KR20040044762A - Tire rubber composition - Google Patents
Tire rubber composition Download PDFInfo
- Publication number
- KR20040044762A KR20040044762A KR1020020072933A KR20020072933A KR20040044762A KR 20040044762 A KR20040044762 A KR 20040044762A KR 1020020072933 A KR1020020072933 A KR 1020020072933A KR 20020072933 A KR20020072933 A KR 20020072933A KR 20040044762 A KR20040044762 A KR 20040044762A
- Authority
- KR
- South Korea
- Prior art keywords
- rubber
- cystine
- cysteine
- rubber composition
- tire
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/37—Thiols
- C08K5/372—Sulfides, e.g. R-(S)x-R'
- C08K5/3725—Sulfides, e.g. R-(S)x-R' containing nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C1/00—Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
Description
본 발명은 타이어 고무 조성물에 관한 것으로서, 더욱 상세하게는 천연고무를 원료고무로 포함하는 조성물에 시스틴이나 시스테인을 첨가하여 고무성분 중의 단백질을 유효성분으로 전환하여 고무의 인장특성 및 히스테리시스 특성이 개량된 고무 조성물에 관한 것이다.The present invention relates to a tire rubber composition, and more particularly, by adding cystine or cysteine to a composition comprising natural rubber as a raw material rubber, thereby converting the protein in the rubber component into an active ingredient, thereby improving the tensile and hysteresis characteristics of the rubber. It relates to a rubber composition.
천연고무의 조성은 고무 탄화수소 91∼94%, 단백질 2∼3%, 천연 지질 2∼3% 등으로 이루어져 있다.The composition of natural rubber consists of 91 to 94% of rubber hydrocarbons, 2 to 3% of proteins, and 2 to 3% of natural lipids.
그 중에서 단백질은 열에 약하여 혼합 중 파괴되기도 하지만 완전히 분해되지는 않고 변성되어 아무런 효용성이 없는 물질로 존재하게 된다. 따라서, 2∼3phr의 유효성분 손실을 의미하게 된다.Among them, proteins are weak to heat and destroyed during mixing, but are not completely decomposed and denatured to exist as substances having no utility. Therefore, it means a loss of 2 to 3 phr of active ingredient.
따라서, 이러한 손실을 유효성분으로 전환시킬 수 있는 방법이 있다면 천연고무를 사용하는 고무 조성물의 물성을 개량할 수 있을 것이다.Therefore, if there is a method for converting such a loss into the active ingredient, it will be possible to improve the physical properties of the rubber composition using natural rubber.
여기서, 천연고무가 함유하는 단백질은 비중차에 의해 다음과 같이 분류될 수 있다.Here, proteins contained in natural rubber can be classified as follows by specific gravity difference.
(1)고무입자상: 고무함유 단백질 중 26%를 차지하는 300∼500nM의 입자로 결합하고 있다. 고무 분자의 성장에 관계하는 고무성장인자(Rubber Elongation Factor, 이하 REF)(1) Rubber particle phase: It binds with 300-500nM particles which make up 26% of rubber-containing proteins. Rubber growth factor (REF) related to the growth of rubber molecules
(2)세포장액상: C상이라 불리우며 약 48%를 차지하고 있는 30여 종류의 다양한 단백질들로 상대적으로 큰 분자량을 갖는 High Anion 가동성을 갖는다.(2) Cellular fluid phase: It is called C phase and has about 30% of various kinds of proteins with high molecular weight and high anion mobility.
(3)Lutoid 입자: 물에 불용성인 고형분으로 Bottom Fraction이라고도 하는 약 8종의 단백질로 Cation성의 Hevamine과 Anion성의 Hevein이 있다.(3) Lutoid particle: It is an insoluble solid in water and about 8 kinds of proteins, also called Bottom Fraction, are Cation Hevamine and Anion Hevein.
천연고무는 자연적으로 단백질 분해가 진행되는데, 이는 부패방지를 위해 첨가된 암모니아에 의한 것과 시스틴 등과 같은 티올기의 산화 커플링에 의한 것으로 여겨지는 중합이 일어나, REF가 일부 분해된 저분자량의 단백질이 고무입자에 결합하기도 하고, C상에는 새로운 고분자량의 단백질이 중합되어 존재하는 등 고무함유 단백질의 구성을 복잡하게 한다.Natural rubber naturally undergoes proteolysis, which causes polymerization due to ammonia added to prevent decay and oxidative coupling of thiol groups such as cystine, resulting in low molecular weight proteins from which REF is partially degraded. It binds to rubber particles and complicates the composition of rubber-containing proteins, such as the presence of polymerized new high molecular weight proteins.
이에, 본 발명자는 천연고무에 포함되는 단백질을 유효성분으로 전환시킬 수 있는 방법을 모색하던 중, 시스틴 또는 시스테인을 타이어 고무 조성물에 첨가한 결과, 시스틴의 디설파이드 결합을 깨뜨려 생성되는 라디칼들이 카본 블랙 표면의 활성기나 화합물과 반응토록 유도하여 필러와 고무와의 결합을 이루게 함과 동시에 신장 특성을 잃지 않도록 고무입자분(REF)의 분해를 막아주는 효과를 부여하여 결과적으로 인장특성이나 히스테리시스 특성을 개량시킴을 알게되어 본 발명을 완성하게 되었다.Accordingly, the inventors of the present invention, while searching for a method of converting a protein contained in natural rubber into an active ingredient, added cystine or cysteine to the tire rubber composition, and as a result, radicals generated by breaking the disulfide bond of cystine were formed on the carbon black surface. It is induced to react with the active groups and compounds of the to form a bond between the filler and the rubber, and at the same time to prevent the decomposition of the rubber particles (REF) so as not to lose the elongation characteristics to improve the tensile properties or hysteresis characteristics as a result The present invention was completed.
따라서, 본 발명의 목적은 천연고무 조성 중 포함된 단백질을 유효성분으로 전환시켜 타이어의 인장특성 및 히스테리시스 특성을 개량시킨 타이어 고무 조성물을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a tire rubber composition in which the protein contained in the natural rubber composition is converted into an active ingredient, thereby improving the tensile and hysteresis characteristics of the tire.
상기와 같은 목적을 달성하기 위한 본 발명의 타이어 고무 조성물은 천연고무를 원료고무로 포함하는 것으로서, 여기에 시스틴, 시스테인 및 이들 성분을 함유하는 첨가제 중에서 선택된 것를 첨가하여 이루어진 것임을 그 특징으로 한다.The tire rubber composition of the present invention for achieving the above object is characterized in that it comprises natural rubber as a raw material rubber, added to the selected from cystine, cysteine and additives containing these components.
이와같은 본 발명을 더욱 상세하게 설명하면 다음과 같다.The present invention will be described in more detail as follows.
본 발명에서는 천연고무를 원료고무로 한 타이어 고무 조성물의 물성을 개량함에 있어서 천연고무 중에 포함된 단백질을 유효성분으로 전환시키기 위하여 시스틴이나 시스테인을 첨가한 조성이다.In the present invention, in the improvement of the physical properties of the tire rubber composition using natural rubber as a raw material, cystine or cysteine is added to convert proteins contained in natural rubber into active ingredients.
본 발명에서는 설파이드릴기(-SH)를 갖는 불안정하고 매우 민감한 반응성을 갖는 시스테인(Cysteine)을 환원제로 사용한 시스틴(Cystine)의 커플링효과를 이용하였다. 즉, 시스틴의 디설파이드 결합을 깨뜨려 생성되는 라디칼들이 고무 조성물 중 카본 블랙 표면의 활성기나 화합물들과 반응토록 유도하여 필러와 고무와의 결합을 이루게 함과 동시에 신장 특성을 잃지 않도록 고무성장인자의 분해를 막아주도록 한 것이다. 구체적인 메카니즘은 다음 반응식 1과 같다.In the present invention, the coupling effect of cystine using cysteine having a unstable and highly sensitive reactivity having a sulfidyl group (-SH) as a reducing agent was used. That is, radicals generated by breaking the disulfide bonds of cystine are induced to react with the active groups or compounds on the surface of the carbon black in the rubber composition to form a bond between the filler and the rubber and at the same time to decompose the rubber growth factor so as not to lose elongation characteristics. It was to prevent. The specific mechanism is shown in Scheme 1 below.
이같은 반응기작을 유도할 수 있도록 시스틴이나 시스테인을 고무 조성물 중에 첨가하게 되면 천연고무 중 포함된 단백질이 유효한 성분으로 전환되므로 천연고무의 2∼3phr에 해당되는 유효성분의 손실을 억제할 수 있게 되고, 결과적으로 인장특성이나 히스테리시스 특성이 향상될 수 있다.When cystine or cysteine is added to the rubber composition to induce such a reaction, the protein contained in the natural rubber is converted into an effective ingredient, thereby preventing the loss of the active ingredient corresponding to 2 to 3 phr of natural rubber. As a result, tensile properties or hysteresis characteristics can be improved.
시스틴이나 시스테인의 첨가량은 원료고무 100중량부에 대하여 1∼5phr이면 되는 바, 그 함량이 5phr보다 많아지면 과도한 모듈러스 증가와 스코치 타임이 급격히 짧아지고, 1phr 미만이면 고무조성물의 물성개량효과가 떨어진다.The amount of cystine or cysteine added may be 1 to 5 phr based on 100 parts by weight of the raw material rubber. When the content is more than 5 phr, excessive modulus and scorch time are drastically shortened.
본 발명의 타이어 고무 조성물은 통상의 타이어 고무 조성물을 포함하는 것으로서, 카본블랙을 보강제로 포함하며, 산화아연, 스테아린산, 프로세스 오일, 가류제, 가류촉진제 등을 포함함은 물론이다.The tire rubber composition of the present invention includes a general tire rubber composition, and includes carbon black as a reinforcing agent, zinc oxide, stearic acid, process oil, vulcanizing agent, vulcanization accelerator, and the like.
이하, 본 발명을 실시예에 의거 상세히 설명하면 다음과 같은 바, 본 발명이 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the Examples.
실시예 1∼5 및 비교예 1Examples 1-5 and Comparative Example 1
다음 표 1의 배합비로서 통상의 방법에 따라 타이어 고무 조성물을 제조하였으며, 이에 대하여 고무 물성을 측정하여 그 결과를 다음 표 2에 나타내었다.Next, the tire rubber composition was manufactured according to a conventional method as the compounding ratio of Table 1, and the rubber properties thereof were measured, and the results are shown in Table 2 below.
여기서, 가류시간은 MDR2000 레오메타를 사용하여 측정하였고, 무니점도는 MV2000 무니비스코메타를 이용하여 측정하였으며, 경도는 쇼어 A 타입 방법으로, 300% 모듈러스, 신율 및 인장강도는 인스트론 인장시험기로 측정하였으며, tanδ는 레오메트릭스 점탄성 시험기로 온도 및 strain sweep하여 측정하였다. 크랙성장은 DeMattia 방법으로 측정하였고, 마모도는 Lambourn 마모시험기로 측정하였으며, 리바운드는 도요세키의 반발탄성 시험기로 측정하였다.Here, the vulcanization time was measured using the MDR2000 rheometer, the Mooney viscosity was measured using the MV2000 Mooney Biscometer, the hardness was measured by Shore A type method, 300% modulus, elongation and tensile strength were measured by an Instron tensile tester. Tanδ was measured by temperature and strain sweep with a rheometric viscoelastic tester. Crack growth was measured by DeMattia method, wear was measured by Lambourn abrasion tester, rebound was measured by Toyoseki's resilience tester.
상기 표 2의 결과로부터, 시스틴의 첨가에 따라서 t30과 t90이 짧아져 가류속도가 빨라짐을 알 수 있는 바, 시스틴은 설파이드릴기를 갖는 티올로서, 혼합 중 산화에 의해 생성된 라디칼이 착물을 형성하여 가류시에 반응을 촉진하는 역할을 일부 수행하는 것으로 보여진다(2RHS· → R-S~~@~~S-H). 그러나 일반의 촉진제 증량과는 달리 토크(최대 및 최소)값 상승은 보이지 않고 약간의 가교밀도 증가만 있어 다른 물성의 저하가 거의 없으므로 가류속도의 단축에 효과가 있음을 알 수 있다.From the results of Table 2, it can be seen that t 30 and t 90 are shortened according to the addition of cystine, so that the vulcanization rate is increased. Cystine is a thiol having a sulfidyl group, and radicals generated by oxidation during the mixing of the complex It appears to play a part in promoting the reaction during formation (2RHS · → RS ~~ @ ~~ SH). However, unlike the increase in general accelerators, the torque (maximum and minimum) values are not increased and there is only a slight increase in the crosslinking density, so that there is almost no deterioration in physical properties.
또한, 시스틴 첨가에 따라 무니점도(ML1+4)가 약간 증가하는 결과를 보임을 알 수 있는데, ML1+4의 상승은 카본블랙과의 인코포레이션(incorporation)이 증가된, 즉 혼합 중에 카본블랙의 표면활성기와 시스틴간에 화학적 결합이 이루어진 것으로 추론할 수 있다. 그러나 시스틴의 사용량이 많아질수록 스코치 타임은 짧아져 과도한 사용은 오히려 가공안정성에 불리하게 되고 추가적인 PVI(PreVulcanizationInhibitor, 스코치 지연제)의 사용이 발생하게 됨을 알 수 있다.In addition, it can be seen that the Mooney viscosity (ML 1 + 4 ) slightly increases with the addition of cystine. The increase of ML 1 + 4 increases the incorporation with carbon black, that is, carbon during mixing. It can be inferred that a chemical bond is formed between the surface active group of the black and cystine. However, as the amount of cystine is increased, the scorch time is shortened, and excessive use is rather detrimental to processing stability, and additional PVI (PreVulcanization Inhibitor) is used.
한편, 시스틴의 첨가에 따라서 경도나 초기 모듈러스는 변화가 없고, 300% 모듈러스는 동등 이상수준으로 약간 상승결과를 나타냄을 알 수 있다. 신율 및 인장강도는 시스틴 첨가시 다소 상승하는 바, 전반적인 터프니스의 상승효과가 있다. 노화시도 같은 물성결과를 나타낸다. 그러나, 시스틴의 사용량이 많아지면 모듈러스의 과도한 상승과 신율의 저하를 수반하므로 적절히 사용량을 조절해야 한다(1∼5phr). 이러한 파단에너지의 증가는 카본블랙과 시스틴의 결합 및 시스틴과 고무의 결합에 의한 것으로 판단되어지며, 특히 단백질 성분 중 고무 신장에 관여하는 REF가 파괴되지 않고 존재하기 때문인 것으로 추정된다. 따라서, 시스틴 첨가는 카본블랙과 고무 양쪽을 연결해주는(카본블랙-시스틴-고무), 일종의 커플링제로서의 역할을 한다고 할 수 있다.On the other hand, the hardness and initial modulus did not change with the addition of cystine, and it can be seen that 300% modulus showed a slightly elevated result at an equivalent level or higher. Elongation and tensile strength increase slightly with the addition of cystine, which has a synergistic effect on overall toughness. The same physical property results are observed in aging. However, when the amount of cystine is increased, the amount of cystine is excessively increased and the elongation is lowered. Therefore, the amount of cystine should be adjusted appropriately (1 to 5 phr). This increase in break energy is believed to be due to the bonding of carbon black and cystine and the bonding of cystine and rubber. In particular, it is assumed that REF, which is involved in rubber elongation, is present in the protein component without being destroyed. Therefore, it can be said that the cystine addition serves as a kind of coupling agent that connects both carbon black and rubber (carbon black-cystine-rubber).
그리고, tanδ는 전온도 영역에 걸쳐 감소하는 결과를 나타내는 바, 이것은 카본블랙과 시스틴의 결합으로 고무와 카본블랙간의 접촉을 다소 줄이는데서 기인되며, 모듈러스가 저하하지 않는 것으로 보아 앞에서 말한 카본블랙-시스틴-고무의 양관능성(Bifunctionality) 역할 가능성이 높다.In addition, tan δ results in a decrease in temperature over the entire temperature range, which is caused by a slight decrease in the contact between rubber and carbon black due to the combination of carbon black and cystine, and thus the modulus of carbon black-cystine is not reduced. -Bifunctionality of rubber is likely to play a role.
결과적으로, 시스틴의 첨가는 발열 및 회전저항 감소에 효과가 매우 크다.As a result, the addition of cystine is very effective in reducing exotherm and rolling resistance.
이상에서 상세히 설명한 바와 같이, 본 발명에 따라 천연고무를 원료고무로 포함하는 타이어 고무 조성물에 시스틴이나 시스테인을 첨가한 경우 천연고무 중포함된 단백질을 유효성분으로 전환시켜 카본블랙과 고무 등과의 결합을 이루도록 하며 신장특성을 잃지 않도록 고무입자분의 분해를 막아주어 인장 특성이나 히스테리시스 특성이 개량된 타이어용 고무를 얻을 수 있다.As described above in detail, when cystine or cysteine is added to a tire rubber composition comprising natural rubber as a raw material rubber, the protein contained in natural rubber is converted into an active ingredient to bond carbon black to rubber. It is possible to obtain a rubber for a tire having improved tensile and hysteresis characteristics by preventing the decomposition of the rubber particles so as not to lose the elongation characteristics.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0072933A KR100505733B1 (en) | 2002-11-22 | 2002-11-22 | Tire rubber composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0072933A KR100505733B1 (en) | 2002-11-22 | 2002-11-22 | Tire rubber composition |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040044762A true KR20040044762A (en) | 2004-05-31 |
KR100505733B1 KR100505733B1 (en) | 2005-08-03 |
Family
ID=37340772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0072933A KR100505733B1 (en) | 2002-11-22 | 2002-11-22 | Tire rubber composition |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100505733B1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090286900A1 (en) * | 2008-05-13 | 2009-11-19 | Naoya Ichikawa | Modified natural rubber, method for producing modified natural rubber, rubber composition, and tire |
WO2012146764A1 (en) * | 2011-04-29 | 2012-11-01 | Lanxess Deutschland Gmbh | Rubber mixtures containing silicic acid and sulfur-containing additives |
EP2639245A1 (en) * | 2012-03-14 | 2013-09-18 | The Goodyear Tire & Rubber Company | Rubber composition and pneumatic tire |
EP2639246A1 (en) * | 2012-03-14 | 2013-09-18 | The Goodyear Tire & Rubber Company | Functionalized elastomer and tire comprising such an elastomer |
WO2016009776A1 (en) * | 2014-07-15 | 2016-01-21 | 住友ゴム工業株式会社 | Method for producing rubber composition for tires, and pneumatic tire |
CN110832024A (en) * | 2017-06-29 | 2020-02-21 | 株式会社普利司通 | Rubber compound for pneumatic tire containing regenerated carbon black |
CN114716744A (en) * | 2022-04-29 | 2022-07-08 | 东南大学 | Preparation method of environment-friendly bio-based rubber for L-cysteine tire |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3983919A (en) * | 1974-10-09 | 1976-10-05 | The B. F. Goodrich Company | High-modulus rubber composition for pneumatic tires |
JP3294901B2 (en) * | 1993-05-20 | 2002-06-24 | 花王株式会社 | Rubber composition |
JPH08231765A (en) * | 1995-02-28 | 1996-09-10 | Bridgestone Corp | Tire rubber composition |
JP2001164053A (en) * | 1999-10-01 | 2001-06-19 | Bridgestone Corp | Modified carbon black, method for producing the carbon black, rubber composition and tire |
EP1088854A3 (en) * | 1999-10-01 | 2002-01-02 | Bridgestone Corporation | Modified carbon black, process for producing the modified carbon black, rubber composition and pneumatic tire |
-
2002
- 2002-11-22 KR KR10-2002-0072933A patent/KR100505733B1/en not_active IP Right Cessation
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090286900A1 (en) * | 2008-05-13 | 2009-11-19 | Naoya Ichikawa | Modified natural rubber, method for producing modified natural rubber, rubber composition, and tire |
WO2012146764A1 (en) * | 2011-04-29 | 2012-11-01 | Lanxess Deutschland Gmbh | Rubber mixtures containing silicic acid and sulfur-containing additives |
KR20140006079A (en) * | 2011-04-29 | 2014-01-15 | 란세스 도이치란트 게엠베하 | Rubber mixtures containing silicic acid and sulfur-containing additives |
CN103648795A (en) * | 2011-04-29 | 2014-03-19 | 朗盛德国有限责任公司 | Rubber mixtures containing silicic acid and sulfur-containing additives |
EP2639245A1 (en) * | 2012-03-14 | 2013-09-18 | The Goodyear Tire & Rubber Company | Rubber composition and pneumatic tire |
EP2639246A1 (en) * | 2012-03-14 | 2013-09-18 | The Goodyear Tire & Rubber Company | Functionalized elastomer and tire comprising such an elastomer |
WO2016009776A1 (en) * | 2014-07-15 | 2016-01-21 | 住友ゴム工業株式会社 | Method for producing rubber composition for tires, and pneumatic tire |
JPWO2016009776A1 (en) * | 2014-07-15 | 2017-04-27 | 住友ゴム工業株式会社 | Manufacturing method of rubber composition for tire and pneumatic tire |
CN110832024A (en) * | 2017-06-29 | 2020-02-21 | 株式会社普利司通 | Rubber compound for pneumatic tire containing regenerated carbon black |
CN114716744A (en) * | 2022-04-29 | 2022-07-08 | 东南大学 | Preparation method of environment-friendly bio-based rubber for L-cysteine tire |
Also Published As
Publication number | Publication date |
---|---|
KR100505733B1 (en) | 2005-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010111773A (en) | Rubber composition for base tread and tire | |
CA2459884A1 (en) | Rubber compositions and method for increasing the mooney scorch value | |
KR100505733B1 (en) | Tire rubber composition | |
JP3690890B2 (en) | Low exothermic rubber composition | |
JP2010501660A (en) | A novel sulfenamide vulcanization accelerator for improving the network stabilization of rubber vulcanizates | |
KR101834384B1 (en) | Rubber composition for tire | |
KR101868983B1 (en) | Rubber composite for tread part of tyre | |
KR20140145749A (en) | Rubber composition for outsole | |
KR100911613B1 (en) | Rubber composition of tire having polybutene | |
KR100593005B1 (en) | Under tread rubber composition for low heat | |
KR100726866B1 (en) | Tire tread rubber composition for truck and bus | |
KR100656552B1 (en) | rubber composition improved dispersion for tire | |
KR100454284B1 (en) | Preparation of a rubber composition having a high elongation | |
KR100618525B1 (en) | Rubber composition for tread of tire for truck and bus | |
KR100454265B1 (en) | Rubber composition for excellent durable properties | |
KR20050121354A (en) | Rubber composition for tire of truck or bus | |
JPH11172046A (en) | Rubber composition | |
KR100558959B1 (en) | Rubber composition for tire | |
KR100314754B1 (en) | Natural Rubber Based Compound for Tire Having Improved Reversion Resistance | |
KR100360939B1 (en) | Rubber composition for tire | |
KR100341404B1 (en) | Rubber Compound Recipes of truck and bus radial Caecass | |
EP0531272B1 (en) | Rubber compositions having reduced staining and discoloration | |
KR100495945B1 (en) | rubber composition for tire | |
JP4608786B2 (en) | Rubber composition for tire tread | |
KR20040105992A (en) | Rubber composition for tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20110701 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140630 Year of fee payment: 12 |
|
LAPS | Lapse due to unpaid annual fee |