[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20040061568A - Liquid Epoxy Resin Composition for Underfill Application - Google Patents

Liquid Epoxy Resin Composition for Underfill Application Download PDF

Info

Publication number
KR20040061568A
KR20040061568A KR1020020087841A KR20020087841A KR20040061568A KR 20040061568 A KR20040061568 A KR 20040061568A KR 1020020087841 A KR1020020087841 A KR 1020020087841A KR 20020087841 A KR20020087841 A KR 20020087841A KR 20040061568 A KR20040061568 A KR 20040061568A
Authority
KR
South Korea
Prior art keywords
epoxy resin
formula
epoxy
composition
resin composition
Prior art date
Application number
KR1020020087841A
Other languages
Korean (ko)
Other versions
KR100540914B1 (en
Inventor
심정섭
장두원
김진모
김종성
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020020087841A priority Critical patent/KR100540914B1/en
Publication of KR20040061568A publication Critical patent/KR20040061568A/en
Application granted granted Critical
Publication of KR100540914B1 publication Critical patent/KR100540914B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE: A liquid epoxy resin composition for semiconductor flip chip underfill and a flip chip underfill-type semiconductor device packaged with the composition are provided, to improve thermal impact resistance, workability and the velocity charging the space between a substrate and a semiconductor device mounted to the substrate. CONSTITUTION: The liquid epoxy resin composition comprises 5-20 wt% of a hydrogenated bisphenol-based epoxy resin represented by the formula 1, or a mixture of the hydrogenated bisphenol-based epoxy resin represented by the formula 1 and a cyclohexylepoxy resin represented by the formula 2 (wherein the content of cyclohexylepoxy resin is 50 wt% or less of the total amount of epoxy resin); 1-20 wt% of an acid anhydride-based curing agent; an imidazole-based curing accelerator; 60-70 wt% of an inorganic filler; and 1-20 wt% of a polysiloxane-epoxy blend resin.

Description

반도체 언더필용 에폭시 수지 조성물{Liquid Epoxy Resin Composition for Underfill Application}Epoxy resin composition for semiconductor underfill {Liquid Epoxy Resin Composition for Underfill Application}

본 발명은 CSP (chip scale package) 의 일종인 플립 칩 언더필 (FLIP CHIP UNDERFILL)용 액상 에폭시 수지조성물 및 이 수지조성물이 사용된 팩키지에 관한 것으로, 보다 상세하게는 1) 특정 구조의 수첨 비스페놀계 에폭시 수지, 또는 상기 수첨 비수페놀계 에폭시 수지와 특정 구조의 시클로알칸계 에폭시 수지 혼합물을 포함하는 저점도 에폭시 수지, 2) 산무수물계 경화제, 3) 경화반응 촉진제, 4)무기물충진재, 및 5) 폴리실록산-에폭시혼성수지를 포함하는 반도체 언더필용 액상 에폭시 수지조성물에 관한 것이다.The present invention relates to a liquid epoxy resin composition for flip chip underfill (FLIP CHIP UNDERFILL), which is a type of CSP (chip scale package), and a package in which the resin composition is used. More specifically, 1) a hydrogenated bisphenol epoxy having a specific structure. Low viscosity epoxy resin comprising a resin or a mixture of the hydrogenated non-hydric phenol-based epoxy resin and a cycloalkane-based epoxy resin of a specific structure, 2) acid anhydride-based curing agent, 3) curing reaction accelerator, 4) inorganic filler, and 5) polysiloxane It relates to a liquid epoxy resin composition for semiconductor underfill containing epoxy hybrid resins.

전자제품의 소형화, 경박화, 다기능화에 따라 반도체 소자의 봉지 및 실장방법 등도 다변화되는 추세이다. 특히, 기존의 핀 삽입형에서 표면 실장형이 주류가 되고 있고, 상기 표면실장형 팩키지의 일종으로 플립 칩 실장 방식이 있는 바, 상기 방식은 종전과 같이 와이어본딩에 의한 접속이 아니라 칩의 표면과 기판을 솔더 범프에 의해 연결함으로서 소형, 박형화를 가능하게 하는 기술이다. 그러나 이러한 방식으로 실장된 플립 칩 팩키지를 열충격 시험을 할 경우 회로기판과 솔더범프 간 연결상태 등에 대한 신뢰성 불량의 우려가 있는데, 이는 칩과 배선 기판과 솔더 볼의 상이한 열팽창계수가 열적 스트레스를 유발하기 때문이다. 상기 열에 의한 응력을 완화시키기 위하여, 칩을 기판에 장착한 후 소자와 기판 사이의 공간을 수지로 충진하는 공정, 소위, 언더필 공정을 거치며, 이에 사용되는 소재가 언더필재로서, 상기 소재는 주로 액상이다. 작업성 측면에서, 언더필재는, 통상 25μm ∼ 100μm 의 범위인 칩과 기판 간 간극에 빠르게 침투할 수 있는 충진성이 있어야 하고, 그 신뢰성 측면에서, 솔더 볼과 크게 차이가 나지 않도록 열팽창게수가 어느정도 작아야 하며, 칩과 기판 계면에 밀착성, 즉 접착성이 좋아야 하고 상기 언급된 열응력을 완충시킬 수 있어야 한다. 일반적으로 위에 언급한 언더필재의 양호한 간극침투성을 위해서는 언더필재의 점도가 충분히 낮을 것과, 폴리이미드가 주인 기판과의 우수한 접착력이 요구되는 데, 이를 위해 에폭시 조성물의 경화제로서 산무수물이 쓰이는 경우가 많다. 타 경화제를 사용할 경우, 특히 무기물충진재가 다량 함유될 경우에 있어, 그 점도가 너무 높아져 작업성 불량의 소지가 있으며, 점도를 낮추기 위해 용제를 사용할 경우 경화 후 물성에 영향을 미칠 뿐 아니라, 언더필 공정시 충분한 휘발 및 기포제어가 이뤄지지 않을 경우에 보이드 발생의 소지가 있기 때문이다. 언더필재 등 액상봉지재의 수지 조성으로 저점도의 에폭시수지와 산무수물을 사용한 예는 공지된 기술이나(미국특허 6,117,953, 일본특허 11-256012, 11-269250, 2000-273149, 2002-20587, 2002-97257 등), 이 경우,산무수물의 적용시 발생되는 흡습율의 증가와 에폭시-산무수물 조성물의 내열충격성 열세등에 대해서는 개선이 요구되고 있다.As electronic products become smaller, thinner, and more versatile, encapsulation and mounting methods for semiconductor devices are also diversifying. In particular, the surface mount type has become mainstream in the conventional pin insertion type, and there is a flip chip mounting method as a kind of the surface mount package, which is not connected by wire bonding as in the past, but the surface of the chip and the substrate Is a technology that enables the compactness and thinness by connecting by solder bumps. However, thermal shock test of flip chip package mounted in this way may cause the reliability of the connection between the circuit board and solder bumps, which may cause thermal stress of different thermal expansion coefficients of the chip, wiring board and solder ball. Because. In order to relieve the stress caused by the heat, the process of filling the space between the device and the substrate after the mounting of the chip to the substrate, the so-called underfill process, the material used for this is an underfill material, the material is mainly liquid to be. In terms of workability, the underfill material must have a filling property that can quickly penetrate the gap between the chip and the substrate, which is usually in the range of 25 μm to 100 μm, and in terms of reliability, the thermal expansion coefficient is somewhat different so as not to be significantly different from the solder ball. It should be small, have good adhesion to the chip and substrate interface, i.e. good adhesion, and be able to buffer the above-mentioned thermal stress. In general, the viscosity of the underfill material is sufficiently low for the good gap permeability of the above-mentioned underfill material, and the polyimide requires good adhesion to the host substrate, and an acid anhydride is often used as a curing agent of the epoxy composition. . In the case of using other curing agents, especially in the case of containing a large amount of inorganic filler, the viscosity is too high, there is a possibility of poor workability, when using a solvent to lower the viscosity not only affect the properties after curing, underfill process This is because voids may occur if sufficient volatilization and bubble control are not achieved. Examples of using low viscosity epoxy resins and acid anhydrides as resin compositions of liquid encapsulating materials such as underfill materials are known techniques (US Pat. No. 6,117,953, Japanese Patent 11-256012, 11-269250, 2000-273149, 2002-20587, 2002-). 97257, etc.), in this case, improvement is required for the increase in the moisture absorption rate generated when the acid anhydride is applied and the thermal shock resistance inferiority of the epoxy-acid anhydride composition.

특히, 전자제품 고집적화에 따른 대형 다이 팩키지의 경우에는 상기의 내열충격성 열세에 의한 신뢰도 불량 가능성이 크고, 상기 불량은 주로 칩과 봉지재에 걸리는 응력이 증가하면서 봉지재와 칩, 기판의 계면에 박리가 생기거나 팩키지에 균열이 일어나는 현상 등으로 나타난다. 이러한 열충격에 의한 신뢰도저하 및 불량발생을 방지하기 위해서는 언더필재와 칩, 기판 계면간의 밀착력이 우수하여야 하고, 언더필로 사용된 수지조성물이 열에 의해 발생되는 응력을 그대로 전달하지 않고 완충작용을 할 수 있도록 충분히 낮은 탄성률을 유지하여야 한다. 이러한 목적으로서는, 에폭시 수지 조성물에 에폭시변성 폴리실록산(일본 2001-151994)을 사용하여 조성물의 경화후 탄성률을 완화시키거나, 아민변성 폴리실록산(미국 5856425)을 사용한 경우, 우레탄과 부타디엔 러버(미국 5480958)를 사용한 경우, 폴리실록산-에폭시수지 공중합체 (일본 2002-20586), 실리콘고무입자 (일본 2002-088224)를 사용한 경우 등이 공지되어 있다. 또한 에폭시-산무수물 조성물에 대해 실록산 단량체와 에폭시수지를 반응시킨 반응물(일본 11-256012)을 첨가제로서 사용하여 조성물의 경화후 탄성률을 완화시키거나 폴리실록산과 에폭시수지를 반응시킨 반응물(일본 2002-97257)을 사용한 경우 등이 알려져 있다.In particular, in the case of a large die package due to high integration of electronic products, there is a high possibility of poor reliability due to the thermal shock resistance deterioration, and the defect is mainly exfoliated at the interface between the encapsulant, the chip and the substrate while the stress applied to the chip and the encapsulant increases. Or cracks in the package. In order to prevent reliability degradation and defects caused by thermal shock, the adhesion between the underfill material, chip, and substrate interface must be excellent, and the resin composition used as the underfill can buffer the stress generated by the heat without being transmitted as it is. The elastic modulus must be kept sufficiently low. For this purpose, the use of epoxy modified polysiloxane (Japan 2001-151994) in the epoxy resin composition to reduce the modulus after curing of the composition, or urethane and butadiene rubber (US 5480958) when amine modified polysiloxane (US 5856425) is used. When used, the case where polysiloxane-epoxy resin copolymer (Japan 2002-20586), silicone rubber particle (Japan 2002-088224), etc. are known is known. In addition, the reactant reacted with the siloxane monomer and the epoxy resin (Japanese 11-256012) to the epoxy-acid anhydride composition to relax the composition after curing of the composition, or the reactant reacted with the polysiloxane and the epoxy resin (Japan 2002-97257). And the like are known.

그러나, 상기 모든 공지된 기술들은 열 충격에 의한 신뢰도 저하 또는 불량발생을 만족할 만한 수준으로 제어하고 있지 못하므로, 당해 기술분야에서는 작업성이 우수하고, 높은 내열충격성을 가져 열층격에 대한 신뢰도 저하 및 불량발생을 낮은 수준으로 유지할 수 있는 언더필용 수지 조성물에 대한 요구가 있어왔다.However, all of the above known techniques do not control the satisfactory degradation or failure due to thermal shock to a satisfactory level, and thus, the workability is excellent in the art, and the thermal shock resistance is lowered. There has been a need for a resin composition for underfill that can maintain defects at low levels.

본 발명자들은 상기목적을 달성하기 위하여 예의 연구한 결과, (1) 저점도의 수첨된 비스페놀계 에폭시수지 및/또는 상기와 시클로알칸계 에폭시수지, (2) 산무수물로 이루어진 경화제, (3) 이미다졸계 경화촉진제, (4)무기물충전제 및 (5) 반응성 폴리실록산 수지와 에폭시 수지의 반응물, 즉 에폭시-실리콘 혼성수지로 이루어진 열응력 완충제를 포함한 액상 에폭시 수지 조성물을 사용할 경우, 경화 후 조성물이 충분히 낮은 탄성률을 가짐으로써 수지에 향상된 내열충격성을 가져오고, 그 결과, 본 발명의 액상 에폭시 수지조성물을 플립 칩 패키지에 적용한 결과 점도조절에 의해 작업성이 우수하고, 경화후 저탄성률에 의한 높은 내열충격성으로 인하여 우수한 신뢰도 특성을 나타냄을 확인하고 본 발명에 이르게 되었다.The present inventors have diligently studied to achieve the above object, and (1) a low viscosity hydrogenated bisphenol-based epoxy resin and / or a cycloalkane-based epoxy resin, (2) an acid anhydride, (3) already When a liquid epoxy resin composition is used, which contains a polyazole-based curing accelerator, (4) an inorganic filler, and (5) a reactant of a reactive polysiloxane resin and an epoxy resin, that is, a thermal stress buffer composed of an epoxy-silicone hybrid resin, the composition after curing is sufficiently low. By having an elastic modulus, the resin has improved thermal shock resistance. As a result, the liquid epoxy resin composition of the present invention is applied to a flip chip package, and as a result, it has excellent workability by viscosity control and high thermal shock resistance due to low modulus after curing. It was confirmed that the excellent reliability characteristics due to the present invention.

결론적으로, 본 발명은 저점도 에폭시수지를 사용하여 우수한 유동성에 의한 양호한 간극 충진성을 가지고, 저응력화를 위한 실리콘수지 사용으로 조성물의 열응력 완충 성능을 개선함으로서, 본 발명의 봉지재로 조립된 팩키지의 신뢰성을 향상시킬 수 있는 에폭시-산무수물계 언더필재를 제공하는 것을 목적으로 한다.In conclusion, the present invention has a good gap filling properties by excellent flowability using a low viscosity epoxy resin, improve the thermal stress buffering performance of the composition by using a silicone resin for low stress, thereby assembling into the encapsulant of the present invention An object of the present invention is to provide an epoxy-acid anhydride-based underfill material which can improve the reliability of the package.

상기 목적을 달성하기 위한 본 발명의 한 측면은, 1) 하기 화학식 1의 수첨(수소첨가) 비스페놀계 에폭시 수지, 또는 상기 수첨(수소첨가) 비수페놀계 에폭시 수지와 하기 화학식 2의 시클로헥실 에폭시 수지 혼합물을 포함하는 저점도 에폭시 수지, 2) 산무수물계 경화제, 3) 이미다졸계 경화반응 촉진제, 4) 무기물 충진제,및 5) 폴리실록산-에폭시혼성수지를 포함하는 반도체 언더필용 액상 에폭시 수지조성물에 관한 것이다:One aspect of the present invention for achieving the above object is 1) a hydrogenated (hydrogenated) bisphenol-based epoxy resin of the formula (1), or a hydrogenated (hydrogenated) non-hydrogen epoxy resin and a cyclohexyl epoxy resin of the formula (2) Low viscosity epoxy resin comprising a mixture, 2) acid anhydride curing agent, 3) imidazole curing accelerator, 4) inorganic filler, and 5) liquid epoxy resin composition for semiconductor underfill containing polysiloxane-epoxy hybrid resin will be:

. .

본 발명에서 사용된 저점도 에폭시 수지는 상기 화학식 1의 구조를 갖는 수첨 비스페놀 A 또는 F 에폭시 수지만으로 이루어져 있거나 혹은 상기 수첨(水素添加)된 에폭시 수지와 상기 화학식 2의 시클로헥실 에폭시 수지의 혼합물이다. 수첨 비스페놀 A형 에폭시 수지는 에폭시 당량이 200 ∼ 210이었고 점도는 1500 ∼ 1800 cps 였으며 수첨 비스페놀 F형 에폭시 수지는 에폭시 당량이 180 ∼ 200이었고 점도는 400 ∼ 600 cps 였다. 상기 수첨 비스페놀 형 에폭시 수지는 가수분해성 염소의 함량이 매우 낮은 고순도 에폭시 수지이며, 수지 구조 특성상 점도가 다른 일반 비스페놀 형 에폭시 수지에 비해 낮기 때문에 조성물의 점도 조절의 폭을 넓힐 수 있는 장점을 가진다. 상기 화학식 2의 시클로헥실 에폭시 수지는 링구조에 의하여 반응성이 좋고 에폭시 당량은 120 ∼ 140 이고 점도는 상온에서 300 ∼ 400cps 의 점도를 가지므로 저점도의 조성물을 얻기위해서는 우수한 점도 특성을 가질 수 있다. 또한 상기의 에폭시 수지는 그 제법이 비스페놀계 에폭시 수지와 다르기 때문에 이온불순물의 함량이 여타 다른 에폭시 수지에 비해 현저히 낮은 고순도 수지이다. 그러나 상기 화학식 2에서 볼 수 있듯이 수지 중간에 위치하는 카르복실기의 내습성, 내열성의 열세에 의한 신뢰성 저하의 우려가 있으므로 상기 수지는 베이스 에폭시 수지의 100%로 사용하지 않고 상기 화학식 1의 수첨 비스페놀 에폭시 수지와 혼합하여 사용하며, 그 혼합비는 시클로헥실 에폭시 수지의 함량이 50중량% 이하로 한다. 점도 조절의 예를 들면, 수첨 비스페놀 에폭시 수지를 단독 사용하는 경우, 저응력화를 목적으로 첨가하는 후술하게 될 5) 폴리실록산-에폭시혼성수지의 분자량이 큰 것을 사용하는 것이 바람직하며, 4) 무기물 충진제 함량을 증가하여 조성물의 점도가 많이 증가할 경우에 시클로헥실 에폭시 수지를 전체 에폭시수지의 50 중량% 이하로 혼합 사용한다. 또한 상기 1) 에폭시 수지는 필요에 따라 즉 유리전이온도의 증가 등 물성 향상을 목적으로 나프탈렌계 에폭시수지, 페놀-노볼락, 아민계 다관능성 에폭시수지등의 다른 액상 에폭시수지와 혼합하여 사용할 수 있다. 그러나 나프탈렌계 에폭시수지나 페놀-노볼락 수지등과 혼합사용시에도 점도가 많이 증가할 수 있으므로 최종 액상 에폭시 수지 조성물의 점도가 후술하게될 적정 범위에 들어갈 수 있도록 그 사용비율을 조절한다. 바람직하게는 상기 1) 에폭시 수지는 조성물 전체 중량의 5 내지 20중량%로 포함된다.The low viscosity epoxy resin used in the present invention is composed of only hydrogenated bisphenol A or F epoxy resin having the structure of Chemical Formula 1 or a mixture of the hydrogenated epoxy resin and the cyclohexyl epoxy resin of Chemical Formula 2. The hydrogenated bisphenol A epoxy resin had an epoxy equivalent of 200 to 210, a viscosity of 1500 to 1800 cps, and the hydrogenated bisphenol F epoxy resin had an epoxy equivalent of 180 to 200 and a viscosity of 400 to 600 cps. The hydrogenated bisphenol-type epoxy resin is a high purity epoxy resin having a very low content of hydrolyzable chlorine, and has a merit of broadening the viscosity control of the composition because the viscosity of the resin is lower than that of other bisphenol-type epoxy resins. The cyclohexyl epoxy resin of the formula (2) has a high reactivity by the ring structure and the epoxy equivalent is 120 to 140 and has a viscosity of 300 to 400cps at room temperature, it may have excellent viscosity characteristics to obtain a low viscosity composition. In addition, the epoxy resin is a high-purity resin that is significantly lower than other epoxy resins in the content of ionic impurities because the manufacturing method is different from the bisphenol-based epoxy resin. However, as shown in Chemical Formula 2, there is a fear that the reliability of the carboxyl group located in the middle of the resin may be lowered due to the deterioration of moisture resistance and heat resistance, so that the resin is not used as 100% of the base epoxy resin, and the hydrogenated bisphenol epoxy resin of Chemical Formula 1 It is used in combination with the mixing ratio of the content of the cyclohexyl epoxy resin is 50% by weight or less. For example of viscosity control, when using a hydrogenated bisphenol epoxy resin alone, it is preferable to use a large molecular weight of 5) polysiloxane-epoxy hybrid resin which will be described later added for the purpose of lowering stress, and 4) inorganic filler If the viscosity of the composition is increased by increasing the content, the cyclohexyl epoxy resin is mixed to 50% by weight or less of the total epoxy resin. In addition, 1) the epoxy resin may be mixed with other liquid epoxy resins such as naphthalene epoxy resin, phenol-novolak, amine polyfunctional epoxy resin and the like for the purpose of improving physical properties such as increasing the glass transition temperature. . However, since the viscosity may increase even when mixed with naphthalene-based epoxy resins or phenol-novolak resins, the use ratio of the final liquid epoxy resin composition may be adjusted so as to fall within a suitable range to be described later. Preferably, 1) the epoxy resin is included in 5 to 20% by weight of the total weight of the composition.

본 발명에 따른 조성물은 2) 산 무수물계 경화제, 바람직하게는 하기 화학식 3의 구조를 가지는 알킬화 테트라하이드로프탈산 무수물계 경화제를 포함한다:The composition according to the invention comprises 2) an acid anhydride-based curing agent, preferably an alkylated tetrahydrophthalic anhydride-based curing agent having the structure of formula (3):

. .

(상기 식에서, R1, R2, 및 R3은 메틸기, 에틸기, 에테닐기 또는 프로필기임)Wherein R 1 , R 2 , and R 3 are methyl, ethyl, ethenyl or propyl groups

바람직하게는 상기 산무수물은 무수물 당량이 210 ∼ 250 인 고순도의 산무수물을 사용한다. 통상 산무수물을 경화제로 사용할 경우 구조상의 고유특성으로 흡습에 의한 물성 저하가 우려되나, 상기 화학식 3의 알킬화 테트라하이드로프탈산 무수물의 경우 통상 널리 쓰이는 메틸테트라하이드로프탈산 무수물 등에 비하여 월등히 우수한 내습특성을 제공한다. 본 발명자들의 연구에 따르면, 알킬화 테트라하이드로프탈산 무수물 경화제가 산무수물로서 비교적 낮은 흡습율을 보이는 이유로는 화학구조식 (2)에 보이듯이 언하이드라이드기에 인접한 알킬기 등이 카르보닐 기에의 수분의 접근이 쉽지 않기 때문이다. 본 발명에서 사용되는 산무수물계 경화제의 함량은 1 내지 20중량%이다.Preferably, the acid anhydride is a high purity acid anhydride having an anhydride equivalent of 210 to 250. When acid anhydride is generally used as a curing agent, structural intrinsic properties may cause deterioration of physical properties due to moisture absorption. However, alkylated tetrahydrophthalic anhydride of Formula 3 may provide superior moisture resistance as compared to methyltetrahydrophthalic anhydride. . According to the study of the present inventors, the reason why the alkylated tetrahydrophthalic anhydride curing agent shows a relatively low hygroscopicity as an acid anhydride, as shown in the chemical formula (2), is easy to access moisture to the carbonyl group by the alkyl group adjacent to the unhydride group Because it does not. The content of the acid anhydride curing agent used in the present invention is 1 to 20% by weight.

본 발명에 따른 조성물은 3) 이미다졸계 경화 촉진제, 바람직하게는 하기 화학식 4의 구조를 가지는 이미다졸계 경화촉진제를 포함한다:The composition according to the invention comprises 3) an imidazole series curing accelerator, preferably an imidazole series curing accelerator having the structure of formula (4):

(상기 식에서 R1, R2, 및 R3은 수소원자, 메틸기, 에틸기, 페닐기, 시아노에틸기, 또는 벤질기임).(Wherein R 1 , R 2 , and R 3 are hydrogen atom, methyl group, ethyl group, phenyl group, cyanoethyl group, or benzyl group).

본 발명에서 사용되는 경화촉진제는 모든 공지된 이미다졸계 경화촉진제를 포함하며, 촉진제 종류별로 활성에 따라 겔화시간에 차이는 발생하나, 사용량의 증감을 통하여 겔화시간을 조절할 수 있어 촉매의 종류에 대한 제한은 없다. 사용량은 촉진제의 종류에 따라 다르나, 상기 화학식의 화합물인 경우, 바람직하게는 0.2 내지 1.0중량%로 사용한다.The curing accelerator used in the present invention includes all the known imidazole-based curing accelerators, the difference in the gelation time occurs depending on the activity by the type of accelerator, the gelation time can be adjusted by increasing or decreasing the amount of the catalyst There is no limit. The amount of use varies depending on the type of accelerator, but in the case of the compound of the above formula, preferably 0.2 to 1.0% by weight.

본 발명에 따른 조성물은 4) 무기 충진제를 포함한다. 본 발명에서 사용하는 무기충전제는 바람직하게는 그 평균입자가 0.1 - 10.0㎛인 용융 또는 합성실리카를 사용하는 것이 바람직하며, 간극침투성에 영향을 줄 수 있으므로 최대 입경은 20㎛을 넘지 않는 실리카를 사용한다. 본 발명의 조성물 중의 상기 무기충전체 성분의 총함량은 최종 조성물의 중량을 기준으로 60∼70 중량%인 것이 바람직하다. 60 중량% 미만으로 무기물충진재를 사용할 경우에는 충분한 강도와 낮은 열팽창계수를 기대할 수 없으며 또한 수분의 침투가 용이해져 신뢰성 저하의 원인이 된다. 또한, 무기물충진재의 함량이 70 중량% 초과될 경우 수지와 경화제의 점도에 따라 그 정도는 다르나 유동특성이 저하됨에 의한 간극충진속도가 현저히 떨어짐으로서 작업성 또는 공정성 불량의 우려가 있다.The composition according to the invention comprises 4) an inorganic filler. Inorganic fillers used in the present invention preferably use melted or synthetic silica having an average particle of 0.1-10.0 μm, and may use silica having a maximum particle diameter not exceeding 20 μm because it may affect the gap permeability. do. The total content of the inorganic filler component in the composition of the present invention is preferably 60 to 70% by weight based on the weight of the final composition. When the inorganic filler is used at less than 60% by weight, sufficient strength and low coefficient of thermal expansion cannot be expected, and the penetration of moisture becomes easy, causing a decrease in reliability. In addition, when the content of the inorganic filler exceeds 70% by weight, the degree is different depending on the viscosity of the resin and the curing agent, but the gap filling speed is significantly lowered due to the deterioration of the flow characteristics, there is a fear of poor workability or processability.

본 발명에 따른 조성물은 내열충격성 향상을 위해 5) 폴리실록산-에폭시혼성수지를 포함한다. 본 발명에 따른 조성물은, 변성실록산을 그대로 사용한 종래기술과 달리, 폴리실록산과 에폭시의 반응에 의해 수득한 폴리실록산-에폭시 혼성 수지를 기본 수지인 1) 에폭시 수지와 혼합 사용한다. 특히, 본 발명자들의 연구에 따르면, 상기 에폭시와 반응시키는 폴리실록산의 분자량 또는 사슬길이에 따라 기존 조성물중의 에폭시수지에 대한 상용성(compatibility)이 변화하므로, 사용되는 기본수지인 1) 에폭시 수지의 조성을 고려하여 반응시 사용되는 폴리실록산의 분자량을 정한다.The composition according to the present invention includes 5) polysiloxane-epoxy hybrid resin for improving thermal shock resistance. In the composition according to the present invention, unlike the prior art in which the modified siloxane is used as it is, the polysiloxane-epoxy hybrid resin obtained by the reaction of polysiloxane and epoxy is mixed with 1) an epoxy resin which is a basic resin. In particular, according to the researches of the present inventors, since the compatibility with respect to the epoxy resin in the existing composition changes according to the molecular weight or chain length of the polysiloxane reacted with the epoxy, the composition of the 1) epoxy resin which is the basic resin used Consider the molecular weight of the polysiloxane used in the reaction.

바람직하게는 하기 화학식 5 및 6으로 표현되는 변성 폴리실록산, 즉 유기반응기를 가지는, 양말단 카르복실산 폴리디메틸 실록산 또는 양말단 히드로실릴 폴리디메틸 실록산을 사용한다:Preferably, modified polysiloxanes represented by the following formulas (5) and (6), i.e., endoside carboxylic acid polydimethyl siloxane or endoside hydrosilyl polydimethyl siloxane having an organic reactor, are used:

. .

저온에서의 탄성률을 낮추기 위한 목적으로 실리콘 수지가 많이 사용되는데, 이는 폴리실록산 수지가 -120 ℃ 이하의 낮은 유리전이온도를 가짐으로서 저온에서부터 엘라스토머 성상을 가지며 말단의 반응기로 경화반응에 참여하여 조성물 경화물의 응력 완충에 기여하기 때문이다. 특히, 통상적으로 반도체봉지용 에폭시 수지조성물에 사용되는 경우 열스트레스의 완화제로서 양말단 에폭시 폴리디메틸실록산수지가 잘 알려져 있다. 에폭시기 이외에도 아민기등으로 양말단 또는 주쇄가 치환된 폴리실록산도 에폭시 수지조성물의 개질제, 특히 저응력화제로 쓰이는 경우도 많이 알려져 있다. 그러나, 본 발명자들의 연구에 따르면, 상기와 같은 반응성 실리콘 오일의 경우, 에폭시수지와의 비상용성으로 인해 수지조성물에 잘 분산이 되지 않고 표면에 부유하게 되어 원래의 목적을 행하지 못하고 외관 및 접착력 등에 불량이 발생하게 된다. 본 발명에서는, 상기를 해결하기 위해, 양말단 카르복실산 변성 디메틸실록산과 비스페놀형 에폭시 수지를 혼합하여 미리 반응시켜 수득한 폴리실록산-에폭시 혼성수지를 사용하여 상용성의 문제없이 저응력화, 열충격완충효과 극대화하였다. 본 발명에서 상기 혼성수지를 수득하기 위해 사용한 에폭시 수지는 상기 화학식 7의 저점도 비스페놀형 에폭시 수지이거나, 하기 화학식 8의 디알릴 비스페놀 A 형 에폭시 수지이다:Silicone resins are frequently used for the purpose of lowering the elastic modulus at low temperature. The polysiloxane resin has a low glass transition temperature of -120 ° C. or lower, which has elastomeric properties at low temperatures, and participates in the curing reaction with a terminal reactor. This is because it contributes to the stress buffer. In particular, when used in the epoxy resin composition for semiconductor encapsulation, sock end epoxy polydimethylsiloxane resin is well known as a relaxation agent of thermal stress. In addition to epoxy groups, polysiloxanes in which the sock end or the main chain is substituted with an amine group or the like are also known to be used as modifiers of epoxy resin compositions, particularly low stress agents. However, according to the researches of the present inventors, in the case of the reactive silicone oil as described above, due to incompatibility with the epoxy resin, it is difficult to disperse in the resin composition and float on the surface, thereby failing to achieve the original purpose and poor appearance and adhesive strength, etc. This will occur. In the present invention, in order to solve the above, by using a polysiloxane-epoxy hybrid resin obtained by mixing the carboxylate-modified dimethyl siloxane and bisphenol-type epoxy resin in advance, the low stress, thermal shock buffer effect without compatibility problems Maximized. The epoxy resin used to obtain the hybrid resin in the present invention is a low-viscosity bisphenol-type epoxy resin of Formula 7 or a diallyl bisphenol A-type epoxy resin of Formula 8:

본 발명에 따른 조성물은 변성 폴리실록산 수지를 에폭시와 반응시켜 폴리실록산-에폭시 혼성수지로 제조한 후 이를 기본수지인 1) 에폭시수지에 혼합하여 사용함으로써, 폴리실록산 고분자가 반응에 참여하지 못할 가능성을 최소화하고, 기본수지와의 비상용성을 문제를 해결하였다. 폴리실록산-에폭시 혼성수지 제조의 예를 들면, 점도가 2000 cps이고 관능기 당량이 4000 g/mol인 상기 화학식 5의 카르복실산 변성 폴리실록산 20g을 상기 화학식 7의 에폭시당량 180 g/mol인 비스페놀 F 에폭시 20g과 트리페닐포스핀 1g과 함께 톨루엔 200ml에 녹여 120℃로 5시간 가열하여 얻은 용액을 감압증류하여 톨루엔을 제거시켜서 사용한다. 또 다른 예로서, 화학식 6의 양말단 하이드로실릴 폴리디메틸실록산 수지를 화학식 7의 디알릴 비스페놀 A형 에폭시 수지를 하이드로실레이션 반응에 의하여 에폭시-실리콘 혼성수지를 제조하는 바, 점도가 100 cps이고 관능기당량이 3000 g/mol인 양말단 하이드로실릴 변성 폴리디메틸실록산 50g을 에폭시당량 230 g/mol인 디알릴비스페놀 A 에폭시 6g과 1g의 에틸렌글리콜, 트리페닐포스핀 0.1g과 함께 톨루엔 200ml에 녹여 150℃로 6시간 가열하여 얻은 용액을 감압증류하여 톨루엔을 분리시켜서 사용한다. 특히, 화학식 8의 비스페놀 에폭시수지를 이용하는 경우, 비스페놀 에폭시 수지의 에폭시 반응기가 혼성수지 생성시에도 그대로 보전이 되므로 그 반응기의 당량을 고려하여 조성물 전체의 에폭시/산무수물 혼합비를 조절하여야 한다.The composition according to the present invention is prepared by reacting a modified polysiloxane resin with an epoxy to prepare a polysiloxane-epoxy hybrid resin, and then mixing the modified polysiloxane resin with 1) an epoxy resin, which is a basic resin, thereby minimizing the possibility that the polysiloxane polymer cannot participate in the reaction. The incompatibility with the base resin was solved. For example, in preparing a polysiloxane-epoxy hybrid resin, 20 g of the carboxylic acid-modified polysiloxane of Formula 5 having a viscosity of 2000 cps and a functional group equivalent of 4000 g / mol is 20 g of bisphenol F epoxy having an epoxy equivalent of 180 g / mol of Formula 7. And 1 g of triphenylphosphine were dissolved in 200 ml of toluene, and the solution obtained by heating at 120 ° C. for 5 hours was distilled under reduced pressure to remove toluene. As another example, an epoxy-silicone hybrid resin is prepared by hydrosilylation of a distalyl bisphenol A-type epoxy resin of Formula 7 with a distal end hydrosilyl polydimethylsiloxane resin of Formula 6, and has a viscosity of 100 cps and a functional group. 50 g of hexadan hydrosilyl-modified polydimethylsiloxane having an equivalent weight of 3000 g / mol is dissolved in 200 ml of toluene with 6 g of diallyl bisphenol A epoxy having an epoxy equivalent of 230 g / mol, 1 g of ethylene glycol and triphenylphosphine, and 150 g The solution obtained by heating for 6 hours was distilled under reduced pressure and toluene was separated and used. In particular, in the case of using the bisphenol epoxy resin of the formula (8), since the epoxy reactor of the bisphenol epoxy resin is preserved as it is when the hybrid resin is produced, the epoxy / acid anhydride mixing ratio of the entire composition should be adjusted in consideration of the equivalent of the reactor.

폴리디메틸실록산-에폭시 혼성수지를 열스트레스 완화를 목적으로 베이스 에폭시 수지와 혼합하여 사용할 경우, 혼성수지를 이루는 폴리디메틸실록산의 수평균분자량은 100 내지 50,000이 바람직한데, 이는 폴리실록산의 분자량이 100 g/mol미만인 경우는 충분히 사슬길이가 길지 않아 조성물의 경화 후 탄성에 미치는 효과가 적고 50,000 g/mol 초과면 베이스수지와의 비상용성문제가 심해지고 점도특성이나 기계적물성이 저하될 수 있기 때문이다. 위와 같은 반응을 통해 얻어진 비스페놀형 에폭시-폴리디메틸실록산 혼성수지는 조성물 전체 중량에 대하여 1 중량부 미만 사용시 저응력화 효과를 기대하기가 힘들고 20 중량부를 초과할 경우 조성물의 고점도화와 성형성 불량등의 문제가 발생하므로 조성물 전체 중량의 1 내지 20 중량부를 사용하며 바람직하게는 5 내지 15 중량부를 사용한다.When the polydimethylsiloxane-epoxy hybrid resin is mixed with the base epoxy resin for the purpose of thermal stress relaxation, the number average molecular weight of the polydimethylsiloxane constituting the hybrid resin is preferably 100 to 50,000, which is 100 g / molecular weight of the polysiloxane. If less than mol, the chain length is not long enough to have a small effect on the elasticity after curing of the composition, and if it exceeds 50,000 g / mol incompatibility problems with the base resin is severe and the viscosity characteristics and mechanical properties may be reduced. Bisphenol-type epoxy-polydimethylsiloxane hybrid resin obtained through the above reaction is difficult to expect low stress effect when used less than 1 part by weight based on the total weight of the composition, high viscosity and poor moldability of the composition when it exceeds 20 parts by weight Since the problem occurs, 1 to 20 parts by weight of the total weight of the composition is used, and preferably 5 to 15 parts by weight.

본 발명에 따른 에폭시 수지조성물은 전술된 성분 외에도, 본 발명의 목적을 저해하지 않는 범위 내에서, 당해 기술분야에서 당업자가 사용하고 있는 모든 첨가제를 포함할 수 있는 바, 예를 들어 기포의 제거를 용이하게 하기 위한 소포제, 제품 외관 등을 위한 카본블랙 등의 착색제, 기계적물성 및 접착력을 증가시키기 위해 글리시독시프로필 트리메톡시 실란 등의 실란 커플링제와 필요에 따라 난연제 등을 포함할 수 있다.The epoxy resin composition according to the present invention may include all additives used by those skilled in the art within the scope not impairing the object of the present invention, in addition to the aforementioned components, for example, to remove bubbles. A colorant such as an antifoaming agent for ease of use, a colorant such as carbon black for product appearance, and the like, and a silane coupling agent such as glycidoxypropyl trimethoxy silane and a flame retardant, if necessary, to increase mechanical properties and adhesion.

본 발명의 액상 에폭시 수지 조성물은, 예를들면 에폭시 수지, 경화제, 무기물충진재, 응력완화용 혼성수지등과 경화촉진제를 동시에 또는 원료별 순차적으로 필요에 따라 가열처리를 하면서 교반, 혼합, 분산시킴으로써 제조할 수 있다. 이들 혼합물의 혼합, 교반, 분산 등의 장치는 특별히 한정되지 않지만, 교반, 가열장치를 구비한 혼합분쇄기, 3축 롤밀, 볼밀, 진공유발기, 유성형 혼합기 등을 사용할 수 있으며, 또한 이들 장치를 적절하게 조합하여 사용할 수도 있다. 본 발명에서의 액상 에폭시 수지 조성물의 점도는 25℃ 에서 10,000 cps 이상 100,000 cps 이하로 하며 바람직하게는 10,000 cps 이상 30,000 cps 이하의 점도가 적절하다. 언더필 공정시 칩과 기판 간의 간극 크기에 따라 다르지만, 점도가 30,000cps 초과일 경우에는 간극 충진 시간이 너무 길고 디스펜싱 공정에서의 작업성 또한 불량하였다. 성형공정은 통상의 디스펜싱 공정을 사용할 수 있으며, 경화는 100℃ 내지 130℃에서 0.5시간 이상 경화 후 140℃ 내지 170℃에서 1시간 이상 오븐에서 경화하는 것이 바람직하다.The liquid epoxy resin composition of the present invention is prepared by, for example, stirring, mixing, and dispersing an epoxy resin, a curing agent, an inorganic filler, a stress-relieving mixed resin, and a curing accelerator simultaneously or sequentially by heat treatment as necessary for each raw material. can do. The apparatus for mixing, stirring, and dispersing these mixtures is not particularly limited, but a mixer, a three-axis roll mill, a ball mill, a vacuum induction machine, a planetary mixer, and the like, which are equipped with a stirring and heating device, may be used. It can also be used in combination. The viscosity of the liquid epoxy resin composition in this invention is 10,000 cps or more and 100,000 cps or less at 25 degreeC, Preferably, the viscosity of 10,000 cps or more and 30,000 cps or less is suitable. In the underfill process, depending on the gap size between the chip and the substrate, if the viscosity is more than 30,000cps, the gap filling time is too long and workability in the dispensing process is also poor. The molding process may use a conventional dispensing process, the curing is preferably cured in an oven at 140 ℃ to 170 ℃ for at least 1 hour after curing at 100 ℃ to 130 ℃ for at least 0.5 hours.

[실시예]EXAMPLE

이하, 구체적인 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하지만, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다.Hereinafter, the structure and effect of the present invention will be described in more detail with specific examples and comparative examples, but these examples are only intended to more clearly understand the present invention, and are not intended to limit the scope of the present invention.

물성 및 신뢰성의 평가Evaluation of Properties and Reliability

1) 점도1) viscosity

Cone & Plate 형 Brookfield 점도계를 사용하여 25℃ 에서 측정하였다.It measured at 25 degreeC using the Cone & Plate type Brookfield viscometer.

2) 토출성2) Dischargeability

DISPENSER를 사용하여 NEEDLE SIZE 21G, 토출압 30ps에서 토출하였을 때 끊어짐없이 일정량 토출 여부 확인하여 평가하였다.When dispensing at NEEDLE SIZE 21G and discharge pressure 30ps by using DISPENSER, it was evaluated by checking whether a certain amount was discharged without break.

3) 열팽창계수3) coefficient of thermal expansion

TMA(Thermomechanical Analyser)로 평가하였다(승온속도 10℃/min).It was evaluated by TMA (Thermomechanical Analyser) (raising rate 10 ℃ / min).

4) 간극충진성4) gap filling

12mm×12mm×0.3mm의 칩을 BT레진 기판에 간극 50μm으로 탑재한 팩키지의 칩 한쪽 가장자리에 90℃에서 언더필재를 도포하여 5분간 주입기를 둔 후 150℃에서 30분 경화시킨 팩키지를 C-SAM 을 활용하여 팩키지 내부의 충진성을 확인하였다.C-SAM package was packaged by injecting underfill material at 90 ° C for 5 minutes on one edge of the chip with 12mm × 12mm × 0.3mm chip on BT resin substrate with a gap of 50μm. Check the filling inside the package using the.

5) 열충격 시험(Temperature Cycle Test)5) Temperature Cycle Test

JEDEC, JESD22-A104 시험조건 C (-65℃/+150℃)으로 평가한 후 C-SAM 을 활용하여 박리발생여부 확인하였다.JEDEC, JESD22-A104 Test Condition C (-65 ℃ / +150 ℃) After evaluating using C-SAM was confirmed whether the occurrence of peeling.

6) 신뢰성 평가(Precon Test)6) Precon Test

JEDEC, JESD22-A113 시험방법으로 Level 3 에서 평가한 후 C-SAM 을 활용하여 박리평가하였다.JEDEC, JESD22-A113 test method was evaluated at Level 3, and peeling was evaluated using C-SAM.

실시예 1 내지 4Examples 1-4

하기 표 1에 나타난 바와 같은 화합물을 사용하여, 하기 표 1에 나타난 조성비(중량%)로 저점도에폭시수지와 산무수물 경화제와 실리콘-에폭시 혼성수지를 유성형혼합기로 혼합한 후 평균입경 5micron의 용융구상실리카를 위의 혼합물과 카본블랙을 넣고 3롤밀로 혼합하고 이를 실란 등의 다른 첨가제와 이미다졸촉매와 다시유성형 혼합기로 교반함으로서 실시예 1 내지 4의 에폭시 수지 조성물을 제조하였다.By using the compound as shown in Table 1 below, the low viscosity epoxy resin, the acid anhydride curing agent and the silicone-epoxy hybrid resin were mixed with a planetary type mixer in the composition ratio (wt%) shown in Table 1, followed by melting spherical particles having an average particle diameter of 5 microns. The epoxy resin composition of Examples 1 to 4 was prepared by mixing silica with the above mixture and carbon black and mixing with a 3 roll mill, and stirring the mixture with another additive such as silane, imidazole catalyst, and re-forming mixer.

상기 최종 에폭시 수지 조성물은 조성비에 따라 점도가 10,000 내지 30,000 cps 의 범위이고, 우수한 유동 특성, 기계적 물성 및 열 특성을 가진 조성물이었다(표 1참조). 이를 플립 칩 언더필 등의 팩키지에 적용해 본 결과 안정된 작업성과 우수한 신뢰도 특성을 확보할 수 있었는 바, 전술한 방법에 따른 물성 및 신뢰성의 평가 결과를 표 1에 나타내었다.The final epoxy resin composition had a viscosity in the range of 10,000 to 30,000 cps depending on the composition ratio, and was a composition having excellent flow properties, mechanical properties and thermal properties (see Table 1). As a result of applying this to a package such as flip chip underfill, it was possible to secure stable workability and excellent reliability characteristics. Table 1 shows the evaluation results of the physical properties and the reliability according to the aforementioned method.

비교예 1 내지 3Comparative Examples 1 to 3

하기 표 1에 나타난 바와 같은 화합물을, 하기 표 1에 나타난 조성비로 사용한 것을 제외하고는 실시예 1과 동일한 방법을 사용하여 에폭시 수지조성물을 제조하였다. 전술한 방법에 따라 물성 및 신뢰성을 평가하고, 그 결과를 표 1에 나타내었다.An epoxy resin composition was prepared in the same manner as in Example 1, except that the compound as shown in Table 1 was used in the composition ratio shown in Table 1 below. Physical properties and reliability were evaluated according to the above-described method, and the results are shown in Table 1.

표-1의 물성 및 신뢰성 평가결과로부터 알 수 있듯이 베이스수지로 저점도의 수첨 비스페놀계 에폭시수지를 사용하고 또한 점도조절을 위한 시클로알칸계 에폭시수지를 사용하고 실리카 충진재를 60∼70 중량부 혼합함으로서 토출성과 간극충진성이 양호한 조성물을 얻을 수 있었다. 비교예 1에서는 실리카 충진재를 70 중량부 이상 사용하고 저점도의 수지를 충분히 사용하지 않음으로 인하여 점도가 너무 높아 토출성과 간극충진성 등 작업성의 불량을 볼 수 있었다. 경화제로서, 알킬기로 치환된 테트라하이드로 프탈산 무수물을 사용한 경우, 양호한 내습성을 보이는 것을 알 수 있었다. 또한 실시예 1,2에서와 같이 열에 의해 발생하는 응력 완화를 목적으로카르복실산변성 폴리디메틸실록산과 비스페놀계 에폭시와의 반응물인 실리콘-에폭시 혼성수지를 조성물의 1∼20 중량부 혼합하거나 실시예 3,4와 같이 하이드로실릴변성 폴리디메틸실록산과 디알릴 비스페놀계 에폭시 수지의 반응물인 실리콘-에폭시 혼성수지를 역시 조성물의 1∼20 중량부 혼합하고 혼성수지를 혼합하지 않거나 1 중량부 미만으로 사용한 비교예 2,3과 비교해 보면 혼성수지의 혼합으로 조성물의 향상된 내열특성을 득할 수 있었음을 알 수 있다.As can be seen from the physical property and reliability evaluation results of Table-1, by using a low viscosity hydrogenated bisphenol-based epoxy resin as the base resin, cycloalkane-based epoxy resin for viscosity control, and mixing 60 to 70 parts by weight of silica filler The composition which was excellent in discharge property and gap filling property was obtained. In Comparative Example 1, since the silica filler was used in an amount of 70 parts by weight or more, and the resin of low viscosity was not used sufficiently, the viscosity was too high, and the workability such as the dischargeability and the gap filling property was observed. When the tetrahydro phthalic anhydride substituted by the alkyl group was used as a hardening | curing agent, it turned out that favorable moisture resistance is shown. Also, as in Examples 1 and 2, 1 to 20 parts by weight of the composition of a silicone-epoxy hybrid resin, which is a reactant of a carboxylic acid-modified polydimethylsiloxane and a bisphenol-based epoxy, is mixed for the purpose of stress relaxation caused by heat. Compared to 1-20 parts by weight of the silicone-epoxy hybrid resin, which is a reaction product of the hydrosilyl-modified polydimethylsiloxane and diallyl bisphenol-based epoxy resin, also mixed with the hybrid resin or not less than 1 part by weight as shown in 3 and 4. Compared with Examples 2 and 3, it can be seen that the improved heat resistance of the composition can be obtained by mixing the mixed resin.

본 발명에 따른 에폭시 수지조성물의 경우, 작업성이 우수하고, 높은 내열충격성을 가져 열층격에 대한 신뢰도 저하 및 불량발생을 낮은 수준으로 유지할 수 있어, 기재 상에 장착된 반도체 소자와 기재 간의 공간을 신속히 충진하고 단시간에 열경화되며 향상된 내열충격성을 제공함으로서 우수한 공정성과 신뢰성을 가지는 언더필용 에폭시 수지조성물로 사용될 수 있다.In the case of the epoxy resin composition according to the present invention, it has excellent workability and has high thermal shock resistance, so that it is possible to maintain a low level of reliability and defects with respect to thermal stratification, thereby providing a space between the semiconductor element mounted on the substrate and the substrate. It can be used as an underfill epoxy resin composition with excellent processability and reliability by providing fast filling, heat curing in a short time and improved thermal shock resistance.

Claims (7)

1) 하기 화학식 1의 수첨(수소첨가) 비스페놀계 에폭시 수지, 또는 상기 수첨 비수페놀계 에폭시 수지와 하기 화학식 2의 시클로헥실 에폭시 수지 혼합물을 포함하는 에폭시 수지, 2) 산무수물계 경화제, 3) 이미다졸계 경화반응 촉진제, 4) 무기물 충진제, 및 5) 폴리실록산-에폭시혼성수지를 포함하는 반도체 언더필용 액상 에폭시 수지조성물:1) Hydrogenated (hydrogenated) bisphenol epoxy resin of the following formula (1), or epoxy resin comprising the hydrogenated non-hydric phenolic epoxy resin and a cyclohexyl epoxy resin mixture of the formula (2), 2) Acid anhydride-based curing agent, 3) Already A liquid epoxy resin composition for semiconductor underfill comprising a polyazole-based curing reaction accelerator, 4) an inorganic filler, and 5) a polysiloxane-epoxy hybrid resin: [화학식 1][Formula 1] [화학식 2][Formula 2] . . 제 1항에 있어서, 상기 1) 하기 화학식 1의 수첨 비스페놀계 에폭시 수지, 또는 상기 수첨 비수페놀계 에폭시 수지와 하기 화학식 2의 시클로헥실 에폭시 수지 혼합물을 포함하는 에폭시 수지는 5 내지 20 중량%로 함유하고, 이 경우, 상기시클로헥실 에폭시 수지는 전체 에폭시 수지의 50 중량% 이하로 포함되고; 상기 2) 산무수물계 경화제는 1 내지 20 중량%로 함유하며, 상기 4) 무기물 충진제는 최종 조성물의 중량을 기준으로 60 내지 70 중량%로 함유하며, 상기 5) 폴리실록산-에폭시혼성수지는 전체 조성물을 기준으로 1 내지 20 중량%로 함유하는 것을 특징으로 하는 액상 에폭시 수지 조성물.According to claim 1, wherein 1) the hydrogenated bisphenol-based epoxy resin of the formula (1), or the epoxy resin comprising a hydrogenated non-hydric phenol-based epoxy resin and a cyclohexyl epoxy resin mixture of the formula (2) is contained in 5 to 20% by weight In this case, the cyclohexyl epoxy resin is included in less than 50% by weight of the total epoxy resin; 2) the acid anhydride-based curing agent is contained in 1 to 20% by weight, and 4) the inorganic filler is contained in 60 to 70% by weight based on the weight of the final composition, 5) the polysiloxane-epoxy hybrid resin is the whole composition A liquid epoxy resin composition, characterized in that containing 1 to 20% by weight based on. 제 1항 또는 제 2항에 있어서, 상기 2) 산무수물계 경화제는 하기 화학식 3으로 표시되는 알킬화 테트라히드로프탈산 무수물인 것을 특징으로 하는 액상 에폭시 수지 조성물:The liquid epoxy resin composition according to claim 1 or 2, wherein the acid anhydride-based curing agent is an alkylated tetrahydrophthalic anhydride represented by the following Chemical Formula 3: [화학식 3][Formula 3] . . (R1, R2, 및 R3은 메틸기, 에틸기, 에테닐기 또는 프로필기임).(R 1 , R 2 , and R 3 are methyl group, ethyl group, ethenyl group or propyl group). 제 1항 또는 제 2항에 있어서, 상기 3) 이미다졸계 경화촉진제는 하기 화학식 4로 표시되는 이미다졸 화합물인 것을 특징으로 하는 액상 에폭시 수지 조성물:The liquid epoxy resin composition according to claim 1 or 2, wherein the 3) imidazole-based curing accelerator is an imidazole compound represented by the following general formula (4): [화학식 4][Formula 4] (상기 식에서 R1, R2, 및 R3은 수소원자, 메틸기, 에틸기, 페닐기, 시아노에틸기, 또는 벤질기임).(Wherein R 1 , R 2 , and R 3 are hydrogen atom, methyl group, ethyl group, phenyl group, cyanoethyl group, or benzyl group). 제 1항 또는 제 2항에 있어서, 상기 4) 무기물 충진제는 평균입자가 0.1 - 10.0㎛인 용융 또는 합성실리카를 사용하는 것을 특징으로 하는 액상 에폭시 수지 조성물.[4] The liquid epoxy resin composition according to claim 1 or 2, wherein the inorganic filler comprises molten or synthetic silica having an average particle of 0.1-10.0 mu m. 제 1항 또는 제 2항에 있어서, 상기 5) 폴리실록산-에폭시혼성수지는 하기 화학식 5의 양말단 카르복시산 변성 폴리디메틸실록산과 상기 화학식 7의 비스페놀계 에폭시수지의 반응물이거나 혹은, 하기 화학식 6의 양 말단 히드로실릴변성 폴리디메틸실록산과 하기 화학식 8의 디알릴 비스페놀계 에폭시 수지와의 반응물인 것을 특징으로 하는 액상 에폭시 수지 조성물:The polysiloxane-epoxy hybrid resin according to claim 1 or 2, wherein the polysiloxane-epoxy hybrid resin is a reactant of the terminal carboxylic acid-modified polydimethylsiloxane of Formula 5 and the bisphenol-based epoxy resin of Formula 7, or both ends of Formula 6 A liquid epoxy resin composition, which is a reactant of a hydrosilyl-modified polydimethylsiloxane and a diallyl bisphenol epoxy resin of Formula 8: [화학식 5][Formula 5] [화학식 6][Formula 6] [화학식 7][Formula 7] [화학식 8][Formula 8] . . 제 1항 또는 제 2항에 따른 반도체 언더필용 액상 에폭시 수지 조성물로 봉지된 플립칩 언더필형 반도체 소자.A flip chip underfill semiconductor device encapsulated with a liquid epoxy resin composition for semiconductor underfill according to claim 1.
KR1020020087841A 2002-12-31 2002-12-31 Liquid Epoxy Resin Composition for Underfill Application KR100540914B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020020087841A KR100540914B1 (en) 2002-12-31 2002-12-31 Liquid Epoxy Resin Composition for Underfill Application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020087841A KR100540914B1 (en) 2002-12-31 2002-12-31 Liquid Epoxy Resin Composition for Underfill Application

Publications (2)

Publication Number Publication Date
KR20040061568A true KR20040061568A (en) 2004-07-07
KR100540914B1 KR100540914B1 (en) 2006-01-11

Family

ID=37353101

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020087841A KR100540914B1 (en) 2002-12-31 2002-12-31 Liquid Epoxy Resin Composition for Underfill Application

Country Status (1)

Country Link
KR (1) KR100540914B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673767B1 (en) * 2004-12-30 2007-01-24 제일모직주식회사 Epoxy Resin Composition for Underfill of Semiconductor Device
KR100797614B1 (en) * 2006-12-31 2008-01-23 제일모직주식회사 Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same
KR100797941B1 (en) * 2006-12-31 2008-01-24 제일모직주식회사 Reworkable liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same
KR100830775B1 (en) * 2005-03-01 2008-05-20 닛토덴코 가부시키가이샤 Epoxy resin composition for photosemiconductor element encapsulation and photosemiconductor device using the same
KR100830776B1 (en) * 2005-03-01 2008-05-20 닛토덴코 가부시키가이샤 Cured product of epoxy resin composition and method for producing the same, and photosemiconductor device using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124349B1 (en) * 2009-08-03 2012-03-19 대주전자재료 주식회사 Epoxy hybrid resin composition and light-emitting semiconductor device coated with same
KR101391697B1 (en) * 2011-12-14 2014-05-07 제일모직주식회사 Anisotropic conductive film composition and anisotropic conductive film using the composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673767B1 (en) * 2004-12-30 2007-01-24 제일모직주식회사 Epoxy Resin Composition for Underfill of Semiconductor Device
KR100830775B1 (en) * 2005-03-01 2008-05-20 닛토덴코 가부시키가이샤 Epoxy resin composition for photosemiconductor element encapsulation and photosemiconductor device using the same
KR100830776B1 (en) * 2005-03-01 2008-05-20 닛토덴코 가부시키가이샤 Cured product of epoxy resin composition and method for producing the same, and photosemiconductor device using the same
KR100797614B1 (en) * 2006-12-31 2008-01-23 제일모직주식회사 Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same
KR100797941B1 (en) * 2006-12-31 2008-01-24 제일모직주식회사 Reworkable liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same

Also Published As

Publication number Publication date
KR100540914B1 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
JP2012144661A (en) Underfill material and semiconductor device
JP5116152B2 (en) Resin composition for manufacturing semiconductor devices
KR100479857B1 (en) Silicon resin composition for packaging semiconductor
JP3912515B2 (en) Liquid epoxy resin composition and semiconductor device
JP2004331908A (en) Liquid state epoxy resin composition and flip chip type semiconductor device
KR100540914B1 (en) Liquid Epoxy Resin Composition for Underfill Application
JP3997422B2 (en) Liquid epoxy resin composition and semiconductor device
JP3773022B2 (en) Flip chip type semiconductor device
KR100673767B1 (en) Epoxy Resin Composition for Underfill of Semiconductor Device
JP4557148B2 (en) Liquid epoxy resin composition and semiconductor device
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
KR100529256B1 (en) Liquid Epoxy Resin Composition for Encapsulation of Semiconductor
JP2010111747A (en) Underfill agent composition
JP4221585B2 (en) Liquid epoxy resin composition and semiconductor device
JP3867784B2 (en) Liquid epoxy resin composition and semiconductor device
KR101234848B1 (en) Liquid epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
JP5354721B2 (en) Underfill agent composition
KR100797614B1 (en) Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same
KR100990807B1 (en) Adhesive composition for attaching semiconductor chip and semiconductor device using the same
KR100599857B1 (en) Liquid Epoxy Resin Composition for Encapsulation of semiconductor device
JP2004346232A (en) Liquid epoxy resin composition and flip chip type semiconductor device
KR100823073B1 (en) Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same
KR100540913B1 (en) Liquid epoxy resinous composition
KR100642430B1 (en) Epoxy Resin Composition for Underfill of Semiconductor Device
KR101234847B1 (en) Liquid epoxy resin composition for underfilling semiconductor device and semiconductor device using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121105

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130913

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140917

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151124

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161115

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171121

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20181119

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20191203

Year of fee payment: 15