KR102572868B1 - Method for manufacturing activated carbon impreganated with iron component, and method for removing synthetic organic chemicals in aqua using the same - Google Patents
Method for manufacturing activated carbon impreganated with iron component, and method for removing synthetic organic chemicals in aqua using the same Download PDFInfo
- Publication number
- KR102572868B1 KR102572868B1 KR1020220118377A KR20220118377A KR102572868B1 KR 102572868 B1 KR102572868 B1 KR 102572868B1 KR 1020220118377 A KR1020220118377 A KR 1020220118377A KR 20220118377 A KR20220118377 A KR 20220118377A KR 102572868 B1 KR102572868 B1 KR 102572868B1
- Authority
- KR
- South Korea
- Prior art keywords
- activated carbon
- iron
- pores
- iron component
- impregnated
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 467
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 339
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 161
- 239000000126 substance Substances 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000011148 porous material Substances 0.000 claims abstract description 67
- 150000001875 compounds Chemical class 0.000 claims abstract description 52
- 239000013522 chelant Substances 0.000 claims abstract description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 36
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 15
- 239000003463 adsorbent Substances 0.000 claims abstract description 13
- 239000011941 photocatalyst Substances 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims description 22
- 239000003960 organic solvent Substances 0.000 claims description 21
- 150000002894 organic compounds Chemical class 0.000 claims description 14
- 238000005406 washing Methods 0.000 claims description 13
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 12
- 230000001699 photocatalysis Effects 0.000 claims description 11
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 claims description 9
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 8
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical compound CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 claims description 7
- 229940025294 hemin Drugs 0.000 claims description 7
- ZITFTYGHYGPDAV-UHFFFAOYSA-L 2-aminoacetic acid;iron(2+);sulfate Chemical compound [H+].[Fe+2].NCC([O-])=O.[O-]S([O-])(=O)=O ZITFTYGHYGPDAV-UHFFFAOYSA-L 0.000 claims description 6
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 6
- 238000013313 FeNO test Methods 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 6
- LZKLAOYSENRNKR-LNTINUHCSA-N iron;(z)-4-oxoniumylidenepent-2-en-2-olate Chemical compound [Fe].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O LZKLAOYSENRNKR-LNTINUHCSA-N 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- 239000000356 contaminant Substances 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 claims description 5
- 239000002351 wastewater Substances 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 238000001291 vacuum drying Methods 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 238000011049 filling Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 5
- -1 and moreover Substances 0.000 abstract 1
- 238000001179 sorption measurement Methods 0.000 description 26
- 239000002738 chelating agent Substances 0.000 description 19
- 239000012855 volatile organic compound Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 13
- 230000008929 regeneration Effects 0.000 description 12
- 238000011069 regeneration method Methods 0.000 description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 229910001385 heavy metal Inorganic materials 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000598 endocrine disruptor Substances 0.000 description 2
- 231100000049 endocrine disruptor Toxicity 0.000 description 2
- 150000002505 iron Chemical class 0.000 description 2
- 159000000014 iron salts Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000000575 pesticide Substances 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 239000000447 pesticide residue Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/305—Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3071—Washing or leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/34—Regenerating or reactivating
- B01J20/3441—Regeneration or reactivation by electric current, ultrasound or irradiation, e.g. electromagnetic radiation such as X-rays, UV, light, microwaves
-
- B01J35/004—
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Thermal Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
본 발명은 철성분이 함침된 활성탄의 제조에 관한 것으로, 보다 구체적으로, 수중의 유기합성 화학물질을 흡착에 의하여 제거할 뿐만 아니라, 자외선을 조사하여 철성분이 함침된 활성탄을 반복적으로 재생하여 사용할 수 있는, 철성분이 함침된 활성탄의 제조 방법 및 이를 이용한 수중의 유기합성 화합물 제거 방법에 관한 것이다.The present invention relates to the production of activated carbon impregnated with iron components, and more specifically, not only removes organic synthetic chemicals in water by adsorption, but also irradiates ultraviolet rays to repeatedly regenerate activated carbon impregnated with iron components for use. It relates to a method for producing activated carbon impregnated with an iron component and a method for removing organic compounds in water using the same.
일반적으로, 잔류 의학물질, 잔류 농약류, 소독 부산물, 내분비 장애물질 등 유기합성 화학물질(synthetic organic chemicals: SOCs)을 총칭하여 신종 오염물질이라 칭한다.In general, synthetic organic chemicals (SOCs) such as medical residues, pesticide residues, disinfection by-products, and endocrine disruptors are collectively referred to as emerging contaminants.
이러한 유기합성 화학물질의 대부분은 2차 세계대전 이후 산업활동에 의하여 생산된 물질로서, 자연계의 미생물이 분해효소(catalyst)를 갖고 있지 않아서, 생물학적 분해에 의한 제거가 어렵다는 한계가 있다.Most of these organic synthetic chemicals are substances produced by industrial activities after World War II, and there is a limit in that natural microorganisms do not have decomposition enzymes (catalysts), so it is difficult to remove them by biological degradation.
이에 따라, 산업활동에서 발생되는 유기합성 화학물질의 제거는 전적으로 활성탄 흡착(adsorption)에 의한 처리 방법에 의존하여 왔다.Accordingly, the removal of synthetic organic chemicals generated from industrial activities has been entirely dependent on a treatment method based on activated carbon adsorption.
구체적으로, 활성탄은 비표면적과 내부 세공구조에 따라 매우 다양한 성능 패턴을 나타내지만, 근본적인 흡착 메카니즘이 물리적 흡착이므로 흡착 능력에 일정한 한계가 있다. 특히, 활성탄 자체가 소수성을 가지므로 중금속 제거효율이 낮은 편이다.Specifically, activated carbon exhibits very diverse performance patterns depending on the specific surface area and internal pore structure, but has a certain limit in adsorption capacity because the fundamental adsorption mechanism is physical adsorption. In particular, since activated carbon itself has hydrophobicity, heavy metal removal efficiency is low.
이러한 한계를 극복하는 방안으로 활성탄에 화학흡착 능력을 부여하는 방법이 제시되어 왔는데, 활성탄을 산으로 처리하는 방법과 특수한 기능성 물질을 활성탄 표면에 첨착시키는 방법이 모색되어 왔다. 이때. 첨착활성탄(Impregnated Active Carbon)에 이용되는 기능성 물질은 매우 다양하며, 제거하고자 하는 물질에 특정하게 반응하는 물질을 이용해야 한다.As a way to overcome these limitations, a method of imparting chemical adsorption ability to activated carbon has been proposed, and a method of treating activated carbon with an acid and a method of impregnating a special functional material on the surface of activated carbon have been sought. At this time. Functional materials used for impregnated active carbon are very diverse, and materials that specifically react to the material to be removed must be used.
이러한 첨착활성탄이 유해가스나 냄새 등을 제거하는 목적으로는 다양하게 응용된 반면에, 하폐수나 용수 처리 분야에서는 그 이용 예가 드물었다. 이처럼 첨착활성탄의 이용이 주로 기상에 국한된 이유는 무엇보다도 수용액상에서 첨착물질의 안정성이 떨어지기 때문이다. 즉, 수용액상에서는 활성탄 표면에 첨착된 기능성 물질이 물에 쉽게 제거되기 때문이다.While these impregnated activated carbons have been variously applied for the purpose of removing harmful gases or odors, their use is rare in the field of wastewater or water treatment. The reason why the use of impregnated activated carbon is mainly limited to the gaseous phase is that, above all, the stability of the impregnated material in the aqueous phase is low. That is, in an aqueous solution, the functional material attached to the activated carbon surface is easily removed by water.
그러나, 첨착활성탄은 통상의 활성탄에 비하여 특정한 물질을 흡착하는 선택성과 함께 흡착량 자체도 매우 큰 장점이 있으므로 수용액상에서 기능성 물질을 오랫동안 안정적으로 유지시킬 수 있는 방법이 제공되면 하폐수와 용수 속에 존재하는 중금속을 고도 정수하는데 매우 유용하게 사용될 수 있다.However, compared to conventional activated carbon, impregnated activated carbon has a very large advantage in adsorption amount itself as well as selectivity for adsorbing a specific substance, so if a method for stably maintaining functional substances in an aqueous solution for a long time is provided, It can be used very usefully to highly purify.
한편, 첨착활성탄과 관련된 선행기술로서, 대한민국 공개특허번호 제2005-0074055호에는 "킬레이트제 첨착활성탄의 제조 방법"이라는 명칭의 발명이 개시되어 있는데, 도 1을 참조하여 설명한다.On the other hand, as a prior art related to impregnated activated carbon, Korean Patent Publication No. 2005-0074055 discloses an invention titled "Method for producing impregnated activated carbon as a chelating agent", which will be described with reference to FIG. 1 .
도 1은 종래의 기술에 따른 킬레이트제 첨착활성탄의 표면에 킬레이트제가 첨착되어 있는 것을 나타내는 도면이다.1 is a view showing that a chelating agent is attached to the surface of activated carbon impregnated with a chelating agent according to the prior art.
종래의 기술에 따른 킬레이트제 첨착활성탄의 제조 방법은, a) 킬레이트제를 물에 용해시켜 킬레이트 수용액으로 조성하는 단계; b) 건조된 활성탄을 킬레이트제 수용액에 투입하면서 교반하는 단계; c) 활성탄이 투입된 킬레이트제 수용액을 가열하여 활성탄에 킬레이트제를 첨착시키는 단계; 및 d) 킬레이트제가 첨착된 활성탄을 수용액에서 분리하고 물로 세척한 다음 건조하여 킬레이트제 첨착활성탄을 제조하는 단계로 이루어진다.A method for preparing activated carbon impregnated with a chelating agent according to the prior art includes the steps of a) dissolving a chelating agent in water to form an aqueous chelate solution; b) stirring the dried activated carbon while adding it to an aqueous solution of a chelating agent; c) heating the chelating agent aqueous solution into which the activated carbon is added to impregnate the chelating agent to the activated carbon; and d) preparing activated carbon impregnated with a chelating agent by separating the activated carbon impregnated with the chelating agent from the aqueous solution, washing with water, and then drying.
종래의 기술에 따른 킬레이트제 첨착활성탄의 제조 방법에 따르면, 첨착법으로 첨착활성탄을 제조한 다음 이를 이용하여 중금속을 제거한 결과, 수은, 망간, 6가 크롬, 납, 카드뮴 등의 중금속에 대하여 90% 이상의 높은 제거율을 나타냈다.According to the manufacturing method of chelating agent impregnated activated carbon according to the prior art, the impregnated activated carbon is prepared by the impregnation method and then heavy metals are removed using it, resulting in 90% reduction in heavy metals such as mercury, manganese, hexavalent chromium, lead, and cadmium. showed a high removal rate.
다시 말하면, 종래의 기술에 따른 킬레이트제 첨착활성탄의 제조 방법의 경우, 활성탄의 세공 내에 중금속과 결합력이 뛰어난 킬레이트제를 미리 흡착시킨 후, 이러한 킬레이트제와 중금속간의 상호 결합을 이용하여 통상의 흡착제로는 제거할 수 없는 극미량의 중금속을 고도처리할 수 있다.In other words, in the case of the conventional method for producing activated carbon impregnated with a chelating agent, after adsorbing a chelating agent having excellent binding force with heavy metals in the pores of the activated carbon in advance, the mutual bonding between the chelating agent and the heavy metal is used to obtain a conventional adsorbent. can perform advanced treatment of trace amounts of heavy metals that cannot be removed.
하지만, 종래의 기술에 따른 킬레이트제 첨착활성탄의 제조 방법에 의해 제조된 첨착활성탄의 경우, 킬레이트제와 중금속간의 상호 결합을 이용하여 통상의 흡착제로는 제거할 수 없는 극미량의 중금속을 고도처리하기 위한 것이므로, 킬레이트제 첨착활성탄을 반복적으로 재생하여 사용할 수 없다.However, in the case of the impregnated activated carbon prepared by the conventional manufacturing method of the chelating agent-impregnated activated carbon, the mutual bonding between the chelating agent and the heavy metal is used for advanced treatment of trace amounts of heavy metals that cannot be removed with conventional adsorbents. Therefore, the chelating agent impregnated activated carbon cannot be repeatedly regenerated and used.
한편, 다른 선행기술로서, 대한민국 등록특허번호 제10-0492070호에는 "휘발성 유기화합물 제거용 활성탄 재생장치"라는 명칭의 발명이 개시되어 있는데, 활성탄 속에 흡착되어 있는 휘발성 유기화합물을 제거하여 활성탄을 재생하는 장치로서, 도 2를 참조하여 설명한다.On the other hand, as another prior art, Korean Patent Registration No. 10-0492070 discloses an invention titled "Activated carbon regeneration device for removing volatile organic compounds", which regenerates activated carbon by removing volatile organic compounds adsorbed in activated carbon As a device for doing this, it will be described with reference to FIG. 2 .
도 2는 종래의 기술에 따른 활성탄 재생장치의 전체적인 구성을 나타내는 평면도이다.2 is a plan view showing the overall configuration of an activated carbon regenerator according to the prior art.
도 2를 참조하면, 종래의 기술에 따른 휘발성 유기화합물 제거용 활성탄 재생장치는, 활성탄이 배치된 공간을 포함하는 순환라인을 구성하고, 상기 순환라인으로 열풍을 순환시키면서 활성탄을 고온으로 활성화시켜 활성탄 속의 VOC를 추출하는 구조로 되어 있는 열대류 방식의 재생장치로 이루어진 휘발성 유기화합물 제거용 활성탄 재생장치에 있어서, 열대류 방식의 재생장치는 챔버(12), 순환라인(13), 팬(14), 열교환기(15), 가열기(16), 공기 유입구(18), VOC 배출구(19), 마이크로컴퓨터 및 스프링클러(22)를 포함하여 구성된다.Referring to FIG. 2, the activated carbon regenerator for removing volatile organic compounds according to the prior art constitutes a circulation line including a space in which activated carbon is disposed, and activates the activated carbon at a high temperature while circulating hot air through the circulation line to obtain activated carbon In the activated carbon regenerator for removing volatile organic compounds consisting of a thermal convection type regenerator having a structure for extracting VOC from the inside, the convection type regenerator includes a chamber 12, a circulation line 13, and a fan 14 , a heat exchanger 15, a heater 16, an air inlet 18, a VOC outlet 19, a microcomputer and a sprinkler 22.
일정한 용적의 챔버(12)는 VOC가 포함된 배출가스를 배출하는 설비의 배기라인상에 연결 설치되어 입구측 댐퍼(10) 및 출구측 댐퍼(11)에 의해 선택적으로 밀폐될 수 있으며, 내부에 여러 단의 활성탄을 수용한다.The chamber 12 of a certain volume is connected and installed on the exhaust line of a facility for discharging exhaust gas containing VOC, and can be selectively sealed by the inlet damper 10 and the outlet damper 11, and inside Accommodates several layers of activated carbon.
순환라인(13)은 챔버(12)의 한쪽 상부 및 반대쪽 하부와 통하면서 챔버(12) 내의 공기를 순환시켜주고, 팬(14)은 강제순환을 위한 것이다.The circulation line 13 communicates with one upper part and the other lower part of the chamber 12 to circulate the air in the chamber 12, and the fan 14 is for forced circulation.
열교환기(15)는 순환라인(13)의 일측에 설치되면서 순환되는 공기의 열교환을 위한 및 가열기(16)는 열원을 공급한다.The heat exchanger 15 is installed on one side of the circulation line 13 for heat exchange of circulated air and the heater 16 supplies a heat source.
공기 유입구(18)는 각각의 솔레노이드 밸브(17a, 17b)에 의해 개폐되며, 챔버(12) 내에 외부공기를 유입하고, VOC 배출구(19)는 순환라인(13) 내의 공기 속의 VOC 배출을 위해 소각로측과 연결된다. The air inlet 18 is opened and closed by respective solenoid valves 17a and 17b to introduce external air into the chamber 12, and the VOC outlet 19 is an incinerator for discharging VOCs in the air in the circulation line 13. connected to the side
마이크로컴퓨터는 각각의 솔레노이드 밸브(17a,17b), 챔버(12) 내의 활성탄 속과 순환라인(13)상에 설치되는 각각의 센서(20a, 20b), 댐퍼(10, 11), 팬(14) 및 가열기(16) 등을 연계적으로 제어한다.The microcomputer is each solenoid valve (17a, 17b), each sensor (20a, 20b) installed on the activated carbon in the chamber 12 and the circulation line (13), dampers (10, 11), fan (14) and the heater 16 and the like are controlled in tandem.
여러 라인의 스프링클러(22)는 챔버(12) 내에 설치되면서 활성탄의 각 단에 배속되고 센서(20)의 신호에 의한 마이크로컴퓨터에 의해 제어되어 활성탄 과열시에 물을 분사한다.Several lines of sprinklers 22 are installed in the chamber 12 and assigned to each stage of the activated carbon, and are controlled by a microcomputer based on a signal from the sensor 20 to spray water when the activated carbon overheats.
다시 말하면, 종래의 기술에 따른 활성탄 재생장치의 경우, 기존 활성탄에서 VOC를 추출하여 활성탄을 재생시키는 방식으로서, 버너 또는 전기히터 등의 열원을 사용하여 공기를 가열하고, 이렇게 가열한 공기를 활성탄을 경유시키면서 계속 순환시키는 열대류 방식을 적용함으로써, 장치의 규모를 간단하게 하면서도 재생효율을 높일 수 있으며, 빠른 시간내에 활성탄 속의 휘발성 유기화합물을 효과적으로 제거하여 활성탄 재생효율을 현저히 높일 수 있다.In other words, in the case of the activated carbon regenerator according to the prior art, as a method of regenerating activated carbon by extracting VOC from existing activated carbon, air is heated using a heat source such as a burner or an electric heater, and the heated air is converted into activated carbon. By applying the thermal convection method, which continues to circulate while passing through, the scale of the device can be simplified and the regeneration efficiency can be increased, and the volatile organic compounds in the activated carbon can be effectively removed in a short time, thereby significantly increasing the regeneration efficiency of the activated carbon.
종래의 기술에 따른 휘발성 유기화합물 제거용 활성탄 재생장치에 따르면, 버너 또는 전기히터 등으로 공기를 가열하여 활성탄을 순환시켜주는 열대류 방식이므로, 활성탄 전체에 걸쳐 구석구석까지 균형있게 열을 전할 수 있고, 장치가 지극히 간단하며 빠른 시간에 활성탄을 재생할 수 있다.According to the activated carbon regenerator for removing volatile organic compounds according to the prior art, since the air is heated by a burner or an electric heater to circulate the activated carbon, heat can be transferred in a balanced manner throughout the activated carbon to every corner, , The device is extremely simple and can regenerate activated carbon in a short time.
하지만, 종래의 기술에 따른 휘발성 유기화합물 제거용 활성탄 재생장치의 경우, 활성탄을 흡착 후에 재사용(regeneration)하기 위해 설치되는 재생공정설비이므로 매우 많은 비용이 소요된다..However, in the case of the activated carbon regenerator for removing volatile organic compounds according to the prior art, since it is a regeneration process facility installed to regenerate activated carbon after adsorption, a very high cost is required.
한편, 유기합성 화학물질 중에서 hydroxyl기(-OH), amino기(-NH2), carbonyl기(-COOH), halogen(-Cl), sulfonic(-SO4) 등의 친수성 관능기를 가질 경우 흡착속도가 느리거나 또는 흡착 후에도 탈착(desorption) 현상이 발생할 수 있다.On the other hand, among synthetic organic chemicals, the adsorption rate is slow when they have hydrophilic functional groups such as hydroxyl group (-OH), amino group (-NH2), carbonyl group (-COOH), halogen (-Cl), and sulfonic (-SO4). Alternatively, desorption may occur even after adsorption.
이에 따라, 친수성 물질과 소수성 물질이 혼합된 유기합성 화학물질 혼합용액에서 친수성 물질은 이온교환수지로 제거하고, 소수성 물질은 활성탄을 이용하여 제거하는 이중 필터(dual media filter) 방법이 통상적으로 이용되고 있다.Accordingly, a dual media filter method is commonly used in which the hydrophilic material is removed with an ion exchange resin and the hydrophobic material is removed using activated carbon in a mixed solution of organic synthetic chemicals in which a hydrophilic material and a hydrophobic material are mixed. there is.
구체적으로, 이러한 이중 필터의 경우, 많은 설치비용이 소요되고 시설이 복잡하다는 문제점이 있었다. 그 해결책으로 활성탄 표면에 제올라이트 등의 이온교환물질을 코팅하여 단일 필터(single media filter)로 사용하여 왔으나, 이때, 코팅된 제올라이트가 탈리되는 문제점이 있으며, 또한, 한번 사용한 활성탄은 폐기시켜야만 하는 문제점이 있었다.Specifically, in the case of such a double filter, there was a problem that a lot of installation cost was required and the facility was complicated. As a solution, an ion exchange material such as zeolite has been coated on the surface of activated carbon and used as a single media filter, but at this time, there is a problem that the coated zeolite is detached, and activated carbon that has been used once must be discarded. there was.
한편, 산화티타늄(TiO2), 산화아연(ZnO), 산화철(Fe2O3) 등의 금속산화물에 자외선을 조사하면, 금속산화물의 활성화된 전자는 가전자대역(valance band: VB)에서 전도대역(conduction band: CB)으로 이동하여 전자를 방출하고(e- CB), 가전자대역(valance band: VB)에는 정공(h+ VB)을 만든다. 특히, 우리주변에서 쉽게 구하고 값이 싼 산화철(Fe2O3)의 경우, 정공(h+ VB)이 수중의 H2O를 분해하여 (H2O + h+ VB -> H2O* -> OH* + H+) 하이드록실 래디칼(OH*)에 의한 펜톤 산화반응(fenton's oxidation)으로 수중의 유기합성 화학물질(또는 유기합성 화합물)을 쉽게 이산화탄소 및 물로 분해할 수 있다.Meanwhile, when a metal oxide such as titanium oxide (TiO 2 ), zinc oxide (ZnO), or iron oxide (Fe 2 O 3 ) is irradiated with ultraviolet light, activated electrons of the metal oxide conduct in the valence band (VB). Electrons are emitted (e - CB ) by moving to the conduction band (CB), and holes (h + VB ) are created in the valence band (VB). In particular, in the case of iron oxide (Fe 2 O 3 ), which is easily obtained and cheap around us, holes (h + VB ) decompose H 2 O in water (H 2 O + h + VB -> H 2 O * - > OH * + H + ) Organic synthetic chemicals (or organic synthetic compounds) in water can be easily decomposed into carbon dioxide and water by Fenton's oxidation by hydroxyl radical (OH * ).
한편, 나노크기의 미세한 세공(micro pore)을 갖는 활성탄의 흡착 기능은 표면화학적 흡착보다는 주로 모세관 현상에 의한 물리적인 흡착에 따른다. 특히, 소수성 물질의 경우, 세공에 한 번 흡착된 물질은 탈착되기 어려우며, 이에 따라, 유기합성 화학물질이 흡착된 활성탄을 재생하기 위해서는 약 700℃ 정도에서의 스팀 재생 또는 황산, 인산 또는 가성소다에 의한 약 400℃ 정도에서의 약품에 의한 재생 과정이 필요하다.On the other hand, the adsorption function of activated carbon having nano-sized micro pores mainly depends on physical adsorption by capillary action rather than surface chemical adsorption. In particular, in the case of a hydrophobic material, once adsorbed in the pores, it is difficult to be desorbed. Accordingly, in order to regenerate activated carbon adsorbed with organic synthetic chemicals, steam regeneration at about 700 ° C. or sulfuric acid, phosphoric acid, or caustic soda A chemical regeneration process at about 400 ° C is required.
이러한 펜톤 산화반응의 주요 원료인 무기성 철염(FeCl3, Fe2(SO4)3, Fe(NO3)2)는 수중에서 100% 해리되는 친수성 물질이다. 이에 따라, 통상적인 무기성 철염은 활성탄 세공에 흡착이 불가능하며, 단지 활성탄 표면에 코팅만 가능하기 때문에 세척 과정에서 무기성 철염이 탈리되는 문제점이 있었다.Inorganic iron salts (FeCl 3 , Fe 2 (SO 4 ) 3 , Fe(NO 3 ) 2 ), which are the main raw materials for the Fenton oxidation reaction, are hydrophilic substances that dissociate 100% in water. Accordingly, since conventional inorganic iron salt cannot be adsorbed on the pores of activated carbon and can only be coated on the surface of activated carbon, there is a problem in that inorganic iron salt is desorbed during the washing process.
전술한 문제점을 해결하기 위한 본 발명이 이루고자 하는 기술적 과제는, 철성분 함유 킬레이트화합물을 활성탄 세공에 함침시켜 광촉매로 사용함으로써 반복적으로 재사용할 수 있는, 철성분이 함침된 활성탄의 제조 방법을 제공하기 위한 것이다.The technical problem to be achieved by the present invention for solving the above problems is to provide a method for producing activated carbon impregnated with iron, which can be repeatedly reused by impregnating pores of activated carbon with an iron-containing chelate compound and using it as a photocatalyst. it is for
본 발명이 이루고자 하는 다른 기술적 과제는, 철성분 함유 킬레이트화합물의 철성분을 활성탄의 세공에 함침시킴으로써 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있는 광촉매 흡착제로 사용할 수 있는, 철성분이 함침된 활성탄의 제조 방법을 제공하기 위한 것이다.Another technical problem to be achieved by the present invention is to obtain an activated carbon impregnated with an iron component, which can be used as a photocatalytic adsorbent capable of adsorbing hydrophobic materials as well as hydrophilic materials by impregnating the iron component of an iron component-containing chelate compound into the pores of the activated carbon. It is to provide a manufacturing method.
본 발명이 이루고자 하는 또 다른 기술적 과제는, 철성분 함유 활성탄을 이용하여 수중에서 유기합성 화학물질을 흡착하고, 자외선 조사 과정에서 수중의 유기합성 화학물질을 제거할 수 있는, 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법을 제공하기 위한 것이다.Another technical problem to be achieved by the present invention is activated carbon impregnated with iron, capable of adsorbing organic synthetic chemicals in water using iron-containing activated carbon and removing organic synthetic chemicals in water in the course of ultraviolet irradiation. It is to provide a method for removing organic synthetic compounds in water using.
전술한 기술적 과제를 달성하기 위한 수단으로서, 본 발명에 따른 철성분이 함침된 활성탄의 제조 방법은, a) 활성탄 세공이 세척 및 건조되도록 활성탄을 전처리하는 단계; b) 철성분 함유 킬레이트화합물을 유기용매제에 용해시켜 철성분 함유 용액을 형성하는 단계; c) 상기 철성분 함유 용액을 상기 전처리된 활성탄과 혼합하는 단계; d) 상기 활성탄 세공에 상기 철성분 함유 용액이 흡착 충진되면서 상기 활성탄 세공에서 기포가 빠져나와 형성된 버블 클라우드를 소멸시키는 단계; e) 상기 철성분 함유 킬레이트화합물을 상기 활성탄 세공에 함침시킨 후, 상기 활성탄 표면에 묻은 철성분 함유 킬레이트화합물을 휘발성 유기용매제를 사용하여 세척하는 단계; 및 f) 상기 활성탄 세공에 함침된 상기 철성분 함유 킬레이트화합물의 유기물을 제거하고 철성분만 남긴 철성분 함유 활성탄을 형성하는 단계를 포함하되, 상기 a) 단계의 활성탄 세공의 세척 및 건조는 활성탄 세공에 철성분만 남긴 철성분 함유 활성탄이 형성될 수 있도록 활성탄 표면의 전하가 0(zero)이 되도록 하고, 상기 b) 단계의 유기용매제는 벤젠, 톨루엔, 아세톤, 클로로포름을 포함하여, 철성분 함유 킬레이트화합물이 휘발성 유기용매제에 용해되어 활성탄 세공에 흡착되도록 하여, 상기 f) 단계의 철성분 함유 활성탄의 세공은 소수성 물질뿐만 아니라 철성분만 남긴 철성분 함유 활성탄에 의하여 친수성 물질도 흡착할 수 있는 광촉매 흡착제로 사용되도록 하게 된다.As a means for achieving the above-described technical problem, a method for producing activated carbon impregnated with an iron component according to the present invention includes the steps of a) pre-treating activated carbon so that pores of the activated carbon are washed and dried; b) dissolving an iron-containing chelate compound in an organic solvent to form an iron-containing solution; c) mixing the iron component-containing solution with the pretreated activated carbon; d) dissolving a bubble cloud formed by the air bubbles escaping from the pores of the activated carbon while adsorbing and filling the pores of the activated carbon with the iron component-containing solution; e) impregnating the pores of the activated carbon with the iron-containing chelate compound, and then washing the iron-containing chelate compound on the surface of the activated carbon using a volatile organic solvent; and f) removing organic matter from the iron-containing chelate compound impregnated in the activated carbon pores and forming an iron-containing activated carbon, leaving only the iron component, wherein the washing and drying of the activated carbon pores in step a) is carried out in the activated carbon pores. The charge on the surface of the activated carbon is set to 0 (zero) so that the activated carbon containing only the iron component can be formed, and the organic solvent in step b) includes benzene, toluene, acetone, and chloroform, and the chelate compound containing the iron component It is dissolved in the volatile organic solvent and adsorbed into the pores of the activated carbon, so that the pores of the iron-containing activated carbon in step f) are photocatalytic adsorbents capable of adsorbing not only hydrophobic substances but also hydrophilic substances by the iron-containing activated carbon leaving only the iron component. let it be used
여기서, 상기 b) 단계의 철성분 함유 킬레이트화합물은 iron acetylacetonate(Fe(C5H7O2)3), tetra(piperidind)oxalatoiron(C22H44FeN4O4), hemin (C34H32ClFeN4O4), Ferroglycine sulfate(C2H5FeNO6S) 중에서 선택될 수 있다.Here, the iron component-containing chelate compound in step b) is iron acetylacetonate (Fe(C 5 H 7 O 2 ) 3 ), tetra(piperidind)oxalatoiron (C 22 H 44 FeN 4 O 4 ), hemin (C 34 H 32 ClFeN 4 O 4 ) and ferroglycine sulfate (C 2 H 5 FeNO 6 S).
여기서, 상기 b) 단계에서 철성분 함유 킬레이트화합물을 휘발성 유기용매제에 용해시켜 100㎎/ℓ 농도의 철성분 함유 용액을 만들 수 있다.Here, in the step b), an iron-containing solution having a concentration of 100 mg/L may be prepared by dissolving the iron-containing chelate compound in a volatile organic solvent.
여기서, 상기 d) 단계에서 버블 클라우드가 소멸될 때까지 소정의 충전시간을 갖는 것이 바람직하다.Here, it is preferable to have a predetermined charging time until the bubble cloud disappears in step d).
여기서, 상기 e) 단계에서 휘발성 유기용매제는 상온에서 건조 과정을 거쳐 제거할 수 있다.Here, in step e), the volatile organic solvent may be removed through a drying process at room temperature.
삭제delete
삭제delete
여기서, 상기 철성분 함유 킬레이트화합물의 농도는 100㎎/ℓ인 것이 바람직하다.Here, the concentration of the iron component-containing chelate compound is preferably 100 mg / ℓ.
여기서, 상기 a) 단계는, a-1) 활성탄 세공에 쌓인 타르(tar)를 제거하도록 세척하는 단계; a-2) 활성탄 표면의 전하가 0이 되도록 세척하는 단계; 및 a-3) 상기 활성탄 세공 내의 수분 및 공기를 제거하도록 진공 건조시키는 단계로 이루어질 수 있다.Here, the step a) includes: a-1) washing to remove tar accumulated in the pores of the activated carbon; a-2) washing the surface of the activated carbon so that the charge becomes zero; and a-3) vacuum drying to remove moisture and air in the pores of the activated carbon.
삭제delete
여기서, 상기 a-2) 단계에서 pH 4의 염산수용액으로 활성탄을 수회 세척하여 활성탄 표면의 전하가 0이 되게 하는 것을 특징으로 한다.Here, in the step a-2), the activated carbon is washed several times with an aqueous hydrochloric acid solution of pH 4 so that the charge on the surface of the activated carbon becomes zero.
삭제delete
한편, 전술한 기술적 과제를 달성하기 위한 다른 수단으로서, 본 발명에 따른 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법은, a) 상기 철성분이 함침된 활성탄을 준비하는 단계; b) 유기합성 화학물질로 오염된 폐수를 상기 철성분이 함유된 활성탄과 수중에서 혼합하는 단계; c) 상기 유기합성 화학물질이 상기 철성분이 함침된 활성탄의 세공에 흡착되는 단계; d) 오염물질인 상기 유기합성 화합물이 흡착된 활성탄에 소정의 UV 조사시간동안 자외선을 조사하는 단계; 및 e) 상기 철성분이 함침된 활성탄의 세공에 흡착된 상기 유기합성 화학물질이 광촉매 산화에 의해 산화되어 제거되는 단계를 포함하되, 상기 철성분이 함유된 활성탄은 철성분 함유 킬레이트화합물을 활성탄 세공에 함침시켜 형성되고 반복적으로 재사용되는 광촉매이고, 상기 철성분 함유 활성탄의 세공은 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있는 광촉매 흡착제로 사용되는 것을 특징으로 한다.On the other hand, as another means for achieving the above-described technical problem, a method for removing organic compounds in water using activated carbon impregnated with an iron component according to the present invention includes: a) preparing the activated carbon impregnated with an iron component; b) mixing wastewater contaminated with synthetic organic chemicals with the activated carbon containing the iron component in water; c) adsorbing the synthetic organic chemical into the pores of the activated carbon impregnated with the iron component; d) irradiating ultraviolet rays for a predetermined UV irradiation time to the activated carbon adsorbed with the organic synthetic compound, which is a contaminant; and e) oxidizing and removing the organic synthetic chemical adsorbed in the pores of the activated carbon impregnated with the iron component by photocatalytic oxidation, wherein the activated carbon containing the iron component converts the iron-containing chelate compound into the pores of the activated carbon. It is a photocatalyst formed by impregnating and repeatedly reused, and the pores of the iron-containing activated carbon are characterized in that it is used as a photocatalyst adsorbent capable of adsorbing not only hydrophobic materials but also hydrophilic materials.
삭제delete
삭제delete
본 발명에 따르면, 철성분 함유 킬레이트화합물을 활성탄 세공에 함침시켜 광촉매로 사용함으로써 반복적으로 재사용할 수 있다.According to the present invention, it can be repeatedly reused by impregnating pores of activated carbon with an iron-containing chelate compound and using it as a photocatalyst.
본 발명에 따르면, 철성분 함유 킬레이트화합물의 철성분을 활성탄의 세공에 함침시킴으로써 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있는 광촉매 흡착제로 사용할 수 있다.According to the present invention, by impregnating the iron component of the iron component-containing chelate compound into the pores of activated carbon, it can be used as a photocatalytic adsorbent capable of adsorbing hydrophilic substances as well as hydrophobic substances.
본 발명에 따르면, 철성분 함유 활성탄을 이용하여 수중에서 유기합성 화학물질을 흡착하고, 자외선 조사 과정에서 수중의 유기합성 화학물질을 제거할 수 있다.According to the present invention, synthetic organic chemicals in water can be adsorbed using activated carbon containing iron components, and synthetic organic chemicals in water can be removed in the course of irradiation with ultraviolet rays.
도 1은 종래의 기술에 따른 킬레이트제 첨착활성탄의 표면에 킬레이트제가 첨착되어 있는 것을 나타내는 도면이다.
도 2는 종래의 기술에 따른 활성탄 재생장치의 전체적인 구성을 나타내는 평면도이다.
도 3은 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법을 나타내는 동작흐름도이다.
도 4는 도 3에 도시된 활성탄 전처리 단계를 구체적으로 나타내는 동작흐름도이다.
도 5는 본 발명의 실시예에 따른 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법을 나타내는 동작흐름도이다.
도 6은 철성분 미함유 활성탄과 철성분 함유 활성탄과의 비표면적을 비교하여 나타낸 도면이다.
도 7a는 철성분 미함유 활성탄의 유기합성 화학물질의 흡착 및 재생 결과를 나타내는 도면이고, 도 7b는 본 발명의 실시예에 따른 철성분 함유 활성탄의 유기합성 화학물질의 흡착 및 재생 결과를 나타내는 도면이다.1 is a view showing that a chelating agent is attached to the surface of activated carbon impregnated with a chelating agent according to the prior art.
2 is a plan view showing the overall configuration of an activated carbon regenerator according to the prior art.
3 is an operation flow chart showing a method of manufacturing activated carbon impregnated with an iron component according to an embodiment of the present invention.
FIG. 4 is an operational flow chart showing the activated carbon pretreatment step shown in FIG. 3 in detail.
5 is an operation flow chart showing a method for removing synthetic organic compounds in water using activated carbon impregnated with an iron component according to an embodiment of the present invention.
6 is a view showing a comparison of the specific surface areas of activated carbon containing no iron component and activated carbon containing an iron component.
7A is a view showing the results of adsorption and regeneration of synthetic organic chemicals in activated carbon containing non-iron components, and FIG. 7b is a view showing the results of adsorption and regeneration of synthetic organic chemicals in activated carbon containing iron components according to an embodiment of the present invention. am.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice with reference to the accompanying drawings. However, the present invention may be embodied in many different forms and is not limited to the embodiments described herein. And in order to clearly explain the present invention in the drawings, parts irrelevant to the description are omitted, and similar reference numerals are attached to similar parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Throughout the specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated. In addition, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by a person skilled in the art to which the present invention belongs. In general, the nomenclature used herein is one well known and commonly used in the art.
이하, 도 3 및 도 4를 참조하여, 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법을 설명하고, 도 5 내지 도 7을 참조하여, 본 발명의 실시예에 따른 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법을 설명한다.Hereinafter, a method for manufacturing activated carbon impregnated with an iron component according to an embodiment of the present invention will be described with reference to FIGS. 3 and 4, and with reference to FIGS. 5 to 7, the iron component according to an embodiment of the present invention A method for removing organic compounds in water using impregnated activated carbon is described.
[철성분이 함침된 활성탄의 제조 방법][Method for producing activated carbon impregnated with iron components]
도 3은 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법을 나타내는 동작흐름도이고, 도 4는 도 3에 도시된 활성탄 전처리 단계를 구체적으로 나타내는 동작흐름도이다.FIG. 3 is an operation flow chart showing a method for manufacturing activated carbon impregnated with an iron component according to an embodiment of the present invention, and FIG. 4 is an operation flow chart showing the activated carbon pretreatment step shown in FIG. 3 in detail.
도 3을 참조하면, 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법은, 먼저, 활성탄 세공이 세척 및 건조되도록 활성탄을 전처리한다(S110).Referring to FIG. 3 , in the method of manufacturing activated carbon impregnated with an iron component according to an embodiment of the present invention, first, the activated carbon is pretreated to wash and dry the pores of the activated carbon (S110).
구체적으로, 도 4를 참조하면, 상기 S110 단계는, 활성탄 세공에 쌓인 타르(tar)를 제거하도록 세척하고(S111), 이후, 활성탄 표면의 전하가 0(zero)이 되도록 세척한다(S112), 이후, 상기 활성탄 세공 내의 수분 및 공기를 제거하도록 진공 건조시킨다(S113). 이때, 전술한 S111 단계에서 100℃ 정도의 끓는 물로 수회 세척하여 활성탄 세공에 쌓인 타르를 제거한다. 또한, 전술한 S112 단계에서 pH 4의 염산수용액으로 활성탄을 수회 세척하여 활성탄 표면의 전하가 0이 되게 한다. 또한, 전술한 S113) 단계에서 200℃ 정도의 고온을 유지한 채 진공 상태에서 건조 과정을 거친다.Specifically, referring to FIG. 4, in step S110, the pores of the activated carbon are cleaned to remove tar accumulated on them (S111), and then, the surface of the activated carbon is washed to have zero charge (S112), Thereafter, vacuum drying is performed to remove moisture and air in the pores of the activated carbon (S113). At this time, the tar accumulated in the pores of the activated carbon is removed by washing several times with boiling water at about 100 ° C in the above-described step S111. In addition, in step S112 described above, the activated carbon is washed several times with an aqueous hydrochloric acid solution of pH 4 so that the charge on the surface of the activated carbon becomes zero. In addition, a drying process is performed in a vacuum state while maintaining a high temperature of about 200 ° C. in step S113) described above.
다음으로, 철성분 함유 킬레이트화합물을 유기용매제에 용해시켜 철성분 함유 용액을 형성한다(S120). 여기서, 상기 철성분 함유 킬레이트화합물은 iron acetylacetonate (Fe(C5H7O2)3), tetra(piperidind)oxalatoiron (C22H44FeN4O4), hemin(C34H32ClFeN4O4), Ferroglycine sulfate(C2H5FeNO6S) 중에서 선택될 수 있다. 이때, 상기 철성분 함유 킬레이트화합물을 휘발성 유기용매제에 용해시켜 100㎎/ℓ 농도의 철성분 함유 용액을 만드는 것이 바람직하다.Next, an iron component-containing solution is formed by dissolving the iron component-containing chelate compound in an organic solvent (S120). Here, the iron component-containing chelate compound is iron acetylacetonate (Fe(C 5 H 7 O 2 ) 3 ), tetra(piperidind)oxalatoiron (C 22 H 44 FeN 4 O 4 ), hemin (C 34 H 32 ClFeN 4 O 4 ), ferroglycine sulfate (C 2 H 5 FeNO 6 S). At this time, it is preferable to dissolve the iron component-containing chelate compound in a volatile organic solvent to prepare an iron component-containing solution having a concentration of 100 mg/L.
다음으로, 상기 철성분 함유 용액을 상기 전처리된 활성탄과 혼합 교반한다(S130).Next, the iron component-containing solution is mixed and stirred with the pretreated activated carbon (S130).
다음으로, 상기 활성탄 세공에 상기 철성분 함유 용액이 흡착 충진되면서 상기 활성탄 세공에서 기포가 빠져나와 형성된 버블 클라우드(bubble cloud)를 소멸시킨다(S140). 이때, 상기 버블 클라우드가 소멸될 때까지 소정의 충전시간을 갖는 것이 바람직하다.Next, while the iron component-containing solution is adsorbed and filled into the pores of the activated carbon, a bubble cloud formed by escaping from the pores of the activated carbon is eliminated (S140). At this time, it is preferable to have a predetermined charging time until the bubble cloud disappears.
다음으로, 상기 철성분 함유 킬레이트화합물을 상기 활성탄 세공에 충분히 함침시킨 후, 상기 활성탄 표면에 묻은 철성분 함유 킬레이트화합물을 휘발성 유기용매제를 사용하여 세척한다(S150). 여기서, 상기 휘발성 유기용매제는 상온에서 건조 과정을 거쳐 제거할 수 있다.Next, after sufficiently impregnating the pores of the activated carbon with the iron-containing chelate compound, the iron-containing chelate compound on the surface of the activated carbon is washed using a volatile organic solvent (S150). Here, the volatile organic solvent may be removed through a drying process at room temperature.
다음으로, 상기 활성탄 세공에 함침된 상기 철성분 함유 킬레이트화합물의 유기물을 제거하고 철성분만 남긴 철성분 함유 활성탄을 형성한다(S160).Next, the organic matter of the iron component-containing chelate compound impregnated in the pores of the activated carbon is removed to form the iron component-containing activated carbon leaving only the iron component (S160).
구체적으로, S160 단계에서 유기용매 휘발온도인 60℃ 정도에서 200℃ 정도까지 분당 0.5℃ 간격으로 매우 느리게 승온시키는 과정과 200℃ 정도의 고온에서 2시간 정도를 유지시키는 과정을 총 6시간 정도 진행하여 철성분과 결합된 유기합성 화학물질을 휘발시켜 제거함으로써, 상기 활성탄 세공 내에 산화철(Fe2O3) 성분만 남게 한다. 이때, 상기 산화철(Fe2O3) 성분은 활성탄의 비표면적(BET 기준)이 철성분에 의해 감소하는 것을 방지하도록 1% 미만이 킬레이트화합물에 함유되는 것이 바람직하다. 또한, 상기 철성분 함유 킬레이트화합물의 농도는 100㎎/ℓ인 것이 바람직하다.Specifically, in step S160, the process of raising the temperature very slowly at an interval of 0.5 ° C per minute from about 60 ° C, which is the volatilization temperature of the organic solvent, to about 200 ° C, and maintaining the temperature at a high temperature of about 200 ° C for about 2 hours for a total of about 6 hours. By volatilizing and removing the organic compound combined with the iron component, only the iron oxide (Fe 2 O 3 ) component remains in the pores of the activated carbon. At this time, it is preferable that less than 1% of the iron oxide (Fe 2 O 3 ) component is contained in the chelate compound to prevent the specific surface area (BET standard) of the activated carbon from being reduced by the iron component. In addition, the concentration of the iron component-containing chelate compound is preferably 100 mg / ℓ.
이에 따라, 상기 철성분 함유 활성탄의 세공은 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있는 광촉매 흡착제로 사용될 수 있다. Accordingly, the pores of the iron-containing activated carbon can be used as a photocatalyst adsorbent capable of adsorbing not only hydrophobic materials but also hydrophilic materials.
다시 말하면, 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법의 경우, 다공성 활성탄 세공(micro pore)에 철성분을 흡착시킴으로써 소수성 특성을 갖는 물질뿐만 아니라, 친수성 물질도 흡착 가능한 흡착제를 제조할 수 있고, 또한, 상기 흡착된 유기합성 화학물질은 제거될 수 있도록 자외선 조사(irradiation)에 의하여 재생이 가능한 광촉매 기능을 갖는 활성탄을 제조할 수 있다.In other words, in the case of the method for producing activated carbon impregnated with iron components according to an embodiment of the present invention, an adsorbent capable of adsorbing not only a hydrophobic material but also a hydrophilic material is obtained by adsorbing an iron component to porous activated carbon micropores. In addition, activated carbon having a photocatalytic function capable of being regenerated by ultraviolet irradiation so that the adsorbed organic synthetic chemicals can be removed.
구체적으로, 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법에 따르면, 다공성 활성탄 세공에 철성분을 충진하여도 충진된 철성분이 탈리되지 않으며, 동시에 다공성은 계속 유지할 뿐만 아니라 유기합성 화학물질의 흡착 후에 자외선을 조사하면 흡착된 유기합성 화학물질이 세공내에서 포토펜톤 산화반응(photo-fenton's oxidation)에 의해 분해되어 반복적으로 재사용할 수 있는 광촉매 기능을 갖는 다공성 활성탄을 제조할 수 있다.Specifically, according to the method for producing activated carbon impregnated with iron components according to an embodiment of the present invention, even if the pores of porous activated carbon are filled with iron components, the filled iron components are not desorbed, and at the same time, porosity is not only maintained, but organic synthesis is also maintained. When ultraviolet rays are irradiated after adsorption of chemicals, the adsorbed synthetic organic chemicals are decomposed by photo-fenton's oxidation in the pores to produce porous activated carbon with a photocatalytic function that can be reused repeatedly. .
본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법에 의해 제조된 철성분이 함침된 다공성 활성탄은 친수성 및 소수성을 갖는 유기합성 화학물질의 흡착뿐만 아니라 자외선 조사에 의한 광촉매 기능에 의해 흡착된 유기합성 화학물질을 산화시킴으로써 반복적으로 재사용할 수 있다.Porous activated carbon impregnated with an iron component prepared by the method for producing activated carbon impregnated with an iron component according to an embodiment of the present invention adsorbs organic synthetic chemicals having hydrophilicity and hydrophobicity as well as photocatalytic function by irradiation of ultraviolet rays. It can be reused repeatedly by oxidizing organic synthetic chemicals.
전술한 바와 같이, 통상의 무기성 철염은 친수성 물질로서 수용액에서 용해도가 매우 높지만, 소수성 물질의 흡착 특성을 갖는 활성탄의 세공에는 흡착되지 않는다는 특징이 있다.As described above, conventional inorganic iron salts are hydrophilic substances and have very high solubility in aqueous solutions, but are not adsorbed to pores of activated carbon having adsorption characteristics of hydrophobic substances.
이에 따라, 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법은 활성탄 세공에 철을 함침시키기 위한 방법으로서, 철성분 원료는 유기합성 화학물질(또는 유기합성 화합물)과 합성된 철성분 함유 킬레이트를 휘발성 유기용매제(예를 들면, 벤젠, 톨루엔, 아세톤, 클로로포름 등)에 용해시켜 사용하였다. 여기서, 상기 철성분 함유 킬레이트화합물로는 iron acetylacetonate(Fe(C5H7O2)3), tetra(piperidind)oxalatoiron(C22H44FeN4O4), hemin (C34H32ClFeN4O4), Ferroglycine sulfate(C2H5FeNO6S) 등이 있다.Accordingly, the method for producing activated carbon impregnated with iron component according to an embodiment of the present invention is a method for impregnating pores of activated carbon with iron, and the iron component raw material is an organic synthetic chemical (or organic compound) and synthesized iron component. The containing chelate was used after being dissolved in a volatile organic solvent (eg, benzene, toluene, acetone, chloroform, etc.). Here, the iron component-containing chelate compound includes iron acetylacetonate (Fe(C 5 H 7 O 2 ) 3 ), tetra(piperidind)oxalatoiron (C 22 H 44 FeN 4 O 4 ), hemin (C 34 H 32 ClFeN 4 O 4 ), and ferroglycine sulfate (C 2 H 5 FeNO 6 S).
결국, 본 발명의 실시예에 따른 철성분이 함침된 활성탄의 제조 방법에 따르면, 철성분 함유 활성탄의 세공은 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있다.Consequently, according to the manufacturing method of iron-impregnated activated carbon according to an embodiment of the present invention, the pores of the iron-containing activated carbon can adsorb not only hydrophobic materials but also hydrophilic materials.
[철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법][Method for removing organic compounds in water using activated carbon impregnated with iron]
도 5는 본 발명의 실시예에 따른 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법을 나타내는 동작흐름도이다.5 is an operation flow chart showing a method for removing synthetic organic compounds in water using activated carbon impregnated with an iron component according to an embodiment of the present invention.
도 5를 참조하면, 본 발명의 실시예에 따른 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법은, 먼저, 앞서 살펴본 철성분이 함침된 활성탄을 준비한다(S210). 여기서, 상기 철성분이 함유된 활성탄은 철성분 함유 킬레이트화합물을 활성탄 세공에 함침시켜 형성되고 반복적으로 재사용되는 광촉매이고, 상기 철성분 함유 활성탄의 세공은 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있는 광촉매 흡착제로 사용될 수 있다. 예를 들면, 상기 철성분 함유 킬레이트화합물은 iron acetylacetonate(Fe(C5H7O2)3), tetra(piperidind)oxalatoiron(C22H44FeN4O4), hemin (C34H32ClFeN4O4), Ferroglycine sulfate(C2H5FeNO6S) 중에서 선택될 수 있다.Referring to FIG. 5 , in the method of removing an organic compound in water using activated carbon impregnated with an iron component according to an embodiment of the present invention, first, the activated carbon impregnated with an iron component described above is prepared (S210). Here, the iron-containing activated carbon is a photocatalyst formed by impregnating pores of the activated carbon with an iron-containing chelate compound and reused repeatedly, and the pores of the iron-containing activated carbon are photocatalysts capable of adsorbing hydrophobic substances as well as hydrophilic substances. Can be used as an adsorbent. For example, the iron component-containing chelate compound is iron acetylacetonate (Fe(C 5 H 7 O 2 ) 3 ), tetra(piperidind)oxalatoiron (C 22 H 44 FeN 4 O 4 ), hemin (C 34 H 32 ClFeN 4 O 4 ), ferroglycine sulfate (C 2 H 5 FeNO 6 S).
구체적으로, 상기 철성분 함유 킬레이트화합물을 상기 활성탄 세공에 함침시킨 후, 상기 활성탄 표면에 묻은 철성분 함유 킬레이트화합물을 휘발성 유기용매제를 사용하여 세척하고, 상기 활성탄 세공에 함침된 상기 철성분 함유 킬레이트화합물의 유기물을 제거하여 철성분만 남긴 철성분 함유 활성탄을 형성하게 된다. 이때, 상기 철성분 함유 킬레이트화합물을 휘발성 유기용매제에 용해시켜 100㎎/ℓ 농도의 철성분 함유 용액을 만들게 된다.Specifically, after impregnating the pores of the activated carbon with the iron-containing chelate compound, washing the iron-containing chelate compound on the surface of the activated carbon using a volatile organic solvent, and impregnating the pores of the activated carbon with the iron-containing chelate The organic matter of the compound is removed to form the iron-containing activated carbon leaving only the iron component. At this time, the iron component-containing chelate compound is dissolved in a volatile organic solvent to make an iron component-containing solution having a concentration of 100 mg/L.
다음으로, 유기합성 화학물질로 오염된 폐수를 상기 철성분이 함유된 활성탄과 수중에서 혼합한다(S220). 여기서, 상기 유기합성 화학물질(synthetic organic chemicals: SOCs)은 잔류 의학물질, 잔류 농약류, 소독 부산물, 내분비 장애물질 등일 수 있다.Next, the wastewater contaminated with synthetic organic chemicals is mixed with the activated carbon containing the iron component in water (S220). Here, the synthetic organic chemicals (SOCs) may be residual medical substances, pesticide residuals, disinfection by-products, endocrine disruptors, and the like.
다음으로, 상기 유기합성 화학물질이 상기 철성분이 함침된 활성탄의 세공에 흡착된다(S230).Next, the synthetic organic chemical is adsorbed into the pores of the activated carbon impregnated with the iron component (S230).
다음으로, 오염물질인 상기 유기합성 화합물이 흡착된 활성탄에 소정의 UV 조사시간동안 자외선(UV)을 조사(irradiation)한다(S240). 예를 들면, 상기 자외선(UV)은 200~280㎚ 파장의 심자외선(UV-C)으로서, 상기 소정의 UV 조사시간은 1시간 정도일 수 있다.Next, ultraviolet (UV) light is irradiated to the activated carbon adsorbed with the organic synthetic compound, which is a contaminant, for a predetermined UV irradiation time (S240). For example, the ultraviolet (UV) is deep ultraviolet (UV-C) with a wavelength of 200 to 280 nm, and the predetermined UV irradiation time may be about 1 hour.
다음으로, 상기 철성분이 함침된 활성탄의 세공에 흡착된 상기 유기합성 화학물질이 광촉매 산화에 의해 산화되어 제거된다(S250).Next, the organic compound adsorbed on the pores of the activated carbon impregnated with the iron component is oxidized and removed by photocatalytic oxidation (S250).
다시 말하면, 본 발명의 실시예에 따른 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법에서, 유기합성 화학물질로 오염된 폐수를 철성분이 함유된 활성탄과 수중에서 혼합하면 유기합성 화학물질은 활성탄 세공에 흡착되고, 오염물질을 흡착한 활성탄에 자외선을 조사하여 세공에 흡착된 유기합성 화학물질은 산화되어 제거됨으로써 철성분이 함유된 활성탄을 반복적으로 재사용할 수 있다. 또한, 철성분 함유 킬레이트화합물의 철성분을 활성탄의 세공에 함침시킴으로써 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있는 광촉매 흡착제로 사용할 수 있다. In other words, in the method for removing synthetic organic compounds in water using activated carbon impregnated with iron components according to an embodiment of the present invention, when wastewater contaminated with organic synthetic chemicals is mixed with activated carbon containing iron components in water, Substances are adsorbed in the pores of the activated carbon, and the organic synthetic chemicals adsorbed in the pores are oxidized and removed by irradiating UV rays on the activated carbon adsorbed with contaminants, so that the activated carbon containing the iron component can be reused repeatedly. In addition, by impregnating the iron component of the iron component-containing chelate compound into the pores of activated carbon, it can be used as a photocatalytic adsorbent capable of adsorbing hydrophilic substances as well as hydrophobic substances.
[실험예][Experimental Example]
본 발명의 실시예에 따른 철성분이 함유된 활성탄을 제조하기 위한 철성분 함유 킬레이트화합물의 원료로는 헤테로아로마틱(heteroaromatic) 계열인 헤민(hemin(C34H32ClFeN4O4)을 벤젠에 용해시켜 약 100㎎/ℓ 농도로 만든 후, 분말형 활성탄을 주입함으로써 분말형 활성탄의 세공에 흡착되도록 약 5시간동안 정치시켰다.As a raw material for the iron-containing chelate compound for preparing the iron-containing activated carbon according to an embodiment of the present invention, heteroaromatic hemin (C 34 H 32 ClFeN 4 O 4 ) is dissolved in benzene. After making it to a concentration of about 100 mg/L, powdered activated carbon was injected and allowed to stand for about 5 hours to be adsorbed to the pores of the powdered activated carbon.
이후, 세척과 여과를 거치고, 약 6시간 건조시킴으로써 철성분 함유 활성탄 시료를 제조하였다.Thereafter, after washing and filtering, and drying for about 6 hours, an iron-containing activated carbon sample was prepared.
또한, 기존의 철성분 미함유 활성탄과 본 발명의 실시예에 따른 철성분 함유 활성탄과의 비표면적을 비교하였다. 그리고 각각의 활성탄에 의한 흡착에 의한 처리효율을 비교하기 위한 유기합성 화학물질로서 잔류 의학물질 및 농약류를 이용한다.In addition, the specific surface areas of the conventional iron-free activated carbon and the iron-containing activated carbon according to an embodiment of the present invention were compared. In addition, residual medical substances and pesticides are used as organic synthetic chemicals to compare the treatment efficiency by adsorption by each activated carbon.
또한, 상기 유기합성 화학물질을 흡착한 각각의 활성탄의 재생 가능성을 알아보기 위하여 200~280㎚ 파장 범위의 심자외선(UV-C)을 약 1시간 조사하고, 재흡착 효율을 알아보았다. 이때, 사용한 활성탄 주입량은 약 100㎎/ℓ였으며, 유기합성 화학물질은 각각 2㎎/ℓ씩 주입하여 혼합물을 만들어 흡착 실험을 수행하였다.In addition, in order to examine the regeneration potential of each activated carbon adsorbed with the organic synthetic chemicals, deep ultraviolet (UV-C) rays in the wavelength range of 200 to 280 nm were irradiated for about 1 hour, and the re-adsorption efficiency was examined. At this time, the amount of activated carbon injected was about 100 mg/L, and the organic synthetic chemicals were injected at 2 mg/L each to form a mixture to conduct an adsorption experiment.
도 6은 철성분 미함유 활성탄과 철성분 함유 활성탄과의 비표면적을 비교하여 나타낸 도면이다.6 is a view showing a comparison of the specific surface areas of activated carbon containing no iron component and activated carbon containing an iron component.
도 6에 도시된 바와 같이, 철성분 미함유 활성탄과 철성분 함유 활성탄과의 비표면적을 비교하여 나타낸 것으로, 본 발명의 실시예에 따른 철성분 함유 활성탄의 경우, 킬레이트화합물의 유기물질이 비등점 이상의 온도에서 휘발되어 날아가고, 미량의 철성분만 세공에 남아서 비표면적의 감소가 매우 적다는 것을 알 수 있었다.As shown in FIG. 6, the specific surface area of the activated carbon without iron component and the activated carbon containing iron component is compared. It was found that the specific surface area was reduced very little because it volatilized and flew away at the temperature, and only a small amount of iron remained in the pores.
힌편, 도 7a는 철성분 미함유 활성탄의 유기합성 화학물질의 흡착 및 재생 결과를 나타내는 도면이고, 도 7b는 본 발명의 실시예에 따른 철성분 함유 활성탄의 유기합성 화학물질의 흡착 및 재생 결과를 나타내는 도면이다.On the other hand, FIG. 7a is a diagram showing the adsorption and regeneration results of organic synthetic chemicals of activated carbon without iron component, and FIG. 7b shows the adsorption and regeneration results of organic synthetic chemicals of activated carbon containing iron component according to an embodiment of the present invention. It is a drawing that represents
도 7a에 도시된 바와 같이, 유기합성 화학물질의 흡착 및 UV 재생 후의 실험결과에 따르면, 철성분 미함유 활성탄의 경우, 1회 흡착처리 후에는 제거효율이 매우 높았으나, 재흡착시에는 흡착효율이 매우 낮아짐에 따라 재생 사용이 불가능한 것을 알 수 있었다.As shown in FIG. 7A, according to the experimental results after adsorption of synthetic organic chemicals and UV regeneration, in the case of activated carbon containing no iron component, the removal efficiency was very high after one adsorption treatment, but the adsorption efficiency upon re-adsorption was very high. As this was very low, it was found that recycling was impossible.
반면에, 도 7b에 도시된 바와 같이, 본 발명의 실시예에 따른 철성분이 함유된 활성탄의 경우, 활성탄 세공에 흡착된 유기합성 화학물질이 UV 조사에 의해 산화되어 제거됨에 따라 반복적으로 철성분이 함유된 활성탄을 재사용할 수 있다는 것을 보여주었다.On the other hand, as shown in FIG. 7B, in the case of the activated carbon containing the iron component according to the embodiment of the present invention, the organic compound adsorbed on the pores of the activated carbon is oxidized and removed by UV irradiation, and the iron component is repeatedly removed. It was shown that the activated carbon containing this can be reused.
결국, 본 발명의 실시예에 따르면, 철성분 함유 활성탄을 이용하여 수중에서 유기합성 화학물질을 흡착하고, 자외선 조사 과정에서 수중의 유기합성 화학물질을 제거할 수 있다.After all, according to an embodiment of the present invention, synthetic organic chemicals in water can be adsorbed using iron-containing activated carbon, and synthetic organic chemicals in water can be removed in the process of irradiating ultraviolet rays.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present invention is for illustrative purposes, and those skilled in the art can understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. will be. Therefore, the embodiments described above should be understood as illustrative in all respects and not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims rather than the detailed description above, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be construed as being included in the scope of the present invention. do.
Claims (18)
b) 철성분 함유 킬레이트화합물을 유기용매제에 용해시켜 철성분 함유 용액을 형성하는 단계;
c) 상기 철성분 함유 용액을 상기 전처리된 활성탄과 혼합하는 단계;
d) 상기 활성탄 세공에 상기 철성분 함유 용액이 흡착 충진되면서 상기 활성탄 세공에서 기포가 빠져나와 형성된 버블 클라우드(bubble cloud)를 소멸시키는 단계;
e) 상기 철성분 함유 킬레이트화합물을 상기 활성탄 세공에 함침시킨 후, 상기 활성탄 표면에 묻은 철성분 함유 킬레이트화합물을 휘발성 유기용매제를 사용하여 세척하는 단계; 및
f) 상기 활성탄 세공에 함침된 상기 철성분 함유 킬레이트화합물의 유기물을 제거하고 철성분만 남긴 철성분 함유 활성탄을 형성하는 단계를 포함하되,
상기 a) 단계의 활성탄 세공의 세척 및 건조는 활성탄 세공에 철성분만 남긴 철성분 함유 활성탄이 형성될 수 있도록 활성탄 표면의 전하가 0(zero)이 되도록 하고, 상기 b) 단계의 유기용매제는 벤젠, 톨루엔, 아세톤, 클로로포름을 포함하여, 철성분 함유 킬레이트화합물이 휘발성 유기용매제에 용해되어 활성탄 세공에 흡착되도록 하여, 상기 f) 단계의 철성분 함유 활성탄의 세공은 소수성 물질뿐만 아니라 철성분만 남긴 철성분 함유 활성탄에 의하여 친수성 물질도 흡착할 수 있는 광촉매 흡착제로 사용되는 것을 특징으로 하는 철성분이 함침된 활성탄의 제조 방법.a) pre-treating the activated carbon so that the activated carbon pores are washed and dried;
b) dissolving an iron-containing chelate compound in an organic solvent to form an iron-containing solution;
c) mixing the iron component-containing solution with the pretreated activated carbon;
d) extinguishing a bubble cloud formed by the escape of air bubbles from the pores of the activated carbon while adsorbing and filling the pores of the activated carbon with the iron-containing solution;
e) impregnating the pores of the activated carbon with the iron-containing chelate compound, and then washing the iron-containing chelate compound on the surface of the activated carbon using a volatile organic solvent; and
f) removing organic substances of the iron-containing chelate compound impregnated in the pores of the activated carbon and forming an iron-containing activated carbon leaving only the iron,
The washing and drying of the pores of the activated carbon in step a) is such that the charge on the surface of the activated carbon is zero so that only the iron component is left in the activated carbon pores, and the organic solvent in step b) is benzene. , toluene, acetone, and chloroform, the iron-containing chelate compound is dissolved in a volatile organic solvent and adsorbed into the pores of the activated carbon, so that the pores of the iron-containing activated carbon in step f) contain not only the hydrophobic material but also the iron leaving only the iron component. A method for producing activated carbon impregnated with an iron component, characterized in that it is used as a photocatalytic adsorbent capable of adsorbing hydrophilic substances by the component-containing activated carbon.
상기 b) 단계의 철성분 함유 킬레이트화합물은 iron acetylacetonate (Fe(C5H7O2)3), tetra(piperidind)oxalatoiron (C22H44FeN4O4), hemin(C34H32ClFeN4O4), Ferroglycine sulfate(C2H5FeNO6S) 중에서 선택되는 것을 특징으로 하는 철성분이 함침된 활성탄의 제조 방법.According to claim 1,
The iron-containing chelate compound in step b) is iron acetylacetonate (Fe(C 5 H 7 O 2 ) 3 ), tetra(piperidind)oxalatoiron (C 22 H 44 FeN 4 O 4 ), hemin (C 34 H 32 ClFeN 4 O 4 ), Ferroglycine sulfate (C 2 H 5 FeNO 6 S) A method for producing activated carbon impregnated with an iron component, characterized in that selected.
상기 b) 단계에서 철성분 함유 킬레이트화합물을 휘발성 유기용매제에 용해시켜 100㎎/ℓ 농도의 철성분 함유 용액을 만드는 것을 특징으로 하는 철성분이 함침된 활성탄의 제조 방법.According to claim 1,
In the step b), the iron-containing chelate compound is dissolved in a volatile organic solvent to produce an iron-containing solution having a concentration of 100 mg/L.
상기 d) 단계에서 버블 클라우드가 소멸될 때까지 소정의 충전시간을 갖는 것을 특징으로 하는 철성분이 함침된 활성탄의 제조 방법.According to claim 1,
A method for producing activated carbon impregnated with an iron component, characterized in that it has a predetermined charging time until the bubble cloud disappears in step d).
상기 e) 단계에서 휘발성 유기용매제는 상온에서 건조 과정을 거쳐 제거하는 것을 특징으로 하는 철성분이 함침된 활성탄의 제조 방법.According to claim 1,
In step e), the volatile organic solvent is removed through a drying process at room temperature.
상기 철성분 함유 킬레이트화합물의 농도는 100㎎/ℓ인 것을 특징으로 하는 철성분이 함침된 활성탄의 제조 방법.According to claim 1,
The method for producing activated carbon impregnated with an iron component, characterized in that the concentration of the iron component-containing chelate compound is 100 mg / ℓ.
a-1) 활성탄 세공에 쌓인 타르(tar)를 제거하도록 세척하는 단계;
a-2) 활성탄 표면의 전하가 0(zero)이 되도록 세척하는 단계; 및
a-3) 상기 활성탄 세공 내의 수분 및 공기를 제거하도록 진공 건조시키는 단계를 포함하는 철성분이 함침된 활성탄의 제조 방법.The method of claim 1, wherein step a),
a-1) washing to remove tar accumulated in the activated carbon pores;
a-2) washing the activated carbon surface so that the electric charge becomes 0 (zero); and
a-3) A method for producing activated carbon impregnated with an iron component, comprising the step of vacuum drying to remove moisture and air in the pores of the activated carbon.
상기 a-2) 단계에서 pH 4의 염산수용액으로 활성탄을 수회 세척하여 활성탄 표면의 전하가 0이 되는 것을 특징으로 하는 철성분이 함침된 활성탄의 제조 방법.According to claim 9,
In step a-2), the activated carbon is washed several times with an aqueous hydrochloric acid solution of pH 4 so that the charge on the surface of the activated carbon becomes zero.
b) 유기합성 화학물질로 오염된 폐수를 상기 철성분이 함유된 활성탄과 수중에서 혼합하는 단계;
c) 상기 유기합성 화학물질이 상기 철성분이 함침된 활성탄의 세공에 흡착되는 단계;
d) 오염물질인 상기 유기합성 화합물이 흡착된 활성탄에 소정의 UV 조사시간동안 자외선(UV)을 조사(irradiation)하는 단계; 및
e) 상기 철성분이 함침된 활성탄의 세공에 흡착된 상기 유기합성 화학물질이 광촉매 산화에 의해 산화되어 제거되는 단계를 포함하되,
상기 철성분이 함유된 활성탄은 철성분 함유 킬레이트화합물을 활성탄 세공에 함침시켜 형성되고 반복적으로 재사용되는 광촉매이고, 상기 철성분 함유 활성탄의 세공은 소수성 물질뿐만 아니라 친수성 물질을 흡착할 수 있는 광촉매 흡착제로 사용되는 것을 특징으로 하는 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법.a) preparing activated carbon impregnated with an iron component prepared according to claim 1;
b) mixing wastewater contaminated with synthetic organic chemicals with the activated carbon containing the iron component in water;
c) adsorbing the synthetic organic chemical into the pores of the activated carbon impregnated with the iron component;
d) irradiating ultraviolet (UV) light to the activated carbon adsorbed with the organic synthetic compound as a contaminant for a predetermined UV irradiation time; and
e) oxidizing and removing the organic synthetic chemical adsorbed on the pores of the activated carbon impregnated with the iron component by photocatalytic oxidation,
The iron-containing activated carbon is a photocatalyst formed by impregnating pores of the activated carbon with an iron-containing chelate compound and reused repeatedly. Method for removing organic compounds in water using activated carbon impregnated with iron, characterized in that used.
상기 철성분 함유 킬레이트화합물은 iron acetylacetonate(Fe(C5H7O2)3), tetra(piperidind)oxalatoiron(C22H44FeN4O4), hemin(C34H32ClFeN4O4), Ferroglycine sulfate(C2H5FeNO6S) 중에서 선택되는 것을 특징으로 하는 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법.According to claim 14,
The iron component-containing chelate compound is iron acetylacetonate (Fe(C 5 H 7 O 2 ) 3 ), tetra(piperidind)oxalatoiron (C 22 H 44 FeN 4 O 4 ), hemin (C 34 H 32 ClFeN 4 O 4 ), A method for removing organic synthetic compounds in water using activated carbon impregnated with an iron component, characterized in that selected from ferroglycine sulfate (C 2 H 5 FeNO 6 S).
상기 철성분 함유 킬레이트화합물을 휘발성 유기용매제에 용해시켜 100㎎/ℓ 농도의 철성분 함유 용액을 만드는 것을 특징으로 하는 철성분이 함침된 활성탄을 이용한 수중의 유기합성 화합물 제거 방법.According to claim 14,
Method for removing organic compounds in water using activated carbon impregnated with iron, characterized in that the iron component-containing chelate compound is dissolved in a volatile organic solvent to make an iron component-containing solution at a concentration of 100 mg / ℓ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220118377A KR102572868B1 (en) | 2022-09-20 | 2022-09-20 | Method for manufacturing activated carbon impreganated with iron component, and method for removing synthetic organic chemicals in aqua using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220118377A KR102572868B1 (en) | 2022-09-20 | 2022-09-20 | Method for manufacturing activated carbon impreganated with iron component, and method for removing synthetic organic chemicals in aqua using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102572868B1 true KR102572868B1 (en) | 2023-08-31 |
Family
ID=87847338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220118377A KR102572868B1 (en) | 2022-09-20 | 2022-09-20 | Method for manufacturing activated carbon impreganated with iron component, and method for removing synthetic organic chemicals in aqua using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102572868B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102677011B1 (en) | 2023-11-28 | 2024-06-24 | 주식회사 케이디 | Benzene Oxidation System |
KR102677012B1 (en) | 2023-11-28 | 2024-06-24 | 주식회사 케이디 | Stirring system to hold iron in activated carbon |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR980000568A (en) | 1998-01-21 | 1998-03-30 | 정영무 | Impregnated activated carbon for removing sulfide gas and its manufacturing method |
KR19990015693A (en) * | 1997-08-08 | 1999-03-05 | 김학희 | Activated carbon with excellent heavy metal adsorption capacity and its manufacturing method |
JP2000219507A (en) | 1999-01-29 | 2000-08-08 | Nippon Carbon Co Ltd | Hydrophilic activated carbon |
JP2002514498A (en) * | 1998-05-14 | 2002-05-21 | ユー.エス. エンバイロメンタル プロテクション エージェンシー | Oxidation by pollutant adsorption and Fenton reaction |
KR100492070B1 (en) | 2003-07-28 | 2005-06-02 | (주) 바두 | Activated carbon repreduction system for volatility organic compound exclusion |
KR20050074055A (en) | 2004-01-13 | 2005-07-18 | 이종집 | Production method for chelating agent impregnated active carbon |
KR100651433B1 (en) | 2003-03-28 | 2006-11-29 | 미츠비시 쥬고교 가부시키가이샤 | Method of and apparatus for regenerating adsorbent |
JP2010200965A (en) * | 2009-03-03 | 2010-09-16 | Japan Organo Co Ltd | Processing method and device for aromatic chlorine compound |
JP2011050899A (en) * | 2009-09-03 | 2011-03-17 | Fuji Xerox Co Ltd | Water treatment apparatus and method |
KR20120085214A (en) * | 2011-01-21 | 2012-07-31 | 경북대학교 산학협력단 | Method of preparing organic-inorganic adsorbent by impregnating oxides inside nano pores of activated carbon and use of the adsorbent for water treatment |
KR101437390B1 (en) * | 2013-12-05 | 2014-09-04 | 대한민국 | Magnetized activated carbon by microwave irradiation and the manufacturing method |
-
2022
- 2022-09-20 KR KR1020220118377A patent/KR102572868B1/en active IP Right Grant
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990015693A (en) * | 1997-08-08 | 1999-03-05 | 김학희 | Activated carbon with excellent heavy metal adsorption capacity and its manufacturing method |
KR980000568A (en) | 1998-01-21 | 1998-03-30 | 정영무 | Impregnated activated carbon for removing sulfide gas and its manufacturing method |
JP2002514498A (en) * | 1998-05-14 | 2002-05-21 | ユー.エス. エンバイロメンタル プロテクション エージェンシー | Oxidation by pollutant adsorption and Fenton reaction |
JP2000219507A (en) | 1999-01-29 | 2000-08-08 | Nippon Carbon Co Ltd | Hydrophilic activated carbon |
KR100651433B1 (en) | 2003-03-28 | 2006-11-29 | 미츠비시 쥬고교 가부시키가이샤 | Method of and apparatus for regenerating adsorbent |
KR100492070B1 (en) | 2003-07-28 | 2005-06-02 | (주) 바두 | Activated carbon repreduction system for volatility organic compound exclusion |
KR20050074055A (en) | 2004-01-13 | 2005-07-18 | 이종집 | Production method for chelating agent impregnated active carbon |
JP2010200965A (en) * | 2009-03-03 | 2010-09-16 | Japan Organo Co Ltd | Processing method and device for aromatic chlorine compound |
JP2011050899A (en) * | 2009-09-03 | 2011-03-17 | Fuji Xerox Co Ltd | Water treatment apparatus and method |
KR20120085214A (en) * | 2011-01-21 | 2012-07-31 | 경북대학교 산학협력단 | Method of preparing organic-inorganic adsorbent by impregnating oxides inside nano pores of activated carbon and use of the adsorbent for water treatment |
KR101354409B1 (en) * | 2011-01-21 | 2014-01-23 | 경북대학교 산학협력단 | Method of preparing organic-Inorganic adsorbent by impregnating oxides inside nano pores of activated carbon and use of the adsorbent for water treatment |
KR101437390B1 (en) * | 2013-12-05 | 2014-09-04 | 대한민국 | Magnetized activated carbon by microwave irradiation and the manufacturing method |
Non-Patent Citations (9)
Title |
---|
Almudena Aguinaco et al., Fe3O4-TiO2 Thin Films in Solar Photocatalytic Processes, Materials 2022, 15(19), 6718, 2022.9.27.발행 * |
Chenyang Xue et al, High Photocatalytic Activity of Fe3O4-SiO2-TiO2 Functional Particles with Core-Shell Structure, Journal of Nanomaterials, 2013, 762423, 1 내지 9쪽, 2013.11.17.발행 * |
Hai Haham et al, Engineering of Iron-Based Magnetic Activated Carbon Fabrics for Environmental Remediation, Materials 2015, 8(7), 4593~4607쪽, 2015.7.22.발행* * |
Irfan Shah et al., Iron Impregnated Activated Carbon as an Efficient Adsorbent for the Removal of Methylene Blue: Regeneration and Kinetics Studies, PLoS ONE 10(4): e0122603, 2015.4.7.발행 * |
Sara Mesa Medina et al., Performance of Iron-Functionalized Activated Carbon Catalysts (Fe/AC-f) on CWPO Wastewater Treatment, Catalysts 2021, 11(3), 337, 2021.3.6.발행 * |
Yuyuan Yao et al., Enhanced decomposition of dyes by hemin-ACF with significant improvement in pH tolerance and stability, Journal of Hazardous Materials, 264, 323~331쪽, SI1~8쪽, 2013.11.2.발행 * |
Zukhra C. Kadirova et al., Adsorption and photodegradation of methylene blue ~ in oxalate solution, Journal of Environmental Chemical Engineering, 2, 4, 2026~2036쪽, 2014.3.10.발행* * |
남승우 외, 정수처리 과정에서의 미량오염물질의 거동 및 제거 특성, 한국환경보건학회지, 제39권 제5호(2013) * |
대한민국 공개특허번호 제2001-0016595호(공개일: 공개일자 2001년 3월 5일), 발명의 명칭: "독성 및 유해성 가스의 제거를 위한 금속(Cu, Zn, Cr, v,Mo, Ti, Fe 등) 첨착 활성탄소섬유의 제조방법 및 용도" |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102677011B1 (en) | 2023-11-28 | 2024-06-24 | 주식회사 케이디 | Benzene Oxidation System |
KR102677012B1 (en) | 2023-11-28 | 2024-06-24 | 주식회사 케이디 | Stirring system to hold iron in activated carbon |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102572868B1 (en) | Method for manufacturing activated carbon impreganated with iron component, and method for removing synthetic organic chemicals in aqua using the same | |
MiarAlipour et al. | TiO2/porous adsorbents: Recent advances and novel applications | |
Vikrant et al. | Photocatalytic mineralization of hydrogen sulfide as a dual-phase technique for hydrogen production and environmental remediation | |
JP6995334B2 (en) | Photocatalyst and how to use it | |
KR100470747B1 (en) | Method and apparatus for eliminating the stench and volatile organic compounds in the polluted air | |
KR101862989B1 (en) | Photocatalyst containing active carbon fiber dispersed with titanium dioxde, and water treatment method using the same | |
JPS62191040A (en) | Adsorbable carbon material and its production | |
Tang et al. | Improved phenol decomposition and simultaneous regeneration of granular activated carbon by the addition of a titanium dioxide catalyst under a dielectric barrier discharge plasma | |
Binaeian et al. | Preparation of titanium dioxide nanoparticles supported on hexagonal mesoporous silicate (HMS) modified by oak gall tannin and its photocatalytic performance in degradation of azo dye | |
Kandel et al. | Cold plasma-assisted regeneration of biochar for dye adsorption | |
KR101419481B1 (en) | Deodorizing catalyst filter and air sterilizer having reproduction unit of it | |
US9126146B2 (en) | Photocatalyst comprising TiO2 and activated carbon made from date pits | |
KR100469005B1 (en) | Photocatalytic system for the removal of volatile organic compounds | |
Nawaz et al. | Carbon based nanocomposites, surface functionalization as a promising material for VOCs (volatile organic compounds) treatment | |
CN114452977B (en) | Dual-functional material capable of circularly integrating and simultaneously adsorbing and catalyzing to remove VOCs under low temperature condition, and preparation method and application thereof | |
Gadore et al. | Emerging applications of waste fly ash for remediation of environmental contaminants: a high-value and sustainable approach towards utilization of waste materials | |
KR102106264B1 (en) | Offensive odor treatment apparatus using dual UV ramp and adsorbent | |
KR20050047045A (en) | Hybrid processing method for deodorization and the system therefor adopted real-time controller | |
KR101862513B1 (en) | Photocatalyst containing active carbon fiber dispersed with titanium dioxde, and water treatment method using the same | |
KR101046314B1 (en) | Preparation method of anti-bacterial and deodorization adsorbents using nano-metal doped metal oxides catalyst powder and thereof anti-bacterial and deoderization adsorbents | |
CN112058217A (en) | Silicon-based adsorption material capable of being rapidly regenerated and method for microwave in-situ degradation of organic pollutants | |
KR101668064B1 (en) | Photocatalytic method for simultaneously oxidizing phenolic pollutants and arsenite in wastewater | |
KR102511410B1 (en) | Organic compound degradation catalyst composition using iron oxide, preparation method thereof, and organic compound degradation method using same | |
KR102253569B1 (en) | System for removing highly concentrated bad smell using continous recycle of activated carbon fiber filter and titanium dioxide scrap photocatalysts method for removing a bad smell using the same | |
WO2023066058A1 (en) | Bifunctional adsorbent, preparation method therefor and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |