KR20020005524A - Half Tube Shaped Vertical Axis Wind Turbine Blade with Vent Groove - Google Patents
Half Tube Shaped Vertical Axis Wind Turbine Blade with Vent Groove Download PDFInfo
- Publication number
- KR20020005524A KR20020005524A KR1020010062381A KR20010062381A KR20020005524A KR 20020005524 A KR20020005524 A KR 20020005524A KR 1020010062381 A KR1020010062381 A KR 1020010062381A KR 20010062381 A KR20010062381 A KR 20010062381A KR 20020005524 A KR20020005524 A KR 20020005524A
- Authority
- KR
- South Korea
- Prior art keywords
- wind
- blades
- drag
- wind turbine
- vertical axis
- Prior art date
Links
- 238000009423 ventilation Methods 0.000 claims description 11
- 230000001133 acceleration Effects 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/061—Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/02—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor having a plurality of rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/211—Rotors for wind turbines with vertical axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
Description
본 발명은 바람의 항력을 이용한 수직축 풍력기의 회전토르크를 최대화 하여 풍력발전기에 이용할 수 있도록 고안한 수직축 풍력회전날개의 형상에 관한 것이다.The present invention relates to the shape of the vertical axis wind turbine rotor designed to be used in the wind power generator by maximizing the rotational torque of the vertical axis wind turbine using the drag of the wind.
종래의 풍력을 이용한 풍력발전기는 수평축 풍력회전날개 방식(Horizontal Axis Wind Turbine)과 수직축 풍력회전날개 방식(Vertical Axis Wind Turbine)이 있는데 이들은 각각 장단점이 있다. 수평형은 공기 역학적으로 바람의 양력을 이용한 풍력회전날개로 발전 효율은 높으나 바람이 부는 방향에 따라 회전날개의 방향을 바꾸어 주어야 하는 장치와 바람의 세기에 따라 회전날개의 각도를 바꾸어 주어야 하는 장치가 필요하며, 대용량의 경우 강한 바람에 기구의 파손위험이 있으므로 크기에 제한을 받고 있지만 현재 실용화되고 있는 풍력발전기는 대부분 이 방식을 쓰고 있다.Conventional wind power generators have a horizontal axis wind turbine (Vertical Axis Wind Turbine) and a vertical axis wind turbine (Vertical Axis Wind Turbine), each of which has advantages and disadvantages. The horizontal type is aerodynamically rotating wind turbine blades using wind lift. The power generation efficiency is high, but the device to change the direction of the rotor blades according to the wind blowing direction and the device to change the angle of the rotor blades according to the wind strength. In case of large capacity, it is limited in size because there is a risk of damage to the equipment due to strong wind, but most of the wind turbines currently in use use this method.
그리고 수직형의 대표적인 다리우스식(Darrius Rotor)은 공기역학적으로 바람의 양력을 이용한 풍력회전날개로 발전기의 출력이 약하고 초기에 스스로 기동하지 못하여 보조회전동력장치가 필요하며 수평형보다 효율이 떨어지므로 실용화가 활발히 이루어지지 않고 있다. 또한 수직형의 사보니우스식(Savonius Rotor)은 공기역학적으로 항력(Drag Force)을 이용한 풍력회전날개로 회전속도가 바람의 속도보다는 높을 수 없으므로 회전축의 회전수에 제한을 받음으로 주로 회전수가 낮은 풍력동력기로 활욜되고 있으며 변속기로 회전수를 높이기 위하여 높은 토르크를 요하므로 소형풍력발전기에만 일부 적용되고 있다.In addition, the vertical Darius Rotor is an aerodynamic wind rotor that uses the lift of the wind. The output of the generator is weak. Is not active. Also, the vertical Savonius Rotor is an aerodynamic wind blade using drag force. Since the rotation speed cannot be higher than the wind speed, it is mainly limited to the rotation speed of the rotating shaft. It is being used as a wind power generator and it is applied to only a small wind power generator because it requires high torque to increase the speed of the transmission.
본 발명이 이루고자 하는 기술적 과제는 회전효율이 낮아 실용화가 활발히 이루어지지 않고 있는 수직축 풍력발전기의 회전날개의 형상을 한쪽 면은 항력계수를 크게 하고 반대쪽 면은 항력계수를 최소화하여 회전축을 중심으로 서로 반대방향의 위치에 있을 때 일정방향의 풍력에 대하여 항력의 차이가 최대로 되어 축을 중심으로 회전토르크가 최대로 되도록 풍력회전날개 형상을 반관형으로 설계하고, 회전시 회전방향과 반대방향으로 작용하는 항력(Drag Force)을 줄이기 위하여 회전날개의 최대저항면에 바람이 일부 흘러 들어가도록 통품홈을 만들어 와류현상과 진공구역을 해소시켜 회전토르크를 최대한 높여주도록 홈의 크기 및 뒷면의 경사각도를 최적조건으로 구성하여, 수직축 풍력발전기에 실제 실용적으로 이용할 수 있는 풍력회전날개를 제시하는 것이다.The technical problem to be achieved by the present invention is to rotate the shape of the rotor blades of the vertical axis wind power generator, which is not actively implemented due to low rotational efficiency, one side to increase the drag coefficient and the other side to minimize the drag coefficient to reverse the center of each other The wind vane shape is designed in a semi-tubular shape so that the difference in drag against the wind in a certain direction is maximized when the position is in the direction, and the rotation torque is maximized around the axis. In order to reduce the drag force, the part of the maximum resistance surface of the rotor blades is made with a part of the wind to solve the vortex phenomenon and the vacuum zone to solve the vortex. Wind turbine blades that can be used for practical applications in vertical axis wind turbines. It will display.
도 1은 발명의 실시예를 도시하는 사시도1 is a perspective view showing an embodiment of the invention
도 2는 회전날개의 부분단면도를 포함하는 평면도2 is a plan view including a partial cross-sectional view of a rotary blade;
도 3은 회전날개의 부분단면도3 is a partial cross-sectional view of the rotary blade.
도 4a는 회전날개(11)에서의 유체의 흐름도4a is a flow chart of the fluid in the rotary vanes 11
도 4b는 회전날개(12)에서의 유체의 흐름도4b is a flow chart of the fluid in the rotor blade 12
도 5는 회전날개의 속도 증가시 회전방향 후면에 형성되는 순간진공영역에서의5 is in the instantaneous vacuum region formed in the rear of the rotation direction when the speed of the rotary blade increases
유체의 흐름도Flow chart
도 6은 통풍홈을 가진 반구의 입면도 및 단면도6 is an elevational and cross-sectional view of a hemisphere with a vent groove
<주요부분의 부호에 대한 설명><Description of Signs of Major Parts>
11,12,13,14 : 회전날개11,12,13,14: Rotating Wings
15 : 회전축15: axis of rotation
21 : 바람이 부는 방향21: wind blowing direction
22 : 시계방향22: clockwise
31 : 통풍홈31: ventilation groove
51 : 회전 진행방향51: rotation progress direction
(도 1)에서 회전날개(11)과 회전날개(12)는 통풍홈(31)을 가진 반관형(Half Tube Shaped)으로 동일형상이며 회전축을 중심으로 단면형상이 서로 반대로 되도록 지면과 수직인 회전축(15)에 고정 체결구로 결합되어있고, 한단 아래부분에 회전날개(11), (12)와 직교하는 회전날개(13), (14)가 같은 방법으로 회전축(15)에 결합되어 있다.In FIG. 1, the rotary blade 11 and the rotary blade 12 are half tube shapes having a ventilation groove 31, which are the same shape, and have a rotation axis perpendicular to the ground so that the cross-sectional shapes are opposite to each other about the rotation axis. It is coupled to a fixed fastener (15), and the rotary blades (11) and (14) orthogonal to the rotary blades (11) and (12) below one end are coupled to the rotary shaft (15) in the same manner.
(도 2)에서 풍력이 일정방향(21)에서 회전날개에 작용할 때 회전날개(11)이 받는 항력(D₁)은 회전날개(12)가 받는 항력(D₂)보다 아래식에서와 같이 약 2배 정도 크게 되므로 항력의 차이에 의해 회전토르크가 발생하여 회전날개는 시계방향(22)으로 회전하게된다.In FIG. 2, when the wind acts on the rotary blade in a predetermined direction 21, the drag D₁ received by the rotary blade 11 is about twice as high as in the following equation than the drag D₂ received by the rotary blade 12. Since it becomes larger, the rotation torque is generated by the difference in drag, and the rotary blade rotates clockwise (22).
D₁= ½C₁ρ₁Av² ‥‥‥‥ ①D₁ = ½C₁ρ₁Av² ‥‥‥‥ ①
D₂= ½C₂ρ₂Av² ‥‥‥‥ ②D₂ = ½C₂ρ₂Av² ‥‥‥‥ ②
D : 항력 (Drag Force)D: Drag Force
ρ: 공기밀도 ( ρ₁≥ρ₂)ρ: air density (ρ₁≥ρ₂)
A : 풍향면적 (풍력을 받는 면의 투영면적)A: Wind direction area (projection area of wind-driven surface)
V : 풍속V: wind speed
C : 항력계수C: drag coefficient
(레이놀즈계수 ≥1000일때 : C₁= 2.30)(When Reynolds coefficient ≥ 1000: C ₁ = 2.30)
(레이놀즈계수 ≥1000일때 : C₂= 1.20)(When Reynolds coefficient ≥ 1000: C₂ = 1.20)
위 각항을 식 ①, ②에 대입하면Substituting the above terms into equations ① and ②
D₁≥1.9D₂D₁≥1.9D₂
회전날개의 바람을 받는 단면이 (도 2)와 같이 바람방향(21)과 수직으로 되면 회전날개(11)의 항력은 최대가 되고, 회전날개가 회전하여 풍향과 평행이 되어 항력이 최소가 되면 서로 직교하며 한단 아래부분에 있는 회전날개(13)의 항력이 최대가 되어 회전력이 계속 발생하므로 원활한 회전운동을 하게된다.When the cross section receiving the wind of the rotor blade is perpendicular to the wind direction 21 as shown in (Fig. 2), the drag of the rotor blade 11 becomes the maximum, and the rotor blade rotates in parallel with the wind direction, so that the drag becomes the minimum. Orthogonal to each other and the drag of the rotary wing 13 at the lower end is maximized, so that the rotational force continues to occur, thereby making a smooth rotational movement.
회전날개의 공기저항이 최대인 위치에 (도 3)과 같이 바람이 일부 통과하도록 뒷면의 만남각이 일정한 각도법위(60°∼ 80°)를 갖는 통풍홈(31)을 만들어, 한쪽날개(11)에서는 (도 4a)에서와 같이 흘러들어간 바람이 양방향에서 경사면을 따라 되돌아 나오면서 서로 충돌하면서 만든 공기층의 벽면 효과로 바람이 통풍홈(31)을 거의 통과할 수 없게 되어 통풍홈에 의한 투영면적 감소 만큼의 항력감소가 없는 반면, 반대쪽 회전날개(12) 에서는 (도 4b)와 같이 바람이 통풍홈(31)을 쉽게 통과하게 되므로 통풍홈의 투영면적 감소만큼의 항력이 감소되므로, 양 회전날개의 항력차이는 그 만큼 많아져 회전토르크도 비례해서 증가하게 된다.At the position where the air resistance of the rotary blade is maximum, as shown in FIG. 3, a ventilation groove 31 having an angle angle (60 ° to 80 °) having a constant angle of meeting on the rear side is formed so as to partially pass the wind, and one wing 11 In Figure 4a, as the wind flows back along the inclined plane in both directions, the wind effect is almost impossible to pass through the ventilation grooves 31 due to the wall effect of the air layers created by collision with each other, thereby reducing the projection area by the ventilation grooves. While there is no drag reduction as much as, on the opposite rotary blade 12, as the wind easily passes through the ventilation groove 31 as shown in FIG. 4B, drag is reduced as much as the projected area of the ventilation groove is reduced. The drag difference is increased so that the rotation torque increases proportionally.
회전날개가 회전하게 되면 회전방향과 반대방향으로 회전체를 끌어당기는 항력이 발생하는데 통풍홈(31)으로 공기가 흘러들어가므로 공기의 흐름이 원활히 되어 회전방향 반대쪽의 와류(소용돌이)현상을 제거하므로 회전력 저하를 막아주고,When the rotor blade rotates, a drag that pulls the rotor in the direction opposite to the rotation direction is generated. Since air flows into the ventilation groove 31, the air flows smoothly, thereby eliminating the vortex (swirl) phenomenon opposite to the rotation direction. Prevents the loss of torque,
또한 회전날개의 회전속도가 빨라지면 회전방향 후면에 순간적인 진공현상이 생겨 회전력을 저하시키는 항력이 발생하는데 (도 5)처럼 통풍홈(31)으로 공기가 흘러들어가므로 진공효과로 인한 순간진공영역(52)을 해소시켜 회전력 저하를 막아주어 회전효율을 향상시키므로,In addition, when the rotational speed of the rotary blade increases, a momentary vacuum phenomenon occurs in the rear of the rotational direction, thereby causing a drag to reduce the rotational force. As shown in FIG. 5, air flows into the ventilation groove 31, so that the instantaneous vacuum region due to the vacuum effect. (52) is eliminated to prevent the reduction of rotational force to improve rotational efficiency,
수직축 풍력발전기의 고효율 회전장치로 이용할 수 있도록 구성하였다.It is configured to be used as a high efficiency rotating device for vertical axis wind power generators.
본 발명은 회전력을 얻을 수 있는 풍력회전날개의 형상이 간단하고 제작이 용이함으로 대용량 발전기의 설계가 가능하며 회전토르크를 최대한 높일 수 있어 전체 설치비용이 낮아지고 최종적으로 발전단가를 낮출 수 있음으로 실용화를 확대시킬 수있다. 풍력발전기의 경제성이 높아짐에 따라 도서지방의 전력공급원, 해안지방의 발전단지조성 등 대체 에너지의 확대공급이 가능 할 것이며 무공해 에너지원으로 환경보호에도 큰 도움을 줄 것이다.The present invention is simple and easy to manufacture the shape of the wind rotor blades to obtain the rotational force is possible to design a large-capacity generator and can increase the rotation torque as much as possible to lower the overall installation cost and finally lower the cost of power generation Can be enlarged. As the economic feasibility of wind power generators increases, it will be possible to expand the supply of alternative energy, such as the power supply source of islands and the development of coastal districts, and to help the environment as a pollution-free energy source.
그리고 기존 설치된 다리우스식 발전기의 축 부분에 본 발명품을 추가 설치하므로(기존축에 간단히 부착) 발전효율을 높이고 일부 비경제성으로 가동되지 않고 있는 다리우스식 발전기도 다시 가동시킬 수 있을 것이다.And since the present invention is additionally installed on the shaft portion of the existing Darius-type generator (simply attached to the existing shaft), it will be possible to increase the power generation efficiency and to operate the Darius-type generator which is not operated at some economical efficiency.
또한 기존 사보니우스식 발전기의 상부에도 본 발명품을 추가 설치하므로(기존축을 연장하여 간단히 부착) 발전단가를 낮추는 효과를 기대할 수 있을 것이다.In addition, since the present invention is additionally installed on the upper part of the existing Savonius-type generator (extending the existing shaft simply attached), the effect of lowering the cost of power generation can be expected.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010062381A KR20020005524A (en) | 2001-10-10 | 2001-10-10 | Half Tube Shaped Vertical Axis Wind Turbine Blade with Vent Groove |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010062381A KR20020005524A (en) | 2001-10-10 | 2001-10-10 | Half Tube Shaped Vertical Axis Wind Turbine Blade with Vent Groove |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20020005524A true KR20020005524A (en) | 2002-01-17 |
Family
ID=19714997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010062381A KR20020005524A (en) | 2001-10-10 | 2001-10-10 | Half Tube Shaped Vertical Axis Wind Turbine Blade with Vent Groove |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20020005524A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020045599A (en) * | 2002-05-30 | 2002-06-19 | 손길홍 | Concave Half-discus Shaped Vertical Axis Wind Turbine Blade with Vent Groove |
WO2012046909A1 (en) * | 2010-10-04 | 2012-04-12 | 주식회사 삼정이앤더블유 | Wind power generation device including a ring-shaped wing |
US12123391B2 (en) | 2023-01-10 | 2024-10-22 | United Arab Emirates University | Wind turbine blade having air passage with air cleaning member |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119175A (en) * | 1981-01-16 | 1982-07-24 | Ishikawajima Harima Heavy Ind Co Ltd | Wind force turbine |
JPH0712045A (en) * | 1993-06-28 | 1995-01-17 | Michiaki Tsutsumi | Vertical shaft windmill to be layered and mounted on multistory tower |
JP2000009018A (en) * | 1998-06-25 | 2000-01-11 | Genichi Uesaki | Omnidirectional windmill |
-
2001
- 2001-10-10 KR KR1020010062381A patent/KR20020005524A/en not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119175A (en) * | 1981-01-16 | 1982-07-24 | Ishikawajima Harima Heavy Ind Co Ltd | Wind force turbine |
JPH0712045A (en) * | 1993-06-28 | 1995-01-17 | Michiaki Tsutsumi | Vertical shaft windmill to be layered and mounted on multistory tower |
JP2000009018A (en) * | 1998-06-25 | 2000-01-11 | Genichi Uesaki | Omnidirectional windmill |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020045599A (en) * | 2002-05-30 | 2002-06-19 | 손길홍 | Concave Half-discus Shaped Vertical Axis Wind Turbine Blade with Vent Groove |
WO2012046909A1 (en) * | 2010-10-04 | 2012-04-12 | 주식회사 삼정이앤더블유 | Wind power generation device including a ring-shaped wing |
US12123391B2 (en) | 2023-01-10 | 2024-10-22 | United Arab Emirates University | Wind turbine blade having air passage with air cleaning member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6688842B2 (en) | Vertical axis wind engine | |
EP2305999A2 (en) | Systems and methods of assembling a rotor blade extension for use in a wind turbine | |
US20090060744A1 (en) | Vertical Axis Self-Breaking Wind Turbine | |
US9046075B2 (en) | Wind turbine generator | |
US20140212285A1 (en) | Combined omnidirectional flow turbine system | |
JP2004293409A (en) | Windmill device and wind power generation device using the same | |
KR20020005524A (en) | Half Tube Shaped Vertical Axis Wind Turbine Blade with Vent Groove | |
ES2894917T3 (en) | Shaped rotor blade to improve wake spread | |
KR20020005538A (en) | Half Elliptic Tube Shaped Vertical Axis Wind Turbine Blade with Air-foil type Damper | |
KR20020005556A (en) | Savonius Windmill Blade with Air-Vent Groove | |
KR20110083476A (en) | The vertical axis wind turbine using drag force and lift force simultaneouly | |
CN110770435B (en) | Sail device | |
JP2012092660A (en) | Wind-turbine blade, wind power generator equipped with the same, and design method for the same | |
KR20090051669A (en) | Wind-collecting type windmill for wind power generation | |
EP4276304A1 (en) | Wind power generator installable on moving body | |
KR100979177B1 (en) | Wind-turbine apparatus | |
US20180045177A1 (en) | Combined omnidirectional flow turbine system | |
JP6733080B1 (en) | Symmetrical streamline spherical tube shape impeller wind turbine | |
JP2020026784A (en) | Wind angle autonomous amplitude controlling type wind turbine | |
KR101418674B1 (en) | Louver guided wind turbine | |
US20160252074A1 (en) | Vane assembly for a fluid dynamic machine and propulsion device | |
KR20100079522A (en) | Rotor blade for wind power generation and wind power generator having the same | |
JP2003222071A (en) | Invention of darries wind turbine power generation setting a plurality of power generators and wind collecting panel | |
US12078149B2 (en) | Cross-flow wind turbine with twin blades and inclined rotation axes | |
KR20140123324A (en) | Ventilation Duct Exhaust Energy Capturing Power Generation System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |