KR102675407B1 - Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals - Google Patents
Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals Download PDFInfo
- Publication number
- KR102675407B1 KR102675407B1 KR1020210154962A KR20210154962A KR102675407B1 KR 102675407 B1 KR102675407 B1 KR 102675407B1 KR 1020210154962 A KR1020210154962 A KR 1020210154962A KR 20210154962 A KR20210154962 A KR 20210154962A KR 102675407 B1 KR102675407 B1 KR 102675407B1
- Authority
- KR
- South Korea
- Prior art keywords
- platinum group
- mixing
- ion exchange
- vacuum drying
- polymer
- Prior art date
Links
- 239000003456 ion exchange resin Substances 0.000 title claims abstract description 55
- 229920003303 ion-exchange polymer Polymers 0.000 title claims abstract description 55
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 title claims abstract description 51
- 238000000605 extraction Methods 0.000 title claims abstract description 36
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 36
- 239000002184 metal Substances 0.000 title claims abstract description 36
- -1 platinum group metals Chemical class 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 68
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims abstract description 57
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 54
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000000203 mixture Substances 0.000 claims abstract description 40
- 229920000642 polymer Polymers 0.000 claims abstract description 40
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 28
- 238000001291 vacuum drying Methods 0.000 claims abstract description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 26
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical group C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 23
- 238000005406 washing Methods 0.000 claims abstract description 21
- 238000000034 method Methods 0.000 claims abstract description 20
- 239000011248 coating agent Substances 0.000 claims abstract description 18
- 238000000576 coating method Methods 0.000 claims abstract description 18
- 238000004140 cleaning Methods 0.000 claims abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000003999 initiator Substances 0.000 claims abstract description 12
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 7
- 239000011347 resin Substances 0.000 claims description 21
- 229920005989 resin Polymers 0.000 claims description 21
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 claims description 20
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000012153 distilled water Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- OOZFJMRPUVMHEW-UHFFFAOYSA-N dioctyl sulfate Chemical compound CCCCCCCCOS(=O)(=O)OCCCCCCCC OOZFJMRPUVMHEW-UHFFFAOYSA-N 0.000 claims description 5
- 239000002270 dispersing agent Substances 0.000 claims description 5
- 238000005342 ion exchange Methods 0.000 claims 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 5
- 230000000052 comparative effect Effects 0.000 description 18
- 238000001228 spectrum Methods 0.000 description 9
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 8
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- 239000003112 inhibitor Substances 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 239000004342 Benzoyl peroxide Substances 0.000 description 7
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 7
- 235000019400 benzoyl peroxide Nutrition 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052697 platinum Inorganic materials 0.000 description 6
- 238000010557 suspension polymerization reaction Methods 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 5
- 239000003505 polymerization initiator Substances 0.000 description 5
- 235000019270 ammonium chloride Nutrition 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- FAIAAWCVCHQXDN-UHFFFAOYSA-N phosphorus trichloride Chemical compound ClP(Cl)Cl FAIAAWCVCHQXDN-UHFFFAOYSA-N 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- XJUZRXYOEPSWMB-UHFFFAOYSA-N Chloromethyl methyl ether Chemical compound COCCl XJUZRXYOEPSWMB-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229940061627 chloromethyl methyl ether Drugs 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-M n-octyl sulfate Chemical compound CCCCCCCCOS([O-])(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-M 0.000 description 1
- 229940067739 octyl sulfate Drugs 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- UZZYXUGECOQHPU-UHFFFAOYSA-N sulfuric acid monooctyl ester Natural products CCCCCCCCOS(O)(=O)=O UZZYXUGECOQHPU-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3071—Washing or leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/34—Monomers containing two or more unsaturated aliphatic radicals
- C08F212/36—Divinylbenzene
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
- C22B11/04—Obtaining noble metals by wet processes
- C22B11/042—Recovery of noble metals from waste materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
본 발명은 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법에 관한 것으로, 더욱 상세하게는 스티렌 모노머에 디비닐벤젠을 혼합하는 원료혼합단계, 상기 원료혼합단계를 통해 제조된 혼합물에 톨루엔과 반응개시제를 혼합하여 중합하는 중합단계, 상기 중합단계를 통해 중합된 중합물을 에탄올로 세정하는 세정단계, 상기 세정단계를 통해 세정된 중합물을 진공건조하는 진공건조단계 및 상기 진공건조단계를 통해 진공건조된 중합물에 백금족 추출제 혼합물을 혼합하여 코팅하는 코팅단계로 이루어진다.
상기의 과정을 통해 제조되는 이온교환수지는 물에 대한 용해도가 낮고 분자량 대비 탄소사슬이 긴 백금족 추출제가 이온교환수지의 표면에 결합되어 백금족 금속을 우수한 추출효율로 추출할 수 있다.The present invention relates to a method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals, and more specifically, to a raw material mixing step of mixing divinylbenzene with styrene monomer, and reacting the mixture prepared through the raw material mixing step with toluene. A polymerization step of polymerizing by mixing an initiator, a cleaning step of washing the polymer polymerized through the polymerization step with ethanol, a vacuum drying step of vacuum drying the polymer washed through the cleaning step, and a vacuum drying step of vacuum drying the polymer product washed through the cleaning step. It consists of a coating step in which the polymer is mixed with a platinum group extractant mixture and coated.
The ion exchange resin manufactured through the above process can extract platinum group metals with excellent extraction efficiency by binding to the surface of the ion exchange resin a platinum group extractant with low solubility in water and a long carbon chain compared to molecular weight.
Description
본 발명은 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법에 관한 것으로, 더욱 상세하게는 물에 대한 용해도가 낮고 분자량 대비 탄소사슬이 긴 백금족 추출제가 이온교환수지의 표면에 결합되어 백금족 금속을 우수한 추출효율로 추출할 수 있는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법에 관한 것이다.The present invention relates to a method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals. More specifically, a platinum group extractant with low solubility in water and a long carbon chain compared to molecular weight is bound to the surface of the ion exchange resin to extract platinum group metals. It relates to a method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals that can be extracted with excellent extraction efficiency.
백금족 금속(Platinum Group Metal; PGM)은 루테늄(Ru), 로듐(Rh), 팔라듐(Pd), 오스뮴(Os), 이리듐(Ir), 백금(Pt)을 포함하는 6원소의 총칭을 말한다. 백금족 금속(PGM)은 녹는점이 높고 비중이 큰 우수한 물리적 성질뿐만 아니라, 산 또는 알칼리에 침식되지 않고, 화학적으로 비활성이기 때문에 자동차 배기가스 정화용 촉매, 석유화학산업 분야, 전극재료 및 디스플레이 산업관련 재료 등의 여러 분야에서 다양한 용도로 사용되고 있으며, 최근들어 그 수요가 급증하고 있는 추세이다.Platinum Group Metal (PGM) is a general term for six elements including ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt). Platinum group metals (PGM) not only have excellent physical properties with a high melting point and large specific gravity, but are also not corroded by acids or alkalis and are chemically inert, so they are used as catalysts for automobile exhaust gas purification, petrochemical industry, electrode materials, and display industry-related materials. It is used for various purposes in various fields, and its demand has been rapidly increasing recently.
그러나, 이러한 백금족 금속은 매장량이 한정되어 있기 때문에, 자동차촉매부품, 정유정제부품 또는 전자제품 등의 폐자재로부터 귀금속을 회수하는 공정 및 장치에 대한 연구가 활발히 진행되어 왔고, 국내에서도 전자산업의 발달, 디스플레이 산업의 발달 및 수요증가에 따른 생산의 증가와 이에 따른 스크랩의 증가로 인해 주재료 뿐만 아니라 공정에서 발생되는 폐자재로부터 보다 효율적이고, 경제적으로 백금족 금속을 추출하여 분리 정제하는 기술에 대한 요구가 대두되고 있다.However, because reserves of these platinum group metals are limited, research has been actively conducted on processes and devices for recovering precious metals from waste materials such as automobile catalyst parts, oil refining parts, or electronic products, and the electronics industry has developed in Korea as well. , Due to the increase in production due to the development of the display industry and increased demand, and the resulting increase in scrap, there is a demand for technology to extract, separate, and purify platinum group metals more efficiently and economically from not only the main materials but also the waste materials generated in the process. It is emerging.
종래에는 백금족을 함유하고 있는 폐액에 백금족 추출제를 접촉시켜 백금족을 회사하는 방법이 이용되었는데, 일정농도 이하의 백금족 금속은 추출되지 않는 문제점이 있었다.Conventionally, a method was used to remove the platinum group by contacting waste liquid containing the platinum group with a platinum group extractant, but there was a problem in that platinum group metals below a certain concentration were not extracted.
상기의 문제점을 해소하기 위해 백금족 금속을 추출하기 위한 합성수지를 개발하고자 하였으며, 이미 합성된 수지 구조체에 작용기를 붙여 백금족 금속을 흡착할 수 기능을 부여하는 방법과, 백금족 추출제를 수지 합성시에 혼합하여 합성함으로써 추출제가 수지 구조체의 일부가 되어 백금족을 흡착할 수 있도록 하는 방법이 이용되었는데, 작용기를 붙이는 방법은 공정이 지나치게 복잡하고 흡착효율이 낮으며, 수지 합성시 백금족 추출제를 혼합하는 방법은 백금족 금속의 흡착 용량이 낮아 추출효율성이 저하되는 문제점이 있었다.In order to solve the above problems, we attempted to develop a synthetic resin for extracting platinum group metals, including a method of attaching a functional group to an already synthesized resin structure to give it the ability to adsorb platinum group metals, and mixing a platinum group extractant during resin synthesis. A method was used in which the extractant becomes part of the resin structure and can adsorb the platinum group by synthesizing it. However, the method of attaching a functional group has an overly complicated process and low adsorption efficiency, and the method of mixing the platinum group extractant when synthesizing the resin was used. There was a problem in that the extraction efficiency was lowered due to the low adsorption capacity of platinum group metals.
본 발명의 목적은 물에 대한 용해도가 낮고 분자량 대비 탄소사슬이 긴 백금족 추출제가 이온교환수지의 표면에 결합되어 백금족 금속을 우수한 추출효율로 추출할 수 있는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법을 제공하는 것이다.The purpose of the present invention is to develop an ion exchange resin with excellent extraction efficiency of platinum group metals, in which a platinum group extractant with low solubility in water and a long carbon chain compared to molecular weight is bound to the surface of the ion exchange resin to extract platinum group metals with excellent extraction efficiency. It provides a manufacturing method.
본 발명의 목적은 스티렌 모노머에 디비닐벤젠을 혼합하는 원료혼합단계, 상기 원료혼합단계를 통해 제조된 혼합물에 톨루엔과 반응개시제를 혼합하여 중합하는 중합단계, 상기 중합단계를 통해 중합된 중합물을 에탄올로 세정하는 세정단계, 상기 세정단계를 통해 세정된 중합물을 진공건조하는 진공건조단계 및 상기 진공건조단계를 통해 진공건조된 중합물에 백금족 추출제 혼합물을 혼합하여 코팅하는 코팅단계로 이루어지는 것을 특징으로 하는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법을 제공함에 의해 달성된다.The object of the present invention is a raw material mixing step of mixing divinylbenzene with styrene monomer, a polymerization step of polymerizing the mixture prepared through the raw material mixing step by mixing toluene and a reaction initiator, and mixing the polymer polymerized through the polymerization step with ethanol. A cleaning step of cleaning, a vacuum drying step of vacuum drying the polymer washed through the cleaning step, and a coating step of mixing a platinum group extractant mixture and coating the polymer vacuum dried through the vacuum drying step. This is achieved by providing a method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals.
본 발명의 바람직한 특징에 따르면, 상기 원료혼합단계는 스티렌 모노머 100 중량부에 디비닐벤젠 90 내지 110 중량부를 혼합하여 이루어지는 것으로 한다.According to a preferred feature of the present invention, the raw material mixing step is performed by mixing 90 to 110 parts by weight of divinylbenzene with 100 parts by weight of styrene monomer.
본 발명의 더 바람직한 특징에 따르면, 상기 중합단계는 상기 원료혼합단계를 통해 제조된 혼합물 100 중량부에 톨루엔 85 내지 95 중량부 및 반응개시제 0.1 내지 0.2 중량부를 혼합하고 80 내지 90℃의 온도에서 250 내지 350rpm의 속도로 10 내지 15시간 동안 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the polymerization step is performed by mixing 85 to 95 parts by weight of toluene and 0.1 to 0.2 parts by weight of a reaction initiator with 100 parts by weight of the mixture prepared through the raw material mixing step and heating at 250° C. at a temperature of 80 to 90° C. It is to be carried out for 10 to 15 hours at a speed of 350 rpm.
본 발명의 더욱 바람직한 특징에 따르면, 상기 백금족 추출제 혼합물은 증류수 100 중량부, 백금족 추출제 10 내지 30 중량부 및 분산제 0.5 내지 1 중량부로 이루어지며, 상기 백금족 추출제는 트리부틸포스페이트 또는 디-n-옥틸설페이트로 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the platinum group extractant mixture consists of 100 parts by weight of distilled water, 10 to 30 parts by weight of a platinum group extractant, and 0.5 to 1 part by weight of a dispersant, and the platinum group extractant is tributyl phosphate or di-n. -It shall be composed of octyl sulfate.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 원료혼합단계 이전에는 상기 스티렌 모노머와 상기 디비닐벤젠을 질량농도가 10%인 수산화나트륨과 증류수를 이용하여 차례로 세척하는 세척단계가 더 진행되는 것으로 한다.According to an even more preferred feature of the present invention, before the raw material mixing step, a washing step of sequentially washing the styrene monomer and the divinylbenzene using sodium hydroxide and distilled water with a mass concentration of 10% is further performed.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 진공건조단계는 75 내지 85℃의 온도에서 20 내지 30시간 동안 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the vacuum drying step is performed at a temperature of 75 to 85 ° C. for 20 to 30 hours.
본 발명의 더욱 더 바람직한 특징에 따르면, 상기 코팅단계는 상기 진공건조단계를 통해 진공건조된 중합물 100 중량부에 백금족 추출제 혼합물 150 내지 200 중량부를 혼합하고 60 내지 80℃의 온도로 4 내지 6분 동안 교반한 후에, 세척 및 건조하는 과정으로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the coating step is performed by mixing 150 to 200 parts by weight of the platinum group extractant mixture with 100 parts by weight of the polymer vacuum dried through the vacuum drying step and drying the mixture at a temperature of 60 to 80° C. for 4 to 6 minutes. After stirring for a while, the process is performed by washing and drying.
본 발명에 따른 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법은 물에 대한 용해도가 낮고 분자량 대비 탄소사슬이 긴 백금족 추출제가 이온교환수지의 표면에 결합되어 백금족 금속을 우수한 추출효율로 추출할 수 있는 이온교환수지를 제공하는 탁월한 효과를 나타낸다.The method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals according to the present invention is to extract platinum group metals with excellent extraction efficiency by combining a platinum group extractant with low solubility in water and a long carbon chain compared to molecular weight to the surface of the ion exchange resin. It shows an excellent effect in providing an ion exchange resin that can be used.
도 1은 본 발명의 일 실시예에 따른 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법을 나타낸 순서도이다.
도 2는 본 발명의 다른 실시예에 따른 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법을 나타낸 순서도이다.
도 3은 본 발명의 실시예 1을 통해 제조된 이온교환수지를 주사전저현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 4는 비교예 1 내지 2을 통해 제조된 이온교환 수지를 FT-IR로 분석한 스팩트럼을 나타낸 그래프이다.
도 5는 비교예 1 및 비교예 3 내지 4를 통해 제조된 이온교환 수지를 FT-IR로 분석한 스팩트럼을 나타낸 그래프이다.
도 6은 실시예 1 및 비교예 1을 통해 제조된 이온교환수지와 TBP(트리부틸포스페이트)를 FT-IR로 분석한 스팩트럼을 나타낸 그래프이다.
도 7은 실시예 2 및 비교예 1을 통해 제조된 이온교환수지와 DNOS(디-n-옥틸설페이트)를 FT-IR로 분석한 스팩트럼을 나타낸 그래프이다.Figure 1 is a flowchart showing a method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals according to an embodiment of the present invention.
Figure 2 is a flowchart showing a method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals according to another embodiment of the present invention.
Figure 3 is a photograph taken using a scanning electron microscope (SEM) of the ion exchange resin prepared in Example 1 of the present invention.
Figure 4 is a graph showing the spectrum of ion exchange resins prepared through Comparative Examples 1 and 2 analyzed by FT-IR.
Figure 5 is a graph showing the spectrum of ion exchange resins prepared through Comparative Example 1 and Comparative Examples 3 to 4 analyzed by FT-IR.
Figure 6 is a graph showing the spectrum of the ion exchange resin and TBP (tributyl phosphate) prepared through Example 1 and Comparative Example 1 analyzed by FT-IR.
Figure 7 is a graph showing the spectrum of the ion exchange resin and DNOS (di-n-octyl sulfate) prepared through Example 2 and Comparative Example 1 analyzed by FT-IR.
이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Below, preferred embodiments of the present invention and the physical properties of each component are described in detail, but the purpose is to provide a detailed description so that a person skilled in the art can easily carry out the invention. This does not mean that the technical idea and scope of the present invention are limited.
본 발명에 따른 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법은 스티렌 모노머에 디비닐벤젠을 혼합하는 원료혼합단계(S101), 상기 원료혼합단계(S101)를 통해 제조된 혼합물에 톨루엔과 반응개시제를 혼합하여 중합하는 중합단계(S103), 상기 중합단계(S103)를 통해 중합된 중합물을 에탄올로 세정하는 세정단계(S105), 상기 세정단계(S105)를 통해 세정된 중합물을 진공건조하는 진공건조단계(S107) 및 상기 진공건조단계(S107)를 통해 진공건조된 중합물에 백금족 추출제 혼합물을 혼합하여 코팅하는 코팅단계(S109)로 이루어진다.The method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals according to the present invention includes a raw material mixing step (S101) of mixing divinylbenzene with styrene monomer, and reacting the mixture prepared through the raw material mixing step (S101) with toluene. A polymerization step (S103) of mixing and polymerizing an initiator, a cleaning step (S105) of washing the polymer polymerized through the polymerization step (S103) with ethanol, and vacuum drying the polymer product washed through the cleaning step (S105). It consists of a drying step (S107) and a coating step (S109) in which a platinum group extractant mixture is mixed and coated on the polymer vacuum dried through the vacuum drying step (S107).
상기 원료혼합단계(S101)는 스티렌 모노머에 디비닐벤젠을 혼합하는 단계로, 스티렌 모노머 100 중량부에 디비닐벤젠 90 내지 110 중량부를 혼합하여 이루어지는 것이 바람직하다.The raw material mixing step (S101) is a step of mixing divinylbenzene with styrene monomer, and is preferably performed by mixing 90 to 110 parts by weight of divinylbenzene with 100 parts by weight of styrene monomer.
상기 스티렌 모노머와 디비닐벤젠은 이온교환수지를 구성하는 주재료가 되는데, 상기와 같이 스티렌 모노머와 디비닐벤젠으로 제조되는 이온교환수지는 투명에 가깝고 겔(Gel) 구조를 가지고 있으므로 겔형 이온교환수지라고 한다. 또한, 특수한 중합법으로 물리적 다공성을 갖는 이온교환수지를 제조할 수 있으며 이와 같은 수지를 다공형이온교환수지(porous ion exchange resin)라고 하는데, 이 수지는 기본적으로 겔형과 같지만 고분자기체에 세공(macro pore)이 있는 점에서 차이를 나타낸다.The styrene monomer and divinylbenzene are the main materials that make up the ion exchange resin. As described above, the ion exchange resin made from styrene monomer and divinylbenzene is close to transparent and has a gel structure, so it is called a gel-type ion exchange resin. do. In addition, an ion exchange resin with physical porosity can be manufactured using a special polymerization method, and such a resin is called a porous ion exchange resin. This resin is basically like a gel, but contains pores (macro) in the polymer gas. The difference is in the presence of pores.
이때, 상기 원료혼합단계(S101) 이전에는 상기 스티렌 모노머와 상기 디비닐벤젠을 질량농도가 10%인 수산화나트륨과 증류수를 이용하여 차례로 세척하는 세척단계(S100)가 더 진행될 수도 있다.At this time, before the raw material mixing step (S101), a washing step (S100) in which the styrene monomer and the divinylbenzene are sequentially washed using sodium hydroxide and distilled water with a mass concentration of 10% may be further performed.
상용화된 스티렌 모노머와 디비닐벤젠에는 중합금지제가 함유되어 있는데, 상기의 중합금지제를 제거하기 위해 질량농도가 10%인 수산화나트륨과 증류수를 이용하여 차례로 세척하는 것이 바람직하며, 2 내지 4회씩 세척과정을 진행하는 것이 더욱 바람직하다.Commercially available styrene monomer and divinylbenzene contain a polymerization inhibitor. To remove the polymerization inhibitor, it is preferable to wash them sequentially using sodium hydroxide and distilled water with a mass concentration of 10%, washing 2 to 4 times at a time. It is more desirable to proceed with the process.
상기 중합단계(S103)는 상기 원료혼합단계(S101)를 통해 제조된 혼합물에 톨루엔과 반응개시제를 혼합하여 중합하는 단계로, 상기 원료혼합단계(S101)를 통해 제조된 혼합물 100 중량부에 톨루엔 85 내지 95 중량부 및 반응개시제 0.1 내지 0.2 중량부를 혼합하고 80 내지 90℃의 온도에서 250 내지 350rpm의 속도로 10 내지 15시간 동안 질소치환 조건에서 현탁중합하는 과정으로 이루어진다.The polymerization step (S103) is a step of polymerizing the mixture prepared through the raw material mixing step (S101) by mixing toluene and a reaction initiator. 85 parts by weight of toluene is added to 100 parts by weight of the mixture prepared through the raw material mixing step (S101). It consists of mixing 95 to 95 parts by weight of the reaction initiator and 0.1 to 0.2 parts by weight of the reaction initiator and performing suspension polymerization at a temperature of 80 to 90°C at a speed of 250 to 350 rpm for 10 to 15 hours under nitrogen substitution conditions.
이때, 상기 톨루엔은 본 발명을 통해 제조되는 이온교환수지에 기공이 형성될 수 있도록 하여 비표면적 증가로 인한 백금족 금속의 회수율을 향상시키는 역할을 한다.At this time, the toluene serves to improve the recovery rate of platinum group metals by increasing the specific surface area by allowing pores to be formed in the ion exchange resin produced through the present invention.
또한, 상기 반응개시제는 라디칼을 형성하여 중합반응이 진행될 수 있도록 하는 역할을 하는데, 벤조일퍼옥사이드(Benzoyl peroxide, BPO)로 이루어지는 것이 바람직하다.In addition, the reaction initiator forms radicals to allow the polymerization reaction to proceed, and is preferably made of benzoyl peroxide (BPO).
상기 세정단계(S105)는 상기 중합단계(S103)를 통해 중합된 중합물을 에탄올로 세정하는 단계로, 상기 중합단계(S105)를 통해 중합된 중합물을 에탄올로 2 내지 4회 세정하여 중합물의 표면에 잔존하는 미반응 단량체나 용매 성분 등을 제거하는 과정으로 이루어진다.The cleaning step (S105) is a step of cleaning the polymer polymerized through the polymerization step (S103) with ethanol. The polymer polymerized through the polymerization step (S105) is washed with ethanol 2 to 4 times to coat the surface of the polymer. It consists of a process of removing remaining unreacted monomers or solvent components.
상기 진공건조단계(S107)는 상기 세정단계(S105)를 통해 세정된 중합물을 진공건조하는 단계로, 상기 세정단계(S105)를 통해 세정된 중합물을 진공건조기에 투입하고 75 내지 85℃의 온도에서 20 내지 30시간 동안 진공건조하는 과정으로 이루어진다.The vacuum drying step (S107) is a step of vacuum drying the polymer cleaned through the cleaning step (S105). The polymer cleaned through the cleaning step (S105) is put into a vacuum dryer and dried at a temperature of 75 to 85 ° C. It consists of vacuum drying for 20 to 30 hours.
상기 코팅단계(S109)는 상기 진공건조단계(S107)를 통해 진공건조된 중합물에 백금족 추출제 혼합물을 혼합하여 코팅하는 단계로, 상기 진공건조단계(S107)를 통해 진공건조된 중합물 100 중량부에 백금족 추출제 혼합물 150 내지 200 중량부를 혼합하고 60 내지 80℃의 온도로 4 내지 6분 동안 교반한 후에, 세척 및 건조하는 과정으로 이루어진다.The coating step (S109) is a step of coating the polymer vacuum-dried through the vacuum drying step (S107) by mixing a platinum group extractant mixture, and 100 parts by weight of the polymer vacuum-dried through the vacuum drying step (S107) is applied. The process consists of mixing 150 to 200 parts by weight of the platinum group extractant mixture and stirring for 4 to 6 minutes at a temperature of 60 to 80° C., followed by washing and drying.
상기 백금족 추출제 혼합물은 증류수 100 중량부, 백금족 추출제 10 내지 30 중량부 및 분산제 0.5 내지 1 중량부로 이루어지는데, 상기의 성분을 혼합한 후에 교반기와 히팅멘틀이 구비된 혼합장치를 이용하여 450 내지 550rpm의 속도와 75 내지 85℃의 온도에서 혼합하여 제조하는 것이 바람직하다.The platinum group extractant mixture consists of 100 parts by weight of distilled water, 10 to 30 parts by weight of a platinum group extractant, and 0.5 to 1 part by weight of a dispersant. After mixing the above components, the mixture is mixed at 450 to 450 parts by weight using a mixing device equipped with a stirrer and a heating mantle. It is preferably prepared by mixing at a speed of 550 rpm and a temperature of 75 to 85 ° C.
상기 백금족 추출제 혼합물의 함량이 150 중량부 미만이면 이온교환수지의 백금족 금속 회수율이 저하되며, 백금족 추출제 혼합물의 함량이 200 중량부를 초과하게 되면 백금족 금속의 회수율이 오히려 저하될 수 있는데, 본 발명을 통해 제조되는 이온교환 수지를 구성하는 스티렌 모노머, 디비닐벤젠 및 백금족 추출제의 혼합비율은 1:1:1 내지 1.5의 중량부로 이루어지는 것이 바람직하다.If the content of the platinum group extractant mixture is less than 150 parts by weight, the recovery rate of platinum group metals of the ion exchange resin may decrease, and if the content of the platinum group extractant mixture exceeds 200 parts by weight, the recovery rate of platinum group metals may actually decrease, according to the present invention. The mixing ratio of the styrene monomer, divinylbenzene, and platinum group extractant that constitutes the ion exchange resin prepared through is preferably 1:1:1 to 1.5 parts by weight.
이때, 상기 백금족 추출제는 트리부틸포스페이트 또는 디-n-옥틸설페이트로 이루어지는 것이 바람직하며, 상기 분산제는 폴리비닐알코올로 이루어지는 것이 바람직하다.At this time, the platinum group extractant is preferably made of tributyl phosphate or di-n-octyl sulfate, and the dispersant is preferably made of polyvinyl alcohol.
이하에서는, 본 발명에 따른 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법 및 그 제조방법으로 제조된 이온교환수지의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, the method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals according to the present invention and the physical properties of the ion exchange resin produced by the method will be described through examples.
<제조예 1> 백금족 추출제 혼합물의 제조<Preparation Example 1> Preparation of platinum group extractant mixture
증류수 500g, 트리부틸포스페이트 80g, 분산제(폴리비닐알코올) 4.0g을 혼합하고 교반기와 히팅멘틀이 구비된 혼합장치를 이용하여 80℃의 온도와 500rpm의 속도로 5분 동안 교반하여 백금족 추출제 혼합물을 제조하였다.Mix 500g of distilled water, 80g of tributyl phosphate, and 4.0g of dispersant (polyvinyl alcohol) and stir for 5 minutes at a temperature of 80°C and a speed of 500rpm using a mixing device equipped with a stirrer and heating mantle to obtain a platinum group extractant mixture. Manufactured.
<제조예 2> 백금족 추출제 혼합물의 제조<Preparation Example 2> Preparation of platinum group extractant mixture
상기 제조예 1과 동일하게 진행하되, 트리부틸포스페이트 대신 디-n-옥틸설페이트를 사용하여 백금족 추출제 혼합물을 제조하였다.A platinum group extractant mixture was prepared in the same manner as Preparation Example 1, except that di-n-octyl sulfate was used instead of tributyl phosphate.
<실시예 1><Example 1>
스티렌 모노머와 디비닐벤젠을 질량농도가 10%인 수산화나트륨 수용액으로 3회 세척하고, 정제수로 3회 세척하여 중합금지제를 제거하였다.Styrene monomer and divinylbenzene were washed three times with an aqueous solution of sodium hydroxide having a mass concentration of 10%, and three times with purified water to remove the polymerization inhibitor.
중합금지제가 제거된 스티렌 모노머 80g과 디비닐벤젠 80g을 혼합하고, 톨루엔 150g과 중합개시제(벤조일퍼옥사이드) 0.2g을 혼합하여 혼합물을 제조하고, 질소치환조건에서 300rpm과 85℃의 온도로 12시간 동안 현탁중합하여 중합물을 제조하고, 상기 중합물을 에탄올로 3회 세척한 후에 진공건조기에 투입하고 80℃의 온도로 24시간 동안 진공건조한 중합물 100 중량부에 상기 제조예 1을 통해 제조된 백금족 추출제 혼합물 175 중량부를 혼합하고, 70℃의 온도로 5분 동안 교반, 세척 및 건조하는 과정을 통해 백금족 금속의 추출효율이 우수한 이온교환수지를 제조하였다.(STM&DVB&TBP Copolymer)Prepare a mixture by mixing 80 g of styrene monomer with the polymerization inhibitor removed and 80 g of divinylbenzene, 150 g of toluene and 0.2 g of polymerization initiator (benzoyl peroxide), and incubate for 12 hours at 300 rpm and 85°C under nitrogen substitution conditions. A polymer was prepared by suspension polymerization, and the polymer was washed three times with ethanol, placed in a vacuum dryer, and vacuum-dried at a temperature of 80° C. for 24 hours. 100 parts by weight of the polymer was mixed with the platinum group extract prepared in Preparation Example 1. An ion exchange resin with excellent extraction efficiency of platinum group metals was prepared by mixing 175 parts by weight of the mixture, stirring, washing, and drying at a temperature of 70°C for 5 minutes. (STM&DVB&TBP Copolymer)
<실시예 2><Example 2>
상기 실시예 1과 동일하게 진행하되, 상기 제조예 2를 통해 제조된 백금족 추출제 혼합물을 사용하여 백금족 금속의 추출효율이 우수한 이온교환수지를 제조하였다.(STM&DVB&DNOS Copolymer)An ion exchange resin with excellent extraction efficiency of platinum group metals was prepared in the same manner as in Example 1, but using the platinum group extractant mixture prepared in Preparation Example 2. (STM&DVB&DNOS Copolymer)
<비교예 1><Comparative Example 1>
중합금지제가 제거된 스티렌 모노머 80g과 디비닐벤젠 80g을 혼합하고, 톨루엔 150g과 중합개시제(벤조일퍼옥사이드) 0.2g을 혼합하여 혼합물을 제조하고, 300rpm과 85℃의 온도로 12시간 동안 현탁중합하여 중합물을 제조하고 에탄올로 3회 세척한 후에 진공건조기에 투입하고 80℃의 온도로 24시간 동안 진공건조하여 수지를 제조하였다.(STM&DVB Copolmer)A mixture was prepared by mixing 80 g of styrene monomer from which the polymerization inhibitor was removed and 80 g of divinylbenzene, and mixing 150 g of toluene and 0.2 g of a polymerization initiator (benzoyl peroxide), followed by suspension polymerization for 12 hours at 300 rpm and a temperature of 85°C. The polymer was prepared and washed three times with ethanol, then placed in a vacuum dryer and vacuum dried at a temperature of 80°C for 24 hours to prepare a resin. (STM&DVB Copolmer)
<비교예 2><Comparative Example 2>
중합금지제가 제거된 스티렌 모노머 80g과 디비닐벤젠 80g을 혼합하고, 톨루엔 150g과 중합개시제(벤조일퍼옥사이드) 0.2g을 혼합하여 혼합물을 제조하고, 300rpm과 85℃의 온도로 12시간 동안 현탁중합하여 중합물을 제조하고, 상기 중합물을 트리부틸포스페이트에 함침하고 에탄올로 3회 세척한 후에 진공건조기에 투입하고 80℃의 온도로 24시간 동안 진공건조하여 수지를 제조하였다.(SD)A mixture was prepared by mixing 80 g of styrene monomer from which the polymerization inhibitor was removed and 80 g of divinylbenzene, and mixing 150 g of toluene and 0.2 g of a polymerization initiator (benzoyl peroxide), followed by suspension polymerization for 12 hours at 300 rpm and a temperature of 85°C. A polymer was prepared, and the polymer was impregnated with tributyl phosphate, washed three times with ethanol, placed in a vacuum dryer, and vacuum dried at a temperature of 80°C for 24 hours to prepare a resin. (SD)
<비교예 3><Comparative Example 3>
중합금지제가 제거된 스티렌 모노머 80g과 디비닐벤젠 80g을 혼합하고, 톨루엔 150g과 중합개시제(벤조일퍼옥사이드) 0.2g을 혼합하여 혼합물을 제조하고, 300rpm과 85℃의 온도로 12시간 동안 현탁중합하여 중합물을 제조하고 에탄올로 3회 세척한 후에 진공건조기에 투입하고 80℃의 온도로 24시간 동안 진공건조하여 수지를 제조하고, 제조된 수지를 삼염화인에 함침하고, 염화암모늄을 혼합하고 75℃의 온도에서 5시간 동안 교반하여 인산계 관능기를 도입하고 2N-NaOH로 12시간 동안 가수분해시키고, 1N-HCl, 1N-HNO3 용액을 각각 12시간씩 산화 및 세척 단계를 거쳐 이온교환수지를 제조하였다.(SDP)A mixture was prepared by mixing 80 g of styrene monomer from which the polymerization inhibitor was removed and 80 g of divinylbenzene, and mixing 150 g of toluene and 0.2 g of a polymerization initiator (benzoyl peroxide), followed by suspension polymerization for 12 hours at 300 rpm and a temperature of 85°C. After preparing the polymer and washing it three times with ethanol, it was placed in a vacuum dryer and vacuum dried at 80°C for 24 hours to prepare a resin. The prepared resin was impregnated with phosphorus trichloride, mixed with ammonium chloride, and dried at 75°C. Phosphate-based functional group was introduced by stirring at high temperature for 5 hours, hydrolyzed with 2N-NaOH for 12 hours, and 1N-HCl and 1N-HNO 3 solutions were oxidized and washed for 12 hours each to prepare an ion exchange resin. .(SDP)
<비교예 4><Comparative Example 4>
중합금지제가 제거된 스티렌 모노머 80g과 디비닐벤젠 80g을 혼합하고, 톨루엔 150g과 중합개시제(벤조일퍼옥사이드) 0.2g을 혼합하여 혼합물을 제조하고, 300rpm과 85℃의 온도로 12시간 동안 현탁중합하여 중합물을 제조하고 에탄올로 3회 세척한 후에 진공건조기에 투입하고 80℃의 온도로 24시간 동안 진공건조하여 수지를 제조하고, 제조된 수지를 Toluene에 1시간 동안 팽윤시킨 이후, Chloromethylmethylether와 Ammonium chloride를 넣고 3시간 동안 교반시켜 메틸기를 도입한 후에, 삼염화인에 함침하고, 염화암모늄을 혼합하고 75℃의 온도에서 5시간 동안 교반하여 인산계 관능기를 도입하고 2N-NaOH로 12시간 동안 가수분해시키고, 1N-HCl, 1N-HNO3 용액을 각각 12시간씩 산화 및 세척 단계를 거쳐 이온교환수지를 제조하였다.(SDCMP)A mixture was prepared by mixing 80 g of styrene monomer from which the polymerization inhibitor was removed and 80 g of divinylbenzene, and mixing 150 g of toluene and 0.2 g of a polymerization initiator (benzoyl peroxide), followed by suspension polymerization for 12 hours at 300 rpm and a temperature of 85°C. After preparing the polymer and washing it three times with ethanol, it was placed in a vacuum dryer and vacuum dried at a temperature of 80°C for 24 hours to prepare a resin. The prepared resin was swelled in toluene for 1 hour, then chloromethylmethylether and ammonium chloride were added. After introducing a methyl group by stirring for 3 hours, it was impregnated with phosphorus trichloride, mixed with ammonium chloride, stirred at a temperature of 75°C for 5 hours to introduce a phosphoric acid-based functional group, and hydrolyzed with 2N-NaOH for 12 hours. Ion exchange resin was prepared by oxidizing and washing 1N-HCl and 1N-HNO 3 solutions for 12 hours each (SDCMP).
상기 실시예 1을 통해 제조된 이온교환수지를 주사전자현미경(SEM)으로 촬영하여 아래 도 3에 나타내었다.The ion exchange resin prepared in Example 1 was photographed with a scanning electron microscope (SEM) and shown in Figure 3 below.
아래 도 3에 나타낸 것처럼, 본 발명의 실시예 1을 통해 제조된 이온교환수지는 약 10㎛의 직경을 갖는 구형으로 형성된 것을 알 수 있다.As shown in Figure 3 below, it can be seen that the ion exchange resin prepared through Example 1 of the present invention was formed into a sphere with a diameter of about 10㎛.
또한, 상기 비교예 1 내지 2을 통해 제조된 이온교환 수지를 FT-IR로 분석한 스팩트럼을 아래 도 4에 나타내었다.In addition, the spectrum of the ion exchange resin prepared through Comparative Examples 1 and 2 analyzed by FT-IR is shown in Figure 4 below.
아래 도 4에 나타낸 것처럼, 비교예 1 내지 2를 통해 제조된 이온교환 수지 간에는 스펙트럼의 차이가 없는데, 이를 통해 단순 함침으로는 이온교환 수지의 표면에 백금족 추출제인 트리부틸포스페이트가 코팅되지 않는 것을 알 수 있다. As shown in Figure 4 below, there is no difference in spectrum between the ion exchange resins prepared in Comparative Examples 1 and 2, which shows that tributyl phosphate, a platinum group extractant, is not coated on the surface of the ion exchange resin through simple impregnation. You can.
또한, 상기 비교예 1 및 비교예 3 내지 4를 통해 제조된 이온교환 수지를 FT-IR로 분석한 스팩트럼을 아래 도 5에 나타내었다.In addition, the spectrum of the ion exchange resin prepared through Comparative Example 1 and Comparative Examples 3 to 4 analyzed by FT-IR is shown in Figure 5 below.
아래 도 5에 나타낸 것처럼, 비교예 3 내지 4를 통해 제조된 이온교환 수지에서 P=O결합에 대한 특성 peak가 1,000 cm-1 부근에서 나타났다. 그러나 비교예 3(SDP)에 비해 비교예 4(SDCMP)의 특성 피크가 매우 낮은 것으로 나타났는데, 이는 메틸기가 도입됨에 따라 인산계 관능기의 도입이 어려워졌거나 관능기 도입 반응이 충분히 이루어지지 않았기 때문인 것으로 판단된다.As shown in Figure 5 below, the characteristic peak for the P=O bond in the ion exchange resins prepared through Comparative Examples 3 and 4 appeared around 1,000 cm -1 . However, the characteristic peak of Comparative Example 4 (SDCMP) was found to be very low compared to Comparative Example 3 (SDP). This was believed to be because the introduction of the phosphate functional group became difficult as the methyl group was introduced or the functional group introduction reaction was not sufficiently carried out. do.
또한, 상기 실시예 1 및 비교예 1을 통해 제조된 이온교환수지와 TBP(트리부틸포스페이트)를 FT-IR로 분석한 스팩트럼을 아래 도 6에 나타내었다.In addition, the spectrum of the ion exchange resin and TBP (tributyl phosphate) prepared through Example 1 and Comparative Example 1 analyzed by FT-IR is shown in Figure 6 below.
아래 도 6에 나타낸 것처럼, P=O결합에 대한 특성 peak가 1,000 cm-1 부근에서 나타났다. TBP가 추출수지에 제대로 첨가되었는지 확인을 수행하였는데, TBP를 코팅하지 않은 중합체와 비교하였을 때와 비교하였을 때, TBP를 코팅한 중합한 추출수지는 TBP의 특성 peak가 나타나는 것을 확인하였다. 즉, 단량체인 STM, DVB에TBP를 코팅하였을 때, TBP의 구조 변화 없이 수지가 합성되는 것을 알 수 있다.As shown in Figure 6 below, the characteristic peak for the P=O bond appeared around 1,000 cm -1 . It was confirmed that TBP was properly added to the extraction resin. When compared to the polymer without TBP coating, it was confirmed that the TBP-coated polymerized extraction resin showed the characteristic peak of TBP. In other words, it can be seen that when TBP is coated on the monomers STM and DVB, the resin is synthesized without changing the structure of TBP.
또한, 상기 실시예 2 및 비교예 1을 통해 제조된 이온교환수지와 DNOS(디-n-옥틸설페이트)를 FT-IR로 분석한 스팩트럼을 아래 도 7에 나타내었다.In addition, the spectrum of the ion exchange resin and DNOS (di-n-octyl sulfate) prepared through Example 2 and Comparative Example 1 analyzed by FT-IR is shown in Figure 7 below.
아래 도 7에 나타낸 것처럼, C-H결합에 대한 특성 peak가 2,800~3,000 cm-1 부근에서 나타났다. DNOS가 추출수지에 제대로 첨가되었는지 확인을 수행하였는데, DNOS를 코팅하지 않은 중합체와 비교하였을 때, DNOS를 코팅하여 중합한 추출수지는 DNOS의 특성 peak가 나타나는 것을 확인하였다. 즉, 단량체인 STM, DVB와 중합체에 DNOS를 코팅하였을 때, DNOS의 구조 변화 없이 수지가 합성되는 것을 알 수 있다.As shown in Figure 7 below, the characteristic peak for CH bonding appeared around 2,800 to 3,000 cm -1 . It was confirmed whether DNOS was properly added to the extraction resin. When compared to the polymer without DNOS coating, the extraction resin polymerized with DNOS coating showed characteristic peaks of DNOS. In other words, it can be seen that when DNOS is coated on the monomers STM, DVB, and polymer, the resin is synthesized without changing the structure of DNOS.
또한, 상기 실시예 1과 동일하게 진행하되, 스티렌 모노머, 디비닐벤젠 및 트리부틸포스페이트의 비율이 1:1:1로 제조된 이온교환 수지를 각각 25g, 50g씩 충진한 컬럼에 라피네이트 폐액 100 mL(HCl농도 2 M기준)을 통과시킨 결과 추출수지의 백금 추출 효율은 약 99%인 것으로 나타냈다. In addition, the same procedure as in Example 1 was carried out, but 100 g of raffinate waste liquid was added to a column filled with 25 g and 50 g, respectively, of ion exchange resin prepared at a ratio of 1:1:1 of styrene monomer, divinylbenzene, and tributyl phosphate. As a result of passing mL (based on HCl concentration of 2M), the platinum extraction efficiency of the extraction resin was found to be about 99%.
또한, 상기 실시예 1과 동일하게 진행하되, 스티렌 모노머, 디비닐벤젠 및 트리부틸포스페이트의 비율을 아래 표 1과 같이 변화시키면서 백금의 추출효율을 측정하여 나타내었다.In addition, the same procedure as Example 1 was performed, but the extraction efficiency of platinum was measured while changing the ratios of styrene monomer, divinylbenzene, and tributyl phosphate as shown in Table 1 below.
{단, 백금의 추출효율은 폐액 중 백금의 농도를 46 mg/L로 하여 측정하였다.}{However, the extraction efficiency of platinum was measured with the concentration of platinum in the waste liquid being 46 mg/L.}
<표 1><Table 1>
상기 표 1에 나타낸 것처럼, 스티렌 모노머, 디비닐벤젠 및 트리부틸포스페이트의 비율이 1:1:1.5일때 가장 우수한 백금추출 효율을 나타내었다.As shown in Table 1, the best platinum extraction efficiency was achieved when the ratio of styrene monomer, divinylbenzene, and tributyl phosphate was 1:1:1.5.
또한, 상기 실시예 2를 통해 제조된 이온교환 수지의 성능 평가는 컬럼 안에 수지를 충진 후 일정한 유속으로 폐액을 여과시켜 통과된 여액을 시간대별로 채취하여 ICP분석을 실시하고 그 결과를 표 2에 나타내었다.In addition, to evaluate the performance of the ion exchange resin prepared in Example 2, the resin was filled in the column, the waste liquid was filtered at a constant flow rate, the passed filtrate was collected at each time period, and ICP analysis was performed. The results are shown in Table 2. It was.
{이때, 폐액 중 팔라듐의 농도는 45.2mg/L였으며, 이온교환수지를 각각 25g, 50g씩 충진한 컬럼에 라피네이트 폐액 100 mL(Pd농도 45.2 mg/L, HCl농도 2 M기준)을 통과시키는 방법을 이용하였다.}{At this time, the concentration of palladium in the waste liquid was 45.2 mg/L, and 100 mL of raffinate waste liquid (based on Pd concentration of 45.2 mg/L and HCl concentration of 2 M) was passed through a column filled with 25 g and 50 g of ion exchange resin, respectively. method was used.}
<표 2><Table 2>
상기 표 2에 나타낸 것처럼, 상기 실시예 2를 통해 제조된 이온교환수지가 50g 충진된 경우 팔라듐의 추출 효율은 약 99.95%인 것으로 확인되었다.As shown in Table 2, when 50 g of the ion exchange resin prepared in Example 2 was filled, the extraction efficiency of palladium was confirmed to be about 99.95%.
따라서, 본 발명에 따른 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법은 물에 대한 용해도가 낮고 분자량 대비 탄소사슬이 긴 백금족 추출제가 이온교환수지의 표면에 결합되어 백금족 금속을 우수한 추출효율로 추출할 수 있다.Therefore, in the method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals according to the present invention, a platinum group extractant with low solubility in water and a long carbon chain compared to molecular weight is bound to the surface of the ion exchange resin to achieve excellent extraction efficiency of platinum group metals. It can be extracted.
S100 ; 세척단계
S101 ; 원료혼합단계
S103 ; 중합단계
S105 ; 세정단계
S107 ; 진공건조단계
S109 ; 코팅단계S100 ; Washing step
S101 ; Raw material mixing stage
S103 ; polymerization step
S105 ; Cleaning step
S107 ; Vacuum drying step
S109 ; Coating step
Claims (7)
상기 원료혼합단계를 통해 제조된 혼합물에 톨루엔과 반응개시제를 혼합하여 중합하는 중합단계;
상기 중합단계를 통해 중합된 중합물을 에탄올로 세정하는 세정단계;
상기 세정단계를 통해 세정된 중합물을 진공건조하는 진공건조단계; 및
상기 진공건조단계를 통해 진공건조된 중합물에 백금족 추출제 혼합물을 혼합하여 코팅하는 코팅단계;를 포함하며,
상기 원료혼합단계는 스티렌 모노머 100 중량부에 디비닐벤젠 90 내지 110 중량부를 혼합하여 이루어지는 것을 특징으로 하는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법.
A raw material mixing step of mixing divinylbenzene with styrene monomer;
A polymerization step of polymerizing the mixture prepared through the raw material mixing step by mixing toluene and a reaction initiator;
A washing step of washing the polymer polymerized through the polymerization step with ethanol;
A vacuum drying step of vacuum drying the polymer cleaned through the cleaning step; and
A coating step of coating the polymer vacuum-dried through the vacuum drying step by mixing a platinum group extractant mixture,
The raw material mixing step is a method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals, characterized in that it is performed by mixing 90 to 110 parts by weight of divinylbenzene with 100 parts by weight of styrene monomer.
상기 원료혼합단계를 통해 제조된 혼합물에 톨루엔과 반응개시제를 혼합하여 중합하는 중합단계;
상기 중합단계를 통해 중합된 중합물을 에탄올로 세정하는 세정단계;
상기 세정단계를 통해 세정된 중합물을 진공건조하는 진공건조단계; 및
상기 진공건조단계를 통해 진공건조된 중합물에 백금족 추출제 혼합물을 혼합하여 코팅하는 코팅단계;를 포함하며,
상기 중합단계는 상기 원료혼합단계를 통해 제조된 혼합물 100 중량부에 톨루엔 85 내지 95 중량부 및 반응개시제 0.1 내지 0.2 중량부를 혼합하고 80 내지 90℃의 온도에서 250 내지 350rpm의 속도로 10 내지 15시간 동안 이루어지는 것을 특징으로 하는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법.
A raw material mixing step of mixing divinylbenzene with styrene monomer;
A polymerization step of polymerizing the mixture prepared through the raw material mixing step by mixing toluene and a reaction initiator;
A washing step of washing the polymer polymerized through the polymerization step with ethanol;
A vacuum drying step of vacuum drying the polymer cleaned through the cleaning step; and
A coating step of coating the polymer vacuum-dried through the vacuum drying step by mixing a platinum group extractant mixture,
In the polymerization step, 85 to 95 parts by weight of toluene and 0.1 to 0.2 parts by weight of the reaction initiator are mixed with 100 parts by weight of the mixture prepared through the raw material mixing step, and the mixture is heated at a temperature of 80 to 90 ° C. at a speed of 250 to 350 rpm for 10 to 15 hours. A method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals, characterized in that it is carried out during a process.
상기 백금족 추출제 혼합물은 증류수 100 중량부, 백금족 추출제 10 내지 30 중량부 및 분산제 0.5 내지 1 중량부로 이루어지며,
상기 백금족 추출제는 트리부틸포스페이트 또는 디-n-옥틸설페이트로 이루어지는 것을 특징으로 하는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법.
In claim 1 or 3,
The platinum group extractant mixture consists of 100 parts by weight of distilled water, 10 to 30 parts by weight of a platinum group extractant, and 0.5 to 1 part by weight of a dispersant,
A method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals, characterized in that the platinum group extractant consists of tributyl phosphate or di-n-octyl sulfate.
상기 원료혼합단계 이전에는 상기 스티렌 모노머와 상기 디비닐벤젠을 질량농도가 10%인 수산화나트륨과 증류수를 이용하여 차례로 세척하는 세척단계가 더 진행되는 것을 특징으로 하는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법.
In claim 1 or 3,
Before the raw material mixing step, a washing step is further performed in which the styrene monomer and the divinylbenzene are sequentially washed using sodium hydroxide and distilled water with a mass concentration of 10%. Ion exchange with excellent extraction efficiency of platinum group metals Resin manufacturing method.
상기 진공건조단계는 75 내지 85℃의 온도에서 20 내지 30시간 동안 이루어지는 것을 특징으로 하는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법.
In claim 1 or 3,
A method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals, characterized in that the vacuum drying step is performed at a temperature of 75 to 85 ° C. for 20 to 30 hours.
상기 원료혼합단계를 통해 제조된 혼합물에 톨루엔과 반응개시제를 혼합하여 중합하는 중합단계;
상기 중합단계를 통해 중합된 중합물을 에탄올로 세정하는 세정단계;
상기 세정단계를 통해 세정된 중합물을 진공건조하는 진공건조단계; 및
상기 진공건조단계를 통해 진공건조된 중합물에 백금족 추출제 혼합물을 혼합하여 코팅하는 코팅단계;를 포함하며,
상기 코팅단계는 상기 진공건조단계를 통해 진공건조된 중합물 100 중량부에 백금족 추출제 혼합물 150 내지 200 중량부를 혼합하고 60 내지 80℃의 온도로 4 내지 6분 동안 교반한 후에, 세척 및 건조하는 과정으로 이루어지는 것을 특징으로 하는 백금족 금속의 추출효율이 우수한 이온교환수지의 제조방법.A raw material mixing step of mixing divinylbenzene with styrene monomer;
A polymerization step of polymerizing the mixture prepared through the raw material mixing step by mixing toluene and a reaction initiator;
A washing step of washing the polymer polymerized through the polymerization step with ethanol;
A vacuum drying step of vacuum drying the polymer cleaned through the cleaning step; and
A coating step of coating the polymer vacuum-dried through the vacuum drying step by mixing a platinum group extractant mixture,
The coating step is a process of mixing 150 to 200 parts by weight of the platinum group extractant mixture with 100 parts by weight of the polymer vacuum dried through the vacuum drying step, stirring for 4 to 6 minutes at a temperature of 60 to 80 ° C., and then washing and drying. A method for producing an ion exchange resin with excellent extraction efficiency of platinum group metals, characterized in that it consists of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210154962A KR102675407B1 (en) | 2021-11-11 | 2021-11-11 | Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210154962A KR102675407B1 (en) | 2021-11-11 | 2021-11-11 | Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230068805A KR20230068805A (en) | 2023-05-18 |
KR102675407B1 true KR102675407B1 (en) | 2024-06-13 |
Family
ID=86545485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210154962A KR102675407B1 (en) | 2021-11-11 | 2021-11-11 | Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102675407B1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101268441B1 (en) | 2012-09-25 | 2013-06-04 | 한국지질자원연구원 | Recovering method of platinum from platinum scrap leaching solution using synthetic extraction resins |
JP2014055331A (en) * | 2012-09-13 | 2014-03-27 | Sanyo Shoten:Kk | Method for separating/recovering platinum group element |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2928817A (en) * | 1956-04-04 | 1960-03-15 | Exxon Research Engineering Co | Removal of metal contaminants in polymerization processes |
KR0138709B1 (en) * | 1994-10-18 | 1998-05-01 | 김상응 | Mothod for the preparation of porous exchange resin with high density |
KR101712763B1 (en) | 2016-01-25 | 2017-03-08 | 공주대학교 산학협력단 | Method for recovering platinum group metals from spent catalyst |
KR101922493B1 (en) | 2017-07-28 | 2018-11-27 | 디에스엠 주식회사 | Method for recovering environmentally-friendly platinum group metal and system for recovering platinum group metal |
-
2021
- 2021-11-11 KR KR1020210154962A patent/KR102675407B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014055331A (en) * | 2012-09-13 | 2014-03-27 | Sanyo Shoten:Kk | Method for separating/recovering platinum group element |
KR101268441B1 (en) | 2012-09-25 | 2013-06-04 | 한국지질자원연구원 | Recovering method of platinum from platinum scrap leaching solution using synthetic extraction resins |
Non-Patent Citations (1)
Title |
---|
강희석 외 6명, 다공성 고분자 촉매 담체의 제조 특성, 한국공업화학회, 공업화학, 제7권 제4호, 1996, 715~725쪽* |
Also Published As
Publication number | Publication date |
---|---|
KR20230068805A (en) | 2023-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63264610A (en) | Gel type chelate resin and method of removing polyhydric alkali earth or heavy metal cation from solution | |
CN104262521B (en) | The preparation method of styrene divinylbenzene copolymer hydrophobic catalyst carrier | |
EP1332234B1 (en) | Precious metal scavenging from a liquid medium with a functionalised polymer fiber | |
US4152496A (en) | Hybrid copolymers | |
US3966489A (en) | Method of decolorizing sugar solutions with hybrid ion exchange resins | |
CN111808247A (en) | Preparation and application of TEMPO nano reactor based on molecular brush | |
KR101268441B1 (en) | Recovering method of platinum from platinum scrap leaching solution using synthetic extraction resins | |
KR102675407B1 (en) | Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals | |
CN109400903A (en) | A kind of cage modle polysilsesquioxane/metal -2- amino terephthalic acid (TPA) metal-organic framework hybrid material and preparation method thereof | |
US4358546A (en) | Spherical porous cross-linked copolymers of chloromethylstyrene and divinylbenzene and the derivative thereof | |
CN111171212A (en) | Metal organic framework surface molecularly imprinted polymer and preparation method and application thereof | |
CN108976361B (en) | Preparation method and application of single-hole hollow boron affinity imprinted polymer | |
US20050245624A1 (en) | Polymeric support having novel pore structures | |
JP2023549060A (en) | Ion exchange membrane and ion exchange membrane manufacturing method | |
JP5251786B2 (en) | Platinum group metal adsorbent and method for separating and recovering platinum group metal using the same | |
CN114539497B (en) | Cyclotriphosphazene-acylhydrazone covalent organic polymer material and preparation method and application thereof | |
Lukey et al. | The speciation of gold and copper cyanide complexes on ion-exchange resins containing different functional groups | |
CN117101616A (en) | Molecularly imprinted polymer adsorption material based on metal-organic framework, and preparation method and application thereof | |
Sianita et al. | Comparison of the method used for extraction chloramphenicol from its Molecularly Imprinted Polymer (MIP) using chloroform as porogen | |
CN108948255A (en) | A kind of styrene resin and preparation method thereof | |
JPH0770231A (en) | Metal-ion-absorbing modified acrylonitrile polymer | |
JP2543081B2 (en) | Cyclodextrin immobilization method | |
CN108043370B (en) | Dual-ionic liquid resin material for separating ephedrine in pinellia ternata | |
CN111330465B (en) | Preparation method of adsorbing material for adsorbing gold ions | |
CN108559024A (en) | A kind of palladium ion imprinted polymer and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |