[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR0138709B1 - Mothod for the preparation of porous exchange resin with high density - Google Patents

Mothod for the preparation of porous exchange resin with high density

Info

Publication number
KR0138709B1
KR0138709B1 KR1019940026605A KR19940026605A KR0138709B1 KR 0138709 B1 KR0138709 B1 KR 0138709B1 KR 1019940026605 A KR1019940026605 A KR 1019940026605A KR 19940026605 A KR19940026605 A KR 19940026605A KR 0138709 B1 KR0138709 B1 KR 0138709B1
Authority
KR
South Korea
Prior art keywords
exchange resin
ion exchange
polymer matrix
density
inorganic compound
Prior art date
Application number
KR1019940026605A
Other languages
Korean (ko)
Inventor
이종신
조영도
이규완
김난경
김선호
Original Assignee
김상응
주식회사삼양사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김상응, 주식회사삼양사 filed Critical 김상응
Priority to KR1019940026605A priority Critical patent/KR0138709B1/en
Application granted granted Critical
Publication of KR0138709B1 publication Critical patent/KR0138709B1/en

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 고밀도 다공성 이온교환수지의 제조방법으로, 더욱 상세하게는 점성이 큰 유체의 이온교환 처리에 적합한 고밀도 다공성 이온교환 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a high density porous ion exchange resin, and more particularly, to a method for producing a high density porous ion exchange resin suitable for ion exchange treatment of a highly viscous fluid.

본 발명은 모노머, 가교제, 중합개시제, 중합안정제 및 세공형성제 등을 현탁중합시켜 고분자 메트릭스를 제조하고 여기에 이온기를 도입하여 다공성 이온교환수지를 제조하는 방법에 있어서 밀도증가제의 분산성을 높이기 위하여 상기의 현탁중합이 약 1 내지 30% 진행시 밀도증가제로 불용성 무기화합물을 첨가하는 것을 특징으로 하는 고밀도 다공성 이온교환수지의 제조방법이다.The present invention improves the dispersibility of a density increasing agent in a method of preparing a polymer matrix by suspending and polymerizing a monomer, a crosslinking agent, a polymerization initiator, a polymerization stabilizer, a pore-forming agent, and introducing ion groups thereto. In order to prepare a high-density porous ion exchange resin, the insoluble inorganic compound is added as a density increasing agent when the suspension polymerization proceeds about 1 to 30%.

본 발명에 의하여 밀도증가제인 불용성 무기화합물의 분산성이 높아졌으며 무기화합물이 고분자 매트릭스 내부 깊숙히 침투하여 무기물의 누출을 감소시킬 수 있다.According to the present invention, the dispersibility of an insoluble inorganic compound which is a density increasing agent is increased, and the inorganic compound can penetrate deep into the polymer matrix to reduce the leakage of the inorganic material.

Description

고밀도 다공성 이온교환수지의 제조방법Manufacturing method of high density porous ion exchange resin

본 발명은 고밀도 다공성 이온교환수지의 제조방법으로 더욱 상세하게는 점성이 큰 유체의 이온교환처리에 적합한 고밀도 다공성 이온교환 수지의 제조방법에 관한 것이다.The present invention relates to a method for producing a high density porous ion exchange resin, and more particularly, to a method for preparing a high density porous ion exchange resin suitable for ion exchange treatment of a highly viscous fluid.

이온교환 수지는 기본 고분자 매트릭스 내부에 분자들이 자유롭게 통과할 수 있는 세공(pore) 또는 기공(void)의 존재 유무에 의해 겔형 이온교환 수지와 다공성 이온교환 수지로 분리되며 겔형 고분자 수지 합성에 대해서는 미국특허 제2,960,480호, 제2,788,331호, 제2,641,417호, 제2,614,099호 및 제2,591,573호에 기재되어 있고 또한 다공성 고분자수지 합성에 대해서는 미국특허 제3,637,535호, 제 3,549, 562호 및 제3,173,842호에 개시되어 있다.Ion-exchange resins are separated into gel-type ion exchange resins and porous ion-exchange resins by the presence or absence of pores or voids through which molecules can freely pass within the base polymer matrix. 2,960,480, 2,788,331, 2,641,417, 2,614,099 and 2,591,573, and the synthesis of porous polymer resins is disclosed in US Pat.

상기 겔형의 이온교환수지는 세공이 없는 수지로서, 통상 겉보기 밀도가 1.2g/cc 이상으로 공정상 큰 문제가 없으나 건조상태에서는 분자들이 수지 내부로 침투할 수 없다. 그러나 친화력이 큰 용매 중에서는 용매에 팽윤되어 고분자 사실은 유연성을 갖게 되어 분자들이 겔 내부로 침투할 수 있게 된다. 이때 분자들의 침투속도는 고분자 매트릭스의 팽윤도에 크게 영향을 받는다. 따라서 겔형의 이온교환수지는 수지와 친화력이 큰 용매(good solvent)하에서 이온교환 능력을 발휘할 수 있다.The gel ion exchange resin is a pore-free resin, and the apparent density is generally 1.2 g / cc or more, so there is no big problem in the process, but in a dry state, molecules cannot penetrate into the resin. However, in solvents with high affinity, the polymer swells in the solvent, making the polymer flexible, allowing molecules to penetrate into the gel. At this time, the penetration rate of molecules is greatly affected by the degree of swelling of the polymer matrix. Therefore, the gel ion exchange resin can exert an ion exchange capacity under a good solvent having a high affinity for the resin.

또한 다공성 이온교환수지는 기본 고분자 매트릭스에 다양한 양이온기 또는 음이온기가 결합되어 있어 수지내부로 분자가 쉽게 침투할 수 있도록 세공 또는 기공을 갖고 있으므로 용매의 특성에 관계없이 쉽게 응용할 수 있는 장점이 있지만, 일반적인 겉보기 밀도가 건조상태에서 1g/cc이하이고 함수상태에서 약 1g/cc으로 낮아서 수지관의 아래에서 위방향으로 액체를 통과시키는 상류(upflow stream)계 일때 심각한 문제점이 있다.In addition, porous ion exchange resin has pore or pore so that molecules can easily penetrate into the resin because various cationic or anionic groups are bonded to the basic polymer matrix, but it can be easily applied regardless of the characteristics of the solvent. There is a serious problem when the apparent density is less than 1 g / cc in the dry state and lower to about 1 g / cc in the hydrous state so that the upstream of the liquid flows upward from the bottom of the resin tube.

따라서 다공성 이온교환 수지의 밀도를 증가시키기 위한 많은 연구가 진행되었으며, 그 대표적인 기술로는 할로겐 도입방법 또는 무기산화물 침투방법 등이 있다. 특히 미국특허 제4,399,235호에는 다공성 이온교환수지로 응용 가능한 기본 메트릭스를 합성한 후, 이온기가 도입되는 위치의 일부를 비중이 큰 원소 즉 브롬, 염소, 요오드 등과 같은 할로겐 원자를 도입하여 밀도를 증가시키는 방법이 기재되어 있다. 그렇지만 이 방법의 경우 고분자 메트릭스의 할로겐화 반응공정이 추가되므로써 공정상 비용이 많이 소요될 뿐만 아니라, 할로겐화 반응에 의한 이온교환 용량이 줄어드는 문제가 있다.Therefore, many studies have been conducted to increase the density of the porous ion exchange resin, and representative techniques thereof include a halogen introduction method or an inorganic oxide penetration method. In particular, U.S. Patent No. 4,399,235 synthesizes a basic matrix applicable to a porous ion exchange resin, and then increases the density by introducing a part of the position where the ionic group is introduced, by introducing halogen atoms such as bromine, chlorine, iodine, etc. The method is described. However, in this method, the addition of a polymer matrix halogenation reaction process is not only expensive in terms of the process but also reduces the ion exchange capacity due to the halogenation reaction.

그리고 미국특허 제4,477,597호와 미국특허 제4,724,082호에는 고분자 메트릭스에 불용성 무기물을 침투시켜 밀도를 증가시키는 방법이 기재되어 있다. 이 방법의 경우 이온교환 용량이 줄어드는 문제는 해결할 수 있지만 불용성 무기물의 일부가 지속적으로 누출되어 2차 오염을 야기시키는 문제가 있다.And US Pat. No. 4,477,597 and US Pat. No. 4,724,082 describe methods for increasing the density by infiltrating insoluble inorganic materials into the polymer matrix. This method solves the problem of reducing the ion exchange capacity, but there is a problem that some of the insoluble minerals leak continuously causing secondary pollution.

일반적으로 이온교환 공정에서 요구되거나 추천되는 이온교환수지층의 팽창율은 50% 이하이며 그 팽창율이 50%를 초과하면 이온교환 활성점의 밀도가 낮아져 이온교환 효율이 떨어지게 된다. 따라서 다공성 이온교환수지의 응용시 유체의 흐름에 의하여 발생하는 저항 때문에 수지층의 지나친 팽창을 피하기 위해서는 유속을 느리게 하여야만 한다. 그러나 유속을 느리게 할 경우 수지입자의 외부표면에 두꺼운 액체막이 형성되고, 이로서 외부 물질전달 저항이 크게 걸리므로 이온교환속도가 느리게 되는 문제가 있다.In general, the expansion rate of the ion exchange resin layer required or recommended in the ion exchange process is 50% or less, and when the expansion rate exceeds 50%, the density of the ion exchange active point is lowered, thereby decreasing the ion exchange efficiency. Therefore, in order to avoid excessive expansion of the resin layer due to the resistance generated by the flow of fluid in the application of porous ion exchange resin, the flow rate must be slowed down. However, when the flow rate is slowed, a thick liquid film is formed on the outer surface of the resin particles, which causes a large external material transfer resistance, thereby causing a slow ion exchange rate.

따라서 이러한 문제점을 해결하기 위하여 다공성 이온교환 수지의 밀도를 증가시키는 연구가 필요하며, 일반적으로 고밀도 이온교환 수지의 비교적 큰 비중을 갖는 액체 또는 점성액체를 처리하는데 유리하다. 즉 고밀도 이온교환수지는 상류(upflow stream)계에서 수지층의 팽창을 줄이고 유체의 유속을 증가시킬 수 있다.Therefore, in order to solve this problem, a study to increase the density of the porous ion exchange resin is required, and it is generally advantageous to treat liquids or viscous liquids having a relatively high specific gravity of the high density ion exchange resin. In other words, the high density ion exchange resin can reduce the expansion of the resin layer and increase the flow rate of the fluid in the upflow stream.

이에 본 발명의 발명자들은 다공성 이온교환수지의 밀도를 증가시키기 위하여 연구 노력한 결과 소수성이면서 비중이 큰 무기화합물을 모노머 등과 같이 현탁중합하여 고분자 매트릭스를 제조하고 여기에 이온기를 도입하므로써 본 발명을 완성하였다.Accordingly, the inventors of the present invention have made research efforts to increase the density of porous ion exchange resins, thereby preparing a polymer matrix by suspending polymerization of hydrophobic and high specific gravity inorganic compounds such as monomers and introducing ionic groups therein.

본 발명은 점성이 큰 액체의 이온교환에 유용한 고밀도의 다공성 이온교환수지를 제조하는데 그 목적이 있다.It is an object of the present invention to prepare a high density porous ion exchange resin useful for ion exchange of highly viscous liquids.

이하 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.

본 발명은 모노머, 가교제, 중합개시제, 중합안정제 및 세공형성제 등을 현탁중합시켜 고분자 메트릭스를 제조하고 여기에 이온기를 도입하여 다공성 이온교환수지를 제조하는 방법에 있어서 밀도증가제의 분산성을 높이기 위하여 상기의 현탁중합이 약 1 내지 30%진행시 밀도증가제로 불용성 무기화합물을 첨가하는 것을 특징으로 하는 고밀도 다공성 이온교환수지의 제조방법이다.The present invention improves the dispersibility of a density increasing agent in a method of preparing a polymer matrix by suspending and polymerizing a monomer, a crosslinking agent, a polymerization initiator, a polymerization stabilizer, a pore-forming agent, and introducing ion groups thereto. In order to proceed with the suspension polymerization of about 1 to 30%, the insoluble inorganic compound is added as a density increasing agent.

이하 본 발명을 더욱 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in more detail.

즉 본 발명은 모노머, 가교제, 중합개시게, 중합안정제 및 세공형성제 등을 첨가 혼합하여 통상의 현탁중합 방법으로 고분자 메트릭스를 제조하는 중 첨가하는 밀도증가제의 분산성을 높이기 위해 상기의 현탁중합에 의한 고분자메트릭스의 중합이 약 1 내지 30% 진행되었을시 밀도증가제로 불용성 무기 화합물을 첨가하여 다공성 고분자 메트릭스를 제조하고 이어서 얻어진 고분자 메트릭스에 통상적인 이온 도입방법에 의해 양이온 또는 음이온교환 수지를 제조한다.In other words, the present invention provides the above-mentioned suspension polymerization in order to increase the dispersibility of the density increasing agent which is added during the preparation of the polymer matrix by the usual suspension polymerization method by adding and mixing a monomer, a crosslinking agent, a polymerization initiator, a polymerization stabilizer, a pore-forming agent and the like. When the polymerization of the polymer matrix by about 1 to 30% was carried out, a porous polymer matrix was prepared by adding an insoluble inorganic compound as a density increasing agent, and then a cation or anion exchange resin was prepared by a conventional ion introduction method for the obtained polymer matrix. .

상기에서 모노머는 이중결합을 한 개 함유하는 알킬기를 치환기로 갖는 방향족 화합물로 예를들면, 스테렌, 모노비닐 톨루엔, 에틸비닐 톨루엔 또는 비닐 나프탈렌 등이며 특히 바람직하기로는 스티렌이다.The monomer is an aromatic compound having a substituent containing an alkyl group containing one double bond, for example, styrene, monovinyl toluene, ethylvinyl toluene or vinyl naphthalene, and particularly preferably styrene.

또한 상기의 가교제는 이중결합을 갖는 알킬기를 두 개이상 치환기로 갖는 방향족 화합물로서 예를 들면, 디비닐벤젠, 트리비닐벤젠, 디비닐 톨루엔, 디비닐 크실렌, 디비닐 나프탈렌, 트리비닐 나프탈렌 또는 디이소프로테닐 벤젠 등이며 특히 바람직하기로는 디비닐벤젠이다.In addition, the cross-linking agent is an aromatic compound having two or more substituents of an alkyl group having a double bond, for example, divinylbenzene, trivinylbenzene, divinyl toluene, divinyl xylene, divinyl naphthalene, trivinyl naphthalene or diisop Rotenyl benzene and the like, particularly preferably divinylbenzene.

상기의 중합개시제로는 2,2-아조비스이소부티로니트릴(이하, AIBN이라 함) 또는 2-(3-비페닐일)-5-펜닐옥사졸(이하, BPO라 함)을 유기상에 녹여 사용한다.As the polymerization initiator, 2,2-azobisisobutyronitrile (hereinafter referred to as AIBN) or 2- (3-biphenylyl) -5-phenyloxazole (hereinafter referred to as BPO) is dissolved in an organic phase. use.

또한 현탁중합에서 유적을 중합초기부터 말기까지 잘 보호하기 위하여 중합안정제로써 폴리디메틸디아릴암모니움 클로라이드, 젤라틴, 붕산 또는 폴리비닐알콜 등을 사용한다. 현탁중합시 수용액상의 부피는 유기상에 대해 2∼8배, 더욱 바람직하기로는 3∼5배이다.In addition, polydimethyldiarylammonium chloride, gelatin, boric acid, or polyvinyl alcohol may be used as a polymerization stabilizer in order to protect the oil residue from the beginning to the end of the polymerization in suspension polymerization. The volume of the aqueous phase at the time of suspension polymerization is 2 to 8 times, more preferably 3 to 5 times the organic phase.

상기의 다공성 고분자 메트릭스를 합성하기 위한 세공형성제로는 고분자 메트릭스와 친화력이 큰 용매(good solvent) 또는 모노머와는 잘 섞이고 고분자 메트릭스와 친화력이 작은 용매(poor solvent)를 사용한다. 특히, 바람직하기로는 친화력이 큰 용매로는 톨루엔을 사용하고 친화력이 작은 용매로는 노말헵탄을 사용한다.As a pore-forming agent for synthesizing the porous polymer matrix, a solvent having a high affinity with the polymer matrix or a good affinity with the monomer and a solvent having a low affinity with the polymer matrix are used. In particular, toluene is preferably used as a solvent having a high affinity and normal heptane is used as a solvent having a small affinity.

또한 비교적 큰 비표면적을 형성하기 위하여 종래의 제조방법에서도 사용된바 있는 플라스티렌을 첨가할 수 있다. 이때 폴리스티렌을 모노머 100중량부에 대하여 0∼20중량부 첨가하므로써 합성된 다공성 고분자 메트릭스의 비표면적을 100∼600m2/g로 조절한다.It is also possible to add plastirene, which has also been used in conventional manufacturing methods, to form a relatively large specific surface area. At this time, by adding 0 to 20 parts by weight of polystyrene with respect to 100 parts by weight of monomer, the specific surface area of the synthesized porous polymer matrix is adjusted to 100 to 600 m 2 / g.

또한 상기의 밀도증가제인 불용성 무기화합물은 상기의 모노머, 가교제, 중합개시제, 중합안정제 및 세공형성제등을 첨가 혼합하여 약 70℃에서 약 2내지 3시간동안 반응을 진행시킨후, 상기 모노머 100중량부에 대하여 약 1∼10중량부를 투입한 후, 통상의 현탁중합반응에 의해 약 80℃에서 7 내지 10시간 반응시키고, 이어서 미반응물을 완전히 반응시키기 위하여 약 90℃에서 1내지 2시간동안 더 반응시킨다.In addition, the insoluble inorganic compound, which is the density increasing agent, is mixed with the monomer, the crosslinking agent, the polymerization initiator, the polymerization stabilizer, the pore-forming agent, and the like to proceed with the reaction at about 70 ° C. for about 2 to 3 hours. About 1 to 10 parts by weight of the solution was added, followed by 7 to 10 hours at about 80 ° C. by a conventional suspension polymerization reaction, followed by further reaction at about 90 ° C. for 1 to 2 hours to completely react the unreacted material. Let's do it.

상기의 밀도증가제인 불용성 무기 화합물로는 예를 들면, 실리카 또는 알루미나등의 무기물, 또는 예를 들면 산화제일구리(CuO2), 산화제이구리(CuO)등의 구리산화물, 수은산화물(HgO)등의 티타늄산화물(TiO2), 납산화물(PbO) 또는 니켈산화물(NiO)등의 금속산화물이다.Examples of the insoluble inorganic compound as the density increasing agent include inorganic substances such as silica or alumina, or copper oxides such as cuprous oxide (CuO 2 ) and cuprous oxide (CuO), and mercury oxide (HgO). Metal oxides such as titanium oxide (TiO 2 ), lead oxide (PbO) or nickel oxide (NiO).

본 발명에 의한 상기의 불용성 무기화합물의 투입양은 모노머 100중량부에 대하여 약 1∼10중량부 투입되는 바, 그 투입양이 1중량부 미만이면 밀도가 낮아서 점성유체의 응용에 적합하지 않고 10중량부를 초과하면 기계적 강도가 낮아지는 문제가 있다.The amount of the insoluble inorganic compound according to the present invention is about 1 to 10 parts by weight based on 100 parts by weight of the monomer. If the amount is less than 1 part by weight, the density is low, which is not suitable for the application of viscous fluid and is 10 parts by weight. If the amount is exceeded, there is a problem that the mechanical strength is lowered.

상기와 같은 방법에 의해 평균직경이 0.1mm∼1.2mm인 다공성 고분자 메트릭스를 합성한다. 통상적인 이온교환수지로 응용되는 고분자 메트릭스는 반드시 물에 용해되지 않아야 한다. 이러한 고분자는 페놀수지, 폴리에틸렌수지, 스티렌수지 및 아크릴수지 등의 다양한 수지들이 응용되고 있으며, 그중 고분자 메트릭스의 기본 반복단위가 스티렌의 유도체로 구성되어 있는 스티렌계 수지가 많이 이용되고 있다.By the method as described above, a porous polymer matrix having an average diameter of 0.1 mm to 1.2 mm is synthesized. Polymer matrices applied to conventional ion exchange resins must not be dissolved in water. Various polymers such as phenol resins, polyethylene resins, styrene resins and acrylic resins are applied to such polymers, and among them, styrene-based resins in which the basic repeating unit of the polymer matrix is composed of styrene derivatives are used.

이어서 얻어진 다공성 고분자 메트릭스에 일반적인 이온도입 방법에 의해 양이온기 또는 음이온기를 도입하므로써 이온교환수지를 제조한다.Subsequently, ion exchange resins are prepared by introducing cationic or anionic groups into the porous polymer matrix obtained by a general iontophoretic method.

상기 일반적인 이온기 도입방법으로서 양이온 교환수지는 니트로벤젠 용매하에서 진한 황산을반응시켜 술폰기를 도입하므로써 제조되고 음이온 교환수지는 클로로메틸기를 고분자 메트릭스에 도입한 후 트리알킬아민과 반응시켜 제조한다.As the general ion group introduction method, a cation exchange resin is prepared by introducing a sulfone group by reacting concentrated sulfuric acid in a nitrobenzene solvent, and an anion exchange resin is prepared by introducing a chloromethyl group into a polymer matrix and then reacting with a trialkylamine.

종래의 고밀도 다공성 이온교환수지 제조방법은 고분자 메트릭스의 중합반응을 시작하기 이전에 불용성 무기화합물을 배합침투시켜 중합반응을 개시하여 고분자메트릭스의 밀도를 증가시키는데 반하여 본 발명은 고분자 메트릭스 중합공정중 약 1 내지 30%의 중합반응이 진행되었으며 불용성 무기화합물을 첨가하여 고분자 메트릭스내에 분산성이 좋게 분산시킨 후 고분자 메트릭스내에 분산성이 좋게 분산시킨 후 고분자 메트릭스의 중합반응을 완결한다.The conventional method for preparing a high density porous ion exchange resin is to increase the density of the polymer matrix by starting the polymerization reaction by infiltration of the insoluble inorganic compound before starting the polymerization of the polymer matrix. 30% to 30% of the polymerization was carried out, and an insoluble inorganic compound was added to disperse the polymer matrix in good dispersibility and then disperse the polymer matrix in good dispersibility and then complete the polymerization of the polymer matrix.

상기의 본 발명에 의한 제조방법에 의해 제조된 고분자 메트릭스는 내부 깊숙히 불용성 무기물이 분산침투되므로써, 고분자 메트릭스의 밀도를 더욱 증가시킬 수 있으며, 또한 고분자 메트릭스에서의 무기물 누출을 감소시킬 수 있다.The polymer matrix prepared by the above-described manufacturing method according to the present invention can further increase the density of the polymer matrix by infiltrating the insoluble inorganic material deep inside, and also reduce the inorganic leakage in the polymer matrix.

이하 본 발명을 실시예에 의하여 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to Examples.

[실시예 1]Example 1

냉각기, 질소유입기, 교반기, 모노머 투입기 및 베플이 부착된 실린더형 4구 반응기에 2차 증류 및 이온교환을 통하여 제조한 순순한 물 700ml을 넣고 현탁 중합안정제로서 폴리비닐알콜 0.5g을 넣은 후 40℃에서 30분간 교반하여 완전히 폴리비닐알콜을 녹여 수용액상을 제조하였다. 이때 용존산소를 제거하기 위하여 질소를 분당 20ml로 퍼지게 하였다.Into a cylindrical four-necked reactor equipped with a cooler, a nitrogen injector, a stirrer, a monomer injector, and a baffle, 700 ml of pure water prepared by secondary distillation and ion exchange was added, and 0.5 g of polyvinyl alcohol as a suspension polymerization stabilizer was added thereto. After stirring for 30 minutes, polyvinyl alcohol was completely dissolved to prepare an aqueous phase. At this time, nitrogen was spread to 20 ml / min to remove dissolved oxygen.

이어서 또다른 용기에 노말헵탄 100ml, 디비닐벤젠용액(디비닐벤젠 55% : 에틸스티렌 45%) 70ml, 스티렌 30ml 및 중합개시제로 벤조일퍼옥사이드 0.5g을 혼합하여 70℃에서 2시간 30분동안 반응시킨 후 밀도증가제로 티타늄 산화물 3g을 첨가하여 완전히 혼합하여 유기상을 제조하였다.Subsequently, 100 ml of normal heptane, 70 ml of divinylbenzene solution (divinyl benzene 55%: 45% ethyl styrene), 30 ml of styrene, and 0.5 g of benzoyl peroxide as a polymerization initiator were mixed and reacted at 70 ° C. for 2 hours and 30 minutes. After the addition of 3g of titanium oxide as a density increasing agent was mixed thoroughly to prepare an organic phase.

상기의 준비한 유기상을 수용액상이 들어 있는 4구 반응기에 투입한 다음 유적을 형성시키기 위하여 약 40분간 교반하였다. 일정한 크기의 유적이 형성되면 0.5℃/분의 승온속도로 하여 80℃까지 올린다음, 충분히 반응이 진행되도록 약 8시간 반응을 유지하였다. 그리고 일부 미반응물을 완전히 제거하기 위하여 반응기의 온도를 90℃로 올려 약 2시간 유지하였다. 반응물을 냉각한 후 필터로 고분자 메트릭스를 분리하고 순수한 물과 아세톤으로 여러차례 세척한 다음 진공 건조하였다.The prepared organic phase was introduced into a four-necked reactor containing an aqueous phase, followed by stirring for about 40 minutes to form oil droplets. When the remnants of a constant size were formed, the temperature was raised to 80 ° C. at a rate of 0.5 ° C./min, and the reaction was maintained for about 8 hours to allow the reaction to proceed sufficiently. In addition, the temperature of the reactor was maintained at 90 ° C. for about 2 hours to completely remove some unreacted material. After the reaction was cooled, the polymer matrix was separated by a filter, washed several times with pure water and acetone, and then vacuum dried.

둥근 2구 반응기에 상기에서 제조한 고분자 메트릭스 50g과 니트로벤젠 100g을 투입하고 50℃에서 기계적 교반에 의하여 약 1시간 정도 팽윤시킨 다음 농축황산 300g을 서서히 가한 후 90℃로 승온하여 약 12시간동안 황산화시켰다. 황산화 반응 후 순수한 물을 약 0.5ml/분의 속도로 3시간 동안 가한 후 3ml/분의 속도로 4시간 가하여 희선시킨 다음 황산화된 이온교환수지를 분리하고 순수한 물로 세척한 다음 진공 건조하여 고밀도 다공성 양이온 교환수지를 합성하였다. 합성한 수지의 비표면적은 약130m2/g이었고, 함수상태의 겉보기 밀도는 약 1.14g/cc이었다.50 g of the polymer matrix prepared above and 100 g of nitrobenzene were added to a round two-necked reactor, followed by swelling for about 1 hour at 50 ° C. by mechanical stirring. Then, 300 g of concentrated sulfuric acid was slowly added, and the temperature was raised to 90 ° C. Mad. After the sulfidation reaction, pure water was added at a rate of about 0.5ml / min for 3 hours, followed by 4 hours at 3ml / min, followed by dilution. The sulfated ion exchange resin was separated, washed with pure water, and dried under vacuum to obtain high density. Porous cation exchange resin was synthesized. The specific surface area of the synthesized resin was about 130 m 2 / g, and the apparent density in the aqueous state was about 1.14 g / cc.

[실시예 2]Example 2

상기 실시예 1과 동일한 제조장치 및 중합조건에 의해 현탁중합시켜 고분자 메트릭스를 제조하고 여기에 슬폰기에 도입하여 양이온 교환수지를 제조하되 밀도 증가제로 이산화티탄 10g을 사용하였다. 이렇게 합성된 수지의 비표면적은 약 110m2/g이었고 함수상태의 겉보기 밀도는 약 1.16g/cc이었다.The polymer matrix was prepared by suspension polymerization under the same production apparatus and polymerization conditions as in Example 1, and introduced into a spatula group to prepare a cation exchange resin, but 10 g of titanium dioxide was used as a density increasing agent. The specific surface area of the resin thus synthesized was about 110 m 2 / g and the apparent density in the aqueous state was about 1.16 g / cc.

[실시예 3]Example 3

상기 실시예 1과 동일한 제조장치 및 중합조건에 의해 현탁중합시켜 고분자 메트릭스를 제조하고 여기에 술폰기를 도입하여 양이온 교환수지를 제조하되 다만 노르말헵탄 100ml, 디비닐벤젠용액(디비닐벤젠 55% : 에틸스티렌 45%)70ml, 스티렌 30ml 및 벤조일퍼옥사이드 0.5g을 혼합하여 70℃에서 2시간 30분 동안 반응시킨 후, 폴리스티렌 10g, 이산화티탄 3g을 첨가하여 충분히 혼합하여 유기상을 제조하고 현탁중합 후 일반적인 추출장치를 이용하여 톨루엔 용매를 사용하여 폴리스티렌 고분자 메트릭스를 추출하였다. 그 결과 합성된 수지의 비표면적은 450m2/g이었고, 함수상태의 겉보기 밀도는 약 1.11g/cc이었다. 실시예 1에서 합성된 수지에 비하여 비교적 큰 비표면적을 갖는 이온교환 수지를 제조하였다.Suspension polymerization was prepared by the same production apparatus and polymerization conditions as in Example 1 to prepare a polymer matrix, and a sulfone group was introduced thereto to prepare a cation exchange resin, except 100 mL of normal heptane and a divinylbenzene solution (divinylbenzene 55%: ethyl 70 ml of styrene (45%), 30 ml of styrene, and 0.5 g of benzoyl peroxide were mixed and reacted at 70 ° C. for 2 hours and 30 minutes. Then, 10 g of polystyrene and 3 g of titanium dioxide were added thereto to prepare an organic phase, followed by general polymerization. The apparatus was used to extract the polystyrene polymer matrix using a toluene solvent. As a result, the specific surface area of the synthesized resin was 450 m 2 / g, and the apparent density of the water-containing state was about 1.11 g / cc. An ion exchange resin having a relatively large specific surface area was prepared as compared to the resin synthesized in Example 1.

[실시예 4]Example 4

상기 실시예 3과 동일한 방법에 의해 양이온 교환수지를 제조하되 밀도증가제로 실리카 5g을 사용하였다. 합성된 양이온 교환수지의 비표면적은 430m2/g이었고, 겉보기 밀도는 약 1.12g/cc이었다.A cation exchange resin was prepared in the same manner as in Example 3, but 5 g of silica was used as a density increasing agent. The specific surface area of the synthesized cation exchange resin was 430 m 2 / g, and the apparent density was about 1.12 g / cc.

[실시예 5]Example 5

상기 실시예 1과 동일한 방법으로 고분자 메트릭스를 제조하되, 밀도증가제로 구리산화물 5g을 사용하였다. 건조된 고분자 메트릭스 수지 50g, 염화아연 5g과 디클로로에탄 100g을 통상의 둥근 2구 반응기에 도입하고 25℃에서 기계적 교반을 약 1시간 정도 실시한 후 클로로메틸에스터 200g을 서서히 가한후 약 8시간 동안 클로로메틸화하였다. 클로로메틸화된 수지 20g을 톨루엔 100ml에 팽윤시킨후, 트리에틸아민 30ml을 첨가하여 70℃에서 약 10시간 반응시켜 강염기성 음이온 교환수지를 제조하였다. 제조된 음이온 교환수지의 비표면적은 92m2/g이었고, 겉보기 밀도는 약 1.12g/cc이었다.Polymer matrix was prepared in the same manner as in Example 1, but 5 g of copper oxide was used as a density increasing agent. 50 g of dried polymer matrix resin, 5 g of zinc chloride and 100 g of dichloroethane were introduced into a conventional round two-necked reactor, and mechanical stirring was performed at 25 ° C. for about 1 hour, and then 200 g of chloromethyl ester was slowly added, followed by chloromethylation for about 8 hours. It was. After swelling 20 g of chloromethylated resin in 100 ml of toluene, 30 ml of triethylamine was added and reacted at 70 ° C. for about 10 hours to prepare a strong base anion exchange resin. The specific surface area of the prepared anion exchange resin was 92 m 2 / g, and the apparent density was about 1.12 g / cc.

[실시예 6]Example 6

상기 실시예 5와 동일한 방법에 의해 음이온 교환 수지를 제조하되 노말 헵탄 100ml, 디비닐벤젠용액(디비니벤젠 55% : 에틸스티렌 45%)70ml, 스티렌 30ml 및 벤조일퍼옥사이드 0.5g을 혼합하여 70℃에서 3시간동안 반응시킨 후 이산화티타늄 7g을 첨가하여 충분히 혼합하여 유기상을 제조하였다. 제조된 음이온 교환수지의 비표면적은 약 90m2/g이었고 겉보기 밀도는 약 1.13g/cc이었다.An anion exchange resin was prepared in the same manner as in Example 5, except that 100 ml of normal heptane, 70 ml of divinylbenzene solution (55% divinylbenzene: 45% ethyl styrene), 30 ml of styrene, and 0.5 g of benzoyl peroxide were mixed to 70 ° C. After reacting for 3 hours at 7 g of titanium dioxide, the mixture was sufficiently mixed to prepare an organic phase. The specific surface area of the prepared anion exchange resin was about 90 m 2 / g and the apparent density was about 1.13 g / cc.

[비교예 2]Comparative Example 2

상기 실시예 3과 동일한 방법에 의해 현탁중합시켜 고분자 메트릭스를 제조하고 여기에 클로로메틸기를 도입하여 강염기성 음이온 교환수지를 제조하되 다만 밀도증가제를 첨가하지 않았다.The polymer matrix was prepared by suspension polymerization in the same manner as in Example 3, and a strong basic anion exchange resin was prepared by introducing a chloromethyl group thereto, but without adding a density increasing agent.

그 결과 합성된 수지의 비표면적은 약 490m2/g이었고 함수상태의 겉보기 밀도는 약 1.02g/cc이었다.As a result, the specific surface area of the synthesized resin was about 490m 2 / g and the apparent density in the aqueous state was about 1.02g / cc.

[비교예 3]Comparative Example 3

상기 실시예 5와 동일한 방법에 의해 현탁중합시켜 고분자 메트릭스를 제조하고 여기에 4차화된 암모늄염을 도입하여 강염기성 음이온 교환수지를 제조하되 다만 밀도증가제를 첨가하지 않았다. 그 결과 합성된 수지의 비표면적은 약 90m2/g이었고 함수상태의 겉보기 밀도는 약 1.01g/cc이었다.The polymer matrix was prepared by suspension polymerization in the same manner as in Example 5, and a quaternary ammonium salt was introduced thereto to prepare a strong basic anion exchange resin, but no density increasing agent was added. As a result, the specific surface area of the synthesized resin was about 90 m 2 / g and the apparent density of the hydrous state was about 1.01 g / cc.

Claims (4)

모노머, 가교제, 중합개시제, 중합안정제 및 세공형성제 등을 현탁중합시켜 고분자 메트릭스를 제조하고 여기에 이온기를 도입하여 다공성 이온교환수지를 제조하는 방법에 있어서 밀도증가제의 분산성을 높이기 위하여 상기의 현탁중합이 1 내지 30%진행지 밀도증가제로 불용성 무기화합물을 첨가하는 것을 특징으로 하는 고밀도 다공성 이온교환수지의 제조방법.In the method of preparing a polymer matrix by suspending and polymerizing a monomer, a crosslinking agent, a polymerization initiator, a polymerization stabilizer and a pore-forming agent, and introducing ion groups therein to increase the dispersibility of the density increasing agent, A method for producing a high density porous ion exchange resin, characterized in that suspension polymerization adds an insoluble inorganic compound as a 1 to 30% progress paper density increasing agent. 제1항에 있어서 상기 불용성 무기 화합물의 첨가량은 상기 모노머 100중량부에 대해 1 내지 10중량부인 것을 특징으로 하는 고밀도 다공성 이온교환수지의 제조방법.The method for producing a high density porous ion exchange resin according to claim 1, wherein the amount of the insoluble inorganic compound is 1 to 10 parts by weight based on 100 parts by weight of the monomer. 제1항에 있어서, 상기 불용성 무기화합물은 실리카, 알루미나 또는 금속산화물인 것을 특징으로 하는 고밀도 다공성 이온교환수지의 제조방법.The method of claim 1, wherein the insoluble inorganic compound is silica, alumina or metal oxide. 제3항에 있어서, 금속산화물은 구리산화물, 수은산화물, 티타늄 산화물, 납산화물 또는 니켈산화물인 것을 특징으로 하는 고밀도 다공성 이온교환수지의 제조방법.The method of claim 3, wherein the metal oxide is copper oxide, mercury oxide, titanium oxide, lead oxide or nickel oxide.
KR1019940026605A 1994-10-18 1994-10-18 Mothod for the preparation of porous exchange resin with high density KR0138709B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019940026605A KR0138709B1 (en) 1994-10-18 1994-10-18 Mothod for the preparation of porous exchange resin with high density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019940026605A KR0138709B1 (en) 1994-10-18 1994-10-18 Mothod for the preparation of porous exchange resin with high density

Publications (1)

Publication Number Publication Date
KR0138709B1 true KR0138709B1 (en) 1998-05-01

Family

ID=19395305

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019940026605A KR0138709B1 (en) 1994-10-18 1994-10-18 Mothod for the preparation of porous exchange resin with high density

Country Status (1)

Country Link
KR (1) KR0138709B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029403B1 (en) 2019-05-27 2019-10-07 박재영 Method for manufacturing porous type ion exchange resin, porous type ion exchange resin manufactured by the method, and water reducer composition for concrete containing thereof
KR20230068805A (en) * 2021-11-11 2023-05-18 한국기술교육대학교 산학협력단 Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029403B1 (en) 2019-05-27 2019-10-07 박재영 Method for manufacturing porous type ion exchange resin, porous type ion exchange resin manufactured by the method, and water reducer composition for concrete containing thereof
KR20230068805A (en) * 2021-11-11 2023-05-18 한국기술교육대학교 산학협력단 Manufacturing method of ion exchange resin with excellent extraction efficiency of platinum group metals

Similar Documents

Publication Publication Date Title
US4732887A (en) Composite porous material, process for production and separation of metallic element
US4191813A (en) Polymeric adsorbents from vinylbenzyl chloride copolymer beads
US5585408A (en) Crosslinked seeded copolymer beads and process of manufacture
US3754055A (en) Cationic vinyl-pyridine copolymers and products thereof
JPH0449563B2 (en)
EP0617714A1 (en) Seeded porous copolymers and ion-exchange resins prepared therefrom.
US4269943A (en) Thermally stable resins prepared by bromination or chlorination of aromatic polymer beads followed by sulphonation
US4327191A (en) Preparation of anion exchange resins by bromination of vinyl aromatic polymers
KR0138709B1 (en) Mothod for the preparation of porous exchange resin with high density
JPS6216136B2 (en)
JP3626774B2 (en) High density high surface area adsorbent
JP2000202284A (en) High surface area adsorbent and its preparation
KR20240058964A (en) Polymerization process involving addition of monofunctional vinyl monomer
JPH074532B2 (en) Sulfonic acid type cation exchange resin for catalysts
KR0134558B1 (en) Method for preparing ion exchange resin with high density and pores
JPS6361618B2 (en)
US3417066A (en) Process for chloromethylating and crosslinking high molecular weight aromatic compounds
JPH11179218A (en) Ion exchange resin
JPH11114430A (en) Cation exchange resin
KR980009343A (en) Blown Polyester Film
EP0045824A1 (en) Ion exchange material, its preparation and use
US5731395A (en) Functional group-containing porous resin and a process for its preparation
GB2091581A (en) Macroporous polymer adsorbents
JP3911755B2 (en) Porous strong basic anion exchanger and method for producing the same
US3728286A (en) Pyrazolanthrone electron exchangers

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 19941018

PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 19941018

Comment text: Request for Examination of Application

PG1501 Laying open of application
E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 19971121

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 19980220

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 19980220

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20010130

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20020130

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20030130

Start annual number: 6

End annual number: 6

PR1001 Payment of annual fee

Payment date: 20040130

Start annual number: 7

End annual number: 7

PR1001 Payment of annual fee

Payment date: 20050128

Start annual number: 8

End annual number: 8

PR1001 Payment of annual fee

Payment date: 20060125

Start annual number: 9

End annual number: 9

PR1001 Payment of annual fee

Payment date: 20070129

Start annual number: 10

End annual number: 10

PR1001 Payment of annual fee

Payment date: 20080131

Start annual number: 11

End annual number: 11

PR1001 Payment of annual fee

Payment date: 20090105

Start annual number: 12

End annual number: 12

PR1001 Payment of annual fee

Payment date: 20091130

Start annual number: 13

End annual number: 13

PR1001 Payment of annual fee

Payment date: 20101130

Start annual number: 14

End annual number: 14

PR1001 Payment of annual fee

Payment date: 20111230

Start annual number: 15

End annual number: 15

FPAY Annual fee payment

Payment date: 20121130

Year of fee payment: 16

PR1001 Payment of annual fee

Payment date: 20121130

Start annual number: 16

End annual number: 16

FPAY Annual fee payment

Payment date: 20131209

Year of fee payment: 17

PR1001 Payment of annual fee

Payment date: 20131209

Start annual number: 17

End annual number: 17

EXPY Expiration of term
PC1801 Expiration of term

Termination date: 20150418

Termination category: Expiration of duration