KR102491035B1 - 베인 모터 - Google Patents
베인 모터 Download PDFInfo
- Publication number
- KR102491035B1 KR102491035B1 KR1020210033572A KR20210033572A KR102491035B1 KR 102491035 B1 KR102491035 B1 KR 102491035B1 KR 1020210033572 A KR1020210033572 A KR 1020210033572A KR 20210033572 A KR20210033572 A KR 20210033572A KR 102491035 B1 KR102491035 B1 KR 102491035B1
- Authority
- KR
- South Korea
- Prior art keywords
- gas inlet
- rotor
- vane
- groove
- gas
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/34—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
- F01C1/344—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/18—Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
압력 기체가 투입되고 배출되는 기체 입구 및 기체 출구를 가지는 케이싱, 케이싱 내에서 압력 기체의 압력을 전달받아 케이싱에 거치된 회전축을 중심으로 회전하도록 이루어진 로터를 구비하고, 로터는 회전축과 일치하는 중심축을 가진 전체적으로 원기둥 형태의 로터 본체와 로터 본체의 측면에 형성된 홈에 설치되며 회전 위상에 따라 홈으로부터 돌출되는 폭이 변화하는 베인을 가지는 베인 모터에 있어서, 복수의 베인 사이 구간 중 일부인 무분사 구간에는 로터 회전시 하나의 주기에서 압력 기체가 유입되지 않도록 이루어지는 것을 특징으로 한다.
본 발명에 따르면 베인 모터에서 베인과 베인 사이의 공간 모두에 압력 기체가 투입되기보다는 베인과 베인 사이의 공간 복수개를 무분사 구간과 분사 구간으로 구분하고 분사 구간에만 압력 기체를 투입할 수 있도록 하여 압력 기체 단위 부피당의 베인 모터 출력을 높이고 효율을 높일 수 있다.
본 발명에 따르면 베인 모터에서 베인과 베인 사이의 공간 모두에 압력 기체가 투입되기보다는 베인과 베인 사이의 공간 복수개를 무분사 구간과 분사 구간으로 구분하고 분사 구간에만 압력 기체를 투입할 수 있도록 하여 압력 기체 단위 부피당의 베인 모터 출력을 높이고 효율을 높일 수 있다.
Description
본 발명은 베인 모터에 대한 것으로, 보다 상세하게는 공압을 통해 회전력을 발생시킬 수 있는 베인 모터에서 투입 공기량을 줄이면서 출력 효율을 높일 수 있는 구성에 관한 것이다.
베인 모터는 기체 압력을 회전 동력으로 바꾸는 기계장치의 하나이다. 도1은 기존의 베인 모터의 한 예를 나타낸다.
여기서, 케이싱(211)) 내에 회전하는 로터가 설치되고, 케이싱(211) 일부에는 압력을 작용시키는 기체가 유입되는 기체 입구(253)와 기체가 방출되는 기체 출구(255)가 있다. 기체 입구(253)로 압력 기체를 유입시키면 기체 압력은 로터의 외측으로 뻗으며 그 뻗는 길이가 가변되는 베인(235)에 작용하게 된다. 따라서 베인(235)은 압력 방향으로 이동하면서 로터 전체가 케이싱(211) 내에서 회전하게 된다. 베인(235)에 압력을 전달한 기체는 케이스의 기체 출구(255)에 도달하면 압력이 낮은 기체 출구(255)를 통해 방출된다.
즉, 기체 입구로 들어온 압력 기체가 압력이 낮은 기체 출구를 만나면 기체 출구로 빠져나가면서 그 과정에서 베인(235)에 압력을 주어 로터를 회전하도록 한다.
이때 베인(235)은 로터 본체(231)에 결합되며, 베인(235)의 본체(231)에서 돌출되는 길이는 가변될 수 있다. 이를 위해 베인(235)은 로터 본체(231)의 홈(231a)에 삽입되며, 홈(231a) 내에서 홈의 길이 방향으로 이동할 수 있다. 케이싱(211) 내벽면과 로터 본체(231)의 회전축(233)은 케이싱 내벽면 위치에 따라 그 간격이 다르므로, 간격이 넓은 곳에서는 베인(235)의 많은 부분이 본체(231)의 홈(231a)에서 빠져나와 베인(235)의 돌출 길이가 증가하고, 간격이 좁은 곳에서는 베인의 대부분은 본체 홈에 삽입된 상태가 되어 베인의 돌출 길이가 감소하게 된다.
베인(235)이 본체(231) 홈(231a)에 원활히 출입하기 위해 홈의 저부에는 베인과의 사이에 스프링과 같은 탄성체를 포함할 수 있다. 혹은, 로터의 회전 원심력에 의해 베인은 홈에서 빠져나올 수 있으므로 별도의 스프링은 설치되지 않을 수 있다.
로터 본체(231)와 내벽면 사이 간격이 좁아지는 구간에서는 로터 본체(231)가 회전할 때 배인(235) 끝단은 내벽면과 접하면서 홈(231a)으로 삽입되도록 하는 압력을 받게 된다.
그런데, 기존의 베인 모터에서는 베인(235) 끝단과 케이싱(211) 내벽면 사이의 틈이 너무 크면 기체가 이 틈으로 빠져나가 압력의 손실을 초래하고, 틈이 너무 작으면 베인과 케이싱 내벽면 사이의 마찰이 심하여 기체 압력으로 인한 에너지가 마찰로 상당부분 손실되고 베인과 내벽면의 마모로 인하여 교체 및 유지 보수의 비용이 증가하는 문제가 있다. 이런 문제는 서로 트레이드 오프(trade off) 관계가 있으며, 기존의 베인 모터에서 완전히 해결할 수 없는 문제이므로, 다양한 재질을 가지고 다양한 사이즈를 가진 개개의 베인 모터 종류에서 실험적으로 가장 효율이 우수하고 내구성이 있는 적절한 틈의 크기를 파악해야 한다.
또한, 기체 압력에 의한 로터의 회전력을 크게 하기 위해서는 한편으로, 기체 압력을 높이거나, 기체 압력이 작용하는 베인의 면적을 늘리는 방법을 사용할 수 있다.
그러나 기체 압력이 작용하는 베인 면적을 늘리는 방법으로서 가령, 베인이 홈에서 너무 멀리 빠져나오도록 하면 완전히 이탈되거나, 베인이 케이싱 내벽면에서 마찰되는 가운데 진동이나 기타 불안정한 상태를 이룰 수 있으므로 로터에 안정적으로 결합을 유지하는 한도 내에서 기체와의 접속면적을 늘리는 설계 형태를 이루는 것이 중요하게 된다.
한편, 베인 모터의 효율을 높이기 위해서는 같은 압력의 기체를 공급할 때 가능하면 적은 기체의 양으로 보다 많은 출력을 얻는 것이 필요하며, 이동형 장치인 경우, 같은 공기량으로 더 많은 출력을 얻는 것이 더욱 중요하게 된다.
효율을 높이기 위해서는 앞서 언급하듯이 내부로 공급되는 압력 기체가 베인에 충분한 압력을 작용시키지 못하고 조기에 출구를 만나 방출되거나, 원하지 않게 틈새로 누출된다거나, 움직이는 부분과 그에 인접한 고정된 부분 사이에서 발생하는 마찰을 줄이는 것이 일반적으로 생각될 수 있지만, 한편으로, 압력 기체가 베인에 작용하는 경로 및 구성을 개발하여 베인에 압력이 효율적으로 작용하고, 베인에 작용하는 기체의 추동력 혹은 충격이 효율적으로 작용하도록 할 필요가 있다.
본 발명은 상술한 기존의 베인 모터의 한계점을 극복하여 기존에 비해 효율성이 높은 구성을 가진 베인 모터를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위한 본 발명은,
압력 기체가 투입되고 배출되는 기체 입구 및 기체 출구를 가지는 케이싱, 상기 케이싱 내에서 압력 기체의 압력을 전달받아 케이싱에 거치된 회전축을 중심으로 회전하도록 이루어진 로터를 구비하고, 상기 로터는 상기 회전축과 일치하는 중심축을 가진 전체적으로 원기둥 형태의 로터 본체와 상기 로터 본체의 측면에 형성된 홈에 설치되며 회전 위상에 따라 상기 홈으로부터 돌출되는 폭이 변화하는 베인을 가지는 베인 모터에 있어서,
복수의 베인 사이 구간 중 적어도 일부(무분사 구간)에는 로터 회전시 하나의 주기에서 압력 기체가 유입되지 않도록 이루어지는 것을 특징으로 한다.
본 발명은 하나의 회전 주기가 진행될 때 베인 사이의 구간 중 압력 유체가 유입되는 분사 구간과 압력 유체가 유입되지 않는 무분사 구간을 모두 구비하도록 이루어질 수 있다. 이때, 베인 사이의 구간은 무분사 구간과 분사 구간이 번갈아 위치하도록 형성될 수 있다.
본 발명에서 무분사 구간에 해당하는 베인 사이 공간에는 음압 발생 억제를 위한 통로가 연결될 수 있으며, 이 통로는 로터 내에 설치되며, 무분사 구간 상호간을 연결하거나 외부 상압 공간과 연결되는 것일 수 있다.
본 발명에서 기체 유입구의 적어도 일부는 분사 구간의 공간과 연결되어 베인 모터 초기 구동시 압력 기체가 로터에 회전력을 전달할 수 있도록 이루어지는 것이 바람직하다.
본 발명에서 베인 로터의 베인은 베인 홈에 출입할 때 직선구간을 왕복하기보다는 원호 구간을 왕복하는 각운동을 하도록 이루어진 것일 수 있다.
본 발명에서 홈은 베인이 로터 본체에 결합될 때 로터 본체의 회전축에서 외측으로 뻗는 방사 방향과 일정 각도를 가져 로터가 회전하는 방향으로 기울어지도록 형성된 것일 수 있다.
본 발명은 무분사 구간을 형성하기 위해, 베인 로터의 본체 단부 표면(원기둥형 로터의 회전축 방향 양단에 있는 표면)에 베인과 베인 사이의 공간으로 연결되는 기체유입홈을 형성하고, 케이싱은 원통형 부분과 이 원통형 부분의 양단을 마감하는 마감판 부분을 구비하되, 마감판에는 베인 로터의 본체가 회전할 때 기체유입홈이 이동하는 궤적과 겹치는 위치에 압력 기체 유입구(기체 입구)를 형성하여 베인 사이 공간에 압력 기체를 공급하되, 로터 회전시 압력 기체 유입구와 통하는 기체유입홈은 베인의 개수보다 적은 개수로 형성하여 복수의 베인 사이 공간들 가운데 일부에만 대응하여 형성되도록(연결되도록) 하여, 잔여 베인 사이 구간(공간)은 무분사 구간을 이루도록 할 수 있다.
본 발명에서 케이싱이 원통형 부분의 양단을 원판 형태의 마감판이 폐쇄하는 형태로 이루어진 것일 때, 마감판과 접하는 로터 본체 및 베인의 양단은 마감판과 서로 미끌어지는 것은 가능하고 압력 기체는 새어나오기 어려운 미세 틈을 가지도록 설치되며, 상기 회전축의 일측에는 외부로의 동력전달을 위한 동력전달수단이 형성되고, 상기 로터 본체와 상기 베인을 결합시키는 상기 홈의 길이 방향 양단 중 적어도 하나에서 상기 홈을 이루는 입구 가운데 회전 방향 기준으로 뒤쪽에 있는 후방부 입구가 부분적으로 제거되어 상기 베인의 후방면을 더 드러내도록 기체유입홈이 설치되고, 상기 마감판의 적어도 하나에는 기체 입구가 설치되되 상기 기체 입구는 상기 회전축 방향으로 보는 측면도 상에서 볼 때 상기 로터가 회전하면서 상기 기체유입홈이 지나가는 궤적과 겹치는 위치에 가령 원호형으로 이루어져, 로터가 회전하여 기체유입홈이 마감판의 기체 입구와 겹치는 위치에 오면 기체 입구에서 기체유입홈을 통해 압력 기체가 로터 본체와 케이싱 사이 공간이면서 베인 사이 공간인 공간으로 유입될 수 있고, 베인의 후방면에 힘을 작용시키도록 이루어지는 것일 수 있다.
이때, 본 발명에서 로터 본체의 단부 표면이면서 홈(베인 가이드 홈)의 길이 방향 끝단의 후방부 입구에 형성되는 확장부인 기체유입홈을 이루는 곡면은 홈의 입구에서 홈의 내부 방향으로 볼 때 그리고 로터 본체를 길이 방향 단부에서 중심 쪽을 볼 때 오목한 면을 이루어 기체 입구로 투입된 압력 기체가 베인의 후면으로 압력을 작용시키기 용이하게 형성되는 것이 바람직하다.
이때, 본 발명에서 회전축에 형성되는 동력전달수단은 톱니를 이용한 기어 동력 전달을 위한 기어, 벨트나 로프 동력 전달을 위한 풀리, 마찰판을 통한 동력 전달을 위한 마찰판 가운데 하나를 구비하는 것일 수 있다.
이때, 일반적으로 마감판의 적어도 하나는 로터의 회전축이 회전동력을 전달하기 위해 인출될 수 있게 구멍을 구비하여 이루어지고, 이 구멍에는 회전축과 마감판의 마찰을 줄이기 위한 베어링이 개재될 수 있다.
이때, 로터 회전시 기체유입홈이 이동하는 궤적과 겹치도록 설치된압력 기체 유입구(기체 입구)는 로터 회전 위치와 관계없이 적어도 그 일부가 분사 구간의 기체유입홈과 겹쳐 시동시 항상 압력 기체가 유입될 수 있도록 이루어지는 것이 바람직하다.
본 발명에서 케이싱이 원통형 부분의 양단을 원판 형태의 마감판이 폐쇄하는 형태로 이루어진 것일 때, 로터와 케이싱의 원통형 부분 사이에는 원통형 부분 내부에서 로터 회전에 따라 회전할 수 있는 내통이 구비되고, 로터는 내통 내에서 회전하도록 이루어진 것일 수 있다.
이때 내통은 케이싱 내에 로터를 수용하고, 케이싱의 입구를 통해 투입된 압력 기체가 케이싱의 출구를 통해 배출될 때까지 압력 기체를 내부에 보유하면서 베인 끝단이 그 내벽면에 접하도록 이루어져 케이싱 내에서 가상의 회전중심축 위치는 회전축과 평행하되 이격되지만 로터가 회전할 때 함께 회전할 수 있도록 이루어진 실린더형으로 볼 수 있다.
이런 경우, 베인 모터는 로터가 회전하여 기체유입홈(확장부)이 마감판의 기체 입구와 겹치는 위치에 오면 기체 입구에서 기체유입홈을 통해 압력 기체가 로터 본체와 내통 사이 공간으로 유입될 수 있고, 베인의 후방면에 힘을 작용시키도록 이루어질 수 있다.
이때, 케이싱 내에서 내통의 가상의 회전중심축과 로터의 회전축은 일정한 위치를 유지하며, 내통이 케이싱 내에서 회전할 때 내통의 외측면과 케이싱의 내벽면 사이의 마찰을 줄이도록 구름수단이 더 구비될 수 있다.
본 발명에 따르면 베인 모터에서 베인과 베인 사이의 공간 모두에 압력 기체가 투입되기 보다는 베인과 베인 사이의 공간 복수개를 무분사 구간과 분사 구간으로 구분하고 분사 구간에만 압력 기체를 투입할 수 있도록 하여 압력 기체 단위 부피당의 베인 모터 출력을 높이고 효율을 높일 수 있다.
본 발명의 일 측면에 따르면, 케이싱이 원통형 부분의 양단을 원판 형태의 마감판이 폐쇄하는 형태로 하면서, 베인과 베인 사이의 구간들 중 분사 구간에서는 로터 본체 단부 표면에 기체유입홈을 설치하고, 마감판에는 로터가 회전할 때 기체유입홈이 지나는 궤적과 겹치는 부분에 한정하여 압력 기체 입구를 형성하여, 무분사 구간과 분사 구간의 구분이 가능하게 하고, 분사 구간에서만 압력 기체를 투입하여 베인 모터의 압력기체 소모량을 줄이고 출력 효율을 높일 수 있다.
본 발명의 일 측면에 따르면 무분사 구간에 대해 통로를 형성하여 로터 회전시 무분사 구간에서 음압이 발생하여 로터의 회전을 방해하거나 불안하게 하는 문제를 해결할 수 있다.
도1은 기존의 베인 모터 구성을 나타내는 사시도,
도2는 본 발명의 일 실시예에서의 외관을 나타내는 외관 사시도,
도3은 도2와 같은 베인 모터의 분해 사시도,
도4는 도2와 같은 베인 모터의 회전축을 포함한 로터 본체를 나타내는 사시도,
도5는 도2와 같은 베인 모터에서 케이싱의 원통형 내면과 로터 사이의 결합 관계를 나타내는 측면사시도,
도6은 도5의 상태에서 마감판을 더 결합할 때 마감판의 기체 입구, 출구와 로터의 확장부 및 베인의 상대적 위치관계를 나타내는 투시적 측면도 및 그 일부에 대한 확대도이다.
도7은 본 발명 베인 모터의, 내통을 가지는 다른 실시예에서 내통의 원통형 내면과 로터 사이의 결합 관계를 나타내도록 부분적 조립 상태를 나타내는 분해 사시도,
도8은 도7과 같은 실시예에서 마감판의 기체 입구, 출구와 내통 및 로터의 확장부 및 베인의 상대적 위치관계를 나타내는 투시적 측면도이다.
도9는 본 발명의 제3 실시예를 이루는 베인 모터의 측면도이며, 도10은 도9의 실시예에서 마감판을 제거한 상태의 베인 모터의 측면도이다.
도11 및 도12는 본 발명의 제4 실시예를 이루는 베인 모터의 로터 부분에 대한 사시도 및 측면도이다.
도2는 본 발명의 일 실시예에서의 외관을 나타내는 외관 사시도,
도3은 도2와 같은 베인 모터의 분해 사시도,
도4는 도2와 같은 베인 모터의 회전축을 포함한 로터 본체를 나타내는 사시도,
도5는 도2와 같은 베인 모터에서 케이싱의 원통형 내면과 로터 사이의 결합 관계를 나타내는 측면사시도,
도6은 도5의 상태에서 마감판을 더 결합할 때 마감판의 기체 입구, 출구와 로터의 확장부 및 베인의 상대적 위치관계를 나타내는 투시적 측면도 및 그 일부에 대한 확대도이다.
도7은 본 발명 베인 모터의, 내통을 가지는 다른 실시예에서 내통의 원통형 내면과 로터 사이의 결합 관계를 나타내도록 부분적 조립 상태를 나타내는 분해 사시도,
도8은 도7과 같은 실시예에서 마감판의 기체 입구, 출구와 내통 및 로터의 확장부 및 베인의 상대적 위치관계를 나타내는 투시적 측면도이다.
도9는 본 발명의 제3 실시예를 이루는 베인 모터의 측면도이며, 도10은 도9의 실시예에서 마감판을 제거한 상태의 베인 모터의 측면도이다.
도11 및 도12는 본 발명의 제4 실시예를 이루는 베인 모터의 로터 부분에 대한 사시도 및 측면도이다.
이하 도면을 참조하면서 구체적 실시예를 통해 본 발명을 보다 상세히 설명하기로 한다.
(실시예 1)
도2는 본 발명의 일 실시예에서의 외관을 나타내는 외관 사시도이며, 도3은 이 실시예의 분해 사시도이다.
본 실시예에서 전체 베인 모터는 최외각을 이루는 케이싱과, 이 케이싱 내에 위치하는 로터를 구비하여 이루어지며, 케이싱과 로터의 대부분 구성은 기존의 베인 모터의 구성과 기본적으로 유사하게 이루어질 수 있다.
여기서 케이싱은 대략 실린더 형태의 케이싱 본체(11)와 이 본체(11)의 길이 방향 양단을 마감하는 마감판(13, 15)을 구비하며, 각각의 마감판(13, 15)에는 로터에 연결되는 회전축(33)이 거치되거나 통과하는 회전축 설치구멍, 외부의 고압 기체가 투입되는 원호형 기체 입구(135), 고압 기체가 내부를 거쳐 배출되는 원호형 기체 출구(133)가 배치된다. 회전축 설치구멍에는 베어링(17)이 설치되어 회전축(33)은 마감판(13)과 직접 닿지 않고 베어링(17)에 의해 회전시 마찰을 줄일 수 있다. 이런 구성에서 로터는 케이싱 본체(11)의 내측면(11a)과 접하면서 회전하게 된다.
도2 및 도3과 같은 베인 모터의 회전축(33)을 포함한 로터 본체(31)를 나타내는 도4의 사시도, 도5의 측면사시도 및 도6의 투시적 측면도를 함께 참조하면, 회전축의 일측에는 외부로의 동력전달을 위한 기어(37)가 형성된다. 외부로 동력을 전달하는 수단으로는 톱니를 이용하는 기어 동력 전달에 이용되는 기어 외에도 벨트나 로프를 걸어 동력을 전달할 수 있는 풀리, 체인, 마찰판 등이 이용될 수 있고 동력 전달수단에는 클러치와 같은 단속 수단, 변속수단이 더 결합되어 이용될 수 있다.
로터 본체(31)에 베인(35)을 설치하기 위해 형성되는 홈(베인 가이드 홈: 31a)은 필요에 따라 다른 여러 형태로 형성될 수 있다. 이 실시예에서 홈(31a)은 복수 개가 본체(31)의 원기둥 측면을 이루는 부분에 길이 방향을 따라 서로 평행하게 설치되며, 길이 방향으로 볼 때 원기둥 형태의 로터 본체가 이루는 원에서 같은 원주 각도 혹은 같은 원주 거리 이격되어 동일한 간격으로 설치된다. 이 홈(31a)을 따라 외측 및 내측으로 이동하는 베인은 대략 직사각형 판재로 이루어진다. 홈(31a)이 로터 본체에 설치된 각도에 따라 베인도 원기둥형 로터 본체(31)의 측면에서 수직하게 형성될 수 있지만 여기서는 그 수직면과 일정 각도를 가지게 기울어진 방향으로 돌출된다. 즉, 회전축(33)을 중심으로 하는 방사 방향과 일정 각도를 가져 로터가 회전하는 방향으로 약간 기울어져 있고, 그에 따라 베인도 본체의 측면에서 수직 방향 기준으로 회전 진행 방향으로 약간 기울어지도록 돌출되어 있다.
여기서 베인(35)은 홈(31a)에 약간의 틈새를 가지도록 설치되어 로터가 회전하면 원심력에 따라 항상 외측으로 돌출되려는 경향을 가지지만 케이싱 본체(11)의 내벽면에 의해 한정되며, 케이싱 본체의 내벽면(11a)은 로터가 회전함에 따라 베인(35)에 홈(31a) 방향으로 힘을 작용시킨다. 따라서 베인은 스프링과 같은 탄성체가 홈에 설치되지 않아도 로터가 회전하면서 홈(31a)을 따라 외측 혹은 내측으로 이동할 수 있다.
복수의 베인 사이 구간 중 적어도 일부인 무분사 구간에는 로터 회전시 하나의 주기에서 압력 기체가 유입되지 않도록 이루어지는 본 발명의 특징을 구현하기 위해 여기서는 로터 본체(31) 단부 표면에 베인(35)과 베인 사이의 공간으로 연결되는 기체유입홈(31b)을 형성하고, 마감판에는 로터 본체(31)가 회전할 때 기체유입홈(31b)이 이동하는 궤적과 겹치는 위치에 원호 형태의 압력 기체 유입구(기체 입구: 135)를 형성하여 베인 사이 공간에 압력 기체를 공급하되, 로터 회전시 기체 입구(135)와 통하는 기체유입홈(31b)은 베인(35)의 개수보다 작은 개수로 형성하여 복수의 베인 사이 공간들 가운데 일부에만 이 기체유입홈(31b)이 연결되도록 하고 있다.
따라서 잔여 베인 사이 구간 혹은 공간에는 대응하는 기체유입홈(31b)이 없고, 기체 입구(135)와 통하지 않아 압력 기체의 유입이 이루어지지 않으므로 이들 구간은 무분사 구간을 이루게 된다. 여기서는 특히 베인 사이의 구간은 무분사 구간과 분사 구간이 번갈아 위치하고 있으며, 무분사 구간과 분사 구간의 크기는 동일하게 이루어지지만 실시예에 따라서는 분사 구간과 무분사 구간 사이에 구간 길이를 달리하거나, 무분사구간 두 개마다 분사구간이 하나씩 위치하거나, 혹은 무분사 구간 한 개마다 분사구간 두 개가 존재하는 등 설치 비율이 달라질 수 있다.
일반적인 베인 펌프에서와 마찬가지로, 서로 접하면서 상대적 이동이 이루어지는 곳, 가령 마감판과 접하는 로터 본체 및 베인의 양단은 마감판과 서로 미끌어지는 것은 가능하고 압력 기체는 새어나오기 어렵도록 구성되도록 한다. 가령 이들 사이의 틈새는 크지 않도록 하되 너무 밀착되어 마찰이 심하지 않고, 쉽게 훼손되지 않으면서 마찰계수가 작도록 재질이 선택되어야 한다.
한편 이 실시예에서는 기체유입홈(31b)을 형성할 때 특히 로터 본체(31)와 베인(35)을 결합시키는 홈(31a)의 길이 방향 양단 모두에서 홈을 이루는 입구 가운데 회전 방향 기준으로 뒤쪽에 있는 후방부 입구가 부분적으로 제거되어 베인(35)의 후방면을 더 드러내도록 기체유입홈(31b)이 설치하고 있다. 기체유입홈을 이루는 곡면은 홈(31a)의 입구에서 홈의 내부 방향으로 볼 때 그리고 로터 본체(31)를 길이 방향 단부에서 중심 쪽을 볼 때 오목한 면을 이루어 기체 입구로 투입된 압력 기체가 베인(35)의 후면으로 압력을 작용시키기 용이하게 형성하였다.
그리고, 기체유입홈과 겹치도록 마감판에 기체 입구를 형성할 때 기체 입구는 기체유입홈의 궤적의 일정 구간과 겹치도록 하기 위해 하나의 원호형으로 형성하지만 실시예에 따라서는 일정 구간 이어지는 원호형 대신에 원호를 따라 배열된 복수 개의 홀로 형성하는 것도 가능하다.
이런 구성에 따르면, 로터가 회전하여 기체유입홈이 마감판의 기체 입구와 겹치는 위치에 오면 기체 입구에서 기체유입홈을 통해 압력 기체가 로터 본체와 케이싱 사이 공간이면서 베인 사이 공간인 '공간'으로 유입될 수 있고, 그 과정에서 베인의 후방면에 충격력을 작용시키게 된다.
도6을 참조하면 로터 본체의 기체유입홈이 설치된 단부 표면에 대향하는 마감판 혹은 마감판들에는 기체 입구(135) 및 기체 출구(133)가 설치되되 기체 입구는 회전축(33) 방향으로 보는 측면도 상에서 볼 때 로터가 회전하면서 기체유입홈(31b)이 지나가는 궤적과 겹치는 원호형으로 이루어져, 로터가 회전하여 분사 구간에서 기체유입홈(31b)이 마감판(13)의 기체 입구(135)와 겹치는 위치에 오면 기체 입구(135)에서 기체유입홈(31b)을 통해 압력 기체가 로터 본체(31)와 케이싱 본체(11)사이 공간으로 유입되고, 베인(35)의 후방면에 힘을 작용시키게 된다.
로터는 기체 압력으로 회전하면서 로터 본체(31)와 케이싱 본체(11) 내벽면 사이가 벌어지는 구간으로 회전하고, 베인 끝단은 원심력에 의해 케이싱 본체(11) 내벽면에 닿은 상태를 유지하면서 계속 홈(31a)에서 더 나오게 되고, 케이싱 본체(11)와 로터 본체(31) 사이의 공간은 증가한다.
본 실시예의 경우 기체 입구가 원호형으로 대략 60도 정도의 중심각에 대응되게 형성되며, 이 기체 입구가 형성된 구간에서는 기체 입구와 기체유입홈이 겹쳐 기체 입구로 들어오는 압력 기체는 모두 기체유입홈을 통해서만 유입되어 기체유입홈과 연결되는 베인의 후면을 충격하여 로터가 회전하도록 작용하게 된다.
또한 케이싱 본체(11)와 로터 본체(31) 사이의 공간은 기체유입홈을 통해 기체 입구와 지속적으로 연결되므로, 증가되는 공간에는 베인 후면을 충격한 압력 기체가 계속 채워지고 채워진 압력 기체는 베인 후방면에 지속적으로 압력을 작용시켜 로터를 회전시키게 된다.
또한, 여기서 기체유입홈(31b)은 케이싱 본체(11)와 로터 본체(31) 사이의 공간은 로터 본체(31)와 케이싱 본체(11) 내벽면 사이가 벌어지기 시작하는 위치에서 기체 입구와 처음 만나며, 여기부터 공간이 증가됨으로써 압력 기체가 기체유입홈(31b)을 통해 일정 구간(원호형 기체 입구와 겹치는 구간)에서 계속 공간으로 유입되면서 로터를 회전시키는 추동력을 효율적으로 작용시키도록 할 수 있다.
일정 구간이 지나 기체유입홈이 기체 입구(135))와 겹치지 않게 되면 기체 입구는 로터 본체(31)의 마감판 대향면에 의해 막혀서 그 기체유입홈(31b)이 속하는 베인 후방 공간에는 압력 기체 유입은 중단된다.
그러나, 공간은 대략 회전 주기의 절반 구간에서 계속 증가한 후 로터 본체(31)와 케이싱 내면(11a) 사이의 최대이격부를 지나면 점차 줄어들게 된다. 공간이 점차 줄어드는 구간에는 기체 출구가 설치되고, 기체 출구는 기체 입구와 달리 반드시 기체유입홈에 겹칠 필요는 없으며, 오히려 기체 배출을 원활히 하기 위해 로터와 케이싱 내면 사이 공간과 폭넓게 겹치게 할 수 있다.
이상은 분사 구간에서 이루어지는 작용을 살펴본 것이며, 무분사 구간에서는 전혀 다른 작용이 이루어진다. 이 무분사 구간을 이루는 전방 베인과 후방 베인 사이의 구간에서 로터 본체 측면에는 기체유입홈이 설치되지 않으므로 무분사 구간에서는 로터 본체 단부 표면이 기체 입구와 겹치는 위치가 되어도 기체 입구는 로터 본체 단부 표면에 의해 닫힌 상태가 되고, 로터 회전에 따라 로터와 케이싱 사이가 점차 이격되면서 이들 사이의 공간이 증가되어도 압력 기체 유입은 없으므로 전방 베인의 후면에 대한 압력 기체의 충격이나 압력 작용이 없고, 베인 모터에서의 로터 회전에 대한 기여는 없게 된다.
그럼에도 불구하고 본 발명에서 이런 무분사 구간을 형성하도록 한 것은 베인 모터의 구체적 용도나 사용처에 따라 큰 출력이 필요하지 않고 오히려 압력 기체의 소모를 줄이는 것이 더 중요한 상황이 있기 때문이다. 이런 상황에서 사용되는 베인 모터에서는 베인 사이의 구간들 가운데 일정 구간 혹은 구간들에서만 압력 기체의 유입이 이루어지고 그에 따른 회전력 발생이 이루어지며, 다른 구간에서는 압력 기체 유입이 차단되어 구동 중에 압력 기체의 소모를 현저하게 줄일 수 있게 된다.
(실시예 2)
도7 내지 도8에 도시된 본 발명의 베인 모터의 제2 실시예를 참조하면,
이 실시예에서는 앞선 실시예 1과 비교할 때 케이싱 내부에 실린더형 내통(20)이 더 설치된다. 내통(20)은 케이싱 본체(11)와 실질적으로 같은 길이를 가져 케이싱의 마감판(13, 15) 내측면과 내통(20)의 길이 방향 양단이 미새한 틈을 개재하면서 접하여 케이싱 내에서 내통(20)이 회전하면 마감판(13, 15) 내측면과 미끌어지는 마찰을 발생시킬 수 있다. 내통(20)은 설치될 때 케이싱 본체(11) 내벽에 설치된 오목부(119)의 복수의 구름수단(19) 위에 놓인다. 여기서 구름수단은 구름대와 롤러로 이루어지며, 구름대는 원기둥형태 혹은 회전축 형태로 이루어질 수 있고, 회전축(33)과 평행하면서 회전 가능하게 설치되어 케이싱 본체(11) 내에서 내통(20)이 회전하면 내통 외측면과 접한 구름대가 회전하여 내통(20)과의 케이싱 본체(11) 내측벽 사이에 내통 회전으로 인한 미끄럼 마찰이 발생하지 않도록 한다.
내통(20) 내에는 회전축(33)을 가진 원기둥형 로터 본체(31)와 로터 본체(31)의 홈에 결합된 베인(35)을 구비한 로터가 설치된다. 로터 본체(31)를 이루는 원기둥의 길이도 케이싱 본체(11)의 길이와 실질적으로 동일하여 로터 회전시 마감판(13, 15) 내면과 원기둥의 양단 표면 사이에도 미세 틈을 개재시킨 상태로 서로 접하면서 미끌어짐 마찰을 발생시킨다.
로터의 회전축(33)은 내통(20)의 가상의 회전중심축과 평행하지만 일정 거리 이격되어 설치된다. 케이싱의 마감판(13, 15)에는 이렇게 설치된 회전축(33)이 관통되거나 걸리는 구멍이 있다. 구멍의 위치는 케이싱이 이루는 실린더의 회전 중심축과도 일정 거리 이격되어 있다.
이런 구성에 의해 케이싱 본체(11) 내에서 로터는 실린더형 내통(20)을 케이싱 본체(11)의 구름수단(19)이 있는 일측으로 밀어붙여 케이싱 본체를 이루는 실린더의 가상의 회전중심축과 실린더형 내통(20)의 가상의 회전중심축도 서로 일정 거리 이격된 상태가 되도록 한다. 로터가 내통(20)을 밀어붙이면서 접하는 곳에서 로터 본체(31)와 내통(20) 내벽면 사이의 거리는 최소가 되어 베인(35)은 홈 내로 완전히 들어가 로터 본체(31)가 내통(20)과 닿거나 베인(35)이 본체(31)로부터 돌출된 폭이 작게 된다. 그 반대편(회전축을 기준으로 반대편)에서는 로터 본체(31)와 내통(20) 내벽면 사이의 거리가 최대가 되어 로터 본체(31)로부터 베인(35)이 돌출된 폭이 크게 된다.
내통(20)은 고정된 것이 아니므로 로터가 회전할 때 베인(35) 끝단과 접한 실린더형 내통(20)에도 마찰에 의해 회전력이 전달되고, 내통(20)도 로터의 최외각을 이루는 각각의 베인 끝단의 위치에서 로터와 거의 같은 선속도로 회전하게 된다. 물론 로터와 내통의 회전수 혹은 각속도는 서로 다를 수 있으며, 다른 것이 통상적이라 볼 수 있다.
(실시예 3)
도9는 본 발명의 베인 모터의 다른 실시예를 나타내는 측면도이고, 도10은 도9의 실시예에서 마감판을 제거한 상태를 나타내는 측면도이다.
이 실시예에서는 기체 입구(235)가 로터 회전시 기체유입홈(31b')이 이동하는 궤적을 따라 설치된 점에서는 공통점이 있지만, 기체 입구가 단순히 하나의 원호형으로 이루어지는 대신에 3개의 원호로 구성되고, 실시예 1에서 원호에 대응하는 중심각이 대략 60도라고 하면, 여기서는 도10에서 보이듯이 3개의 원호에 대응하는 중심각이 가령 111.7도에 이르러 보다 큰 범위에 걸쳐 기체 입구가 형성된다는 차이점이 있다.
이런 차이점에 의해 기체 입구를 이루는 3개의 원호 가운데 적어도 하나는 분사 구간의 기체유입홈(31b')과 겹친 상태를 이루게 된다. 이런 분사 구간과의 겹침 상태는 베인 모터의 시동에 있어서 매우 중요한 의미를 가질 수 있다.
가령, 실시예 1에서 베인 모터를 처음 구동시킬 때, 기체 입구는 분사 구간의 기체유입홈과 겹치는 위치에 있을 수도 있지만, 무분사 구간의 로터 본체 양단 표면에 의해 완전히 막힌 상태에 있을 수도 있다.
기체 입구가 기체유입홈과 겹친 상태라면, 압력 기체가 기체 입구를 통해 유입되는 즉시로 앞서 설명한 바와 같은 작용이 이루어져 압력 기체로부터 회전 구동력을 받아 로터는 회전 구동을 할 수 있지만, 기체 입구가 무분사 구간에 위치하여 로터 본체 양단 표면에 의해 막힌 상태라면, 로터는 전혀 회전력을 받을 수 없고 베인 모터는 동작을 시작할 수 없게 된다.
이런 경우, 베인 모터를 시동할 때 외력에 의해 로터를 강제로 조금 돌려주면 그 회전에 따라 기체 입구가 기체유입홈과 겹치는 분사 구간에 진입할 수 있고, 그에 따라 로터의 회전 동작이 계속적으로 이루어질 수 있겠지만, 강제로 돌려주는 별도의 시동 장치나 수동 동작이 필요하고, 이는 베인 모터 운용을 매우 번거롭게 할 수 있다.
그러나, 본 실시예의 경우, 로터 본체(31')가 어느 회전 위치 혹은 위상에 있든지 적어도 기체 입구(235) 일부 영역은 로터 본체 양단 표면의 기체유입홈(31b')이 형성된 분사 구간에 겹쳐 위치하게 된다. 따라서, 별도의 시동 장치나 수동 동작이 없어도 항상 베인 모터 시동이 문제없이 이루어질 수 있게 된다.
또한, 시동 및 토크 증대, 운전 목적으로 3개의 기체 입구를 개방, 운전하고 로터가 일정 회전속도를 유지하게 되면 압력 기체 소비를 줄이고자 반시계 방향 순서로 기체 입구(235)를 차단할 수 있다.
한편, 앞선 실시예 1의 설명에 따르면, 무분사 구간을 이루는 전방 베인과 후방 베인 사이의 구간에서 로터 본체 양단 표면에는 기체유입홈이 설치되지 않으므로 무분사 구간에서는 로터 본체 양단 표면이 기체 입구와 겹치는 위치가 되어도 기체 입구는 로터 본체 양단 표면에 의해 닫힌 상태가 되고, 로터 회전에 따라 로터와 케이싱 사이가 점차 이격되면서 이들 사이의 공간이 증가되어도 압력 기체 유입은 없으므로 전방 베인의 후면에 대한 압력 기체의 충격이나 압력 작용이 없고, 베인 모터에서의 로터 회전에 대한 기여는 없게 된다.
그런데, 기체 유입 없이 무분사 구간에서 공간의 부피 증가가 이루어지면 이 공간은 상당한 음압이 걸리는 저압 상태가 된다. 이런 음압은 분사 구간의 압력 기체가 무분사 구간으로 누출될 염려를 크게 할 수 있고, 로터의 회전을 방해할 수 있고, 이런 음압의 무분사 구간의 공간이 기체 출구를 만나면 기체 출구에서 공간으로 기체의 급속한 유입이 발생하면서 진동과 소음을 일으키는 문제가 발생하고, 이에 따라 베인 모터의 효율을 감소시키는 문제가 생길 수 있다.
이런 문제를 해소하기 위해 이 실시예에서는 앞선 실시예 1과 비교할 때, 무분사 구간의 공간과 연결되는 통로를 설치하고 있다. 이러한 통로로서, 가령, 도 10에서 보이듯이 로터 본체(31')의 양단 표면에 회전축(33)을 중심으로 볼 때 회전축 외측이면서 홈(31a))의 가장 내측 끝단보다 조금 더 중심쪽에 고리 형태의 통로용 홈(31c))을 형성하고, 통로용 홈(31c)의 일부 영역에는 통로용 홀(31d)을 형성할 수 있다.
통로용 홀(31d)은 여기서는 명확하게 도시되지 않지만 로터 본체(31')를 통해 무분사 구간의 로터 본체 측면에 형성된 연결홀과 연결된다. 그리고 어떤 무분사 구간의 로터 본체 측면이라도 통로용 홀(31d)의 적어도 하나와는 연결된다. 또한, 여기서 모든 통로용 홀(31d)은 고리 형태의 통로용 홈(31c)에 의해 서로 공기를 주고받을 수 있도록 연결된다. 그 결과, 모든 무분사 구간의 로터 측면과 케이스 사이의 공간은 서로 연결되어 공기를 주고 받을 수 있게 된다.
만약 무분사 구간의 적어도 하나는 압력 기체 유출구 혹은 기체 출구(233)와 연결된다면 모든 무분사 구간의 공간은 기체 출구(233)의 공기압에 가까운 공기압을 항상 가질 수 있고, 과도한 음압이 걸여 베인 모터의 진동, 소음, 비효율을 초래하는 것을 효과적으로 방지할 수 있다.
(실시예 4)
도11 및 도12는 본 발명의 제4 실시예를 이루는 베인 모터의 로터 및 베인 부분에 대한 사시도 및 측면도이다.
앞선 도1의 실시예와 비슷하게 이 실시예에서도 베인 모터는 최외각을 이루는 케이싱 본체(311)와, 이 케이싱 본체 내에 위치하는 로터 본체(331)를 구비하여 이루어지며, 여기서 특별히 설명하는 바를 제외하면 대개는 기존의 케이싱과 로터의 구성과 유사하게 이루어질 수 있다. 가령 케이싱은 대략 실린더 형태의 케이싱 본체(311)와 이 케이싱 본체(311)의 길이 방향 양단을 마감하는 마감판(미도시)을 구비하여 이루어진다.
로터 본체(330)는 원기둥형 혹은 두꺼운 원판형으로 이루어지며, 원기둥의 측면에는 베인이 설치되는 베인 가이드홈 또는 홈(331a)이 형성된다. 마감판의 적어도 하나, 여기서는 모두에 로터 회전축(333)이 거치되거나 통과하는 회전축 설치구멍이 설치된다. 회전축(333)은 로터 본체(331)와 일체로 형성될 수 있다.
단, 앞선 실시예와 달리 이 실시예에서는 로터 본체와 베인(335)의 상호 결합 및 동작 방식에 차이가 있고, 그에 따른 베인과 베인을 가이드하도록 로터 본체 측면에 형성되는 홈(331a)인 베인 가이드 홈의 형태적 차이가 있다. 즉, 베인(335)은 측면도에서 볼 때 원호 형상을 가지는 두꺼운 판상으로 이루어지고, 베인 가이드 홈(331a)은 이런 베인을 수용할 수 있는 원호 형상의 홈으로 이루어진다.
또한 베인(335)은 베인의 일측(회전 방향을 고려할 때 앞쪽인 전방측)에 설치되는 링크로드(337)에 의해 로터 본체(330) 일부에 설치되는 힌지축(339)에 연결되고 이 링크로드(337) 및 힌지축(339)에 의해 회전 가능하게 로터 본체(330)에 결합된다.
링크로드(337) 및 힌지축(339)은 로터 전체 두께(회전축 방향의 전체 길이)에 걸쳐 형성되지 않고 일부 두께에 걸쳐 형성될 수 있으며, 여기서는 로터의 회전축 방향의 중간에 하나 형성된다. 물론, 링크로드는 로터의 회전축 방향 일단에서 마감판과 마주보는 위치에 로터 두께에 비해 얇은 두께로 형성될 수도 있고, 로터의 회전축 방향의 다른 일단에도 하나 더 설치되어 두 개가 회전축 방향 양단에 대칭적으로 설치될 수 있으며, 이런 경우, 보다 안정적으로 왕복 각운동을 할 수 있도록 베인을 로터에 지지할 수 있다.
또한, 링크로드(337)는 베인(335)의 상단(로터의 회전중심축 기준으로 최외각)에 결합되고, 힌지축(339)은 로터 본체(330)의 표면층(외각층)에 설치된다. 따라서 여기서는 베인(335)이 베인 가이드홈(331a)에 최대한 수용될 때 로터의 링크로드 수용홈은 일 단부에 최소 깊이로 형성되어 설치가 용이하고, 링크로드가 차지하는 부피가 최소화될 수 있다. 단, 링크로드 수용홈은 베인(335)이 움직일 때 링크로드(337)가 직접 로터 본체(330)와 부딪혀 진동을 발생시키지 않도록 약간의 여분 깊이를 가지도록 하는 것이 바람직하며, 베인 가이드홈(331a)도 마찬가지로 약간의 여분 깊이를 가지도록 하는 것이 바람직하다.
그러나, 여기서도 본 발명의 도9에 도시된 다른 실시예와 같이 복수의 베인(335) 사이 구간 중 적어도 일부인 무분사 구간에는 로터 회전시 하나의 주기에서 압력 기체가 유입되지 않도록 하기 위해, 로터 본체(330)의 양단 표면에 베인과 베인 사이의 공간으로 연결되는 기체유입홈(331b)을 형성하고, 마감판에는 로터 본체가 회전할 때 기체유입홈(331b)이 이동하는 궤적과 겹치는 위치에 원호 형태의 압력 기체 유입구(기체 입구)를 형성하여 베인 사이 공간에 압력 기체를 공급하되, 로터 회전시 압력 기체 유입구와 통하는 기체유입홈(331b)은 베인(335) 두 개당 하나씩 번갈아 형성하고 있다. 따라서 베인 사이의 구간은 무분사 구간과 분사 구간이 번갈아 위치하고 있다.
여기서도 기체유입홈(331b)을 형성할 때 특히 로터 본체(330)와 베인(335)을 결합시키는 홈(331a)의 길이 방향 양단 모두에서 홈을 이루는 입구 가운데 회전 방향 기준으로 뒤쪽에 있는 후방부 입구에서 로터 본체가 부분적으로 제거되어 베인(335)의 후방면을 더 드러내도록 기체유입홈(331b)을 설치하고 있다. 기체유입홈을 이루는 곡면은 오목한 면을 이루어 기체 입구로 투입된 압력 기체가 베인의 후면으로 압력을 작용시키기 용이하게 형성하였다.
따라서, 로터에서의 베인의 동작을 제외하고, 분사 구간에서는 마감판의 기체 입구에서 로터 본체 양단 표면의 기체유입홈을 통해 베인 사이 공간으로 유입되는 압력 기체는 전방 베인에 충격력 및 압력을 작용시켜 로터 회전력을 제공하고, 무분사 구간에서는 압력 기체가 유입되지 못하여 무분사 구간은 로터 회전력에 도움이 되지 않지만 베인 모터의 압력 기체 소모를 줄일 수 있고 베인 모터의 회전효율을 높이는 점은 앞선 실시예들과 동일한 맥락으로 설명될 수 있다.
이상에서는 한정된 실시예를 통해 본 발명을 설명하고 있으나, 이는 본 발명의 이해를 돕기 위해 예시적으로 설명된 것일 뿐 본원 발명은 이들 특정의 실시예에 한정되지 아니한다.
따라서, 당해 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명을 토대로 다양한 변경이나 응용예를 실시할 수 있을 것이며 이러한 변형례나 응용예는 첨부된 특허청구범위에 속함은 당연한 것이다.
11, 11', 311: 케이싱 본체 13, 15: 마감판
17: 베어링 19: 구름수단
20: 내통 31, 231, 330: 로터 본체
31a, 231a, 331a: 홈 31b, 31b', 331b: 기체유입홈(확장부)
33, 333: 회전축 35, 235, 335: 베인
119: 내벽 오목부 135, 235 : 기체 입구
133, 233 : 기체 출구
17: 베어링 19: 구름수단
20: 내통 31, 231, 330: 로터 본체
31a, 231a, 331a: 홈 31b, 31b', 331b: 기체유입홈(확장부)
33, 333: 회전축 35, 235, 335: 베인
119: 내벽 오목부 135, 235 : 기체 입구
133, 233 : 기체 출구
Claims (9)
- 압력 기체가 투입되고 배출되는 기체 입구 및 기체 출구를 가지는 케이싱, 상기 케이싱 내에서 압력 기체의 압력을 전달받아 케이싱에 거치된 회전축을 중심으로 회전하도록 이루어진 로터를 구비하고, 상기 로터는 상기 회전축과 일치하는 중심축을 가진 전체적으로 원기둥 형태의 로터 본체와 상기 로터 본체의 측면에 형성된 홈(베인 가이드 홈)에 설치되며 회전 위상에 따라 상기 홈으로부터 돌출되는 폭이 변화하는 베인을 가지는 베인 모터에 있어서,
상기 로터의 회전시 복수의 베인 사이 구간들 중 일부인 무분사 구간에는 압력 기체가 유입되지 않고 상기 무분사 구간을 제외한 나머지 구간인 분사 구간에서는 압력 기체가 유입될 수 있도록 이루어지는 것을 특징으로 하는 베인 모터. - 제 1 항에 있어서,
상기 베인 사이의 구간들은 상기 무분사 구간과 상기 분사 구간이 번갈아 위치하도록 형성되는 베인 모터. - 제 1 항에 있어서,
상기 베인 사이의 구간들 가운데 상기 무분사 구간에 해당하는 베인 사이 공간들 상호간을 연결하는 통로가 설치되어 상기 무분사 구간에 해당하는 베인 사이 공간들 내에서의 음압 발생 억제가 이루어지도록 형성된 것을 특징으로 하는 베인 모터. - 제 1 항에 있어서,
언제나 상기 기체 입구의 적어도 일부는 상기 분사 구간에 해당하는 베인 사이의 공간들 가운데 적어도 하나와 연결되어 베인 모터 초기 구동시 압력 기체가 상기 로터에 회전력을 전달할 수 있도록 이루어지는 베인 모터. - 제 1 항에 있어서,
상기 베인은 상기 로터에 설치된 상기 홈에 출입할 때 원호 구간을 왕복하는 각운동을 하도록 이루어지는 베인 모터. - 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
상기 무분사 구간을 형성하기 위해, 상기 로터 본체 양단 가운데 적어도 일 측의 표면인 단부 표면에 베인과 베인 사이의 공간으로 연결되는 기체유입홈을 형성하고,
상기 케이싱은 원통형 부분과 상기 원통형 부분의 양단을 마감하는 마감판 부분을 구비하여 이루어지고,
상기 마감판에는 상기 로터의 본체가 회전할 때 상기 기체유입홈이 이동하는 궤적과 겹치는 위치에 상기 기체 입구를 형성하여 상기 베인 사이 공간에 압력 기체를 공급하고,
상기 로터 회전시 상기 기체 입구와 통할 수 있는 상기 기체유입홈은 상기 베인의 개수보다 작은 개수로 형성하여 복수의 베인 사이 공간들 가운데 일부에만 압력 유체가 공급될 수 있도록 하고, 복수의 베인 사이 공간들 가운데 나머지는 압력 유체가 공급될 수 없도록 이루어진 베인 모터. - 제 6 항에 있어서,
상기 케이싱이 원통형 부분의 양단을 원판 형태의 마감판이 폐쇄하는 형태로 이루어지고, 상기 로터와 상기 케이싱의 원통형 부분 사이에는 상기 원통형 부분 내부에서 상기 로터의 회전에 따라 회전할 수 있는 실린더형 내통이 구비되고,
상기 내통은 상기 기체 입구를 통해 투입된 압력 기체가 상기 기체 출구를 통해 배출될 때까지 압력 기체를 내부에 보유하며,
상기 내통의 내측면(내벽면)은 상기 베인의 외측 끝단과 접하여 상기 로터와 함께 회전할 수 있도록 이루어지는 베인 모터. - 제 7 항에 있어서,
상기 기체유입홈은 상기 로터 본체와 상기 베인을 결합시키는 상기 홈의 길이 방향 양단 중 적어도 하나에서 상기 홈을 이루는 입구 가운데 회전 방향 기준으로 뒤쪽에 있는 후방부 입구가 부분적으로 제거되어 상기 베인의 후방면을 더 드러내도록 설치되고,
상기 마감판의 적어도 하나에는 상기 기체 입구가 설치되되 상기 기체 입구는 상기 회전축 방향으로 보는 측면도 상에서 볼 때 상기 로터가 회전하면서 상기 기체유입홈이 지나가는 궤적과 겹치는 위치에 단일의 원호나 단일의 원호를 따라 이격된 복수의 원형 홀이나 복수의 원호로 설치되어,
상기 로터가 회전하여 상기 기체유입홈이 상기 기체 입구와 겹치는 위치에 오면 상기 기체 입구에서 상기 기체유입홈을 통해 압력 기체가 상기 로터의 본체와 상기 케이싱 사이의 공간으로 유입되고,
유입되는 과정에서 상기 베인의 후방면에 충격력을 작용시키도록 이루어지는 베인 모터. - 제 6 항에 있어서,
상기 기체유입홈은 상기 로터 본체와 상기 베인을 결합시키는 상기 홈의 길이 방향 양단 중 적어도 하나에서 상기 홈을 이루는 입구 가운데 회전 방향 기준으로 뒤쪽에 있는 후방부 입구가 부분적으로 제거되어 상기 베인의 후방면을 더 드러내도록 설치되고,
상기 마감판의 적어도 하나에는 상기 기체 입구가 설치되되 상기 기체 입구는 상기 회전축 방향으로 보는 측면도 상에서 볼 때 상기 로터가 회전하면서 상기 기체유입홈이 지나가는 궤적과 겹치는 위치에 설치되어
상기 로터가 회전하여 상기 기체유입홈이 상기 기체 입구와 겹치는 위치에 오면 상기 기체 입구에서 상기 기체유입홈을 통해 압력 기체가 상기 로터의 본체와 상기 케이싱 사이의 공간으로 유입되고,
유입되는 과정에서 상기 베인의 후방면에 충격력을 작용시키도록 이루어지는 베인 모터.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210033572A KR102491035B1 (ko) | 2021-03-15 | 2021-03-15 | 베인 모터 |
PCT/KR2022/003522 WO2022197030A1 (ko) | 2021-03-15 | 2022-03-14 | 베인 모터 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210033572A KR102491035B1 (ko) | 2021-03-15 | 2021-03-15 | 베인 모터 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220128870A KR20220128870A (ko) | 2022-09-22 |
KR102491035B1 true KR102491035B1 (ko) | 2023-01-26 |
Family
ID=83321476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210033572A KR102491035B1 (ko) | 2021-03-15 | 2021-03-15 | 베인 모터 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102491035B1 (ko) |
WO (1) | WO2022197030A1 (ko) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101507311B1 (ko) | 2014-12-02 | 2015-04-07 | 주식회사 액솔 | 자동제어밸브를 이용한 양방향 회전 제어가 가능한 에어모터 |
KR102227744B1 (ko) | 2019-12-19 | 2021-03-15 | 이엑스디엘 주식회사 | 베인 모터 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5174742A (en) * | 1992-02-03 | 1992-12-29 | Snap-On Tools Corporation | Rotary air motor with curved tangential vanes |
JPH08144701A (ja) * | 1994-11-18 | 1996-06-04 | Uriyuu Seisaku Kk | エアーモータ |
JP4662246B2 (ja) * | 2005-03-23 | 2011-03-30 | パナソニック株式会社 | 膨張機 |
MX2008011432A (es) * | 2006-03-06 | 2008-11-18 | Nebojsa Boskovic | Maquina de paleta con partes de cilindro estacionario y giratorio. |
DK176914B1 (da) * | 2009-02-25 | 2010-04-26 | Liftra Aps | Hydraulisk trækenhed -eller pumpe. |
JP2012237204A (ja) * | 2011-05-10 | 2012-12-06 | Nakanishi:Kk | ベーン式エアモータ |
KR101116511B1 (ko) | 2011-10-05 | 2012-02-28 | 이병록 | 라이너가 구성된 에어베인모터 |
JP6420644B2 (ja) * | 2014-11-28 | 2018-11-07 | 日東工器株式会社 | ベーン式エアモータ及びベーン式エアモータを備えるエア工具 |
KR101874583B1 (ko) | 2016-06-24 | 2018-07-04 | 김재호 | 베인모터 |
-
2021
- 2021-03-15 KR KR1020210033572A patent/KR102491035B1/ko active IP Right Grant
-
2022
- 2022-03-14 WO PCT/KR2022/003522 patent/WO2022197030A1/ko active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101507311B1 (ko) | 2014-12-02 | 2015-04-07 | 주식회사 액솔 | 자동제어밸브를 이용한 양방향 회전 제어가 가능한 에어모터 |
KR102227744B1 (ko) | 2019-12-19 | 2021-03-15 | 이엑스디엘 주식회사 | 베인 모터 |
Also Published As
Publication number | Publication date |
---|---|
WO2022197030A1 (ko) | 2022-09-22 |
KR20220128870A (ko) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102227744B1 (ko) | 베인 모터 | |
CN103717901B (zh) | 具有正排量辅助泵送系统的正排量回转泵 | |
KR100449312B1 (ko) | 쌍원통임펠러형펌프 | |
EP3740679B1 (en) | A co-rotational scroll machine | |
KR20190129372A (ko) | 개선된 랩 구조를 구비한 압축기 | |
KR20080047295A (ko) | 베인 펌프 | |
KR102491035B1 (ko) | 베인 모터 | |
US2969743A (en) | Rotary slidable-vane machines | |
JPH11132162A (ja) | 圧縮性媒体のための排出機 | |
KR100321687B1 (ko) | 유체펌프 | |
KR102491034B1 (ko) | 베인 모터 | |
KR20220128871A (ko) | 베인 모터 | |
KR102491036B1 (ko) | 베인 모터 시스템 | |
KR102428799B1 (ko) | 베인 모터 | |
KR100551525B1 (ko) | 로터리 피스톤 머신 | |
KR102448868B1 (ko) | 압축기 | |
KR102329423B1 (ko) | 압축기 | |
KR102318551B1 (ko) | 압축기 | |
KR102617006B1 (ko) | 공심형 공압모터 | |
JPH11132185A (ja) | 圧縮性媒体のための排出機 | |
US5141423A (en) | Axial flow fluid compressor with oil supply passage through rotor | |
CN210565070U (zh) | 涡旋压缩机的压缩机构和涡旋压缩机 | |
KR101218502B1 (ko) | 오일펌프 | |
KR102194655B1 (ko) | 누출 방지 성능이 향상된 펌프용 실링시스템 | |
KR20220076007A (ko) | 베인 모터 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |