KR20040049612A - Method to deposit Ru film - Google Patents
Method to deposit Ru film Download PDFInfo
- Publication number
- KR20040049612A KR20040049612A KR1020020077444A KR20020077444A KR20040049612A KR 20040049612 A KR20040049612 A KR 20040049612A KR 1020020077444 A KR1020020077444 A KR 1020020077444A KR 20020077444 A KR20020077444 A KR 20020077444A KR 20040049612 A KR20040049612 A KR 20040049612A
- Authority
- KR
- South Korea
- Prior art keywords
- thin film
- deposited
- diffusion barrier
- present
- depositing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 239000010409 thin film Substances 0.000 claims abstract description 63
- 238000000151 deposition Methods 0.000 claims abstract description 25
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims abstract description 20
- 230000004888 barrier function Effects 0.000 claims abstract description 18
- 238000009792 diffusion process Methods 0.000 claims abstract description 17
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052763 palladium Inorganic materials 0.000 claims abstract description 10
- 229910004166 TaN Inorganic materials 0.000 claims abstract description 3
- 229910004200 TaSiN Inorganic materials 0.000 claims abstract description 3
- 229910010037 TiAlN Inorganic materials 0.000 claims abstract description 3
- 238000007736 thin film deposition technique Methods 0.000 claims description 11
- 230000003213 activating effect Effects 0.000 claims description 6
- 239000011259 mixed solution Substances 0.000 claims 1
- 239000000243 solution Substances 0.000 claims 1
- 238000011534 incubation Methods 0.000 abstract description 11
- 230000008021 deposition Effects 0.000 abstract description 10
- 230000003746 surface roughness Effects 0.000 abstract description 8
- 239000000463 material Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 16
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 11
- 238000007796 conventional method Methods 0.000 description 10
- 239000010408 film Substances 0.000 description 9
- 230000006911 nucleation Effects 0.000 description 9
- 238000010899 nucleation Methods 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 239000012495 reaction gas Substances 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 6
- 239000012159 carrier gas Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 238000000427 thin-film deposition Methods 0.000 description 4
- 229910021642 ultra pure water Inorganic materials 0.000 description 4
- 239000012498 ultrapure water Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000005587 bubbling Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 101150003085 Pdcl gene Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000000089 atomic force micrograph Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/65—Electrodes comprising a noble metal or a noble metal oxide, e.g. platinum (Pt), ruthenium (Ru), ruthenium dioxide (RuO2), iridium (Ir), iridium dioxide (IrO2)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/285—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
- H01L21/28506—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
- H01L21/28512—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
- H01L21/28556—Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76841—Barrier, adhesion or liner layers
- H01L21/7685—Barrier, adhesion or liner layers the layer covering a conductive structure
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
본 발명은 Ru 박막 증착방법에 관한 것으로, 특히 Ru 박막이 증착되는 확산 방지막을 활성화시키는 전처리 공정이 포함되는 Ru 박막 증착방법에 관한 것이다.The present invention relates to a Ru thin film deposition method, and more particularly, to a Ru thin film deposition method including a pretreatment step of activating the diffusion barrier film on which the Ru thin film is deposited.
종래의 유전박막으로는 차세대 메모리 소자에 적용하기에 한계가 있어 새로운 고유전박막에 대한 연구가 활발히 진행되고 있다. Ta2O5,PZT 및 BST 등이 바로 그것이다. 이에 따라 해당 고유전박막에 적합한 커패시터 전극물질로 반도체 대신에 대부분 금속을 사용하는데 3차원 구조에서의 전극으로 사용되는 금속으로는 Ru, Ir, Pt 등이 있다. 이 중에서도 반도체 소자의 집적회로 공정, 특히 유기금속 화학기상증착(Metallorganic Chemical Vapor Deposition, 이하 MOCVD라 한다.)법에 의해 형성된 Ru 박막은 우수한 전기전도성, 넓은 온도범위에서의 높은 안정성, 실리콘, 실리콘산화막 및 세라믹산화막과의 우수한 접착성을 갖는 것으로 알려졌다. 상술한 MOCVD에 의해 형성된 Ru 박막은 기가(Giga)급 컴퓨터의 메인 메모리인 DRAM(Dynamic Random Access Memory) 및 FeRAM(Ferroelectic Random Access Memory)에서 커패시터의 전극 또는 배선으로 사용되고 있으며, 또한 실리콘이나 금속산화물과의 반응성이 거의 없기 때문에 실리콘, 산소의 배리어막(Barrier)으로도 이용이 가능하다.As a conventional dielectric thin film is limited to be applied to a next generation memory device, research on a new high dielectric thin film is being actively conducted. Ta 2 O 5, PZT and BST. Accordingly, most of metals are used instead of semiconductors as capacitor electrode materials suitable for the high-k thin film, and metals used as electrodes in three-dimensional structures include Ru, Ir, and Pt. Among these, the Ru thin film formed by an integrated circuit process of a semiconductor device, in particular, an organometallic chemical vapor deposition (MOCVD) method, has excellent electrical conductivity, high stability over a wide temperature range, and a silicon and silicon oxide film. And excellent adhesion to ceramic oxide films. The Ru thin film formed by the above-described MOCVD is used as an electrode or wiring of a capacitor in a DRAM (Dynamic Random Access Memory) and a FeRAM (Ferroelectic Random Access Memory), which are main memories of a Giga-class computer, and also a silicon or metal oxide Since there is little reactivity of, it can be used also as a barrier film of silicon and oxygen.
MOCVD법에 의한 일반적인 Ru 박막의 증착은 다음과 같다.The deposition of a general Ru thin film by MOCVD is as follows.
Ru 소스의 일 예로서, 전구체인 Ru(Etcp)2를 기화시켜 아르곤과 같은 비활성 가스로 운반하고, 전구체의 리간드를 떼어내기 위한 산소와 같은 반응가스를 반응챔버로 공급함으로써 반응챔버 내에 미리 장입되어 있는 고온으로 가열된 기판 표면에서 반응이 일어나 Ru 박막이 증착된다. 여기서 리간드란 수용체에서 결합하는 분자를 말한다.As an example of the Ru source, the precursor Ru (Etcp) 2 is vaporized and transported to an inert gas such as argon, and charged in advance into the reaction chamber by supplying a reaction gas such as oxygen to release the ligand of the precursor to the reaction chamber. The reaction takes place at the surface of the substrate heated to a high temperature, whereby a Ru thin film is deposited. Ligand herein refers to a molecule that binds to a receptor.
그런데, Ru 박막을 MOCVD법으로 TiN 박막상에 증착할 때에는, 핵생성 단계에서 인큐베이션 타임(Incubation Time)이 존재하여 공정상 많은 시간이 소요되는 단점이 있다. Ru 박막을 증착함에 있어서 면저항값은 시간에 따라 점점 증가해서 최대값을 이루다가 급격히 감소한다. 이는 잠복기 동안에는 산소에 노출된 TiN 기판이 산화되면서 면저항이 점점 증가하다가 잠복기가 지나고 Ru의 핵이 생성되기 시작하면서 면저항이 감소하는 것이라 해석할 수 있는데, 그 때의 시간을 인큐베이션 타임이라고 한다. 예를 들어, 메모리 소자의 축전기의 하부전극으로 사용될 수 있도록 Ru 박막을 두께 70nm 정도로 증착할 때, 인큐베이션 타임이 4∼15분 소요된다.However, when the Ru thin film is deposited on the TiN thin film by MOCVD, an incubation time is present in the nucleation step, which takes a long time in the process. In depositing the Ru thin film, the sheet resistance gradually increases with time, reaches a maximum value, and then rapidly decreases. It can be interpreted that the sheet resistance gradually increases as the TiN substrate exposed to oxygen is oxidized during the incubation period and then decreases as the incubation period and the nuclei of Ru begin to form, which is called incubation time. For example, when the Ru thin film is deposited to a thickness of about 70 nm so as to be used as the lower electrode of the capacitor of the memory device, the incubation time takes 4 to 15 minutes.
또한, Ru 박막을 MOCVD법으로 TiN 박막상에 증착할 때에는 전구체에서 분해된 Ru 흡착종들이 저온에서도 서로 뭉치기 때문에 거친 박막이 증착된다는 단점이 있다. 실제로 Ru 박막은 약 120nm 정도의 두께로 증착되었을 때, 표면거칠기(Root Mean Squar, RMS)가 32nm 정도로 매우 거칠게 나타난다.In addition, when the Ru thin film is deposited on the TiN thin film by MOCVD, coarse thin films are deposited because the Ru adsorbed species decomposed in the precursor aggregates together even at low temperatures. In fact, when the Ru thin film is deposited to a thickness of about 120 nm, the root mean square (RMS) is very rough as 32 nm.
상술한 바와 같이 핵생성 단계가 길어지면, 3차원적인 패턴에 채워 넣을 경우 단차도포성이 낮고 또한 거친 박막이 증착되어, 커패시터의 방전항복전압이 낮아지고, 누설전류를 크게 하여 커패시터의 전기적 특성이 좋지 않게 된다. 또한 증착시간이 길어지면 고가인 전구체의 양도 많이 소비되어 경제적으로 좋지 못하다.As described above, when the nucleation step is prolonged, when the three-dimensional pattern is filled, the step coverage is low and the coarse thin film is deposited, so that the discharge breakdown voltage of the capacitor is lowered and the leakage current is increased to increase the electrical characteristics of the capacitor. Not good. In addition, when the deposition time is long, a large amount of expensive precursor is consumed, which is not economically good.
상술한 종래기술의 문제점을 해결하기 위한 본 발명의 기술적 과제는 인큐베이션 타임을 짧게 하고, 표면거칠기 및 단차도포성을 양호하게 할 수 있는 Ru 박막증착방법을 제공하는 데 있다.SUMMARY OF THE INVENTION The present invention has been made in an effort to provide a Ru thin film deposition method capable of shortening an incubation time and improving surface roughness and step coating properties.
도 1은 Ru 박막을 증착할 수 있는 버블러 방식이 채용된 일반적인 MOCVD 장치를 설명하기 위한 개략도;1 is a schematic diagram for explaining a general MOCVD apparatus employing a bubbler method capable of depositing a Ru thin film;
도 2는 도 1에 따른 장치를 이용하여 본 발명의 실시예에 따른 Ru 박막 증착 방법을 설명하기 위한 공정도; 및2 is a process chart for explaining a Ru thin film deposition method according to an embodiment of the present invention using the apparatus according to FIG. And
도 3 내지 도 7은 본 발명의 방법으로 Ru 박막을 증착한 경우와 종래의 방법으로 Ru 박막을 증착한 경우를 비교한 그래프와 SEM 및 AFM 사진들이다.3 to 7 are graphs and SEM and AFM images comparing a case of depositing a Ru thin film by the method of the present invention and a case of depositing a Ru thin film by a conventional method.
상기의 기술적 과제를 달성하기 위한 본 발명에 따른 Ru 박막 증착방법은: 확산방지막 상에 Ru 박막을 증착하는 방법에 있어서, 상기 Ru 박막을 증착하기 전에 상기 확산방지막을 팔라듐으로 활성화시키는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of depositing a Ru thin film on a diffusion barrier, the method comprising: activating the diffusion barrier with palladium before depositing the Ru thin film. It is characterized by.
이 때 상기 팔라듐으로 활성화시키는 단계 전에, 상기 확산방지막의 표면에 형성된 산화물을 제거하는 단계를 더 포함하는 것이 바람직하다.At this time, it is preferable to further include the step of removing the oxide formed on the surface of the diffusion barrier film before the step of activating with the palladium.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 Ru 박막을 증착할 수 있는 버블러 방식이 채용된 일반적인 MOCVD 장치를 설명하기 위한 개략도이고, 도 2는 도 1에 따른 장치를 이용하여 본 발명에 따른 Ru 박막 증착방법을 설명하기 위한 공정도이다.FIG. 1 is a schematic diagram illustrating a general MOCVD apparatus employing a bubbler method capable of depositing a Ru thin film, and FIG. 2 is a process diagram illustrating a Ru thin film deposition method according to the present invention using the apparatus according to FIG. 1. to be.
먼저, 도 1을 참조하여 버블러 방식을 이용하는 일반적인 Ru 박막 증착방법에 대하여 설명한다.First, a general Ru thin film deposition method using a bubbler method will be described with reference to FIG. 1.
도 1을 참조하면, Ru 박막을 증착할 수 있는 버블러 방식이 채용된 일반적인 MOCVD 장치는, 반응챔버, Ru 소스를 공급하는 버블러, 반응가스 공급라인 및 트랩부로 이루어진다.Referring to FIG. 1, a general MOCVD apparatus employing a bubbler method capable of depositing a Ru thin film includes a reaction chamber, a bubbler for supplying a Ru source, a reaction gas supply line, and a trap part.
반응챔버 내에는 확산방지막이 증착된 기판이 상부에 안착되게 되는 히터가 설치되어 있으며, 기화된 Ru 소스를 MOCVD 챔버 내로 공급하기 위한 샤워헤드가 설치되어 있다.In the reaction chamber, a heater is installed on the substrate on which the diffusion barrier film is deposited, and a shower head is provided to supply a vaporized Ru source into the MOCVD chamber.
버블러는 캐니스터와, 캐니스터에 각각 연결된 버블링가스 공급라인 및 운반가스 공급라인으로 이루어진다.The bubbler consists of a canister, a bubbling gas supply line and a carrier gas supply line respectively connected to the canister.
캐니스터에는 Ru 소스인 Ru 전구체가 담겨 있으며, 히터가 설치된다. 그 Ru 전구체는 버블링가스 공급라인을 통하여 N2와 같은 버블링가스가 유입됨으로써 버블링된다. 버블링된 Ru 소스는, 유량제어기에 의해 조절되어 운반가스 공급라인을 통하여 캐니스터로 유입되는 Ar과 같은 운반가스에 의하여 MOCVD 챔버내로 유입된다.The canister contains a Ru precursor, which is a Ru source, and is installed with a heater. The Ru precursor is bubbled by introducing a bubbling gas such as N 2 through a bubbling gas supply line. The bubbled Ru source is introduced into the MOCVD chamber by a carrier gas such as Ar, which is controlled by a flow controller and flows into the canister through the carrier gas supply line.
반응가스 공급라인을 통해서는 Ru 소스와 반응하는 O2와 같은 반응가스가 유령제어기에 의해 조절되어 MOCVD 챔버내로 유입된다.Through the reaction gas supply line, reaction gas such as O 2 reacting with the Ru source is controlled by a ghost controller and introduced into the MOCVD chamber.
트랩부는 개폐용 밸브가 설치된 배관에 의하여 MOCVD 챔버와 연결되어, 박막증착공정 후 잔류하는 가스원료를 처리한다.The trap unit is connected to the MOCVD chamber by a pipe provided with an opening / closing valve to process the gas raw material remaining after the thin film deposition process.
즉 Ru 전구체를 버블링시킨 다음 비활성 가스인 운반가스를 이용해서 반응챔버내로 유입시키고, 다른 경로를 통하여 반응가스를 반응챔버로 유입시킴으로써, 고온으로 가열된 확산방지막 상에서 반응가스와 Ru 소스가 반응을 일으키게 되어 Ru 박막이 증착되는 것이다. 이때, 확산방지막은 TiN, Ta, TaN, TaSiN 및 TiAlN 으로 이루어진 군으로부터 선택된 어느 하나가 사용되어 질 수 있다.That is, the Ru precursor is bubbled and then introduced into the reaction chamber using a carrier gas, which is an inert gas, and the reaction gas is introduced into the reaction chamber through another path, whereby the reaction gas and the Ru source react on the diffusion barrier film heated to a high temperature. This causes the Ru thin film to be deposited. In this case, the diffusion barrier layer may be any one selected from the group consisting of TiN, Ta, TaN, TaSiN and TiAlN.
본 발명에 따른 Ru 박막 증착방법은, 상술한 공정을 실행하기 전에 확산방지막의 표면에 형성된 Ti 산화물을 제거하고, 팔라듐을 이용하여 확산방지막을 활성화시키는 단계를 실시하는 것을 특징으로 한다.The Ru thin film deposition method according to the present invention is characterized by removing Ti oxide formed on the surface of the diffusion barrier film and activating the diffusion barrier film using palladium before performing the above process.
계속해서, 상술한 일반적인 Ru 박막 증착공정과 결부시켜 본 발명에 따른 실시예를 설명한다.Subsequently, an embodiment according to the present invention will be described in conjunction with the general Ru thin film deposition process described above.
MOCVD법을 이용하여 Ru 박막을 증착하는 조건은 다음과 같다. 전구체로는 Ru(EtCp)2를 사용하고, 기판으로는 TiCl4를 소스로 사용하여 확산방지막으로서 TiN이 증착된 온도가 280∼400℃인 기판이 사용된다. 운반가스는 100sccm의 유량으로 반응가스는 50sccm의 유량으로 각각 유입하며, 공정압력은 3Torr, 기본압력은 15mTorr로 설정하고, 반응가스 공급라인은 110℃, 버블러 히터의 온도는 110℃, 샤워헤드 온도는 120℃로 각각 설정한다.The conditions for depositing the Ru thin film using the MOCVD method are as follows. As a precursor, Ru (EtCp) 2 is used, and TiCl 4 is used as a substrate, and a substrate having a TiN deposited temperature of 280 to 400 ° C. is used as a diffusion barrier. The carrier gas flows at 100 sccm and the reaction gas flows at 50 sccm. The process pressure is set to 3 Torr and the basic pressure is set to 15 mTorr.The reaction gas supply line is 110 ° C, the bubbler heater is 110 ° C, the shower head. Temperature is set to 120 degreeC, respectively.
도 2를 참조하면, 상술한 Ru 전구체와 반응가스를 유입하기 전에, 먼저 TiN 표면에 형성된 Ti 산화물을 제거하기 위하여 TiN이 증착된 기판을 초순수 100㎖와 HF 2㎖ 용액을 혼합하여 마련한 용액에 10분동안 담가놓는다. 다음에, 10초동안 초순수로 세정한다.Referring to FIG. 2, in order to remove Ti oxide formed on the surface of TiN, the TiN-deposited substrate is mixed with 100 ml of ultrapure water and 2 ml of HF before the Ru precursor and the reaction gas are introduced. Soak for minutes. Next, it is washed with ultrapure water for 10 seconds.
계속해서, 초순수 100㎖와 PdCl20.01g, 35% HCl 0.3㎖, 50% HF 0.5㎖ 용액을 혼합하여 마련한 용액에 20초동안 담가놓음으로써 TiN 박막을 활성화시킨다. 그다음에, 초순수로 TiN이 증착된 기판 표면을 깨끗이 세정한다.Subsequently, the TiN thin film is activated by immersing in a solution prepared by mixing 100 ml of ultrapure water, 0.01 g of PdCl 2 , 0.3 ml of 35% HCl, and 0.5 ml of 50% HF for 20 seconds. Then, the surface of the substrate on which TiN is deposited is cleaned with ultrapure water.
이와 같이, 팔라듐으로 활성화된 TiN 박막 상에서 MOCVD 공정을 진행하여 Ru 박막을 증착하면, 핵생성 단계를 줄여 증착속도가 개선되고, 흡착종들의 표면 이동도를 줄이게 되어 보다 두꺼운 박막이 되었을 때도 보다 매끈한 박막이 계속해서 얻어질 수 있다.As such, when the Ru thin film is deposited by the MOCVD process on the TiN thin film activated by palladium, the deposition rate is improved by reducing the nucleation step, and the surface mobility of the adsorbed species is reduced, thereby making the thin film thinner even when the thin film is thicker. This can be obtained over and over again.
한편, 본 발명의 방법은 상술한 버블러 방식 또는 샤워헤드 방식에만 적용되는 것이 아니고, 액체운송장치(Liquid Delivery System, LDS) 방식을 비롯한 모든 MOCVD 방식에 전처리 공정으로서 적용된다.On the other hand, the method of the present invention is not only applied to the bubbler method or the showerhead method described above, but is applied as a pretreatment process to all MOCVD methods including a Liquid Delivery System (LDS) method.
이어서, 상술한 조건으로 Ru 박막을 증착함에 있어서, 본 발명의 방법으로 Ru 박막을 증착한 경우와 종래의 방법으로 Ru 박막을 증착한 경우를 비교 설명한다.Next, in depositing the Ru thin film under the above-described conditions, the case where the Ru thin film is deposited by the method of the present invention is compared with the case where the Ru thin film is deposited by the conventional method.
도 3은 본 발명에 따른 방법으로 Ru 박막을 증착한 경우와 종래의 방법으로 Ru 박막을 증착한 경우의 기판 온도에 따른 인큐베이션 타임의 변화를 나타낸 그래프들이다.3 is a graph showing a change in incubation time according to the substrate temperature when the Ru thin film is deposited by the method according to the present invention and when the Ru thin film is deposited by the conventional method.
도 3을 참조하면, 본 발명에 따른 방법으로 Ru 박막을 증착한 경우는 기판의 온도에 상관없이 항상 종래보다 인큐베이션 타임이 짧아지는 것을 알 수 있다.Referring to FIG. 3, it can be seen that in the case of depositing a Ru thin film by the method according to the present invention, the incubation time is always shorter than in the prior art regardless of the temperature of the substrate.
도 4는 본 발명에 따른 방법으로 Ru 박막을 증착한 경우와 종래의 방법으로 Ru 박막을 증착한 경우의 기판온도에 따른 비저항값을 나타낸 그래프들이다. 특히 Ru 박막의 두께가 70nm가 되도록 Ru 박막을 증착한 경우의 비저항값이다.Figure 4 is a graph showing the resistivity value according to the substrate temperature when the Ru thin film is deposited by the method according to the present invention and when the Ru thin film is deposited by the conventional method. In particular, it is a specific resistance value when the Ru thin film is deposited so that the thickness of the Ru thin film is 70 nm.
도 4를 참조하면, 본 발명에 따른 방법으로 Ru 박막을 증착한 경우는 기판온도에 상관없이 항상 비저항값이 종래보다 더 작아지는 것을 알 수 있다. 따라서, 본 발명의 경우는 고온에서 별도의 열처리 단계가 필요없게 된다.Referring to FIG. 4, when the Ru thin film is deposited by the method according to the present invention, it can be seen that the specific resistance is always smaller than the conventional temperature regardless of the substrate temperature. Therefore, in the case of the present invention, a separate heat treatment step is not necessary at high temperature.
도 5는 본 발명에 따른 방법으로 Ru 박막을 증착한 경우와 종래의 방법으로Ru 박막을 증착한 경우의 기판 온도에 따른 핵생성 모습을 나타낸 SEM 사진들이다. 특히 박막의 두께가 700Å로 유지되고, 기판의 온도가 280℃, 320℃, 400℃인 경우의 SEM 사진들이다.5 is a SEM photograph showing the nucleation state according to the substrate temperature when the Ru thin film is deposited by the method according to the present invention and when the Ru thin film is deposited by the conventional method. In particular, SEM images are obtained when the thickness of the thin film is maintained at 700 GPa and the temperature of the substrate is 280 ° C, 320 ° C, or 400 ° C.
도 5를 참조하면, 본 발명에 따른 방법으로 Ru 박막을 증착한 경우는 기판의 온도에 상관없이 항상 핵생성이 종래보다 더 많음을 알 수 있다.Referring to FIG. 5, it can be seen that in the case of depositing a Ru thin film by the method according to the present invention, nucleation is always higher than in the prior art regardless of the temperature of the substrate.
도 6은 본 발명에 따른 방법으로 Ru 박막을 증착한 경우와 종래의 방법으로 Ru 박막을 증착한 경우의 핵생성 모습을 나타낸 SEM 사진들이다. 특히, 기판의 온도가 320℃로 유지되고, Ru 박막 증착시간이 O분, 3분, 5분인 경우의 SEM 사진들이다. 여기서 증착시간이 O분이란 종래의 기술에서는 아무것도 증착되지 않은 상태이고, 본 발명에서는 팔라듐으로 활성화 처리된 상태이다.6 is a SEM photograph showing the nucleation state when the Ru thin film is deposited by the method according to the present invention and when the Ru thin film is deposited by the conventional method. In particular, SEM photographs are obtained when the temperature of the substrate is maintained at 320 ° C. and the Ru thin film deposition time is 0 minutes, 3 minutes, and 5 minutes. Here, the deposition time of 0 minutes means that nothing is deposited in the prior art, and in the present invention, it is activated with palladium.
도 6을 참조하면, 본 발명에 따른 방법으로 Ru 박막을 증착한 경우는 증착시간에 상관없이 항상 종래보다 핵생성이 많음을 알 수 있다.Referring to FIG. 6, it can be seen that the deposition of the Ru thin film by the method according to the present invention always has more nucleation than the prior art regardless of the deposition time.
따라서, 본 발명의 경우는 인큐베이션 타임이 짧아져서 증착속도가 크게 향상되고, 핵생성이 많아짐으로서 촉매효과가 있음을 알 수 있다.Therefore, in the case of the present invention, the incubation time is shortened, the deposition rate is greatly improved, and it can be seen that there is a catalytic effect by increasing the nucleation.
도 7은 본 발명에 따른 방법으로 Ru 박막을 증착한 경우와 종래의 방법으로 Ru 박막을 증착한 경우의 AFM사진들이다. 특히 기판의 온도가 320℃로 유지되고, Ru 박막 증착시간이 10분인 경우의 그에 따른 표면거칠기 값을 나타낸 AFM 사진들이다.7 is AFM photographs of the case where the Ru thin film is deposited by the method according to the present invention and when the Ru thin film is deposited by the conventional method. In particular, the AFM photographs show surface roughness values when the substrate temperature is maintained at 320 ° C. and the Ru thin film deposition time is 10 minutes.
도 7를 참조하면, 증착된 Ru 박막의 두께를 보면 종래의 방법을 이용한 경우의 박막의 두께는 1280Å이고 본 발명의 방법을 이용한 경우의 Ru 박막의 두께는1380Å이다. 여기서 종래의 방법을 이용한 경우의 박막의 두께와 본 발명의 방법을 이용한 경우의 박막의 두께가 다른 이유는, 본 발명에 따른 방법으로 Ru 박막을 증착하면 촉매효과가 있어서 증착속도가 빨라지므로 박막의 두께가 종래보다 두꺼워진 것이다. 일반적으로 두께가 두꺼울질수록 표면거칠기는 증가해서 표면거칠기를 비교할 때는 동일한 두께에서 비교해야 된다. 그러나 도 7를 참조하면, 본 발명의 방법을 이용하여 Ru 박막을 증착한 경우의 표면거칠기는 100Å이고, 종래의 방법을 이용하여 Ru 박막을 증착한 경우의 표면거칠기는 320Å이다. 따라서, 본 발명의 경우는 Ru 박막의 두께가 두꺼워도 종래보다 표면거칠기 값이 감소하여 매우 조밀한 표면입자로 균일한 층이 형성되어 있다는 것을 알 수 있다.Referring to FIG. 7, the thickness of the deposited Ru thin film is 1280 mm when the conventional method is used and the thickness of the Ru thin film is 1380 mm when the method of the present invention is used. The reason why the thickness of the thin film in the case of using the conventional method and the thickness of the thin film in the case of using the method of the present invention is different is that when the Ru thin film is deposited by the method according to the present invention, the deposition rate is increased due to the catalytic effect. The thickness is thicker than before. In general, the thicker the thickness, the greater the surface roughness. However, referring to FIG. 7, the surface roughness when the Ru thin film is deposited using the method of the present invention is 100 kW, and the surface roughness when the Ru thin film is deposited by the conventional method is 320 kW. Therefore, in the case of the present invention, even if the thickness of the Ru thin film, it can be seen that the surface roughness value is reduced compared to the prior art, thereby forming a uniform layer of very dense surface particles.
상술한 바와 같이 본 발명에 따른 Ru 박막 증착방법에 의하면, 초기 핵생성에 필요한 인큐베이션 타임을 줄여 증착속도 개선효과가 있으므로 생산성을 향상시킬 수 있다.As described above, according to the Ru thin film deposition method according to the present invention, the incubation time required for the initial nucleation is reduced, thereby improving the deposition rate, thereby improving productivity.
또한, 종래보다 비저항값이 작아져서 열처리 공정이 필요없으므로 생산성이 향상된다.In addition, since the specific resistance value is smaller than in the related art, the heat treatment step is unnecessary, and the productivity is improved.
나아가, 우수한 표면거칠기를 얻을 수 있으므로, 커패시터의 하부전극으로 사용되면 누설전류가 감소되고, 항복전압이 증가하여 전기적 특성이 좋아진다.Furthermore, since excellent surface roughness can be obtained, when used as the lower electrode of the capacitor, the leakage current is reduced and the breakdown voltage is increased to improve the electrical characteristics.
본 발명은 상기 실시예에만 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의해 많은 변형이 가능함은 명백하다.The present invention is not limited to the above embodiments, and it is apparent that many modifications are possible by those skilled in the art within the technical spirit of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0077444A KR100530008B1 (en) | 2002-12-06 | 2002-12-06 | Method to deposit Ru film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0077444A KR100530008B1 (en) | 2002-12-06 | 2002-12-06 | Method to deposit Ru film |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040049612A true KR20040049612A (en) | 2004-06-12 |
KR100530008B1 KR100530008B1 (en) | 2005-11-22 |
Family
ID=37343995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0077444A KR100530008B1 (en) | 2002-12-06 | 2002-12-06 | Method to deposit Ru film |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100530008B1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100262908B1 (en) * | 1997-01-07 | 2000-09-01 | 노영민 | Methods of depositing a platinium film with anti-oxidizing function over a substrate and electronic devices incorporating the platinum film |
KR100287187B1 (en) * | 1999-03-30 | 2001-04-16 | 윤종용 | capacitor of semiconductor device and manufacturing method thereof |
JP4055319B2 (en) * | 2000-02-18 | 2008-03-05 | ソニー株式会社 | Manufacturing method of semiconductor device |
KR20020010759A (en) * | 2000-07-31 | 2002-02-06 | 박종섭 | Method of forming a capacitor |
KR100475402B1 (en) * | 2002-06-05 | 2005-03-10 | 재단법인서울대학교산학협력재단 | Ruthenium Thin Film Formation Method |
-
2002
- 2002-12-06 KR KR10-2002-0077444A patent/KR100530008B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100530008B1 (en) | 2005-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6980020B2 (en) | Cobalt cohesion resistance and gap filling effect enhanced by ruthenium doping | |
Aaltonen et al. | Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature | |
JP4919535B2 (en) | Plasma treatment of thermal CVD TaN films from tantalum halide precursors | |
JP3670628B2 (en) | Film forming method, film forming apparatus, and semiconductor device manufacturing method | |
TW557501B (en) | Process for fabrication of semiconductor device | |
US7968437B2 (en) | Semiconductor device manufacturing method and substrate processing apparatus | |
US7074719B2 (en) | ALD deposition of ruthenium | |
TW201035356A (en) | Method of depositing tungsten film with reduced resistivity and improved surface morphology | |
TW201835367A (en) | Method for selective deposition, apparatus for organic layer deposition, and integrated circuit metallization structure | |
JP2003226970A (en) | Method of depositing metal thin film by atomic layer deposition | |
WO2006134930A1 (en) | Process for production of semiconductor device and apparatus for treatment of substrate | |
US7566661B2 (en) | Electroless treatment of noble metal barrier and adhesion layer | |
JP7345546B2 (en) | PEALD process using ruthenium precursor | |
US7041596B1 (en) | Surface treatment using iodine plasma to improve metal deposition | |
US7524766B2 (en) | Method for manufacturing semiconductor device and substrate processing apparatus | |
JP3194256B2 (en) | Film growth method and film growth apparatus | |
KR100530008B1 (en) | Method to deposit Ru film | |
JP6118149B2 (en) | Ruthenium film forming method and storage medium | |
US20040045503A1 (en) | Method for treating a surface of a reaction chamber | |
KR100738068B1 (en) | Noble metal electrode deposition method using oxidation and reduction method | |
KR20030050957A (en) | Ru thin film forming method using plasma enhanced process | |
US7344982B2 (en) | System and method of selectively depositing Ruthenium films by digital chemical vapor deposition | |
JP4763894B2 (en) | Formation of CVD tantalum nitride plugs from tantalum halide precursors. | |
JP4055935B2 (en) | Method for producing iridium thin film using chemical vapor deposition | |
KR20230096216A (en) | Metal thin film deposition method using organometallic precursor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121113 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20131104 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20141110 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20151111 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20170113 Year of fee payment: 12 |
|
LAPS | Lapse due to unpaid annual fee |