden. Auf diesen Aktivkohlepressling wird nun eine Bariumtitanatschicht oder eine andere vorzugsweise ferroelektrische Elektrokeramik aufgetragen (0,1-1 pm). Zu diesem Zweck wird der Pressling in einer Dispersion aus Nanopartikeln (10-100 nm Korngröße) der Elektrokeramik getränkt. Dabei wird ein Großteil der inneren Oberfläche der Aktivkohle mit den Nanopartikeln überzogen. Anschließend muss die Dispersionsflüssigkeit (Wasser oder Alkohole) verdampft werden, damit in einem nachfolgenden Schritt die Keramikteilchen auf die Aktivkohleelektrode aufgesintert werden können (ca. 1000°C). Damit bei diesem Prozess möglichst keine chemische Reaktion mit dem Grundmaterial Aktivkohle stattfinden kann, muss der Sinterprozess sehr kurz gehalten werden. Aufgrund der sehr geringen Schichtstärke und Korngröße wird dieses Ziel erreicht, in dem der Sinterprozess vorzugsweise in der Mikrowelle für kurze Zeit (10-30 min bei 1000 W) vorgenommen wird. Zur Erreichung einer dichten Dielektrikumsschicht kann der Vorgang gegebenenfalls öfters wiederholt werden. An dieser Stelle muss auch erwähnt werden, dass grundsätzlich alle bekannten Methoden zum Aufbringen dünner Schichten verwendet werden können. Dies sind z. B. Aufdampfen, Sputtern oder Electrofess Piating. The powdered activated carbon used as an electrode is first pressed with connection contacts to an arbitrary shaped body. To improve the electrical conductivity of the activated carbon may possibly be added graphite powder. A barium titanate layer or another preferably ferroelectric electroceramic material is then applied to this activated carbon compact (0.1-1 pm). For this purpose, the compact is soaked in a dispersion of nanoparticles (10-100 nm grain size) of the electroceramic. In this case, a large part of the inner surface of the activated carbon is coated with the nanoparticles. Subsequently, the dispersion liquid (water or alcohols) must be evaporated, so that in a subsequent step, the ceramic particles can be sintered onto the activated carbon electrode (about 1000 ° C). To ensure that no chemical reaction with the base material activated carbon takes place during this process, the sintering process must be kept very short. Due to the very low layer thickness and grain size, this goal is achieved, in which the sintering process is preferably carried out in the microwave for a short time (10-30 min at 1000 W). If necessary, the process can be repeated more often to achieve a dense dielectric layer. It must also be mentioned at this point that in principle all known methods for applying thin layers can be used. These are z. As vapor deposition, sputtering or Electrofess Piating.
Das Aufbringen der zweiten, diesmal elektrisch leitfähigen Schicht aus z. B. Kupfer kann anschließend nach der gleichen Methode mit einer Nanosuspension aus Kupfer oder anderen Metallen ausgeführt werden. Auch hier kann das Aufsintern durch Mikrowelle erfolgen. Das Verstärken dieser Elektrodenschicht kann auf einfachste Weise durch Aufdoppeln mit einem entsprechenden Elektrodenmaterial (Kupfer, Aluminium, Silber...) erfolgen. Es muss hier noch einmal ausdrücklich auf die anderen erwähnten Fertigungsverfahren hingewiesen werden, die natürlich ebenfalls verwendet werden können. Nach dem Kontaktieren (Auflöten eines Anschlußkontaktes) ist der Kondensator fertig und wird noch in einem Gehäuse aus Aluminiumblech oder Kunststoff hermetisch mit einer Vergussmasse vergossen. Der Kondensator besitzt also zwei Elektroden aus unterschiedlichen Materialien (Aktivkohle und Kupfer), wobei die schlechter leitende Elektrode gleichzeitig den Innenwiderstand der Energiezelle bestimmt.
Die erfindungsgemäßen Kondensatoren sind vor allem für den Einsatz in Energiesystemen gedacht. Dabei sollen sie die Funktion von allen bisher bekannten Batterien und Akkumulatoren übernehmen. Besondere Einsatzgebiete stellen dabei vor allem Elektrokleingeräte wie Laptops, akkubetriebene Elektrowerkzeuge, Mobiltelefone und ähnliches dar. Durch die hohe erreichbare Energiedichte Ist aber als größtes und wichtigstes Verwendungsgebiet die Fahrzeugindustrie und erneuerbare Energieformen (Photovoltaik) zu erwarten. The application of the second, this time electrically conductive layer of z. B. Copper can then be made by the same method with a nanosuspension of copper or other metals. Again, the sintering can be done by microwave. Reinforcing this electrode layer can be done in the simplest way by doubling with a corresponding electrode material (copper, aluminum, silver ...). It must be pointed out again explicitly on the other mentioned manufacturing processes, which of course can also be used. After contacting (soldering a terminal contact), the capacitor is ready and is hermetically sealed in a housing made of aluminum sheet or plastic with a potting compound. The capacitor thus has two electrodes of different materials (activated carbon and copper), wherein the poorly conductive electrode simultaneously determines the internal resistance of the energy cell. The capacitors according to the invention are intended primarily for use in energy systems. They should take over the function of all previously known batteries and accumulators. Special applications are mainly small electrical appliances such as laptops, battery-powered power tools, mobile phones and the like. Due to the high achievable energy density but is expected as the largest and most important application area of the automotive industry and renewable energy (photovoltaic).
Beispiel: Example:
Zu erwartende Energiedichte eines Kondensators aus 1 kg Aktivkohle und einer Dielektrikumsschicht aus Banumtitanat mit 0,2 pm (Dielektrizitätskonstante 5000). Effektive Oberfläche der Aktivkohle 30 m2/g. Ladespannung 20 Volt. Expected energy density of a capacitor of 1 kg of activated carbon and a dielectric layer of barium titanate with 0.2 pm (dielectric constant 5000). Effective surface of the activated carbon 30 m 2 / g. Charging voltage 20 volts.
Kapazität aus der obenstehenden Kondensatorformel: 6640,6 F Capacitance from the above capacitor formula: 6640.6 F
Aus der Formel für den Energieinhalt eines Kondensators ergibt sich für unser Beispiel ein Wert von 132812820 J (Ws), was 36,9 kWh entspricht. The formula for the energy content of a capacitor results in a value of 132812820 J (Ws) for our example, which corresponds to 36.9 kWh.
Der angenommene Wert für die effektive Oberfläche der Aktivkohle ist dabei eher niedrig geschätzt. Die Durchschlagsfestigkeit von Banumtitanat beträgt etwa 200 V/0,1 pm. Die Spannungsfestigkeit bei einer Schichtstärke von 0,2 pm würde daher etwa 400 V betragen.
The assumed value for the effective surface area of the activated carbon is rather low. The dielectric strength of barium titanate is about 200 V / 0.1 pm. The dielectric strength at a layer thickness of 0.2 pm would therefore be about 400 V.
Claims
1. Kondensatoren, bestehend aus einer Elektrode aus großporiger Aktivkohle, einer Schicht ferroelektrischer Elektrokeramik (z. B. ΊΊ02, BaTi03) sowie einer Schicht aus einem elektrisch leitenden Material als zweite Elektrode (z. B. Kupfer oder Aluminium). 1. Capacitors, consisting of an electrode of large-pored activated carbon, a layer of ferroelectric electroceramic (eg, ΊΊ02, BaTiO3) and a layer of an electrically conductive material as a second electrode (eg, copper or aluminum).
2. Kondensatoren, die die beschriebenen Bauteile nach dem Anspruch 1 in dieser Anordnung enthalten. 2. capacitors containing the described components according to claim 1 in this arrangement.
3. Die erste poröse Elektrode ist so beschaffen, dass die wirksame Oberfläche nach der Beschichtung mit der Elektrokeramik auf Nanobasis (Korngröße zwischen 1 und 100 nm) mindestens 30 mz/g beträgt, (hoher Anteil an Makroporen bis 25 nm). Als Elektrode können dabei auch andere elektrisch leitende Werkstoffe (z. B. Metalischäume) verwendet werden. 3. The first porous electrode is such that the effective surface after coating with nano-based electro ceramic (grain size between 1 and 100 nm) is at least 30 m z / g (high proportion of macropores up to 25 nm). In this case, other electrically conductive materials (eg metal foams) can also be used as the electrode.
4. Verfahren zur Herstellung der Kondensatoren nach dem beschriebenen Aufbau aus den Ansprüchen 1, 2 und 3 insbesondere das Sintern der Kondensatoren mittels Mikrowelle. 4. A method for producing the capacitors according to the described construction of claims 1, 2 and 3, in particular the sintering of the capacitors by means of a microwave.
5. Verwendung der Kondensatoren in der elektrischen Energietechnik als Glätt- oder Speicherkondensator oder Phasenschieberkondensator. Einsatz als Speicherkondensator zur Verwendung jeder Art der elektrischen Energieversorgung. Speicherung der gewonnenen Primärenergie aus alternativen Energiequellen wie z. B. Photovottaik oder Windenergie. Verwendung der Kondensatoren in der Informationstechnologie 5. Use of the capacitors in electrical energy technology as smoothing or storage capacitor or phase shifter capacitor. Use as a storage capacitor for the use of any type of electrical power supply. Storage of the recovered primary energy from alternative energy sources such. B. Photovotaik or wind energy. Use of capacitors in information technology
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AT2009/000420 WO2011050374A1 (en) | 2009-10-30 | 2009-10-30 | Electrical capacitor having a high energy density |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/AT2009/000420 WO2011050374A1 (en) | 2009-10-30 | 2009-10-30 | Electrical capacitor having a high energy density |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011050374A1 true WO2011050374A1 (en) | 2011-05-05 |
Family
ID=42312855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/AT2009/000420 WO2011050374A1 (en) | 2009-10-30 | 2009-10-30 | Electrical capacitor having a high energy density |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2011050374A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0934819A1 (en) * | 1997-08-27 | 1999-08-11 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Coated object and process for producing the same |
DE10221498A1 (en) | 2002-05-14 | 2003-12-04 | Basf Ag | High energy density capacitors |
DE102006017902A1 (en) * | 2006-04-18 | 2007-10-25 | Forschungszentrum Karlsruhe Gmbh | Ceramic dielectric or thin and / or thick layers containing at least one ceramic dielectric, manufacturing method and use thereof |
-
2009
- 2009-10-30 WO PCT/AT2009/000420 patent/WO2011050374A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0934819A1 (en) * | 1997-08-27 | 1999-08-11 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Coated object and process for producing the same |
DE10221498A1 (en) | 2002-05-14 | 2003-12-04 | Basf Ag | High energy density capacitors |
DE102006017902A1 (en) * | 2006-04-18 | 2007-10-25 | Forschungszentrum Karlsruhe Gmbh | Ceramic dielectric or thin and / or thick layers containing at least one ceramic dielectric, manufacturing method and use thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0622815B1 (en) | Long time stable electrode and double layer capacitor with this electrode | |
DE69735728T2 (en) | Capacitor with electrical double layer | |
CN101814380B (en) | Anode for a solid electrolytic capacitor containing a non-metallic surface treatment | |
DE102007011358A1 (en) | Wet electrolytic capacitor | |
DE102007011361A9 (en) | Wet electrolytic capacitor with a cathode coating | |
DE69810956T2 (en) | DOUBLE-LAYER CAPACITOR AND THEIR PRODUCTION METHOD | |
DE2254565A1 (en) | CAPACITOR | |
DE2031798A1 (en) | Electrochemical capacitor | |
DE10000949B4 (en) | Electrochemical capacitor | |
DE69933792T3 (en) | NIOBKONDENSATOR AND METHOD FOR THE PRODUCTION OF THEREOF | |
EP2845251B1 (en) | Textured current collector foil | |
DE102009043368A1 (en) | Electrochemical capacitor containing ruthenium oxide electrodes | |
DE102008043236A1 (en) | Electrolytic capacitor anode, treated with an organometallic compound | |
DE102008041169A1 (en) | Doped ceramic powder for use in forming capacitor anodes | |
EP1552538B1 (en) | Double-layer capacitor, use of the same, and method for increasing the maximum charges of double-layer capacitor electrodes | |
DE10221498A1 (en) | High energy density capacitors | |
DE102004052086A1 (en) | High energy density capacitors | |
DE102010022831B4 (en) | Double-layer capacitor | |
WO2006012890A1 (en) | Electrolyte solution for double-layered capacitors and double-layered capacitor containing said electrolyte solution | |
WO2011050374A1 (en) | Electrical capacitor having a high energy density | |
DE10053276C1 (en) | Electrochemical capacitor used as double-layer capacitor or super-capacitor comprises single cell(s) having electrode made from nano-structured film, counter electrode, and thin film electrolyte covering electrode | |
AT12388U1 (en) | ELECTRIC CONDENSER WITH A HIGH ENERGY DILUTION | |
EP3680981B1 (en) | Electrochemical cell and assembly of electrically interconnected components | |
DE102004045009B4 (en) | Electrical component and its use | |
EP2638551B1 (en) | Method for production of a capacitive storage element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09807572 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09807572 Country of ref document: EP Kind code of ref document: A1 |