KR102719076B1 - Method for manufacturing carbon heating paste for manufacturing stretchable heating film - Google Patents
Method for manufacturing carbon heating paste for manufacturing stretchable heating film Download PDFInfo
- Publication number
- KR102719076B1 KR102719076B1 KR1020220162326A KR20220162326A KR102719076B1 KR 102719076 B1 KR102719076 B1 KR 102719076B1 KR 1020220162326 A KR1020220162326 A KR 1020220162326A KR 20220162326 A KR20220162326 A KR 20220162326A KR 102719076 B1 KR102719076 B1 KR 102719076B1
- Authority
- KR
- South Korea
- Prior art keywords
- manufacturing
- paste
- carbon nanotubes
- heating film
- graphite
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 157
- 238000010438 heat treatment Methods 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 title description 4
- 239000002041 carbon nanotube Substances 0.000 claims abstract description 71
- 229910021393 carbon nanotube Inorganic materials 0.000 claims abstract description 70
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 46
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 35
- 239000010439 graphite Substances 0.000 claims abstract description 35
- 239000002055 nanoplate Substances 0.000 claims abstract description 34
- 229920005749 polyurethane resin Polymers 0.000 claims abstract description 23
- 239000011259 mixed solution Substances 0.000 claims description 31
- 239000002253 acid Substances 0.000 claims description 23
- 239000002904 solvent Substances 0.000 claims description 17
- 239000000243 solution Substances 0.000 claims description 10
- 238000010306 acid treatment Methods 0.000 claims description 8
- 239000002064 nanoplatelet Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 abstract description 30
- 229910021392 nanocarbon Inorganic materials 0.000 abstract description 28
- 239000006185 dispersion Substances 0.000 abstract description 10
- 238000005054 agglomeration Methods 0.000 abstract description 3
- 238000003756 stirring Methods 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000002109 single walled nanotube Substances 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- -1 electrodes Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007087 memory ability Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/20—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
- H05B3/34—Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater flexible, e.g. heating nets or webs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L75/00—Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
- C08L75/04—Polyurethanes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Nanotechnology (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
본 발명은 자체응집현상으로 서로 뭉치고 응집되기 쉬운 흑연, 탄소나노튜브, 그래핀나노플레이트의 나노탄소소재와 폴리우레탄 수지를 소재의 특성에 따른 믹싱공정(호모게나이저, 3-롤 밀, 공자전 믹서)을 적용하여 균일하게 분산한다. 이로 인해 분산 공정의 최적화가 이루어짐으로써, 나노탄소소재의 첨가 및 높은 나노탄소소재의 함유량으로 인해 저하되는 분산력과 신축성 발열 필름 제조용 페이스트의 균일도를 향상시켜, 본 발명에 따른 신축성 발열 필름 제조용 페이스트로 만든 신축성 발열 필름의 발열 성능을 향상시킬 수 있다.The present invention uniformly disperses nanocarbon materials such as graphite, carbon nanotubes, and graphene nanoplates, which are prone to clumping and agglomerating with each other due to self-agglomeration, and polyurethane resin by applying a mixing process (homogenizer, 3-roll mill, resonant mixer) according to the characteristics of the materials. As a result, the dispersion process is optimized, thereby improving the dispersing ability and the uniformity of the paste for manufacturing an elastic heating film, which are reduced due to the addition of the nanocarbon material and the high content of the nanocarbon material, thereby improving the heating performance of an elastic heating film made with the paste for manufacturing an elastic heating film according to the present invention.
Description
본 발명은 신축성 발열 필름 제조용 페이스트 제조 방법에 관한 것이다.The present invention relates to a method for producing a paste for producing an elastic heating film.
일반적으로 면상 발열체는 2차원 평면상의 전도성 발열 필름 위에 금속전극을 연결하여 면 전체를 발열시키는 발열체다.In general, a surface heating element is a heating element that heats the entire surface by connecting a metal electrode on a two-dimensional plane conductive heating film.
종래 면상 발열체는 열 전도도가 높은 금속 분말을 필름 형태의 수지에 균일하게 분사 또는 인쇄하여 제조된다. 그러나 최근에는 금속 분말 대신 도전성 나노소재인 흑연, 카본블랙, 그래핀, 탄소나노튜브 등과 같은 나노탄소소재를 이용하여 면상 발열체를 제조한다. 나노탄소소재는 높은 전기 전도성, 열 전도성, 내열성, 내식성, 내마모성, 윤활성 등 전기적, 물리적으로 우수한 특성을 가지고 있을 뿐만 아니라 전자파 차단 효과도 있어, 나노탄소소재로 만든 면상 발열체는 다양한 분야에서 활용될 수 있다.Conventionally, planar heaters are manufactured by uniformly spraying or printing metal powder with high thermal conductivity onto a film-shaped resin. However, recently, planar heaters are manufactured using nanocarbon materials such as graphite, carbon black, graphene, and carbon nanotubes, which are conductive nanomaterials, instead of metal powder. Nanocarbon materials not only have excellent electrical and physical properties such as high electrical conductivity, thermal conductivity, heat resistance, corrosion resistance, wear resistance, and lubricity, but also have an electromagnetic wave blocking effect, so planar heaters made of nanocarbon materials can be utilized in various fields.
나노탄소소재로 만든 면상 발열체가 우수한 발열특성을 나타내기 위해서는 재료 간에 연속적인 접촉이 이루어져야 높은 전기 전도성이 확보되어야 하며, 신축성 면상 발열체의 경우 물리적 변형 시 성능저하 없이 발열 성능이 일정하게 유지될 필요가 있다. In order for a planar heater made of nano-carbon materials to exhibit excellent heating characteristics, continuous contact between materials must be achieved to ensure high electrical conductivity, and in the case of an elastic planar heater, the heating performance must be maintained consistently without performance degradation when physically deformed.
그러나 종래의 나노탄소소재로 만든 면상 발열체는 분산성이 떨어져 발열 성능을 면 전체에서 일정하게 유지하기 어렵고, 신축 시 나노탄소소재의 변형으로 인해 재료 간 연결이 끊어져 발열 성능이 변하거나 저하되어 문제가 있다.However, conventional planar heating elements made of nano-carbon materials have poor dispersibility, making it difficult to maintain heating performance consistently across the entire surface, and there is a problem in that the heating performance changes or deteriorates due to the connection between materials being broken due to deformation of the nano-carbon material during stretching.
또한, 한국등록특허(10-1294596)에는, 한 방향으로 정렬된 탄소나노튜브 다발이 포함된 면상 발열체 조성물을 제시하고 있으나, 이러한 면상 발열체 조성물을 사방으로 구부러지거나 접히는 곡률 면적에 적용하기는 어렵다.In addition, Korean registered patent (10-1294596) proposes a planar heating composition containing bundles of carbon nanotubes aligned in one direction, but it is difficult to apply such a planar heating composition to a curvature area that is bent or folded in all directions.
본 발명의 목적은, 상술한 문제점을 해결할 수 있는 신축성 발열 필름 제조용 페이스트 제조 방법을 제공하는 데 있다.The purpose of the present invention is to provide a method for producing a paste for producing an elastic heating film that can solve the problems described above.
상기 목적을 달성하기 위한 신축성 발열 필름 제조용 페이스트 제조 방법은,A method for manufacturing a paste for manufacturing a flexible heating film to achieve the above purpose is provided.
탄소나노튜브(Carbon nanotube, CNT), 흑연(Graphite), 그래핀나노플레이트(Graphene nanoplatelet, GnP)가 용매에 균일하게 분산된 제1혼합용액을 제조하는 제1단계;A first step of preparing a first mixed solution in which carbon nanotubes (CNT), graphite, and graphene nanoplatelets (GnP) are uniformly dispersed in a solvent;
제1혼합용액에 폴리우레탄 수지의 일부를 넣고 균일하게 분산하여 제2혼합용액을 제조하는 제2단계; 및A second step of preparing a second mixed solution by adding a portion of polyurethane resin to the first mixed solution and uniformly dispersing it; and
상기 제2혼합용액에 폴리우레탄 수지의 나머지를 넣고 균일하게 분산하는 제3단계를 포함하는 것을 특징으로 한다.It is characterized by including a third step of adding the remainder of the polyurethane resin to the second mixed solution and uniformly dispersing it.
본 발명은 자체응집현상으로 서로 뭉치고 응집되기 쉬운 흑연, 탄소나노튜브, 그래핀나노플레이트의 나노탄소소재와 폴리우레탄 수지를 소재의 특성에 따른 믹싱공정(호모게나이저, 3-롤 밀, 공자전 믹서)을 적용하여 균일하게 분산한다. 이로 인해 분산 공정의 최적화가 이루어짐으로써, 나노탄소소재의 첨가 및 높은 나노탄소소재의 함유량으로 인해 저하되는 분산력과 신축성 발열 필름 제조용 페이스트의 균일도를 향상시켜, 본 발명에 따른 신축성 발열 필름 제조용 페이스트로 만든 신축성 발열 필름의 발열 성능을 향상시킬 수 있다.The present invention uniformly disperses nanocarbon materials such as graphite, carbon nanotubes, and graphene nanoplates, which are prone to clumping and agglomerating with each other due to self-agglomeration, and polyurethane resin by applying a mixing process (homogenizer, 3-roll mill, resonant mixer) according to the characteristics of the materials. As a result, the dispersion process is optimized, thereby improving the dispersing ability and the uniformity of the paste for manufacturing an elastic heating film, which are reduced due to the addition of the nanocarbon material and the high content of the nanocarbon material, thereby improving the heating performance of an elastic heating film made with the paste for manufacturing an elastic heating film according to the present invention.
본 발명은 호모게나이저의 높은 전단력을 이용해 그래핀나노플레이트의 물리적 박리를 유도하고 박리된 그래핀을 통해 흑연 사이의 네트워크를 형성시키며, 전도성 소재의 연결 통로를 증가시켜 전기전도, 열전도 특성을 향상시킨다.The present invention induces physical exfoliation of graphene nanoplates by utilizing the high shear force of a homogenizer, forms a network between graphite through the exfoliated graphene, and increases the connection path of a conductive material to improve electrical and thermal conductivity properties.
본 발명은 소정의 길이의 탄소나노튜브에 흑연, 그래핀나노플레이트가 혼합되어 서로 접촉하며, 구부러진 형태로 무작위로 분산된 탄소나노튜브 사이사이에 흑연, 그래핀나노플레이트가 균일하게 채워진다. 이로 인해, 신축성 발열 필름을 사방으로 구부리거나 접을 경우, 기재인 폴리우레탄 수지가 늘어날 때 폴리우레탄 수지 속의 탄소나노튜브는 구부러진 모양이 펴질 뿐 그 위치가 변하거나 서로 연결이 끊어지지 않으므로 면 전체에서 고르게 발열될 수 있을 뿐만 아니라 신축성 발열 필름이 구부러지거나 접히더라도 신축성 발열 필름의 발열 성능이 저하되지 않고 일정하게 유지될 수 있다. 또한 흑연, 그래핀나노플레이트가 탄소나노튜브가 서로 얽혀 있는 빈 공간을 채우게 되어 탄소 함량을 높여 발열량을 높일 수 있다.The present invention is a stretchable heating film in which graphite and graphene nanoplates are mixed with carbon nanotubes of a predetermined length and come into contact with each other, and graphite and graphene nanoplates are uniformly filled between carbon nanotubes that are randomly dispersed in a bent shape. Accordingly, when the stretchable heating film is bent or folded in all directions, when the polyurethane resin, which is a substrate, stretches, the carbon nanotubes in the polyurethane resin only straighten out their bent shapes and do not change their positions or become disconnected from each other, so that not only can heat be evenly generated over the entire surface, but even when the stretchable heating film is bent or folded, the heat generation performance of the stretchable heating film is not reduced and can be maintained constant. In addition, since the graphite and graphene nanoplates fill the empty spaces where the carbon nanotubes are entangled with each other, the carbon content can be increased, thereby increasing the heat generation amount.
도 1은 본 발명의 일 실시예에 따른 신축성 발열 필름 제조용 페이스트 제조방법을 나타낸 순서도다.
도 2는 본 발명의 일 실시예에 따른 신축성 발열 필름 제조용 페이스트 제조방법을 설명하기 위한 모식도다.
도 3은 산처리에 따른 전기저항 수치를 나타낸 표이다.
도 4는 산처리에 따른 탄소나노튜브의 분산 효과를 나타내는 전자현미경 사진으로, (a)는 산처리 미적용 (b)는 단일 산으로 산처리 (c)는 혼합 산으로 산처리한 것을 나타낸다.
도 5는 제1혼합용액에 혼합된 탄소나노튜브와 그래핀나노플레이트를 나타낸 도면으로, (a)는 제1혼합용액을 호모게나이저를 사용하지 않고 분산한 경우를 나타내고, (b)는 제1혼합용액을 호모게나이저를 사용하여 분산한 경우를 나타낸다.
도 6은 제2혼합용액을 3롤밀로 교반하는 과정을 나타낸 도면이다.
도 7은 신축성 발열 필름 제조용 페이스트를 공자전 믹서로 교반하는 과정을 나타낸 도면이다.
도 8은 신축성 발열 필름 제조용 페이스트의 SEM 사진이다.
도 9는 본 발명의 일 실시예에 따른 신축성 발열 필름 제조용 페이스트 제조방법으로 제조된 신축성 발열 필름 제조용 페이스트가 인쇄 및 코팅된 발열필름을 찍은 사진이다.
도 10은 본 발명에 따른 흑연/탄소나노튜브/박리된 그래핀나노플레이트가 포함된 페이스트로 인쇄 또는 코팅된 발열 필름의 표면 저항과, 비교예에 따른 흑연/탄소나노튜브가 포함된 페이스트로 인쇄 또는 코팅된 발열 필름의 표면 저항, 비교예에 따른 흑연/탄소나노튜브/그래핀나노플레이트가 포함된 페이스트로 인쇄 또는 코팅된 발열 필름의 표면 저항을 비교한 그래프다.Figure 1 is a flow chart showing a method for manufacturing a paste for manufacturing a flexible heating film according to one embodiment of the present invention.
Figure 2 is a schematic diagram illustrating a method for manufacturing a paste for manufacturing an elastic heating film according to one embodiment of the present invention.
Figure 3 is a table showing electrical resistance values according to acid treatment.
Figure 4 is an electron microscope photograph showing the effect of carbon nanotube dispersion according to acid treatment. (a) shows no acid treatment, (b) shows acid treatment with a single acid, and (c) shows acid treatment with a mixed acid.
Figure 5 is a drawing showing carbon nanotubes and graphene nanoplates mixed in a first mixed solution, where (a) shows a case where the first mixed solution is dispersed without using a homogenizer, and (b) shows a case where the first mixed solution is dispersed using a homogenizer.
Figure 6 is a drawing showing the process of stirring the second mixed solution with a 3-roll mill.
Figure 7 is a drawing showing the process of stirring a paste for manufacturing an elastic heating film using a rotary mixer.
Figure 8 is a SEM photograph of a paste for manufacturing a flexible heating film.
FIG. 9 is a photograph of a heating film printed and coated with a paste for manufacturing an elastic heating film manufactured by a method for manufacturing a paste for manufacturing an elastic heating film according to one embodiment of the present invention.
FIG. 10 is a graph comparing the surface resistance of a heating film printed or coated with a paste including graphite/carbon nanotubes/exfoliated graphene nanoplates according to the present invention, the surface resistance of a heating film printed or coated with a paste including graphite/carbon nanotubes according to a comparative example, and the surface resistance of a heating film printed or coated with a paste including graphite/carbon nanotubes/graphene nanoplates according to a comparative example.
이하, 본 발명의 일 실시예에 따른 신축성 발열 필름 제조용 페이스트 제조 방법을 자세히 설명한다. Hereinafter, a method for manufacturing a paste for manufacturing an elastic heating film according to one embodiment of the present invention will be described in detail.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 신축성 발열 필름 제조용 페이스트 제조 방법은,As shown in Fig. 1, a method for manufacturing a paste for manufacturing a flexible heating film according to one embodiment of the present invention is as follows.
탄소나노튜브(Carbon nanotube, CNT), 흑연(Graphite), 그래핀나노플레이트(Graphene nanoplatelet, GnP)가 용매에 균일하게 분산된 제1혼합용액을 제조하는 제1단계(S11);Step 1 (S11) of preparing a first mixed solution in which carbon nanotubes (CNT), graphite, and graphene nanoplatelets (GnP) are uniformly dispersed in a solvent;
제1혼합용액에 폴리우레탄 수지의 일부를 넣고 균일하게 분산하여 제2혼합용액을 제조하는 제2단계(S12); 및A second step (S12) of preparing a second mixed solution by adding a portion of polyurethane resin to the first mixed solution and dispersing it uniformly; and
상기 제2혼합용액에 폴리우레탄 수지의 나머지를 넣고 균일하게 분산하는 제3단계(S13)로 구성된다. 도 2를 기본적으로 참조한다. It consists of a third step (S13) of adding the remainder of the polyurethane resin to the second mixed solution and dispersing it evenly. Refer to Fig. 2 as a basic reference.
이하, 제1단계(S11)를 설명한다.Below, Step 1 (S11) is described.
나노탄소소재를 용매에 균일하게 분산한다. 나노탄소소재로는 탄소나노튜브(Carbon nanotube, CNT), 그래핀(Graphene), 흑연(Graphite), 그래핀나노플레이트(Graphene nanoplatelet, GnP) 등을 들 수 있다.Nanocarbon materials are uniformly dispersed in a solvent. Nanocarbon materials include carbon nanotubes (CNT), graphene, graphite, and graphene nanoplatelets (GnP).
탄소나노튜브(carbon nanotube, CNT)는 소정의 길이를 가진다. 일예로, 탄소나노튜브는 수십 나노미터의 직경 및 수십 마이크로미터의 길이로 형성된다. 즉, 탄소나노튜브는 길이가 직경 대비 천배 이상으로 긴 탄소나노튜브로, 긴 탄소나노튜브끼리 서로 얽혀 있다. 개별 탄소나노튜브 가닥은 구조적으로 유연하여 구부러진 상태에 있다가 펴질 수도 있다. 이러한 개별 탄소나노튜브 가닥들이 서로 접촉하며 얽힌다.Carbon nanotubes (CNTs) have a certain length. For example, carbon nanotubes are formed with a diameter of tens of nanometers and a length of tens of micrometers. In other words, carbon nanotubes are carbon nanotubes that are more than a thousand times longer than their diameters, and long carbon nanotubes are entangled with each other. Individual carbon nanotube strands are structurally flexible and can be bent and then straightened. These individual carbon nanotube strands come into contact with each other and become entangled.
탄소나노튜브는 단일벽 탄소나노튜브 (single-walled carbon nanotube, SWCNT), 이중벽 탄소나노튜브 (double-walled carbon nanotube, SWCNT) 및 다중벽 탄소나노튜브 (multi-walled carbon nanotube, MWCNT) 중에서 어느 하나 또는 둘 이상이 선택되어 사용될 수 있다.Carbon nanotubes may be selected and used by selecting one or more of a single-walled carbon nanotube (SWCNT), a double-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT).
흑연은 판상 다층 구조이며, 그래핀은 흑연을 한 층 분리한 얇은 판상 구조이다. 구조적으로 그래핀과 흑연 사이에 있는 그래핀나노플레이트는 두께 5~100nm 및 크기 최대 50㎛ 정도의 2차원 벌집형 격자 구조의 그래핀 시트를 짧게 쌓아 올린 작은 판으로 구성된다. 특히, 그래핀나노플레이는 기계적 강도, 전기전도도 및 열전도도가 우수하여 전도성 잉크 및 코팅을 포함한 나노복합소재, 전극, 연료전지, 태양전지 등의 다양한 분야에 응용되고 있다. Graphite is a plate-like multilayer structure, and graphene is a thin plate-like structure that separates one layer of graphite. Structurally, graphene nanoplates, which are located between graphene and graphite, are composed of small plates in which graphene sheets with a two-dimensional honeycomb lattice structure are stacked in short sections, with a thickness of 5–100 nm and a size of up to 50 μm. In particular, graphene nanoplates have excellent mechanical strength, electrical conductivity, and thermal conductivity, and are applied to various fields such as nanocomposites, electrodes, fuel cells, and solar cells, including conductive inks and coatings.
나노탄소소재는 서로 얽혀 무작위로 배치된 소정 길이의 탄소나노튜브를 중심으로 하여, 흑연, 그래핀나노플레이트 등이 빈 공간을 채우게 된다. 그러면 탄소 함량을 높여, 발열량을 높일 수 있다. 흑연, 그래핀나노플레이트는 탄소나노튜브와 같은 유연성이 없어 신축성 발열 필름의 신축성을 기대할 수 없기 때문에 흑연, 그래핀나노플레이트는 탄소나노튜브에 보조적으로 첨가되어야 한다. Nanocarbon materials are centered around carbon nanotubes of a certain length that are randomly arranged and entangled with each other, and graphite, graphene nanoplates, etc. fill the empty space. This increases the carbon content and the heat generation. Graphite and graphene nanoplates do not have the same flexibility as carbon nanotubes, so the elasticity of the stretchable heat-generating film cannot be expected. Therefore, graphite and graphene nanoplates must be added as auxiliary materials to carbon nanotubes.
본 실시예에서 나노탄소소재는 탄소나노튜브(CNT), 흑연(Graphite), 그래핀나노플레이트(Graphene nanoplatelet, GnP)를 사용한다. 흑연은 인조흑연을 사용한다. 그래핀은 후술하는 분산 공정에서 그래핀나노플레이트에서 박리되어 형성된다. 기재(matrix) 대비 나노탄소소재의 함량은 50wt% 이하인 것이 바람직하다. In this embodiment, the nanocarbon material uses carbon nanotubes (CNT), graphite, and graphene nanoplatelets (GnP). Artificial graphite is used as the graphite. Graphene is formed by exfoliation from graphene nanoplatelets in the dispersion process described below. It is preferable that the content of the nanocarbon material relative to the matrix is 50 wt% or less.
상기 제1단계(S11)는,The above first step (S11) is
탄소나노튜브를 산처리하는 제1-1단계;Step 1-1 of acid treatment of carbon nanotubes;
산처리된 탄소나노튜브와, 그래핀나노플레이트를 용매에 각각 분산하는 제1-2단계;Step 1 and 2 of dispersing acid-treated carbon nanotubes and graphene nanoplates in a solvent, respectively;
산처리된 탄소나노튜브가 분산된 용액과 그래핀나노플레이트가 분산된 용액을 혼합하여 분산하는 제1-3단계; 및Step 1-3: mixing and dispersing a solution in which acid-treated carbon nanotubes are dispersed and a solution in which graphene nanoplates are dispersed; and
산처리된 탄소나노튜브와 그래핀나노플레이트가 분산된 용액에 흑연을 넣고 분산하여 제1혼합용액을 제조하는 제1-4단계로 구성된다.It consists of steps 1 to 4 of preparing a first mixed solution by adding and dispersing graphite into a solution in which acid-treated carbon nanotubes and graphene nanoplates are dispersed.
이하, 제1-1단계를 설명한다. Below, Step 1-1 is explained.
탄소나노튜브는 분산력을 좋게 하기 위해 산성용액으로 산처리된다. 탄소나노튜브를 산처리하면 탄소나노튜브에 카르복시기(-COOH) 또는 하이드록시기(-OH)와 같은 작용기(functional group)가 증가한다. 이로 인해, 탄소나노튜브가 용매에 혼합되는 경우 분산도가 증가하여 더욱 균일하게 혼합될 수 있다.Carbon nanotubes are acid-treated with an acid solution to improve their dispersibility. When carbon nanotubes are acid-treated, functional groups such as carboxyl groups (-COOH) or hydroxyl groups (-OH) increase in the carbon nanotubes. As a result, when carbon nanotubes are mixed with a solvent, the degree of dispersion increases and they can be mixed more evenly.
산성용액으로 진한 염산과 진한 질산을 3:1로 섞은 용액을 이용하여, 탄소나노튜브를 왕수처리한다.Carbon nanotubes are treated with aqua regia using a solution of concentrated hydrochloric acid and concentrated nitric acid in a 3:1 ratio as an acidic solution.
탄소나노튜브를 예로 설명하면, 도 3에 도시된 바와 같이, 산처리를 하지 않은 탄소나노튜브는 분산성이 떨어져 전기저항의 수치가 높게 나타나지만, 혼합 산으로 산처리를 한 탄소나노튜브는 분산성이 좋아 전기저항 수치가 낮게 나타난다. 산처리는 탄소나노튜브를 산성용액에 넣은 후 초음파(ultrasonic)를 가하여 1시간~24시간동안 초음파 처리하여 이루어진다.Taking carbon nanotubes as an example, as shown in Fig. 3, carbon nanotubes that have not been acid-treated have poor dispersibility and thus exhibit high electrical resistance, but carbon nanotubes that have been acid-treated with a mixed acid have good dispersibility and thus exhibit low electrical resistance. Acid treatment is performed by placing carbon nanotubes in an acid solution and then applying ultrasonic waves for 1 to 24 hours.
도 4(a)를 보면, 산처리를 하지 않은 탄소나노튜브의 경우 탄소나노튜브와 흑연의 분산성이 떨어지는 것을 확인할 수 있다. 그러나 도 4(b)를 보면, 황산 또는 질산의 단일 산으로 산처리를 한 탄소나노튜브는 산처리를 하지 않은 탄소나노튜브보다 탄소나노튜브와 흑연의 분산성이 향상되는 것을 확인할 수 있다. 도 4(c)를 보면, 황산과 질산의 혼합 산으로 산처리를 한 탄소나노튜브는 단일 산으로 산처리를 한 탄소나노튜브보다 탄소나노튜브와 흑연의 분산성이 더 향상되는 것을 확인할 수 있다.As shown in Fig. 4(a), it can be seen that the dispersibility of carbon nanotubes and graphite is poor in the case of carbon nanotubes that have not been acid-treated. However, as shown in Fig. 4(b), it can be seen that the dispersibility of carbon nanotubes and graphite is improved in carbon nanotubes that have been acid-treated with a single acid, such as sulfuric acid or nitric acid, compared to carbon nanotubes that have not been acid-treated. As shown in Fig. 4(c), it can be seen that the dispersibility of carbon nanotubes and graphite is improved more in carbon nanotubes that have been acid-treated with a mixed acid of sulfuric acid and nitric acid compared to carbon nanotubes that have been acid-treated with a single acid.
따라서 왕수처리를 하여 나노탄소소재의 분산성을 향상시키면 균일성이 향상되고, 이로 인해 나노탄소소재의 투입량을 증가시킬 수 있다.Therefore, if the dispersion of nanocarbon materials is improved by aqua regia treatment, uniformity is improved, and this allows the input amount of nanocarbon materials to be increased.
이하, 제1-2단계를 설명한다. Below, steps 1 and 2 are explained.
왕수처리된 탄소나노튜브와 그래핀나노플레이트 각각을 용매에 넣고 분산한다. 용매는 극성 유기 용매인 CH7:DMF3를 사용한다. CH7:DMF3는 폴리우레탄 수지의 용해도가 좋다.Each carbon nanotube and graphene nanoplate treated with aqua regia is dispersed in a solvent. The solvent used is a polar organic solvent, CH7:DMF3. CH7:DMF3 has good solubility in polyurethane resin.
탄소나노튜브와 그래핀나노플레이트를 넣은 각 용매를 균일한 분산을 위해 호모게나이저(Homogenizer)로 교반한다. 호모게나이저는 고전단력 분산 방식으로 각 용매 속의 탄소나노튜브와 그래핀나노플레이트를 분산한다. Each solvent containing carbon nanotubes and graphene nanoplates is stirred with a homogenizer for uniform dispersion. The homogenizer disperses the carbon nanotubes and graphene nanoplates in each solvent using a high-shear force dispersion method.
이하, 제1-3단계를 설명한다.Below, steps 1-3 are explained.
탄소나노튜브가 균일하게 분산된 용매와 그래핀나노플레이트가 균일하게 분산된 용매를 혼합하여 호모게나이저로 30분간 교반한다.A solvent in which carbon nanotubes are uniformly dispersed and a solvent in which graphene nanoplates are uniformly dispersed are mixed and stirred with a homogenizer for 30 minutes.
도 5를 참조하면, 2~5um크기의 흑연과 6~7um크기의 그래핀나노플레이트가 혼합된 형태로 존재한다.Referring to Figure 5, graphite with a size of 2 to 5 μm and graphene nanoplates with a size of 6 to 7 μm exist in a mixed form.
호모게나이저를 사용하지 않고 분산한 경우, 도 5(a)에 도시된 바와 같이, 그래핀나노플레이트의 두께가 두껍고, 탄소나노튜브와 그래핀나노플레이트가 각각 따로 뭉쳐 있다. 그러나 호모게나이저를 사용하여 분산한 경우, 도 5(b)에 도시된 바와 같이, 그래핀나노플레이트의 두께가 감소하고, 전단력에 의해 박리된 그래핀나노플레이트가 형성된다. 이로 인해, 탄소나노튜브와 흑연 사이에 3차원 평면네트워크가 형성되어, 전도성 소재간 연결점이 많아지고 접촉 면적이 늘어나, 신축성 발열 필름의 발열 성능이 향상된다.When dispersed without using a homogenizer, as shown in Fig. 5(a), the thickness of the graphene nanoplates is thick and the carbon nanotubes and the graphene nanoplates are each clumped separately. However, when dispersed using a homogenizer, as shown in Fig. 5(b), the thickness of the graphene nanoplates is reduced and graphene nanoplates exfoliated by shear force are formed. As a result, a three-dimensional planar network is formed between the carbon nanotubes and the graphite, which increases the number of connection points between the conductive materials and the contact area, thereby improving the heating performance of the stretchable heating film.
이하, 제1-4단계를 설명한다.Below, steps 1-4 are explained.
탄소나노튜브와 그래핀나노플레이트가 분산된 용매에 흑연을 넣어 제1혼합용액을 제조한다. 제1혼합용액은 임펠러 교반을 20분간 진행하여 나노탄소소재(흑연, 탄소나노튜브, 그래핀나노플레이트)를 용매에 균일하게 혼합한다.A first mixed solution is prepared by adding graphite to a solvent in which carbon nanotubes and graphene nanoplates are dispersed. The first mixed solution is stirred with an impeller for 20 minutes to uniformly mix the nanocarbon materials (graphite, carbon nanotubes, graphene nanoplates) into the solvent.
이하, 제2단계(S12)를 설명한다.Below, the second step (S12) is described.
[기재][write]
신축성 발열 필름 제조용 페이스트(1)에 함유된 나노탄소소재가 신축성 발열 필름의 신축성 기판에 잘 접착될 수 있도록 하기 위해서는 신축성 발열 필름 제조용 페이스트(1)의 기재가 필요하다.In order to ensure that the nanocarbon material contained in the paste (1) for manufacturing an elastic heating film can adhere well to the elastic substrate of the elastic heating film, a substrate of the paste (1) for manufacturing an elastic heating film is required.
신축성 발열 필름 제조용 페이스트(1)의 기재는 폴리우레탄(Polyurethane, PU) 수지가 사용된다.The base material of the paste (1) for manufacturing a flexible heating film uses polyurethane (PU) resin.
제1혼합용액에 설정된 양의 폴리우레탄 수지의 일부를 넣고 혼합한다. 폴리우레탄 수지는 제1혼합용액에 함유된 용매에 의해 용해된다. 용해된 폴리우레탄 수지에 의해 용액의 점도가 생긴다.A portion of the set amount of polyurethane resin is added to the first mixed solution and mixed. The polyurethane resin is dissolved by the solvent contained in the first mixed solution. The viscosity of the solution is generated by the dissolved polyurethane resin.
폴리우레탄 수지는 열경화성 수지는 아니나 유사한 3차원 구조를 가지며, 인장강도 및 인열강도가 우수하다. 또한, 유연성 및 형상 기억 능력이 있어, 적용범위가 광범위하고, 금속과 접합력이 우수하다.Polyurethane resin is not a thermosetting resin, but it has a similar three-dimensional structure and has excellent tensile strength and tear strength. It also has flexibility and shape memory ability, so it has a wide range of applications and excellent bonding strength with metals.
[3-롤 밀을 이용한 교반][Stirring using a 3-roll mill]
제1혼합용액에 설정된 양의 폴리우레탄 수지 일부를 넣어 제2혼합용액을 제조한다. 폴리우레탄 수지는 설정된 양의 70%를 넣는 것이 바람직한다. A second mixed solution is prepared by adding a portion of the set amount of polyurethane resin to the first mixed solution. It is preferable to add 70% of the set amount of polyurethane resin.
제2혼합용액은 1차적으로 임펠러 교반을 20분간 진행하여 나노탄소소재와 용매에 용해된 폴리우레탄 수지를 혼합한다.The second mixed solution is first mixed with nanocarbon material and polyurethane resin dissolved in the solvent by impeller stirring for 20 minutes.
도 6에 도시된 바와 같이, 2차적으로 나노탄소소재와 폴리우레탄 수지의 균일한 분산을 위해 3-롤 밀(3-Roll mill)로 분산한다. 3-롤 밀은 1~3회 실시한다.As shown in Fig. 6, the nanocarbon material and polyurethane resin are dispersed secondarily using a 3-roll mill to ensure uniform dispersion. The 3-roll mill is performed 1 to 3 times.
3-롤 밀은 수평으로 놓인 롤러 사이의 미세한 간극으로 제2혼합용액를 통과시켜 제2혼합용액을 균질하게 분산한다. 3-롤 밀을 사용하면, 인접한 3개의 롤러가 회전함으로써 제2혼합용액에 압력과 전단력이 가해져 혼합(Mixing), 분쇄(Milling), 분산(Dispersion)의 효과를 얻을 수 있다. 특히 고점성의 폴리우레탄 수지와 나노탄소소재의 혼합과 파쇄 효과와 더불어 균질화된 제2혼합용액를 얻을 수 있다.A 3-roll mill homogeneously disperses a second mixed solution by passing the second mixed solution through a fine gap between horizontally placed rollers. Using a 3-roll mill, three adjacent rollers rotate to apply pressure and shear force to the second mixed solution, thereby achieving the effects of mixing, milling, and dispersion. In particular, a homogenized second mixed solution can be obtained along with the mixing and crushing effects of high-viscosity polyurethane resin and nano-carbon material.
이하, 제3단계(S13)를 설명한다.Below, the third step (S13) is described.
제2혼합용액에 설정된 양의 폴리우레탄 수지의 나머지, 즉 30%를 넣고 1차적으로 임펠러 교반을 1시간 진행한다. The remainder of the polyurethane resin, i.e. 30%, set in the second mixed solution is added and primary impeller stirring is performed for 1 hour.
도 7에 도시된 바와 같이, 2차적으로 제2혼합용액 속의 나노탄소소재와 폴리우레탄 수지의 균일한 분산을 위해 신축성 발열 필름 제조용 페이스트를 공자전 믹서(Planetary mixer)로 교반한다. 일예로, 공자전 믹서는 Mix: 5분/2000RPM, Defoam: 5분/2200RPM 으로 진행한다.As shown in Fig. 7, the paste for manufacturing a flexible heating film is stirred using a planetary mixer to uniformly disperse the nanocarbon material and polyurethane resin in the second mixed solution. For example, the planetary mixer is operated at Mix: 5 minutes/2000 RPM, Defoam: 5 minutes/2200 RPM.
공자전 믹서(Planetary mixer)는 재료와 비접촉하는 프로펠러리스(propellerless) 교반방식으로, 점도나 비중 차이 있는 재료를 균일하게 교반할 수 있고, 고비중의 재료를 침강 없이 분산시킬 수 있으며, 나노탄소소재분체를 응집 없이 분산시키고, 폴리우레탄 수지의 수배 체적의 나노탄소소재 분체를 균질하게 교반할 수 있다.The planetary mixer is a propellerless stirring method that does not contact the materials, and can evenly stir materials with different viscosities or specific gravity, disperse high-gravity materials without sedimentation, disperse nano-carbon material powder without agglomeration, and homogeneously stir nano-carbon material powder several times the volume of polyurethane resin.
이렇게 제1단계(S11), 제2단계(S12), 제3단계(S13)를 거쳐 신축성 발열 필름 제조용 페이스트(1)가 제조된다. 도 8에 도시된 바와 같이, 이렇게 제조된 신축성 발열 필름 제조용 페이스트(1)에 포함된 탄소나노튜브는, 탄소나노튜브가 흑연과 탄소나노플레이트 사이를 잘 연결하여 전기저항을 더욱 낮춘다.In this way, a paste (1) for manufacturing an elastic heating film is manufactured through the first step (S11), the second step (S12), and the third step (S13). As illustrated in Fig. 8, the carbon nanotubes included in the paste (1) for manufacturing an elastic heating film manufactured in this way further reduce the electrical resistance by effectively connecting the graphite and the carbon nanoplates.
도 9에 도시된 바와 같이, 이와 같은 과정으로 만들어진 신축성 발열 필름 제조용 페이스트가 기판에 인쇄 및 코팅된 발열 필름은 나노탄소층이 갈라짐 없이 균일한 두께로 일정하게 형성된다.As shown in Fig. 9, the heating film manufactured by the above process is printed and coated on a substrate with a paste for manufacturing a flexible heating film, and the nanocarbon layer is formed uniformly and consistently with a uniform thickness without cracking.
도 10을 보면, 본 발명에 따른 흑연/탄소나노튜브/박리된 그래핀나노플레이트가 포함된 페이스트로 인쇄 또는 코팅된 발열 필름의 표면 저항이, 비교예에 따른 흑연/탄소나노튜브가 포함된 페이스트로 인쇄 또는 코팅된 발열 필름의 표면 저항, 비교예에 따른 흑연/탄소나노튜브/그래핀나노플레이트가 포함된 페이스트로 인쇄 또는 코팅된 발열 필름의 표면 저항 보다 낮은 것을 알 수 있다. 일 예로, 전도성 물질 사이 네트워크 구조의 형성은 150mesh 스크린 인쇄(두께 0.012mm)와 닥터블레이드 코터(두께 0.1mm)를 사용해 제조된 발열 필름에서 80Ω, 30Ω의 낮은 면저항 결과를 보여준다.Referring to FIG. 10, it can be seen that the surface resistance of the heating film printed or coated with the paste including graphite/carbon nanotubes/exfoliated graphene nanoplates according to the present invention is lower than the surface resistance of the heating film printed or coated with the paste including graphite/carbon nanotubes according to the comparative example and the surface resistance of the heating film printed or coated with the paste including graphite/carbon nanotubes/graphene nanoplates according to the comparative example. For example, the formation of a network structure between conductive materials shows low surface resistance results of 80Ω and 30Ω in the heating film manufactured using 150mesh screen printing (thickness 0.012 mm) and a doctor blade coater (thickness 0.1 mm).
1: 신축성 발열 필름 제조용 페이스트1: Paste for manufacturing flexible heating film
Claims (5)
제1혼합용액에 폴리우레탄 수지의 일부를 넣고 균일하게 분산하여 제2혼합용액을 제조하는 제2단계; 및
상기 제2혼합용액에 폴리우레탄 수지의 나머지를 넣고 균일하게 분산하는 제3단계를 포함하는 것을 특징으로 하는 신축성 발열 필름 제조용 페이스트 제조방법.A first step of preparing a first mixed solution in which carbon nanotubes (CNT), graphite, and graphene nanoplatelets (GnP) are uniformly dispersed in a solvent;
A second step of preparing a second mixed solution by adding a portion of polyurethane resin to the first mixed solution and uniformly dispersing it; and
A method for producing a paste for manufacturing an elastic heating film, characterized by including a third step of adding the remainder of the polyurethane resin to the second mixed solution and uniformly dispersing it.
탄소나노튜브를 산처리하는 제1-1단계;
산처리된 탄소나노튜브와 그래핀나노플레이트를 용매에 각각 분산하는 제1-2단계;
상기 산처리된 탄소나노튜브가 분산된 용액과 상기 그래핀나노플레이트가 분산된 용액을 혼합하여 분산하는 제1-3단계; 및
상기 산처리된 탄소나노튜브와 상기 그래핀나노플레이트가 분산된 용액에 흑연을 넣고 분산하여 제1혼합용액을 제조하는 제1-4단계를 포함하는 것을 특징으로 하는 신축성 발열 필름 제조용 페이스트 제조방법.In the first paragraph, the first step,
Step 1-1 of acid treatment of carbon nanotubes;
Step 1 and 2 of dispersing acid-treated carbon nanotubes and graphene nanoplates in a solvent, respectively;
Step 1-3 of mixing and dispersing the solution in which the acid-treated carbon nanotubes are dispersed and the solution in which the graphene nanoplates are dispersed; and
A method for producing a paste for producing an elastic heating film, characterized in that it includes steps 1 to 4 of producing a first mixed solution by adding and dispersing graphite in a solution in which the acid-treated carbon nanotubes and the graphene nanoplates are dispersed.
상기 제1-2단계와 제1-3단계에서, 호모게나이저(Homogenizer)를 이용하여 균일하게 분산하는 것을 특징으로 하는 신축성 발열 필름 제조용 페이스트 제조방법.In the second paragraph,
A method for manufacturing a paste for manufacturing an elastic heating film, characterized in that in steps 1-2 and 1-3, a homogenizer is used to uniformly disperse the paste.
상기 제2단계에서, 3-롤 밀(3-Roll mill)을 이용하여 균일하게 분산하는 것을 특징으로 하는 신축성 발열 필름 제조용 페이스트 제조방법.In the first paragraph,
A method for manufacturing a paste for manufacturing an elastic heating film, characterized in that in the second step described above, the paste is uniformly dispersed using a 3-roll mill.
상기 제3단계에서, 공자전 믹서(Planetary mixer)를 이용하여 균일하게 분산하는 것을 특징으로 하는 신축성 발열 필름 제조용 페이스트 제조방법.In the first paragraph,
A method for manufacturing a paste for manufacturing an elastic heating film, characterized in that in the third step, a planetary mixer is used to uniformly disperse the paste.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220162326A KR102719076B1 (en) | 2022-11-29 | 2022-11-29 | Method for manufacturing carbon heating paste for manufacturing stretchable heating film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220162326A KR102719076B1 (en) | 2022-11-29 | 2022-11-29 | Method for manufacturing carbon heating paste for manufacturing stretchable heating film |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20240079431A KR20240079431A (en) | 2024-06-05 |
KR102719076B1 true KR102719076B1 (en) | 2024-10-16 |
Family
ID=91470641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220162326A KR102719076B1 (en) | 2022-11-29 | 2022-11-29 | Method for manufacturing carbon heating paste for manufacturing stretchable heating film |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102719076B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101436594B1 (en) | 2013-08-06 | 2014-09-01 | 주식회사 대유신소재 | Film heater and manufacturing method of thereof |
KR101647925B1 (en) | 2015-08-24 | 2016-08-11 | 주식회사 이앤코리아 | Method for manufacuring film comprising graphite and carbon nanotube and composite film comprising graphite and carbon nanotube |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101294596B1 (en) | 2012-02-09 | 2013-08-09 | 한화케미칼 주식회사 | Composition and method of carbon nanotube paste for flat heating element device |
KR102482030B1 (en) * | 2015-11-20 | 2022-12-27 | 주식회사 동진쎄미켐 | Ink composition for carbon material dispersion and method for preparing the same |
-
2022
- 2022-11-29 KR KR1020220162326A patent/KR102719076B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101436594B1 (en) | 2013-08-06 | 2014-09-01 | 주식회사 대유신소재 | Film heater and manufacturing method of thereof |
KR101647925B1 (en) | 2015-08-24 | 2016-08-11 | 주식회사 이앤코리아 | Method for manufacuring film comprising graphite and carbon nanotube and composite film comprising graphite and carbon nanotube |
Also Published As
Publication number | Publication date |
---|---|
KR20240079431A (en) | 2024-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11202369B2 (en) | Patterned nano graphene platelet-based conductive inks | |
Chen et al. | A critical review on the development and performance of polymer/graphene nanocomposites | |
KR101143296B1 (en) | Conductivity paste composition of low temperature plasticity for gravure printing | |
Sureshkumar et al. | Conductive nanocomposites based on polystyrene microspheres and silver nanowires by latex blending | |
Peng et al. | Conductivity improvement of silver flakes filled electrical conductive adhesives via introducing silver–graphene nanocomposites | |
TW201510110A (en) | Conductive filler, method for producing same, conductive paste and method for producing conductive paste | |
Mani et al. | Flexural properties of multiscale nanocomposites containing multiwalled carbon nanotubes coated glass fabric in epoxy/graphene matrix | |
WO2017169627A1 (en) | Conductive film and method for producing same | |
Wu et al. | Latex co‐coagulation approach to fabrication of polyurethane/graphene nanocomposites with improved electrical conductivity, thermal conductivity, and barrier property | |
Kwon et al. | Thermally conducting yet electrically insulating epoxy nanocomposites containing aluminum@ electrochemically exfoliated graphene hybrid | |
KR102719076B1 (en) | Method for manufacturing carbon heating paste for manufacturing stretchable heating film | |
CN109659071B (en) | Flexible composite polymer film containing carbon nano tube and nano silver and preparation method thereof | |
KR102684928B1 (en) | Method for manufacturing carbon heating paste for manufacturing stretchable heating film and stretchable heating film manufactured therefrom | |
US20090022977A1 (en) | Combination structural support and thermal protection system | |
KR101454454B1 (en) | Ingredient of conducting pastes based on nano carbon materials having multiple hydrogen bonding motifs for printing and their fabrication method | |
JP2016056230A (en) | Production method of carbon nanotube-containing resin composition, carbon nanotube-containing resin composition, and composite material | |
JP2010165594A (en) | Conductive paste and manufacturing method thereof, and circuit wiring using the same and manufacturing method thereof | |
JP2006057057A (en) | Thermosetting resin composition containing carbon nanostructure and method for producing the same | |
KR101935052B1 (en) | Manufacturing method for electro-magnetic interfernce shielding film and electro-magnetic interference shielding film using the same | |
Kahane et al. | Electrical Properties of Polymer Nanocomposites Containing Rod-Like Nanofillers | |
KR102596350B1 (en) | Conductive nano filler for shielding film of automotive cable | |
Nath et al. | Synthesis of ionic liquid modified 1‐D nanomaterial and its strategical distribution into the biodegradable binary polymer matrix to get reduced electrical percolation threshold and electromagnetic interference shielding effectiveness | |
CN113061370A (en) | Graphene ink and preparation method and application thereof | |
Hermant | Manipulating the percolation threshold of carbon nanotubes in polymeric composites | |
KR102374200B1 (en) | Composition for heat dissipation for display by cars and manufacturing methods thereof and pad for heat dissipation comprising the composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |