[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102596350B1 - Conductive nano filler for shielding film of automotive cable - Google Patents

Conductive nano filler for shielding film of automotive cable Download PDF

Info

Publication number
KR102596350B1
KR102596350B1 KR1020210070973A KR20210070973A KR102596350B1 KR 102596350 B1 KR102596350 B1 KR 102596350B1 KR 1020210070973 A KR1020210070973 A KR 1020210070973A KR 20210070973 A KR20210070973 A KR 20210070973A KR 102596350 B1 KR102596350 B1 KR 102596350B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
conductive nanofiller
mwcnt
polystyrene
walled carbon
Prior art date
Application number
KR1020210070973A
Other languages
Korean (ko)
Other versions
KR20220162476A (en
Inventor
김지현
김원석
Original Assignee
재단법인 한국탄소산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국탄소산업진흥원 filed Critical 재단법인 한국탄소산업진흥원
Priority to KR1020210070973A priority Critical patent/KR102596350B1/en
Publication of KR20220162476A publication Critical patent/KR20220162476A/en
Application granted granted Critical
Publication of KR102596350B1 publication Critical patent/KR102596350B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 친유성 고분자 물질을 에멀젼화하여 나노 크기의 구 형상의 입자로 형성한 후 표면을 나노탄소로 코팅하여 전도성 나노필러를 제조한다. 이로 인해, 구 형상의 전도성 나노필러는 넓은 표면적을 가질 수 있다. 표면적이 넓어지면 전자파를 반사 또는 흡수하는데 유리하고, 구 형상은 전자파를 다양한 방향으로 반사시킬 수 있다. 또한, 전도성 나노필러의 크기를 약 500 nm 정도의 고나노 크기로 작게 제조할 수 있다. 차폐필름의 두께는 120 um 이하로 나노 크기의 입자만 필러로 사용될 수 있으므로, 전도성 나노필러의 크기가 작아질수록 차폐필름에 전도성 나노필러의 첨가량을 증가시킬 수 있다.In the present invention, a conductive nanofiller is manufactured by emulsifying a lipophilic polymer material to form nano-sized spherical particles and then coating the surface with nanocarbon. Because of this, the spherical conductive nanofiller can have a large surface area. A larger surface area is advantageous for reflecting or absorbing electromagnetic waves, and a spherical shape can reflect electromagnetic waves in various directions. In addition, the size of the conductive nanofiller can be manufactured as small as a high nanoscale of about 500 nm. Since the thickness of the shielding film is less than 120 um and only nano-sized particles can be used as fillers, the amount of conductive nanofiller added to the shielding film can be increased as the size of the conductive nanofiller gets smaller.

Description

자동차 케이블 차폐필름용 전도성 나노필러{Conductive nano filler for shielding film of automotive cable}Conductive nano filler for shielding film of automotive cable}

본 발명은 자동차 케이블 차폐필름용 전도성 나노필러 제조방법에 관한 것이다.The present invention relates to a method for manufacturing conductive nanofillers for automotive cable shielding films.

종래에는 자동차 케이블의 전자파 차폐를 위한 소재로 주석도금연동선(Tinned Annealed Copper, TA)을 비롯한 금속이 사용되었다. 일반적으로 전자파를 차폐하기 위해 사용되는 금속으로 구리, 은, 니켈 등이 있다. 특히 구리는 기타 재료에 비하여 저렴하고 안전하다는 이유로 차폐용 물질로 많이 이용되고 있다. 그러나, 전자파 차폐에 사용되는 금속은 전량 수입되며 제품의 중량이 증가되고 유연성이 저하되며 부식이 되는 단점이 있다. Previously, metals including tinned annealed copper (TA) were used as materials for electromagnetic wave shielding of automobile cables. Metals generally used to shield electromagnetic waves include copper, silver, and nickel. In particular, copper is widely used as a shielding material because it is cheaper and safer than other materials. However, all metals used for electromagnetic wave shielding are imported and have the disadvantages of increasing the weight of the product, reducing flexibility, and causing corrosion.

이에 따라, 최근에는 전자파 차폐를 위하여 탄소 소재를 이용하려는 연구가 많이 이루어지고 있다. 탄소 소재는 비중이 낮고 전기적 성질이 우수하여 전자파 차폐에 효과적으로 이용될 수 있다. 또한, 탄소 소재를 이용한 차폐 물질은 국산화가 가능하고, 저밀도, 저중량의 이점이 있을 뿐만 아니라 유연성이 높다는 장점을 갖는다. 탄소섬유의 경우 주석도금연동선에 비하여 최대 5배나 밀도가 낮음에도 불구하고 주석도금연동선에 비하여 10배 이상 높은 강도를 지닌다.Accordingly, recently, much research has been conducted to use carbon materials for electromagnetic wave shielding. Carbon materials have a low specific gravity and excellent electrical properties, so they can be effectively used for electromagnetic wave shielding. In addition, shielding materials using carbon materials can be produced locally and have the advantages of low density and low weight as well as high flexibility. In the case of carbon fiber, although its density is up to 5 times lower than that of tin-plated annealed copper wire, it has a strength that is more than 10 times higher than that of tin-plated annealed copper wire.

근래에는, 전기전도도가 우수한 나노탄소를 적용하여, 금속 차폐 소재를 대체하고 전자파 차폐 효과를 더 높이려는 시도가 이루어지고 있다. 그러나, 나노탄소가 자동차 케이블의 차폐필름에 직접적으로 첨가되는 경우, 첨가된 나노탄소가 차폐필름에서 국부적으로 뭉치는 현상이 나타나 차폐성능이 제대로 발현되지 못하는 문제가 있다.Recently, attempts have been made to replace metal shielding materials and further increase the electromagnetic wave shielding effect by applying nanocarbon, which has excellent electrical conductivity. However, when nanocarbon is added directly to the shielding film of an automobile cable, there is a problem in that the added nanocarbon agglomerates locally in the shielding film, preventing the shielding performance from being properly achieved.

한국등록특허(10-1961294)Korean registered patent (10-1961294)

본 발명의 목적은, 상술한 문제점을 해결할 수 있는 자동차 케이블 차폐필름용 전도성 나노필러 제조방법을 제공하는 데 있다.The purpose of the present invention is to provide a method for manufacturing conductive nanofillers for automobile cable shielding films that can solve the above-mentioned problems.

상기 목적을 달성하기 위한 자동차 케이블 차폐필름용 전도성 나노필러 제조방법은,The method for manufacturing conductive nanofillers for automobile cable shielding films to achieve the above purpose is,

에멀젼 형태의 친유성 고분자 물질과 나노탄소가 친수성 용매에 혼합된 제1혼합용액을 만드는 제1단계;A first step of creating a first mixed solution in which an emulsion-type lipophilic polymer material and nanocarbon are mixed in a hydrophilic solvent;

상기 제1혼합용액에 친유성 용매를 첨가하여 제2혼합용액을 만드는 제2단계;A second step of making a second mixed solution by adding a lipophilic solvent to the first mixed solution;

상기 제2혼합용액을 초음파로 분산시키는 제3단계;A third step of dispersing the second mixed solution using ultrasonic waves;

분산된 상기 제2혼합용액을 가열하면서 교반하여, 상기 친유성 고분자 물질로 이루어지며 구 형상으로 형성되는 코어부와 상기 나노탄소가 상기 코어부의 표면에 코팅되어 형성되는 쉘부로 구성된 전도성 나노필러를 침전시키는 제4단계; 및The dispersed second mixed solution is heated and stirred to precipitate a conductive nanofiller consisting of a core part made of the lipophilic polymer material and formed in a spherical shape and a shell part formed by coating the nanocarbon on the surface of the core part. The fourth step of ordering; and

침전된 상기 전도성 나노필러를 제2혼합용액으로부터 분리하고, 분리된 상기 전도성 나노필러를 건조시키는 제5단계를 포함하는 것을 특징으로 한다.It is characterized by comprising a fifth step of separating the precipitated conductive nanofiller from the second mixed solution and drying the separated conductive nanofiller.

본 발명은 친유성 고분자 물질을 에멀젼화하여 나노 크기의 구 형상의 입자로 형성한 후 표면을 나노탄소로 코팅하여 전도성 나노필러를 제조한다. 이로 인해, 구 형상의 전도성 나노필러는 넓은 표면적을 가질 수 있다. 표면적이 넓어지면 전자파를 반사 또는 흡수하는데 유리하고, 구 형상은 전자파를 다양한 방향으로 반사시킬 수 있다. 또한, 전도성 나노필러의 크기를 약 500 nm 정도의 고나노 크기로 작게 제조할 수 있다. 차폐필름의 두께는 120 um 이하로 나노 크기의 입자만 필러로 사용될 수 있으므로, 전도성 나노필러의 크기가 작아질수록 차폐필름에 전도성 나노필러의 첨가량을 증가시킬 수 있다.In the present invention, a conductive nanofiller is manufactured by emulsifying a lipophilic polymer material to form nano-sized spherical particles and then coating the surface with nanocarbon. Because of this, the spherical conductive nanofiller can have a large surface area. A larger surface area is advantageous for reflecting or absorbing electromagnetic waves, and a spherical shape can reflect electromagnetic waves in various directions. In addition, the size of the conductive nanofiller can be manufactured as small as a high nanoscale of about 500 nm. Since the thickness of the shielding film is less than 120 um and only nano-sized particles can be used as fillers, the amount of conductive nanofiller added to the shielding film can be increased as the size of the conductive nanofiller gets smaller.

본 발명은, 에멀젼 형태의 친유성 고분자 물질과 나노탄소가 친수성 용매에 혼합된 제1혼합용액에 친유성 고분자 물질의 표면부분의 용해성을 높여주는 친유성 용매를 첨가하여 전도성 나노필러를 제조할 수 있다. 따라서, 전도성 나노필러의 제조 공정이 쉽고 단순화됨으로써 상용화에 유리하다.In the present invention, a conductive nanofiller can be manufactured by adding a lipophilic solvent that increases the solubility of the surface portion of the lipophilic polymer material to a first mixed solution in which an emulsion-type lipophilic polymer material and nanocarbon are mixed in a hydrophilic solvent. there is. Therefore, the manufacturing process of the conductive nanofiller is easy and simplified, which is advantageous for commercialization.

본 발명은 친유성 고분자 표면에 나노탄소가 균일하게 코팅됨으로써, 전도성 나노필러의 분체저항이 나노탄소의 분체저항에 근접하게 작아 차폐성능이 좋다.In the present invention, nanocarbon is uniformly coated on the surface of an oleophilic polymer, so the powder resistance of the conductive nanofiller is close to that of the nanocarbon, resulting in good shielding performance.

본 발명은 나노탄소를 차폐필름에 직접적으로 첨가하지 않고, 구 형상의 코어부 표면에 나노탄소로 형성된 쉘부를 부착시킨 나노 크기의 전도성 나노필러 형태로 첨가한다. 이로 인해, 매트릭스에 전기전도성 물질을 바로 혼합될 때 발생하는 전기전도성 물질의 뭉침 현상을 없앨 수 있다. 즉, 전기전도성 물질이 뭉치면 전자파 차폐효과가 균일하게 일어날 수 없는데, 본 발명은 전기전도성 물질로 형성된 쉘부를 구 형상의 코어부 표면에 부착시켜 매트릭스에 간접적으로 혼합하므로, 전기전도성 물질이 서로 뭉치지 않고 매트릭스 내에 균일하게 분산될 수 있어, 전자파 차폐 효과가 균일하게 나타날 수 있다.In the present invention, nanocarbon is not added directly to the shielding film, but is added in the form of a nano-sized conductive nanofiller with a shell formed of nanocarbon attached to the surface of the spherical core part. Because of this, it is possible to eliminate the agglomeration phenomenon of the electrically conductive material that occurs when the electrically conductive material is directly mixed into the matrix. In other words, if electrically conductive materials clump together, the electromagnetic wave shielding effect cannot occur uniformly. However, in the present invention, the shell portion formed of electrically conductive material is attached to the surface of the spherical core portion and indirectly mixed with the matrix, so that the electrically conductive materials do not clump together. Since it can be uniformly dispersed within the matrix, the electromagnetic wave shielding effect can be uniformly displayed.

도 1은 본 발명의 일 실시예에 따른 자동차 케이블 차폐필름용 전도성 나노필러 제조방법을 나타낸 순서도이다.
도 2는 본 발명의 일 실시예에 따른 자동차 케이블 차폐필름용 전도성 나노필러 제조방법을 설명하기 위한 모식도이다.
도 3은 도 1에 도시된 제조방법으로 제조된 자동차 케이블 차폐필름용 전도성 나노필러를 나타낸 도면이다.
도 4는 폴리스티렌(PS)이 에멀젼 형태로 분산된 코어부 형성용 분산액을 전자 현미경(SEM)으로 찍은 사진이다.
도 5는 폴리스티렌(PS), 분산액(폴리비닐알코올(PVA):다중벽 탄소나노튜브(MWCNT)=2:1 wt), 다중벽 탄소나노튜브(MWCNT), 다중벽 탄소나노튜브(MWCNT)(29wt%)/폴리스티렌(PS)의 온도에 따른 함량 변화를 나타낸 그래프이다.
도 6은 다중벽 탄소나노튜브(MWCNT) 함량별로 다중벽 탄소나노튜브(MWCNT)/폴리스티렌(PS)의 함량을 나타낸 그래프이다.
도 7은 다중벽 탄소나노튜브(MWCNT) 함량별로 다중벽 탄소나노튜브(MWCNT)/폴리스티렌(PS)의 결합모습을 전자 현미경(SEM)으로 찍은 사진이다.
도 8(a)은 폴리스티렌(PS)과 다중벽 탄소나노튜브(MWCNT)가 혼합된 제1혼합용액을 나타낸 모식도이고, 도 8(b)는 제1혼합용액에 친유성 용매가 첨가된 제2혼합용액을 나타낸 모식도이다.
도 9는 톨루엔(T) 농도별 다중벽 탄소나노튜브(MWCNT)의 코팅함량을 나타낸 그래프이다.
도 10은 톨루엔(T) 농도별 다중벽 탄소나노튜브(MWCNT)/폴리스티렌(PS)의 결합모습을 전자 현미경(SEM)으로 찍은 사진이다.
도 11은 다중벽 탄소나노튜브(MWCNT) 함량별로 다중벽 탄소나노튜브(MWCNT)/폴리스티렌(PS)의 분체저항(volume resistivity)을 나타낸 표와 그래프이다.
Figure 1 is a flowchart showing a method of manufacturing a conductive nanofiller for an automobile cable shielding film according to an embodiment of the present invention.
Figure 2 is a schematic diagram illustrating a method of manufacturing a conductive nanofiller for an automobile cable shielding film according to an embodiment of the present invention.
Figure 3 is a diagram showing a conductive nanofiller for an automobile cable shielding film manufactured by the manufacturing method shown in Figure 1.
Figure 4 is a photograph taken with an electron microscope (SEM) of a dispersion liquid for forming a core part in which polystyrene (PS) is dispersed in an emulsion form.
Figure 5 shows polystyrene (PS), dispersion (polyvinyl alcohol (PVA): multi-walled carbon nanotube (MWCNT) = 2: 1 wt), multi-walled carbon nanotube (MWCNT), multi-walled carbon nanotube (MWCNT) ( 29wt%)/This is a graph showing the change in content of polystyrene (PS) according to temperature.
Figure 6 is a graph showing the content of multi-walled carbon nanotubes (MWCNT)/polystyrene (PS) by multi-walled carbon nanotube (MWCNT) content.
Figure 7 is a photograph taken with an electron microscope (SEM) of the bonding of multi-walled carbon nanotubes (MWCNT)/polystyrene (PS) according to the content of multi-walled carbon nanotubes (MWCNT).
Figure 8(a) is a schematic diagram showing the first mixed solution in which polystyrene (PS) and multi-walled carbon nanotubes (MWCNT) are mixed, and Figure 8(b) is a second mixed solution in which a lipophilic solvent is added to the first mixed solution. This is a schematic diagram showing the mixed solution.
Figure 9 is a graph showing the coating content of multi-walled carbon nanotubes (MWCNT) according to toluene (T) concentration.
Figure 10 is a photograph taken with an electron microscope (SEM) of the bonding of multi-walled carbon nanotubes (MWCNT)/polystyrene (PS) at different toluene (T) concentrations.
Figure 11 is a table and graph showing the volume resistivity of multi-walled carbon nanotubes (MWCNT)/polystyrene (PS) by MWCNT content.

이하, 본 발명의 일 실시예에 따른 자동차 케이블 차폐필름용 전도성 나노필러 제조방법을 자세히 설명한다. Hereinafter, a method for manufacturing a conductive nanofiller for an automobile cable shielding film according to an embodiment of the present invention will be described in detail.

도 1 및 도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 자동차 케이블 차폐필름용 전도성 나노필러 제조방법은,As shown in Figures 1 and 2, the method for manufacturing conductive nanofillers for automobile cable shielding films according to an embodiment of the present invention is,

에멀젼 형태의 친유성 고분자 물질과 나노탄소가 친수성 용매에 혼합된 제1혼합용액을 만드는 제1단계(S10);A first step (S10) of making a first mixed solution in which an emulsion-type lipophilic polymer material and nanocarbon are mixed in a hydrophilic solvent;

상기 제1혼합용액에 친유성 용매를 첨가하여 제2혼합용액을 만드는 제2단계(S20);A second step (S20) of making a second mixed solution by adding a lipophilic solvent to the first mixed solution;

상기 제2혼합용액을 초음파로 분산시키는 제3단계(S30);A third step (S30) of dispersing the second mixed solution using ultrasonic waves;

분산된 상기 제2혼합용액을 가열하면서 교반하여, 상기 친유성 고분자 물질로 이루어지며 구 형상으로 형성되는 코어부와 상기 나노탄소가 상기 코어부의 표면에 코팅되어 형성되는 쉘부로 구성된 전도성 나노필러를 침전시키는 제4단계(S40); 및The dispersed second mixed solution is heated and stirred to precipitate a conductive nanofiller consisting of a core part made of the lipophilic polymer material and formed in a spherical shape and a shell part formed by coating the nanocarbon on the surface of the core part. The fourth step of ordering (S40); and

침전된 상기 전도성 나노필러를 제2혼합용액으로부터 분리하고, 분리된 상기 전도성 나노필러를 건조시키는 제5단계(S50)로 구성된다.It consists of a fifth step (S50) of separating the precipitated conductive nanofiller from the second mixed solution and drying the separated conductive nanofiller.

이하, 제1단계(S10)를 설명한다.Hereinafter, the first step (S10) will be described.

에멀젼(emulsion) 형태의 친유성 고분자 물질과 나노탄소가 친수성 용매에 혼합된 제1혼합용액(S1)을 만든다.A first mixed solution (S1) is prepared in which an emulsion-type lipophilic polymer material and nanocarbon are mixed in a hydrophilic solvent.

제1혼합용액(S1)을 만드는 일예로, 제1단계는,As an example of making the first mixed solution (S1), the first step is,

상기 친유성 고분자 물질을 친수성 용매에 에멀젼 형태로 분산하여 코어부 형성용 분산액을 만드는 제1-1단계(S11);Step 1-1 (S11) of dispersing the lipophilic polymer material in an emulsion form in a hydrophilic solvent to create a dispersion for forming a core portion;

상기 나노탄소를 친수성 용매에 분산하여 쉘부 형성용 분산액을 만드는 제1-2단계(S12); 및Step 1-2 (S12) of dispersing the nanocarbon in a hydrophilic solvent to create a dispersion for forming a shell portion; and

상기 코어부 형성용 분산액과 상기 쉘부 형성용 분산액을 혼합하여 제1혼합용액을 만드는 제1-3단계(S13)로 구성된다.It consists of steps 1-3 (S13) of mixing the dispersion liquid for forming the core portion and the dispersion liquid for forming the shell portion to create a first mixed solution.

제1-1단계(S11)Step 1-1 (S11)

친수성 용매에 친유성 고분자 물질의 전구체를 넣고 유화제(emulsifier), 완충제(buffer)를 첨가하여 코어부 형성용 분산액(F1)을 만든다. 코어부 형성용 분산액(F1)을 질소(N2) 분위기, 온도 70 ℃, 교반속도 300 rpm 조건에서 교반한다. 이때, 개시제를 일정 시간 간격으로 나누어 첨가하여 친유성 고분자 물질이 뭉치지 않고 에멀젼 형태, 즉 구 형상의 작은 방울로 균일하게 형성될 수 있도록 한다. A precursor of a lipophilic polymer material is placed in a hydrophilic solvent, and an emulsifier and a buffer are added to create a dispersion (F1) for forming the core portion. The dispersion liquid (F1) for forming the core portion is stirred in a nitrogen (N 2 ) atmosphere, at a temperature of 70° C., and at a stirring speed of 300 rpm. At this time, the initiator is added at regular time intervals so that the lipophilic polymer material does not clump up and is uniformly formed in the form of an emulsion, that is, small spherical droplets.

친유성 고분자 물질이 에멀젼 형태로 형성되면, 나노 크기의 구 형상의 입자로 형성될 수 있다. 따라서, 전도성 나노필러(10)도 구 형상으로 만들어질 수 있고, 구 형상의 전도성 나노필러(10)는 넓은 표면적을 가질 수 있다. 표면적이 넓어지면 전자파를 반사 또는 흡수하는데 유리하고, 구 형상은 전자파를 다양한 방향으로 반사시킬 수 있다. 또한, 전도성 나노필러(10)의 크기를 약 500 nm 정도의 고나노 크기로 작게 제조할 수 있다. 차폐필름의 두께는 120 um 이하로, 나노 크기의 입자만 필러로 사용될 수 있으므로, 전도성 나노필러(10)의 크기가 작아질수록 차폐필름에 전도성 나노필러(10)의 첨가량을 증가시킬 수 있다.When a lipophilic polymer material is formed in the form of an emulsion, it can be formed into nano-sized spherical particles. Therefore, the conductive nanofiller 10 can also be made into a spherical shape, and the spherical conductive nanofiller 10 can have a large surface area. A larger surface area is advantageous for reflecting or absorbing electromagnetic waves, and a spherical shape can reflect electromagnetic waves in various directions. In addition, the size of the conductive nanofiller 10 can be manufactured as small as a high nanoscale of about 500 nm. The thickness of the shielding film is 120 um or less, and only nano-sized particles can be used as a filler. Therefore, as the size of the conductive nanofiller 10 decreases, the amount of the conductive nanofiller 10 added to the shielding film can be increased.

친유성 고분자 물질은 폴리스티렌(polystyrene, PS)인 것이 바람직하다. 폴리스티렌(PS)으로 코어부 형성용 분산액(F1)을 만드는 방법의 일예를 설명하면 다음과 같다. The lipophilic polymer material is preferably polystyrene (PS). An example of a method of making a dispersion (F1) for forming a core portion with polystyrene (PS) is described as follows.

친수성 용매로서 탈이온수(deionized water) 350 g, 전구체로서 스티렌(styrene) 150 g, 유화제로서 스티렌 설포네이트 나트륨(sodium styrene sulphonate) 0.04 g, 완충제로서 탄산수소나트륨(sodium hydrogen carbonate) 0.25 g을 교반기(magnetic stirrer)에 넣고 질소(N2) 분위기, 온도 70 ℃, 교반속도 300 rpm, 반응시간 18시간 조건으로 교반한다. 이때, 개시제로서 과황산칼륨(potassium persulphate) 0.25 g을 10분~60분 동안 나누어 첨가한다. 350 g of deionized water as a hydrophilic solvent, 150 g of styrene as a precursor, 0.04 g of sodium styrene sulphonate as an emulsifier, and 0.25 g of sodium hydrogen carbonate as a buffer were stirred in a stirrer ( Place in a magnetic stirrer and stir under the conditions of nitrogen (N 2 ) atmosphere, temperature of 70°C, stirring speed of 300 rpm, and reaction time of 18 hours. At this time, 0.25 g of potassium persulphate as an initiator is added in portions over 10 to 60 minutes.

이와 같은 방법으로 만들어진 코어부 형성용 분산액(F1)은 도 4에 도시된 바와 같이 폴리스티렌(PS)이 약 500 nm 정도의 구 형상으로 형성되어, 폴리스티렌(PS) 용액이 10 wt%의 농도로 얻어진다.As shown in FIG. 4, the dispersion liquid (F1) for forming the core part made in this way is formed of polystyrene (PS) in a spherical shape of about 500 nm, and the polystyrene (PS) solution is obtained at a concentration of 10 wt%. Lose.

제1-2단계(S12)Step 1-2 (S12)

나노탄소를 친수성 용매에 분산시켜 쉘부 형성용 분산액(F2)을 만든다. Nanocarbon is dispersed in a hydrophilic solvent to create a dispersion (F2) for forming the shell.

나노탄소는 탄소나노튜브(carbon nanotube, CNT), 탄소나노튜브-금속복합체, 나노판상형 흑연(graphite nanoplatelets, GNP), 카본블랙(carbon black), 그래핀 나노파우더(graphene nanopowder) 및 이들의 복합체 중 어느 하나의 물질로 형성된다. Nanocarbon includes carbon nanotubes (CNT), carbon nanotube-metal composites, graphite nanoplatelets (GNP), carbon black, graphene nanopowder, and their composites. It is formed from any one substance.

탄소나노튜브(CNT)는 단일벽 탄소나노튜브 (single-walled carbon nanotube, SWCNT), 이중벽 탄소나노튜브 (double-walled carbon nanotube, DWCNT), 다중벽 탄소나노튜브 (multi-walled carbon nanotube, MWCNT), 다발형 탄소나노튜브(rope carbon nanotube) 중에서 어느 하나 또는 둘 이상이 선택될 수 있다.Carbon nanotubes (CNTs) include single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT), and multi-walled carbon nanotubes (MWCNT). , any one or two or more of the bundled carbon nanotubes (rope carbon nanotubes) may be selected.

탄소나노튜브-금속복합체는 탄소나노튜브(CNT)의 표면에 금속(M)이 부착되어 형성된다. 탄소나노튜브(CNT)의 표면에 부착된 금속(M)은 니켈, 철, 퍼멀로이(FexNi1-x), 은, 구리, 알루미늄, 니크롬, 백금, 이들의 복합체(alloy) 중 어느 하나이다. 이와 같이, 탄소나노튜브(CNT)의 표면에 금속(M)이 부착함으로써, 탄소섬유 고유의 장점을 그대로 가지면서 전기적 특성을 향상시킬 수 있다. 이러한 탄소나노튜브-금속복합체는 공개특허(10-2016-0054985)에 개시된 탄소나노튜브-금속복합체의 제조방법으로 만들어 낼 수 있다. 이는 공개특허에 자세히 기재되어 있으므로, 자세한 설명을 생략한다.A carbon nanotube-metal composite is formed by attaching a metal (M) to the surface of a carbon nanotube (CNT). The metal (M) attached to the surface of the carbon nanotube (CNT) is one of nickel, iron, permalloy (FexNi1-x), silver, copper, aluminum, nichrome, platinum, and a composite (alloy) thereof. In this way, by attaching metal (M) to the surface of carbon nanotubes (CNTs), electrical properties can be improved while retaining the inherent advantages of carbon fiber. This carbon nanotube-metal composite can be produced by the carbon nanotube-metal composite manufacturing method disclosed in the published patent (10-2016-0054985). Since this is described in detail in the published patent, detailed description is omitted.

나노탄소는 단위 센티미터(cm)당 7,000 내지 50,000 지멘스(S)의 우수한 전기전도도를 가졌을 뿐만 아니라 큰 비표면적을 갖고 있어 전자파 차폐 기능을 향상시킨다. 또한, 계면에 전기 쌍극자를 형성하기 때문에 전도성 나노필러(10)가 첨가된 차폐필름 내부에서 전자파의 내부 다중 반사 및 흡수를 유도하여 입사된 전자파의 반사를 억제하고 흡수를 증가시켜 전자파를 차폐하므로, 차폐 소재로부터 반사되는 전자파에 의한 2차 피해를 예방할 수 있다.Nanocarbon not only has excellent electrical conductivity of 7,000 to 50,000 Siemens (S) per centimeter (cm), but also has a large specific surface area, improving electromagnetic wave shielding function. In addition, since an electric dipole is formed at the interface, internal multiple reflection and absorption of electromagnetic waves are induced inside the shielding film to which the conductive nanofiller 10 is added, suppressing reflection of incident electromagnetic waves and increasing absorption to shield electromagnetic waves. Secondary damage caused by electromagnetic waves reflected from shielding materials can be prevented.

다중벽 탄소나노튜브(MWCNT)로 쉘부 형성용 분산액(F2)을 만드는 방법의 일예를 설명하면 다음과 같다.An example of a method of making a dispersion (F2) for forming a shell using multi-walled carbon nanotubes (MWCNT) is described as follows.

다중벽 탄소나노튜브(MWCNT) 5 g, 폴리비닐알코올(polyvinyl alcohol, PVA)(MW: 2,000) 10 g, 에탄올(Ethanol) 30 g, 증류수 90 g을 믹서(thinky mixer)에 넣고 2000 rpm에서 5분 동안 분산한 후, 1분 동안 탈포한다.Add 5 g of multi-walled carbon nanotubes (MWCNT), 10 g of polyvinyl alcohol (PVA) (MW: 2,000), 30 g of ethanol, and 90 g of distilled water into a thinky mixer and mix at 2000 rpm for 5 g. After dispersing for 1 minute, degassing for 1 minute.

이하, 나노탄소 중 다중벽 탄소나노튜브(MWCNT)를 예로 들어 설명한다.Hereinafter, multi-walled carbon nanotubes (MWCNTs) among nanocarbons will be described as an example.

이와 같은 방법으로 만들어진 쉘 형성용 탄소나노튜브(MWCNT) 분산액은 4 wt% 농도로 얻어진다.The shell-forming carbon nanotube (MWCNT) dispersion prepared in this way is obtained at a concentration of 4 wt%.

제1-3단계(S13)Steps 1-3 (S13)

코어부 형성용 분산액(F1)과 쉘부 형성용 분산액(F2)을 혼합하여 제1혼합용액(S1)을 만든다. 이때, 친수성 용매를 더 추가할 수 있다.A first mixed solution (S1) is prepared by mixing the dispersion liquid for forming the core portion (F1) and the dispersion liquid for forming the shell portion (F2). At this time, more hydrophilic solvent can be added.

도 5에 도시된 바와 같이, 사용된 원료에 대한 질량변화 특성을 30 ~ 1,000 ℃ 범위에서 열중량분석(TGA)을 통하여 확인하였다. 전도성 나노필러에서 코어부로 사용되는 폴리스티렌(PS)은 400 ℃에서 완전히 제거되었으며, 쉘부로 사용되는 다중벽 탄소나노튜브(MWCNT)는 소량의 불순물만 제거되고 질량이 일정하게 유지됨이 확인되었다. 탄소나노튜브(MWCNT) 분산액은 탄소나노튜브(MWCNT):폴리비닐알코올(PVA) 무게비 1:2 wt%를 사용하여 제조되었으며, 이의 PVA가 300 ℃에서 제거됨에 따라서 탄소나노튜브(MWCNT) 잔여량이 34.939 wt%으로 관찰되었으며, 이 값은 탄소나노튜브(MWCNT) 첨가량에 유사한 것으로 확인되었다.As shown in Figure 5, the mass change characteristics of the raw materials used were confirmed through thermogravimetric analysis (TGA) in the range of 30 to 1,000 °C. It was confirmed that polystyrene (PS) used as the core part of the conductive nanofiller was completely removed at 400 °C, and that only a small amount of impurities were removed and the mass of the multi-walled carbon nanotube (MWCNT) used as the shell part was kept constant. The carbon nanotube (MWCNT) dispersion was prepared using a carbon nanotube (MWCNT):polyvinyl alcohol (PVA) weight ratio of 1:2 wt%, and as the PVA was removed at 300°C, the remaining amount of carbon nanotubes (MWCNT) was reduced. It was observed to be 34.939 wt%, and this value was confirmed to be similar to the amount of carbon nanotubes (MWCNT) added.

전도성 나노필러 다중벽 탄소나노튜브(MWCNT)/폴리스티렌(PS)은 폴리스티렌(PS) 함량대비 사용된 다중벽 탄소나노튜브(MWCNT)의 함량이 29 wt% 일때, 온도를 높여 폴리스티렌(PS)이 제거되고 남은 다중벽 탄소나노튜브(MWCNT)는 31.344 wt%(오차범위 ±5 wt%)으로 관찰되었으며, 이 값은 다중벽 탄소나노튜브(MWCNT)가 첨가량에 유사한 것으로 확인하였다.Conductive nanofiller multi-walled carbon nanotubes (MWCNT)/polystyrene (PS) is removed by raising the temperature when the content of multi-walled carbon nanotubes (MWCNT) used is 29 wt% compared to the polystyrene (PS) content. The remaining multi-walled carbon nanotubes (MWCNTs) were observed to be 31.344 wt% (error range ±5 wt%), and this value was confirmed to be similar to the amount of multi-walled carbon nanotubes (MWCNTs) added.

한편, 도 6을 참조하면, 열중량분석(TGA) 분석상에서 온도를 높여 폴리스티렌(PS)이 제거되고, 다중벽 탄소나노튜브(MWCNT) 함량만 남았으며, 폴리스티렌(PS) 함량대비 다중벽 탄소나노튜브(MWCNT) 첨가량이 11 wt% ~ 44 wt%으로 증가됨에 따라서, 다중벽 탄소나노튜브(MWCNT) 함량이 계속적으로 증가되는 것으로 확인되었다.Meanwhile, referring to Figure 6, in the thermogravimetric analysis (TGA) analysis, polystyrene (PS) was removed by increasing the temperature, and only the multi-walled carbon nanotube (MWCNT) content remained, and the multi-walled carbon nanotube (MWCNT) content was higher than the polystyrene (PS) content. As the amount of tube (MWCNT) added increased from 11 wt% to 44 wt%, it was confirmed that the content of multi-walled carbon nanotubes (MWCNT) continued to increase.

그러나, 도 7을 참조하면, 폴리스티렌(PS) 함량대비 다중벽 탄소나노튜브(MWCNT)가 38 wt%, 44 wt%으로 증가될 경우, 전자 현미경(SEM) 10K 배율에서 미결합된 다중벽 탄소나노튜브(MWCNT) 함량의 증가가 관찰되었으며, 100K 배율에서 다중벽 탄소나노튜브(MWCNT)가 뭉쳐서 가라앉음이 증가됨에 따른 폴리스티렌(PS)에 다중벽 탄소나노튜브(MWCNT)가 균일하게 코팅되지 않은 부분이 증가되었음이 확인되었다.However, referring to Figure 7, when the content of multi-walled carbon nanotubes (MWCNT) is increased to 38 wt% and 44 wt% compared to the polystyrene (PS) content, the unbound multi-walled carbon nanotubes are observed at 10K magnification under an electron microscope (SEM). An increase in the tube (MWCNT) content was observed, and at 100K magnification, the multi-walled carbon nanotubes (MWCNTs) were not uniformly coated on polystyrene (PS) due to increased agglomeration and sinking. It was confirmed that this increased.

이에 따른, 폴리스티렌(PS) 함량대비 다중벽 탄소나노튜브(MWCNT)가 29 wt%에서 폴리스티렌(PS)에 다중벽 탄소나노튜브(MWCNT)가 가장 잘 결합되어, 코팅조건이 가장 우수함을 확인할 수 있다. Accordingly, it can be confirmed that at 29 wt% of multi-walled carbon nanotubes (MWCNT) compared to the polystyrene (PS) content, the multi-walled carbon nanotubes (MWCNT) are best combined with polystyrene (PS), resulting in the best coating conditions. .

따라서, 제1혼합용액(S1)에 함유된 다중벽 탄소나노튜브(MWCNT)의 함량은 폴리스티렌(PS) 대비 29 wt% 인 것이 바람직하다.Therefore, it is preferable that the content of multi-walled carbon nanotubes (MWCNT) contained in the first mixed solution (S1) is 29 wt% compared to polystyrene (PS).

이하, 제2단계(S20)를 설명한다.Hereinafter, the second step (S20) will be described.

에멀젼 형태의 친유성 고분자 물질과 나노탄소가 친수성 용매에 혼합된 제1혼합용액(S1)에 친유성 용매(F3)를 첨가하여 제2혼합용액(S2)을 만든다.A lipophilic solvent (F3) is added to a first mixed solution (S1) in which an emulsion-type lipophilic polymer material and nanocarbon are mixed in a hydrophilic solvent to create a second mixed solution (S2).

그 이유는, 친유성 용매(F3)가 미 첨가된 경우나 농도가 낮을 경우, 폴리스티렌(PS) 표면의 용해성이 증가하지 않아 폴리스티렌(PS)과 다중벽 탄소나노튜브(MWCNT)의 결합이 잘 이루어지지 않기 때문이다.The reason is that when the lipophilic solvent (F3) is not added or the concentration is low, the solubility of the polystyrene (PS) surface does not increase, so the bond between polystyrene (PS) and multi-walled carbon nanotubes (MWCNTs) is good. Because it doesn't lose.

도 8에 도시된 바와 같이, 제1혼합용액(S1)에 친유성 용매(F3)가 첨가되면, 제1혼합용액(S1) 속에서 에멀젼 형태로 존재하는 친유성 고분자 물질이 친유성 용매(F3)를 흡수하여 크기가 팽창한다. 이로 인해, 친유성 고분자 물질 표면의 용해성이 증가하고, 제1혼합용액(S1) 속의 다중벽 탄소나노튜브(MWCNT)와 결합이 용이해진다.As shown in Figure 8, when the lipophilic solvent (F3) is added to the first mixed solution (S1), the lipophilic polymer material present in the form of an emulsion in the first mixed solution (S1) is added to the lipophilic solvent (F3). ) is absorbed and expands in size. As a result, the solubility of the surface of the lipophilic polymer material increases, and bonding with the multi-walled carbon nanotubes (MWCNTs) in the first mixed solution (S1) becomes easier.

제2혼합용액(S2)에서 폴리스티렌(PS) 용액, 탄소나노튜브(MWCNT) 분산액 및 톨루엔(F3)을 1:1:0.3으로 첨가하는 것이 바람직하다. 톨루엔을 0.3 이하로 넣을 경우, 폴리스티렌(PS) 표면의 용해성이 증가하지 않아서 폴리스티렌(PS)과 다중벽 탄소나노튜브(MWCNT)가 결합이 잘 되지 않는 것으로 확인되었다. It is preferable to add polystyrene (PS) solution, carbon nanotube (MWCNT) dispersion, and toluene (F3) in the second mixed solution (S2) at a ratio of 1:1:0.3. It was confirmed that when toluene was added below 0.3, the solubility of the surface of polystyrene (PS) did not increase, so polystyrene (PS) and multi-walled carbon nanotubes (MWCNTs) did not bond well.

도 9에 도시된 바와 같이, 폴리스티렌(PS) 용액의 함량대비 톨루엔(T)이 1:0.3 일 때, 온도를 높여도 전도성 나노필러 쉘부의 탄소나노튜브(MWCNT)는 여전히 많이 남는 것을 알 수 있다.As shown in Figure 9, when the toluene (T) content of the polystyrene (PS) solution is 1:0.3, it can be seen that even if the temperature is increased, a large amount of carbon nanotubes (MWCNTs) remain in the conductive nanofiller shell portion. .

도 10을 참조하면, 톨루엔(T) 농도가 폴리스티렌(PS) 대비 1:0.3인 경우, 폴리스티렌(PS)과 다중벽 탄소나노튜브(MWCNT)의 결합력은 우수하며, 따라서, 비싼 톨루엔(T) 가격을 고려할 때, 톨루엔(T)은 에멀젼 형태의 폴리스티렌(PS) 용액 대비 1:0.3 비율로 첨가되는 것이 바람직하다.Referring to Figure 10, when the toluene (T) concentration is 1:0.3 compared to polystyrene (PS), the bonding strength between polystyrene (PS) and multi-walled carbon nanotubes (MWCNTs) is excellent, and therefore, the expensive toluene (T) price Considering, toluene (T) is preferably added at a ratio of 1:0.3 compared to the polystyrene (PS) solution in the form of an emulsion.

이하, 제3단계(S30)를 설명한다.Hereinafter, the third step (S30) will be described.

제1혼합용액(S1)에 친유성 용매(F3)가 첨가된 제2혼합용액(S2)을 초음파를 이용하여 분산시킨다. 즉, 제2혼합용액(S2)을 상온에서 일정 시간(30분 이상)동안 초음파로 기계적 진동을 준다. 그러면, 제2혼합용액(S2) 속의 존재하는 에멀젼 형태의 친유성 고분자 물질과 나노탄소가 서로 뭉치지 않고 분산되고, 친유성 용매(F3)가 고르게 섞인다.The second mixed solution (S2), in which the lipophilic solvent (F3) is added to the first mixed solution (S1), is dispersed using ultrasonic waves. That is, the second mixed solution (S2) is subjected to mechanical vibration by ultrasonic waves for a certain period of time (30 minutes or more) at room temperature. Then, the emulsion-type lipophilic polymer material and nanocarbon present in the second mixed solution (S2) are dispersed without agglomerating, and the lipophilic solvent (F3) is evenly mixed.

이하, 제4단계(S40)를 설명한다.Hereinafter, the fourth step (S40) will be described.

분산된 제2혼합용액(S2)을 가열하면서 교반하여 용액반응을 진행한다.A solution reaction is performed by heating and stirring the dispersed second mixed solution (S2).

용액반응을 위해서, 친유성 고분자 물질과 나노탄소가 분산된 제2혼합용액(S2)을 온도 80 ℃ 온도, 교반속도 300 rpm 조건에서 일정 시간동안(1시간 이상) 교반한다. 그러면, 제2혼합용액(S2) 속에 구 형상으로 존재하는 친유성 고분자 물질의 표면에 나노탄소가 결합된다. 친유성 고분자 물질은 친유성 용매(F3)에 의해 용해성이 증가되어 나노탄소가 잘 결합될 수 있다.For the solution reaction, the second mixed solution (S2) in which the lipophilic polymer material and nanocarbon are dispersed is stirred for a certain period of time (more than 1 hour) at a temperature of 80 ° C. and a stirring speed of 300 rpm. Then, the nanocarbon is bonded to the surface of the lipophilic polymer material that exists in a spherical shape in the second mixed solution (S2). The solubility of lipophilic polymer materials is increased by the lipophilic solvent (F3), allowing nanocarbons to be well bonded.

이러한 용액반응에 의해, 도 3에 도시된 바와 같이, 친유성 고분자 물질로 이루어지며 구 형상으로 형성되는 코어부(11)와 상기 나노탄소가 상기 코어부(11)의 표면에 코팅되어 형성되는 쉘부(12)로 구성된 전도성 나노필러(10)가 생성된다. By this solution reaction, as shown in FIG. 3, a core portion 11 made of a lipophilic polymer material and formed into a spherical shape and a shell portion formed by coating the surface of the core portion 11 with the nanocarbon A conductive nanofiller (10) composed of (12) is created.

이렇게 생성된 전도성 나노필러(10)는 제2혼합용액(S2)에 침전된다. The conductive nanofiller 10 produced in this way is precipitated in the second mixed solution (S2).

이하, 제5단계(S50)를 설명한다.Hereinafter, the fifth step (S50) will be described.

침전된 전도성 나노필러(10)를 제2혼합용액(S2)으로부터 분리한다. 일예로, 전도성 나노필러(10)가 침전된 제2혼합용액(S2)을 전도성 나노필터의 크기보다 작은 구멍으로 형성된 필터를 이용하여 걸러내어 전도성 나노필러(10)만 분리한다.The precipitated conductive nanofiller (10) is separated from the second mixed solution (S2). For example, the second mixed solution (S2) in which the conductive nanofiller 10 has precipitated is filtered using a filter formed with holes smaller than the size of the conductive nanofilter to separate only the conductive nanofiller 10.

분리된 전도성 나노필러(10)를 건조시킨다. 일예로, 분리된 전도성 나노필러(10)를 80 ℃ 오븐에서 넣어 완전 건조시킬 수 있다. The separated conductive nanofiller (10) is dried. For example, the separated conductive nanofiller 10 can be completely dried by placing it in an oven at 80°C.

이와 같이 제조된 전도성 나노필러(10)는 친유성 고분자 표면에 나노탄소가 균일하게 코팅됨으로써, 전도성 나노필러(10)의 분체저항(volume resistivity)이 나노탄소의 분체저항에 근접하게 작아 차폐성능이 좋다. 도 11을 참조하면, 폴리스티렌(PS) 함량대비 다중벽 탄소나노튜브(MWCNT)가 29 wt%로 제조된 전도성 나노필러(10)는 분체저항이 하중(load) 5.255 kgf/mm2에서 0.046 Ω·㎝로, 다중벽 탄소나노튜브(MWCNT)의 분체저항의 물성치에 근접하게 나오는 것을 확인할 수 있다.The conductive nanofiller 10 manufactured in this way has nanocarbon uniformly coated on the lipophilic polymer surface, so that the volume resistivity of the conductive nanofiller 10 is close to that of nanocarbon, improving shielding performance. good night. Referring to FIG. 11, the conductive nanofiller 10 manufactured with 29 wt% of multi-walled carbon nanotubes (MWCNT) relative to the polystyrene (PS) content has a powder resistance of 0.046 Ω at a load of 5.255 kgf/mm 2 It can be seen that in cm, it is close to the physical properties of powder resistance of multi-walled carbon nanotubes (MWCNT).

10: 전도성 나노필러 11: 코어부
12: 쉘부 F1: 코어부 형성용 분산액
F2: 쉘부 형성용 분산액 F3: 친유성 용매
S1: 제1혼합용액 S2: 제2혼합용액
PS: 폴리스티렌 MWCNT: 다중벽 탄소나노튜브
T: 톨루엔 CNT: 탄소나노튜브
M: 금속
10: Conductive nanofiller 11: Core portion
12: Shell portion F1: Dispersion liquid for forming core portion
F2: Dispersion for shell formation F3: Lipophilic solvent
S1: First mixed solution S2: Second mixed solution
PS: Polystyrene MWCNT: Multi-walled carbon nanotube
T: Toluene CNT: Carbon nanotube
M: Metal

Claims (5)

친유성 고분자 물질로 이루어진 구 형상의 코어부; 및
상기 코어부의 표면에 서로 뭉치지 않은 상태로 부착된 탄소나노튜브-금속복합체로 구성된 쉘부를 포함하며,
상기 탄소나노튜브-금속복합체는, 탄소나노튜브; 및 상기 탄소나노튜브의 표면에 부착된 금속으로 구성되며,
상기 금속은 니켈, 철, 퍼멀로이(FexNi1-x), 은, 구리, 알루미늄, 니크롬, 백금, 이들의 복합체(alloy) 중 어느 하나이며, 상기 금속의 종류에 따라 전기전도성이 조절되며,
상기 탄소나노튜브는 다중벽 탄소나노튜브(MWCNT)이며,
전도성 나노필러의 분체저항이 하중(load) 5.255 kgf/mm2에서 0.046 Ω·㎝로, 상기 다중벽 탄소나노튜브(MWCNT)의 분체저항 물성치와 근접하게 나오게,
상기 친유성 고분자 물질은 폴리스티렌(PS)으로 형성되며, 상기 폴리스티렌(PS) 함량대비 상기 다중벽 탄소나노튜브(MWCNT)가 29 wt%로 조절된 것을 특징으로 하는 자동차 케이블 차폐필름용 전도성 나노필러.
A spherical core portion made of a lipophilic polymer material; and
It includes a shell portion composed of a carbon nanotube-metal composite attached to the surface of the core portion in a non-clumped state,
The carbon nanotube-metal composite includes carbon nanotubes; and a metal attached to the surface of the carbon nanotube,
The metal is one of nickel, iron, permalloy (FexNi1-x), silver, copper, aluminum, nichrome, platinum, and a composite thereof, and electrical conductivity is adjusted depending on the type of the metal,
The carbon nanotubes are multi-walled carbon nanotubes (MWCNT),
The powder resistance of the conductive nanofiller is 0.046 Ω·cm at a load of 5.255 kgf/mm 2 , which is close to the powder resistance property of the multi-walled carbon nanotube (MWCNT),
The lipophilic polymer material is formed of polystyrene (PS), and the multi-walled carbon nanotubes (MWCNTs) are adjusted to 29 wt% relative to the polystyrene (PS) content. A conductive nanofiller for an automobile cable shielding film.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020210070973A 2021-06-01 2021-06-01 Conductive nano filler for shielding film of automotive cable KR102596350B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210070973A KR102596350B1 (en) 2021-06-01 2021-06-01 Conductive nano filler for shielding film of automotive cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210070973A KR102596350B1 (en) 2021-06-01 2021-06-01 Conductive nano filler for shielding film of automotive cable

Publications (2)

Publication Number Publication Date
KR20220162476A KR20220162476A (en) 2022-12-08
KR102596350B1 true KR102596350B1 (en) 2023-10-30

Family

ID=84436824

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210070973A KR102596350B1 (en) 2021-06-01 2021-06-01 Conductive nano filler for shielding film of automotive cable

Country Status (1)

Country Link
KR (1) KR102596350B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879755B1 (en) * 2007-10-04 2009-01-21 인하대학교 산학협력단 Method for preparing polycarbonate spherical particles and polycarbonate/carbon nanotube composite particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101349161B1 (en) * 2012-02-07 2014-01-10 현대자동차주식회사 Polymer nanocomposites containing glass fiber coated with metal-carbonnanotube and graphite and a fabrication process thereof
WO2017052018A1 (en) * 2015-09-25 2017-03-30 주식회사 유라 Electromagnetic wave blocking cable for automobile
KR102021511B1 (en) * 2017-06-20 2019-09-16 주식회사 유라 Electric wave shielding cable for vehicle and fabrication method for the same
KR102663025B1 (en) * 2019-01-07 2024-05-07 현대자동차주식회사 Polymer composition for electromagnetic wave shielding and composite material manufactured using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100879755B1 (en) * 2007-10-04 2009-01-21 인하대학교 산학협력단 Method for preparing polycarbonate spherical particles and polycarbonate/carbon nanotube composite particles

Also Published As

Publication number Publication date
KR20220162476A (en) 2022-12-08

Similar Documents

Publication Publication Date Title
Miao et al. Silver nanowires intercalating Ti 3 C 2 T x MXene composite films with excellent flexibility for electromagnetic interference shielding
Zhao et al. Flexible polydimethylsilane nanocomposites enhanced with a three-dimensional graphene/carbon nanotube bicontinuous framework for high-performance electromagnetic interference shielding
Zhou et al. Synergistic effect of graphene and carbon nanotube for high-performance electromagnetic interference shielding films
Nazir et al. Recent progress in the modification of carbon materials and their application in composites for electromagnetic interference shielding
Elnaggar et al. Comparative study on doping of polyaniline with graphene and multi-walled carbon nanotubes
Ahmadi-Moghadam et al. Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites
Yu et al. Carbon nanotube/polyaniline core-shell nanowires prepared by in situ inverse microemulsion
Meschi Amoli et al. Highly electrically conductive adhesives using silver nanoparticle (Ag NP)-decorated graphene: The effect of NPs sintering on the electrical conductivity improvement
KR101337958B1 (en) Electromagnetic wave shielding composite and manufacturing method for thereof
Yu et al. Synthesis and characterization of carbon nanotube/polypyrrole core–shell nanocomposites via in situ inverse microemulsion
Liu et al. Aqueous dispersion of carbon fibers and expanded graphite stabilized from the addition of cellulose nanocrystals to produce highly conductive cellulose composites
WO2004107360A1 (en) Electrically conductive compositions and method of manufacture thereof
KR101018334B1 (en) Preparation of electroconductive nano/microparticles coated with graphene nanosheets
Guo et al. A highly flexible and porous graphene-based hybrid film with superior mechanical strength for effective electromagnetic interference shielding
Atif et al. Surface modification of carbon nanotubes: A tool to control electrochemical performance
Wu et al. Layer‐by‐Layer Assembly of Multifunctional NR/MXene/CNTs Composite Films with Exceptional Electromagnetic Interference Shielding Performances and Excellent Mechanical Properties
Rao et al. Lightweight, flexible and thin Fe3O4-loaded, functionalized multi walled carbon nanotube buckypapers for enhanced X-band electromagnetic interference shielding
Younes et al. Thin carbon nanostructure mat with high electromagnetic interference shielding performance
WO2008069287A1 (en) Method for production of paper containing carbon nanotube, and paper produced by the method
Shah et al. Improved dielectric properties of polyetherimide and polyaniline-coated few-layer graphene based nanocomposites
Yu et al. Fabrication of multi-nanocavity and multi-reflection interface in rGO for enhanced EMI absorption and reduced EMI reflection
Luo et al. High‐performance, multifunctional, and designable carbon fiber felt skeleton epoxy resin composites EP/CF‐(CNT/AgBNs) x for thermal conductivity and electromagnetic interference shielding
Cho et al. Enhanced electrical conductivity of polymer microspheres by altering assembly sequence of two different shaped conductive fillers
KR102596350B1 (en) Conductive nano filler for shielding film of automotive cable
Wang et al. Facile fabrication of three-dimensional thermal conductive composites with synergistic effect of multidimensional fillers

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant