KR102442468B1 - 로터리 압축기 - Google Patents
로터리 압축기 Download PDFInfo
- Publication number
- KR102442468B1 KR102442468B1 KR1020200148741A KR20200148741A KR102442468B1 KR 102442468 B1 KR102442468 B1 KR 102442468B1 KR 1020200148741 A KR1020200148741 A KR 1020200148741A KR 20200148741 A KR20200148741 A KR 20200148741A KR 102442468 B1 KR102442468 B1 KR 102442468B1
- Authority
- KR
- South Korea
- Prior art keywords
- eccentric
- oil
- oil supply
- bearing
- sub
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 83
- 230000004323 axial length Effects 0.000 claims abstract description 57
- 238000007906 compression Methods 0.000 claims description 144
- 230000006835 compression Effects 0.000 claims description 143
- 238000005086 pumping Methods 0.000 claims description 107
- 238000000034 method Methods 0.000 claims description 35
- 238000004891 communication Methods 0.000 claims description 27
- 230000001965 increasing effect Effects 0.000 abstract description 41
- 239000003507 refrigerant Substances 0.000 description 42
- 230000008878 coupling Effects 0.000 description 26
- 238000010168 coupling process Methods 0.000 description 26
- 238000005859 coupling reaction Methods 0.000 description 26
- 230000005540 biological transmission Effects 0.000 description 24
- 238000003860 storage Methods 0.000 description 21
- 238000007789 sealing Methods 0.000 description 17
- 238000004519 manufacturing process Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 9
- 239000013585 weight reducing agent Substances 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 230000033001 locomotion Effects 0.000 description 6
- 230000001050 lubricating effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000009751 slip forming Methods 0.000 description 6
- 238000005461 lubrication Methods 0.000 description 5
- 230000000994 depressogenic effect Effects 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229910000976 Electrical steel Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C23/00—Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
- F04C23/02—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/18—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber
- F04C28/22—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/0085—Prime movers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/10—Stators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/20—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/30—Casings or housings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/40—Electric motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2240/00—Components
- F04C2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2210/00—Working fluid
- F05B2210/10—Kind or type
- F05B2210/14—Refrigerants with particular properties, e.g. HFC-134a
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/10—Stators
- F05B2240/14—Casings, housings, nacelles, gondels or the like, protecting or supporting assemblies there within
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/50—Bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2260/00—Function
- F05B2260/40—Transmission of power
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Supercharger (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
본 실시예에 따른 로터리 압축기는, 편심부의 양측에 각각 베어링부가 구비되고, 편심부와 적어도 한쪽 베어링부 사이에는 롤러를 편심부에 삽입하기 전에 롤러의 조립위치를 정렬하는 롤러정렬부가 형성될 수 있다. 이에 따라, 베어링부의 외경이 증가되어 그 베어링부의 외주면이 편심부의 외주면보다 반경방향으로 돌출된 상태에서도 롤러를 편심부에 쉽게 조립할 수 있다. 이를 통해, 베어링부의 외경을 늘려 베어링면적을 확보하면서도 베어링부의 축방향길이를 줄여 압축기를 소형화할 수 있다.
Description
본 발명은 로터리 압축기에 관한 것이다.
압축기는 전동부에서 발생되는 동력을 압축부로 전달하여 냉매를 압축하는 기기이다. 전동부와 압축부가 같은 쉘의 내부에 설치될 수도 있고, 서로 다른 쉘에 설치되어 별도의 동력전달기구를 이용하여 연결될 수도 있다. 전자를 밀폐형 압축기라고 하고, 후자를 개방형 압축기라고 한다.
밀폐형 압축기는 쉘의 내부공간에 채워지는 냉매에 따라 저압식 압축기와 고압식 압축기로 구분된다. 저압식 압축기는 냉동사이클을 순환한 저온 저압의 냉매가 쉘의 내부공간에 채워지는 방식이고, 고압식 압축기는 압축부에서 토출된 고온 고압의 냉매가 쉘의 내부공간에 채워지는 방식이다.
저압식 압축기는 쉘의 내부공간이 저온의 냉매로 채워짐에 따라 전동부를 이루는 모터를 냉각시켜 모터효율이 향상될 수 있다. 반면, 고압식 압축기는 압축부에서 토출되는 냉매가 쉘의 내부공간을 순환하게 되어 유분리 효과가 향상될 수 있다.
또한, 밀폐형 압축기는 전동부와 압축부의 위치에 따라 하부압축형과 상부압축형으로 구분될 수 있다. 하부압축형은 압축부가 전동부보다 하측에 위치하는 방식이고 상부압축형은 압축부가 전동부보다 상측에 위치하는 방식이다.
하부압축형은 압축부가 쉘에 저장된 오일과 인접하여 급유에는 유리하지만, 고온의 루프파이프가 쉘에 저장된 오일에 잠겨 오일점도가 낮아질 수 있다. 반면, 상부압축형은 하부압축형에 비해 압축부와 오일 사이의 간격이 멀어지면서 급유에는 불리하지만, 고온의 루프파이프가 쉘에 저장된 오일에 잠기지 않아 오일점도를 유지하는데 유리할 수 있다.
또한, 밀폐형 압축기는 전동부와 압축부를 포함한 압축기본체를 지지하는 방식에 따라 쉘지지형과 스프링지지형으로도 구분될 수 있다. 쉘지지형은 압축기본체가 쉘에 고정되어 지지되는 방식이고, 스프링지지형은 압축기본체가 쉘로부터 분리되어 스프링에 의해 지지되는 방식이다.
쉘지지형은 압축기본체를 쉘에 고정함에 따라 압축기본체를 견고하게 지지하게 되어 압축기본체의 진동은 낮지만 압축기 진동은 증가하게 된다. 반면 스프링지지형은 압축기본체를 스프링으로 지지함에 따라 압축기본체의 진동은 증가하지만 압축기본체의 진동이 스프링에 의해 감쇄되므로 쉘 진동이 감소하면서 압축기 진동은 낮아지게 된다. 다만, 스프링지지형은 압축기본체가 쉘의 내부에서 진동하게 되므로 압축기본체와 쉘 사이의 간격이 더 필요하게 되어 압축기 소형화에는 불리할 수 있다.
또한, 밀폐형 압축기는 회전축을 지지하는 방식에 따라 일단지지형과 양단지지형으로 구분될 수 있다. 일단지지형은 회전축이 압축부를 중심으로 한쪽에서만 지지되는 방식이고, 양단지지형은 회전축이 압축부를 중심으로 양쪽에서 지지되는 방식이다.
일단지지형은 회전축의 일측에만 베어링면을 형성함에 따라 회전축과 이에 대응하는 베어링부재에 대한 제조 및 조립은 용이하다. 하지만 베어링하중이 증가하고 회전축을 일단에서만 지지함에 따라 회전축의 거동이 불안정하게 되어 압축실 간 누설이 발생될 수 있다. 반면 양단지지형은 회전축의 축방향 양측에 베어링면을 형성함에 따라 회전축과 이에 대응하는 베어링부재에 대한 제조 및 조립은 곤란할 수 있다. 하지만 베어링하중이 양쪽 베어링부재로 고르게 분배되어 각 베어링부재에 대한 베어링하중이 감소하는 동시에, 회전축을 양쪽에서 지지함에 따라 회전축의 거동이 안정되면서 압축실 간 누설을 효과적으로 억제할 수 있다.
특허문헌 1(한국공개특허 제10-2000-0059891호)에는 저압식이면서 상부압축형이고 양단지지형인 로터리 압축기를 개시한다. 특허문헌 1은 전동부와 압축부를 포함한 압축기본체가 쉘의 내주면에 밀착되어 고정되는 쉘 고정 방식으로 이루어진다. 이는 전술한 바와 같이 압축기 진동이 가중될 수 있다.
특허문헌 2(일본공개특허 제2004-232524호)에는 저압식이면서 쉘지지형인 로터리 압축기를 개시한다. 특허문헌 2는 이중 쉘 구조로 이루어져 내부쉘에 압축기본체가 쉘지지형으로 고정되고, 내부쉘은 외부쉘에 스프링지지형으로 지지되어 있다. 내부쉘의 내부공간은 토출된 냉매가 채워져 고압상태이고, 이 냉매는 외부쉘의 내부공간을 거치지 않고 직접 토출된다. 이에 따라, 외부쉘의 내부공간은 저압상태를 유지하게 된다.
특허문헌 2는 전동부를 감싼 내부쉘이 외부쉘의 내부공간에 채워진 냉매에 의해 냉각되어 모터 효율이 개선될 수 있다. 또한, 압축기본체가 고정된 내부쉘이 외부쉘에 스프링으로 지지됨에 따라 압축기본체의 진동을 어느정도 개선하는 동시에 쉘 진동도 낮출 수 있다.
하지만, 특허문헌 2는 쉘이 내부쉘과 외부쉘로 이루어져 압축기의 부피와 무게가 증가하고, 부품수가 증가하여 제조비용이 상승하게 될 수 있다. 또한, 특허문헌 2는 저압식이면서 하부압축형으로 이루어져 루프파이프를 길게 설치할 공간적 여유가 부족할 뿐만 아니라, 루프파이프가 쉘에 저장된 오일에 잠겨 오일의 온도가 상승하게 되고 이로 인해 오일점도가 낮아져 압축기본체에서의 마찰손실이 발생될 수 있다.
이에, 특허문헌 3(중국공개특허 제101260884 A)과 같은 로터리 압축기가 제시된 바 있다. 특허문헌 3에 개시된 로터리 압축기는 저압식이면서 상부압축형이고 스프링지지형이며 양단지지형으로 이루어져 있다.
특허문헌 3은 단일 쉘로 이루어져 압축기의 부피와 무게를 줄일 수 있고 부품수를 줄여 제조비용을 절감할 수 있다. 또한, 압축부가 전동부보다 상측에 위치함에 따라 루프파이프가 오일에 잠기지 않도록 하여 오일온도의 상승을 막고 오일온도의 상승시 발생되는 오일점도의 과도한 저하를 막아 압축부에서의 마찰손실을 줄일 수 있다. 아울러, 특허문헌 3은 쉘의 상부 공간을 이용하여 루프파이프를 길게 형성할 수 있으므로 그만큼 압축기의 진동을 줄일 수 있고, 회전축의 양단을 지지함에 따라 베어링하중이 감소되는 동시에 압축실 간 누설을 효과적으로 억제할 수 있다.
또한, 앞서 설명한 특허문헌들에 개시된 종래의 로터리 압축기는 모두 양단지지형으로 이루어짐에 따라 각 베어링부재에 대한 베어링하중이 감소되는 동시에 회전축의 거동이 안정되어 압축실 간 누설을 효과적으로 억제할 수 있다.
이러한 종래의 로터리 압축기는, 회전축의 상반부에 편심부가 형성되고, 편심부를 중심으로 하측에는 메인베어링부가, 상측에는 서브베어링부가 각각 형성된다. 편심부의 외주면에는 환형으로 된 롤러가 회전 가능하게 삽입된다. 롤러는 편심부의 하단에서 상단방향으로 삽입될 수도 있고, 반대로 상단에서 하단방향으로 삽입될 수도 있다.
또한, 종래의 로터리 압축기는, 메인베어링부의 베어링면적과 서브베어링부의 베어링면적, 그리고 편심부의 외경은 서로 연관되며 이들은 압축기의 소형화 여부와도 연관된다.
예를 들어, 상부압축형이며 양단지지형인 로터리 압축기는, 편심부의 중심에서 메인베어링부의 중심까지의 거리가 멀면 서브베어링부에서의 베어링하중이 증가하게 된다. 그러면 서브베어링부의 베어링면적이 확대되어야 하므로 결국 서브베어링부의 외경을 넓히거나 축방향길이를 증가시켜야 한다.
하지만, 서브베어링부의 외경이 확대되면 롤러의 조립을 고려하여 편심부의 외경도 증가하게 되고, 편심부의 외경이 증가되면 베어링 부하가 증가하는 것은 물론 회전축의 무게가 증가하여 모터효율이 저하되면서 압축기 성능이 저하될 수 있다. 뿐만 아니라 동일한 압축실 체적에서 편심부의 외경이 증가하는 만큼 실린더의 내경이 증가하게 되어 결국 압축기의 소형화 및 경량화 측면에서 불리하게 된다. 아울러 압축기의 진동소음 측면에서도 불리하게 될 수 있다.
반면, 서브베어링부의 축방향길이가 길어지면 회전축의 전체길이가 증가하게 되어 압축기의 축방향높이가 높아지면서 압축기의 소형화 측면에서 불리하게 된다.
또한, 상부압축형이며 양단지지형인 종래의 로터리 압축기는, 회전축의 내부에서 외부로 연결되는 오일펌핑통로가 형성되고, 오일펌핑통로의 하단에는 오일펌프가 적용되어 쉘에 저장된 오일을 펌핑하여 압축부를 향해 회전축의 하단에서 상단으로 이송시키고 있다.
통상 오일펌프는 트로코이드기어가 적용되는 기어펌프, 스크류 기어가 적용되는 점성펌프, 프로펠러가 적용되는 원심펌프가 주로 알려져 있다. 기어펌프는 구조가 복잡하고 제조비용이 고가여서 불리하다. 점성펌프는 회전축에 대해 스크류 기어를 고정하는 구조가 복잡하고, 오일이 나선형으로 된 긴 펌핑통로를 통과하여야 하므로 운전속도에 따른 펌핑량의 변동이 크게 발생될 수 있다. 원심펌프는 앞선 기어펌프 및 점성펌프에 비해 상대적으로 저렴하며 구조적으로 단순하나, 동일 규격 대비 급유가능높이가 제한적이라는 단점이 있다.
본 발명의 첫째 목적은, 편심부를 사이에 두고 회전축의 양단을 지지하는 양단지지형에서 베어링부의 베어링면적은 유지하면서도 축방향길이를 줄여 회전축의 전체길이를 줄이고 이를 통해 압축기의 소형화를 이룰 수 있는 로터리 압축기를 제공하려는데 있다.
나아가, 본 발명은 양쪽 베어링부의 반경이 편심부의 최단편심반경보다 크거나 같게 형성되면서도 베어링부의 축방향길이를 줄일 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.
더 나아가, 본 발명은 양쪽 베어링부의 반경이 편심부의 최단편심반경보다 크게 형성되면서도 롤러가 양쪽 베어링부 중에서 한쪽 베어링부를 통과하여 편심부에 삽입될 수 있도록 편심부와 베어링부 사이에 롤러정렬부를 형성함으로써 양쪽 베어링부의 축방향길이를 줄일 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.
본 발명의 둘째 목적은, 편심부를 사이에 두고 회전축의 양단을 지지하는 양단지지형에서 압축실 체적을 동일하게 유지하면서도 편심부의 외경을 줄여 압축기의 소형화 및 경량화, 저진동화를 이룰 수 있는 로터리 압축기를 제공하려는데 있다.
나아가, 본 발명은 편심부의 최단편심반경이 그 편심부의 양측에 구비되는 양쪽 베어링부의 반경보다 작거나 같게 형성될 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.
더 나아가, 본 발명은 편심부의 최단편심반경이 그 편심부의 양측에 구비되는 양쪽 베어링부의 반경보다 작거나 같게 형성되면서도 롤러가 편심부에 원활하게 삽입될 수 있도록 하여 편심부의 외경을 줄일 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.
본 발명의 셋째 목적은, 상부압축형이고 양단지지형이면서 오일을 회전축의 하단에서 상단까지 원활하게 이송시킬 수 있는 로터리 압축기를 제공하려는데 있다.
나아가, 본 발명은 오일을 회전축의 하단에서 상단까지 원활하게 이송시키면서도 오일펌프에 대한 제조비용을 절감할 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.
더 나아가, 본 발명은 상대적으로 저렴한 원심펌프를 적용하면서도 오일이 회전축의 상단을 향해 원활하게 이송될 수 있도록 하여 회전축의 직경이 비대해지는 것을 억제할 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.
본 발명의 넷째 목적은, 저압식이고 상부압축형이며 스프링지지형이고 양단지지형이면서 쉘에 저장된 오일이 압축부에 공급될 수 있는 로터리 압축기를 제공하려는데 있다.
나아가, 본 발명은 압축부로 공급되는 오일이 베인과 베인슬롯 사이로 원활하게 공급되도록 급유안내부가 구비되는 로터리 압축기를 제공하려는데 그 목적이 있다.
더 나아가, 본 발명은 압축부로 공급되는 오일 또는 압축되는 냉매가 급유안내부를 통해 쉘의 외부로 역류하거나 누설되는 것을 억제할 수 있는 로터리 압축기를 제공하려는데 그 목적이 있다.
본 발명의 첫째 목적을 달성하기 위하여, 전동부와 상기 전동부의 상측에 위치하는 압축부, 상기 전동부와 상기 압축부 사이를 연결하는 회전축을 포함하는 로터리 압축기가 제공될 수 있다. 상기 회전축은 편심부를 사이에 두고 상기 전동부쪽에 메인베어링부가 형성되고, 상기 메인베어링부의 반대쪽에는 서브베어링부가 형성될 수 있다. 상기 메인베어링부의 반경 또는 상기 서브베어링부의 반경은 상기 편심부의 최단편심반경보다 크게 형성될 수 있다. 이를 통해, 메인베어링부 또는 서브베어링부의 외경을 늘리는 대신 축방향길이를 줄여 회전축의 전체길이를 줄임으로써 압축기의 소형화를 이룰 수 있다.
일례로, 상기 편심부의 축방향 일측에 롤러의 조립위치를 정렬할 수 있는 롤러정렬부가 형성될 수 있다. 이를 통해, 롤러를 편심부에 삽입하기 전에 롤러정렬부에서 롤러의 조립위치를 재조정한 후에 편심부에 삽입할 수 있다. 이에 따라, 베어링부의 외경을 편심부의 외경보다 크게 형성하면서도 롤러를 편심부에 원활하게 삽입할 수 있다.
다른 예로, 상기 롤러정렬부는 상기 편심부와 메인베어링부의 사이에 형성될 수 있다. 이를 통해, 상대적으로 여유길이가 있는 메인베어링부쪽에 롤러정렬부가 형성됨에 따라 회전축에 소정의 축방향길이를 갖는 롤러정렬부를 형성하면서도 회전축의 전체길이를 줄일 수 있다.
본 발명의 둘째 목적을 달성하기 위하여, 전동부와 상기 전동부의 상측에 위치하는 압축부, 상기 전동부와 상기 압축부 사이를 연결하는 회전축을 포함하는 로터리 압축기가 제공될 수 있다. 상기 회전축은 편심부를 사이에 두고 상기 전동부쪽에 메인베어링부를 형성하며, 상기 메인베어링부의 반대쪽에 서브베어링부를 형성할 수 있다. 상기 편심부의 최단편심반경은 상기 메인베어링부의 반경 또는 상기 서브베어링부의 반경보다 작게 형성될 수 있다. 이를 통해, 편심부의 외경은 줄이면서도 편심부의 편심량을 늘려 압축실 체적을 유지할 수 있다. 이에 따라, 편심부의 외경이 감소하여 압축기의 소형화 및 경량화, 저진동화를 이룰 수 있다.
일례로, 상기 편심부의 축방향 일측에 롤러의 조립위치를 정렬할 수 있는 롤러정렬부가 형성되되, 상기 롤러정렬부의 축방향길이는 롤러의 축방향길이보다 크게 형성될 수 있다. 이를 통해, 롤러를 편심부에 삽입하기 전에 롤러정렬부에서 롤러의 조립위치를 재조정함으로써 편심부의 외경을 줄이면서도 롤러를 편심부에 원활하게 삽입하여 결합할 수 있다.
다른 예로, 상기 편심부의 외경은 상기 롤러정렬부의 외경보다 크게 형성될 수 있다. 이를 통해, 편심부에 롤러를 삽입할 때 롤러가 편심부에 걸리는 것을 방지하여 편심부의 외경을 줄이면서도 그 편심부에 롤러를 쉽게 삽입할 수 있다.
본 발명의 셋째 목적을 달성하기 위하여, 내부공간에 오일이 저장되는 쉘과, 상기 쉘의 내부공간에 구비되는 전동부와 상기 전동부의 상측에 위치하는 압축부, 상기 전동부와 상기 압축부 사이를 연결하는 회전축이 구비되는 압축기본체를 포함하는 로터리 압축기가 제공될 수 있다. 상기 회전축의 하단에는 오일펌프가 구비되며, 상기 회전축에는 상기 오일펌프에서 펌핑되는 오일을 상기 회전축의 상단으로 안내하는 오일펌핑통로가 형성될 수 있다. 이를 통해, 상부압축형이고 양단지지형이면서 오일을 회전축의 하단에서 상단까지 원활하게 이송시킬 수 있다.
일례로, 상기 오일펌프는 상기 회전축의 하단에 삽입되는 펌프하우징 및 상기 펌프하우징의 내부에 구비되는 펌프블레이드로 된 원심펌프가 적용될 수 있다. 이를 통해, 오일펌프의 구조를 간소화하여 오일펌프에 대한 제조비용을 절감할 수 있다.
다른 예로, 상기 회전축의 내부에는 오일펌핑구멍이 형성되고, 상기 회전축의 외주면에는 상기 오일펌핑구멍에 연통되는 급유구멍 및 급유홈이 형성될 수 있다. 상기 오일펌핑구멍에 연통되는 급유구멍이 오일펌프로부터 인접하도록 상기 회전축의 하반부에 형성될 수 있다. 이를 통해 회전축의 하단에 원심펌프를 적용하면서도 그 펌핑되는 오일이 신속하게 원심력을 생성하도록 하여 펌핑력이 향상되고, 이로 인해 회전축의 직경과 전체길이를 적정하게 유지하면서도 오일을 회전축의 하단에서 상단까지 원활하게 이송시킬 수 있다.
본 발명의 넷째 목적을 달성하기 위하여, 쉘의 내주면으로부터 이격되어 구비되며, 전동부와 상기 전동부의 상측에 위치하는 압축부를 포함하는 로터리 압축기가 제공될 수 있다. 상기 압축부는 로터리 압축방식으로 이루어진 압축기본체, 상기 압축기본체를 상기 쉘에 대해 탄력 지지하는 지지부 및 상기 압축기본체에 구비되어 오일을 상기 압축부의 내부로 공급하는 급유통로를 포함할 수 있다. 이를 통해 저압식이고 상부압축형이며 스프링지지형이면서도 압축부에 오일이 원활하게 공급될 수 있다.
일례로, 상기 압축부를 이루는 서브베어링 또는 실린더에 급유통로구멍이 형성될 수 있다. 이를 통해 쉘의 내부공간으로 비산되는 오일을 압축부의 내부로 원활하게 공급할 수 있다.
다른 예로, 상기 압축부를 이루는 베인의 측면 또는 이를 마주보는 베인슬롯의 내측면에 급유통로홈이 형성될 수 있다. 이를 통해 오일을 베인과 베인슬롯 사이로 신속하게 이동시킬 수 있다.
또한, 본 발명의 목적을 달성하기 위하여, 쉘, 전동부, 실린더, 메인베어링 및 서브베어링, 회전축 및 롤러를 포함하는 로터리 압축기가 제공될 수 있다. 상기 쉘의 내부공간에는 오일이 저장되고, 상기 전동부는 상기 쉘의 내부공간에 구비될 수 있다. 상기 실린더는 상기 쉘의 내부공간에서 상기 전동부의 축방향 일측에 구비되며, 상기 메인베어링 및 상기 서브베어링은 상기 실린더와 함께 압축실을 형성하도록 상기 실린더의 축방향 양쪽에 결합될 수 있다. 상기 회전축은 상기 실린더의 압축실에 수용되며 축중심에 대해 편심지는 편심부, 상기 편심부를 사이에 두고 축방향 양측에 구비되어 상기 메인베어링 및 상기 서브베어링에 의해 각각 반경방향으로 지지되는 메인베어링부 및 서브베어링부를 포함할 수 있다. 상기 롤러는 환형으로 형성되어 상기 편심부의 외주면에 삽입될 수 있다. 구체적으로, 상기 회전축에는 상기 편심부의 축방향 일측에 롤러정렬부가 형성되고, 상기 롤러정렬부의 축방향길이는 상기 롤러의 축방향길이보다 길게(크게) 형성될 수 있다. 이를 통해, 롤러를 편심부에 삽입하기 전에 롤러의 조립위치를 적절하게 정렬함에 따라, 메인베어링부 또는 서브베어링부의 외주면이 편심부의 외주면과 동일하거나 또는 편심부의 외주면보다 돌출되더라도 롤러를 쉽게 조립할 수 있다. 이에 따라, 롤러를 삽입하지 않는 쪽의 베어링부의 길이를 줄여 압축기를 소형화할 수 있다.
여기서, 상기 메인베어링부의 반경 또는 상기 서브베어링부의 반경은 상기 편심부의 최단편심반경보다 크거나 같게 형성될 수 있다. 상기 롤러정렬부의 반경은 상기 편심부의 최단편심반경보다 작게 형성될 수 있다. 이를 통해, 메인베어링부의 외주면 또는 서브베어링부의 외주면이 편심부의 일부, 즉 최단편심반경을 가지는 부분의 외주면보다 반경방향으로 돌출되더라도 롤러를 편심부에 쉽게 삽입하여 결합할 수 있다. 이에 따라, 메인베어링부의 외경 또는 서브베어링부의 외경을 적절하게 확보하여 메인베어링부의 축방향길이 또는 서브베어링부의 축방향길이를 줄일 수 있다.
그리고, 상기 롤러정렬부의 중심은 상기 메인베어링부의 중심 또는 상기 서브베어링부의 중심과 동일축선상에 위치하도록 형성될 수 있다. 이를 통해, 롤러정렬부의 외주면과 이를 마주보는 베어링구멍의 사이에 원주방향으로 동일한 단면적을 가지는 환형공간이 형성되어 오일이 균일하게 펌핑될 수 있다.
그리고, 상기 롤러정렬부의 중심은 상기 메인베어링부의 중심 또는 상기 서브베어링부의 중심으로부터 편심된 위치에 형성될 수 있다. 이를 통해, 롤러정렬부의 외주면 중에서 급유홈과 인접된 부위의 단면적이 확대되면서 오일의 펌핑경로가 단축되어 오일이 신속하게 이송될 수 있다.
여기서, 상기 메인베어링부는 상기 편심부를 기준으로 상기 전동부를 향해 연장될 수 있다. 상기 롤러정렬부는 상기 편심부와 상기 메인베어링부의 사이에 형성될 수 있다. 이를 통해, 상대적으로 축방향길이가 긴 메인베어링부쪽에 롤러정렬부가 형성됨에 따라, 롤러정렬부를 구비하면서도 회전축의 전체길이가 길어지는 것을 억제하여 압축기의 소형화를 이룰 수 있다.
그리고, 상기 서브베어링부의 외경은 상기 롤러정렬부의 외경보다 크게 형성될 수 있다. 이를 통해, 서브베어링부의 베어링면적을 확보하여 압축기의 신뢰성을 확보할 수 있다.
그리고, 상기 서브베어링부의 축방향길이는 상기 롤러정렬부의 축방향길이보다 짧거나 같게 형성될 수 있다. 이를 통해, 서브베어링부의 축방향길이를 줄여 압축기의 소형화를 이룰 수 있다.
그리고, 상기 메인베어링부와 상기 롤러정렬부의 사이에는 마찰회피부가 더 형성될 수 있다. 상기 마찰회피부의 외경은 상기 메인베어링부의 외경보다는 작고 상기 롤러정렬부의 외경보다는 크게 형성될 수 있다. 이를 통해, 메인베어링부의 길이를 최소화하면서도 오일이 베어링면으로 누설되는 것을 줄여 베어링면에 대한 윤활효과를 높일 수 있다.
그리고, 상기 마찰회피부의 중심은 상기 회전축의 축중심과 동일축선상에 형성될 수 있다. 이를 통해, 마찰회피부의 외주면과 이를 마주보는 베어링구멍의 내주면 사이의 간극을 일정하게 유지하여 오일이 마찰회피부의 외주면을 따라 균일하게 이송될 수 있다.
여기서, 상기 회전축의 축중심에서 상기 메인베어링부의 외주면까지 거리를 제1 반경, 상기 회전축의 축중심에서 상기 서브베어링부의 외주면까지의 거리를 제2 반경, 상기 회전축의 축중심에서 상기 편심부까지의 최단거리를 제1 최단편심반경이라고 할 수 있다. 상기 제1 반경 및 상기 제2 반경은 상기 제1 최단편심반경보다 크거나 같게 형성될 수 있다. 이를 통해, 편심부의 편심량을 확대하여 편심부의 외경을 줄일 수 있다. 이에 따라, 실린더의 내경을 줄이면서도 압축기 체적을 유지하여 압축기를 소형화할 수 있다. 또한, 편심부로 인한 베어링하중을 줄여 베어링부재의 크기를 줄여 압축기를 경량화하는 동시에 압축기의 진동소음을 낮출 수 있다. 또한, 메인베어링부 또는 서브베어링부의 베어링면적을 확보하면서도 각 베어링부의 축방향길이를 줄여 회전축의 전체길이를 줄일 수 있다.
그리고, 상기 롤러정렬부의 중심은 상기 회전축의 축중심에 대해 동일축선상에 형성되고, 상기 롤러정렬부의 반경을 이루는 제3 반경은 상기 제1 최단편심반경보다 작게 형성될 수 있다. 이를 통해, 롤러정렬부에서 정렬된 롤러가 편심부에 걸리지 않고 삽입됨에 따라 롤러를 편심부에 쉽게 삽입하여 조립할 수 있다. 이에 따라, 롤러가 삽입되지 않는 쪽의 베어링부의 축방향길이를 줄여 압축기를 소형화할 수 있다.
그리고, 상기 롤러정렬부의 중심은 상기 회전축의 축중심에 대해 편심되게 형성되고, 상기 회전축의 축중심에서 상기 롤러정렬부의 외주면까지의 최단거리를 제2 최단편심반경이라고 할 수 있다. 상기 제2 최단편심반경은 상기 제1 최단편심반경보다 작게 형성될 수 있다. 이를 통해, 롤러정렬부를 구비하면서도 그 롤러정렬부에서의 외경이 과도하게 얇아지는 것을 억제하여 롤러정렬부에서의 강성을 높일 수 있다. 또한, 롤러정렬부의 외주면 중에서 급유홈과 인접된 부위의 단면적이 확대되면서 오일의 펌핑경로가 단축되어 오일이 신속하게 이송될 수 있다.
여기서, 상기 메인베어링부의 중심에서 상기 편심부의 중심까지의 축방향거리를 제1 축방향거리, 상기 서브베어링부의 중심에서 상기 편심부의 중심까지의 축방향거리를 제2 축방향거리라고 할 수 있다. 상기 제2 축방향거리는 상기 제1 축방향거리보다 짧게 형성될 수 있다. 상기 롤러정렬부는 상기 메인베어링부와 상기 편심부 사이에 형성될 수 있다. 이를 통해, 메인베어링부와 편심부의 사이에 형성되는 여유길이를 이용하여 롤러정렬부가 형성됨에 따라 롤러정렬부로 인해 회전축의 축방향길이가 증가되는 것을 억제할 수 있다.
그리고, 상기 메인베어링부와 상기 롤러정렬부의 사이에는 마찰회피부가 더 형성될 수 있다. 상기 마찰회피부의 중심은 상기 회전축의 축중심과 동일축선상에 형성될 수 있다. 상기 마찰회피부의 외경은 상기 메인베어링부의 외경보다는 작고 상기 롤러정렬부의 외경보다는 크게 형성될 수 있다. 이를 통해, 메인베어링부의 길이를 최소화하면서도 오일이 베어링면으로 누설되는 것을 줄여 베어링면에 대한 윤활효과를 높일 수 있다.
여기서, 상기 서브베어링부는 상기 편심부를 기준으로 상기 전동부에 대해 반대쪽으로 연장되어 형성될 수 있다. 상기 롤러정렬부는 상기 서브베어링부와 상기 편심부 사이에 형성될 수 있다. 이를 통해, 상대적으로 짧은 서브베어링부를 통해 롤러를 조립함으로써 롤러를 용이하게 조립할 수 있다.
그리고, 상기 편심부의 최단편심반경은 상기 서브베어링부의 반경보다 작게 형성될 수 있다. 상기 롤러정렬부의 반경은 상기 편심부의 최단편심반경보다 작게 형성될 수 있다. 이를 통해, 서브베어링부의 외주면이 편심부의 최단편심반경보다 반경방향으로 돌출되더라도 롤러를 편심부에 쉽게 삽입하여 결합할 수 있다. 이에 따라, 서브베어링부의 외경을 적절하게 확보하여 서브베어링부의 축방향길이를 줄일 수 있다.
여기서, 상기 회전축의 메인베어링부쪽 단부에는 상기 쉘의 내부공간에 저장된 오일을 펌핑하도록 오일펌프가 구비될 수 있다. 상기 회전축에는 상기 오일펌프에 의해 펌핑되는 오일을 상기 회전축의 타단으로 안내하는 오일펌핑통로가 형성될 수 있다. 이를 통해, 쉘에 저장된 오일을 각각의 베어링면과 압축부로 원활하게 공급하여 압축기 성능이 향상될 수 있다.
그리고, 상기 오일펌프는 원심펌프로 이루어질 수 있다. 상기 메인베어링부는 상기 메인베어링의 하단에 위치하도록 형성될 수 있다. 이를 통해, 오일펌프에 대한 제조비용을 낮추면서도 오일펌프의 펌핑력을 보충하여 오일이 회전축의 상단까지 원활하게 이송될 수 있다.
그리고, 상기 회전축의 메인베어링부측 단부에는 오일펌핑구멍이 형성될 수 있다. 상기 오일펌핑구멍의 내주면에서 상기 메인베어링부의 외주면으로 급유구멍이 관통될 수 있다. 상기 회전축의 외주면에는 상기 급유구멍을 상기 롤러정렬부의 외주면과 이를 마주보는 상기 메인베어링의 내주면 사이로 연통시키는 제1 급유홈이 형성될 수 있다. 이를 통해, 오일펌프에 의해 펌핑되는 오일이 신속하게 원심력을 가지도록 하여 상대적으로 펌핑력이 낮은 오일펌프를 적용하면서도 오일이 회전축의 상단까지 원활하게 펌핑되도록 할 수 있다.
그리고, 상기 메인베어링부와 상기 롤러정렬부의 사이에는 마찰회피부가 형성될 수 있다. 상기 마찰회피부의 외경은 상기 메인베어링부의 외경보다는 작고 상기 롤러정렬부의 외경보다는 크게 형성될 수 있다. 상기 제1 급유홈은 상기 마찰회피부의 외주면을 따라 연장되어 상기 마찰회피부와 상기 롤러정렬부 사이의 경계를 이루는 단차면을 통과하여 형성될 수 있다. 이를 통해, 회전축의 외주면을 따라 이송되는 오일이 메인베어링면을 원활하게 윤활하는 동시에, 롤러정렬부의 외주면에 오일연통공간이 형성되도록 하여 오일이 회전축의 상단을 향해 누설 없이 이송되도록 할 수 있다.
그리고, 상기 편심부에는 축방향 양쪽을 연통시키는 제2 급유홈이 형성될 수 있다. 상기 제2 급유홈은 상기 편심부의 외주면에서 기설정된 깊이만큼 함몰되어 상기 편심부의 축방향 양쪽 측면 사이를 연통시키록 형성될 수 있다. 이를 통해, 롤러정렬부의 외주면과 이를 마주보는 베어링구멍의 내주면 사이에 고인 오일이 서브베어링부쪽으로 원활하게 이송되어 오일펌핑효과를 높일 수 있다.
그리고, 상기 서브베어링부의 외주면 또는 이를 마주보는 상기 서브베어링의 내주면에는 제3 급유홈이 형성될 수 있다. 이를 통해, 서브베어링부쪽으로 이송된 오일이 서브베어링면을 윤활하면서 회전축의 상단까지 이송될 수 있다.
그리고, 상기 제2 급유홈과 상기 제3 급유홈의 사이에는 급유연통홈이 형성될 수 있다. 상기 급유연통홈은 상기 편심부에서 연장되는 상기 서브베어링부의 외주면에 환형으로 형성될 수 있다. 이를 통해, 서브베어링부쪽으로 이송되는 오일이 서브베어링면에 구비되는 급유홈으로 원활하게 이송될 수 있다.
여기서, 상기 실린더는 상기 전동부의 축방향 상측에 구비될 수 있다. 상기 전동부는 상기 쉘의 내주면으로부터 이격되어 탄력을 가지는 지지부에 의해 상기 쉘에 대해 탄력 지지될 수 있다. 이를 통해, 압축기본체에서 발생되는 진동이 쉘을 통해 쉘의 외부로 전달되는 것을 최소화하여 압축기 진동을 줄일 수 있다.
그리고, 상기 쉘에서 펌핑되는 오일을 상기 압축실로 공급하는 급유안내부를 더 포함할 수 있다. 상기 급유안내부는, 상기 서브베어링 또는 상기 실린더를 관통하여 상기 실린더에 구비되는 베인슬롯에 연통되도록 급유통로구멍이 형성될 수 있다. 이를 통해, 쉘에서 펌핑되는 오일이 압축부를 이루는 베인과 베인슬롯 사이로 공급되어 저압식을 이루는 로터리 압축기의 압축부를 원활하게 윤활할 수 있다.
그리고, 상기 회전축의 상측에는 오일을 포집하는 급유가이드가 구비될 수 있다. 상기 급유가이드의 출구는 상기 쉘의 내부공간을 통해 상기 급유통로구멍에 연통될 수 있다. 이를 통해, 회전축의 상단에서 비산되는 오일을 모아 압축부로 집중하여 공급함으로써 압축부에 대한 급유효과를 높일 수 있다.
그리고, 상기 서브베어링 또는 상기 실린더에는 상기 급유통로구멍을 개폐하는 역류방지밸브가 구비될 수 있다. 이를 통해, 압축부로 공급되는 오일 및 압축부에서 압축되는 냉매가 급유안내부를 통해 누설되는 것을 억제할 수 있다.
그리고, 상기 회전축의 상측에는 오일을 포집하여 상기 급유통로구멍을 향해 안내하는 급유가이드가 구비될 수 있다. 상기 급유가이드의 출구는 상기 급유통로구멍에 급유안내관으로 연결될 수 있다. 이를 통해, 회전축에서 비산되는 오일을 신속하게 압축부로 공급하는 동시에 별도의 역류방지밸브를 배제하고도 압축부에서의 오일 또는 냉매의 역류를 방지할 수 있다.
본 실시예에 따른 로터리 압축기는, 편심부의 양측에 각각 베어링부가 구비되고, 편심부와 베어링부 사이에는 롤러를 편심부에 삽입하기 전에 롤러의 조립위치를 정렬하는 롤러정렬부가 형성될 수 있다. 이에 따라, 베어링부의 외경이 증가되어 그 베어링부의 외주면이 편심부의 외주면 일부와 반경방향으로 동일하거나 또는 돌출된 상태에서도 롤러를 편심부에 쉽게 조립할 수 있다. 이를 통해, 베어링부의 외경을 늘려 베어링면적을 확보하면서도 베어링부의 축방향길이를 줄여 압축기를 소형화할 수 있다.
또한, 본 실시예에 따른 로터리 압축기는, 롤러정렬부가 편심부를 중심으로 상대적으로 여유길이가 있는 메인베어링부쪽에 형성됨에 따라, 롤러정렬부로 인해 회전축의 전체길이가 길어지지 않게 되어 롤러정렬부를 형성하면서도 압축기를 소형화할 수 있다.
또한, 본 실시예에 따른 로터리 압축기는, 편심부가 롤러정렬부에 의해 편심부의 편심량이 확대되는 만큼 편심부의 외경을 줄일 수 있다. 이에 따라 실린더의 내경을 줄이는 동시에 베어링하중의 감소를 통해 베어링의 크기를 줄여 압축기의 소형화 및 경량화, 저진동화를 이룰 수 있다.
또한, 본 실시예에 따른 로터리 압축기는, 상부압축형이면서 양단지지형인 로터리 압축기에서 회전축의 하단에 원심펌프로 된 오일펌프를 적용하면서도 쉘의 하부에 저장된 오일을 회전축의 상단까지 원활하게 펌핑할 수 있다. 이를 통해 상대적으로 구조가 단순하고 부품수가 적어 저렴한 오일펌프를 사용할 수 있어 그만큼 압축기의 제조비용이 절감될 수 있다.
또한, 본 실시예에 따른 로터리 압축기는, 회전축이 메인베어링부가 회전축의 하반부에서 회전자결합부에 연이어 형성됨에 따라 급유홈의 시작단을 오일펌프에 인접하게 배치할 수 있다. 이를 통해 회전축의 외경을 확대하거나 급유홈의 길이 및 턴수를 늘리지 않고도 오일에 대한 원심력을 높일 수 있고, 원심펌프로 된 오일펌프를 적용하면서도 오일을 회전축의 상단으로 이송할 수 있다.
또한, 본 실시예에 따른 로터리 압축기는, 회전축이 메인베어링부가 회전축의 하반부에 형성됨에 따라 메인베어링부의 베어링하중을 낮출 수 있다. 이를 통해 회전축에서 메인베어링부에 해당하는 부위의 직경 또는 길이를 줄여 모터 효율을 높일 수 있다. 아울러, 메인베어링부가 회전축의 하반부에 형성됨에 따라 메인베어링부와 편심부 사이에 롤러정렬부가 형성될 수 있고, 이를 통해 회전축의 길이를 늘리지 않고도 롤러를 쉽게 조립할 수 있다.
또한, 본 실시예에 따른 로터리 압축기는, 외관을 이루는 쉘에 대해 로터리 방식의 압축기본체를 탄력 지지함에 따라, 압축기본체로부터 전달되는 진동이 쉘로 전달되는 것을 차단하여 압축기의 진동 소음을 줄일 수 있다. 이를 통해 로터리 압축기의 부피와 무게를 줄이고 부품수를 줄여 제조비용을 낮출 수 있다.
또한, 본 실시예에 의한 로터리 압축기는, 저압식으로 구성함에 따라, 전동부가 쉘의 내부공간으로 흡입되는 찬 냉매에 의해 신속하게 냉각되도록 할 수 있다. 이를 통해 모터효율을 높여 압축기 성능이 향상될 수 있다.
또한, 본 실시예에 의한 로터리 압축기는, 상부압축형으로 구성함으로써, 토출유로를 이루는 루프파이프가 쉘의 내부공간에 채워진 오일에 잠기지 않고 분리되도록 설치할 수 있다. 이를 통해 쉘 내부의 오일이 루프파이프를 통해 토출되는 고온의 냉매에 의해 가열되는 것을 미연에 방지함으로써, 오일의 점도가 낮아지는 것을 억제하여 압축기본체의 각 베어링면에서의 마찰손실을 줄일 수 있다.
또한, 본 실시예에 의한 로터리 압축기는, 저압식이고 상부압축형으로 구성하면서 압축기본체에 급유가이드 및 급유통로를 구비함으로써, 쉘에 저장된 오일을 압축부의 상단까지 펌핑하고 이 오일을 급유가이드와 급유통로를 통해 압축부의 습동부로 원활하고 신속하게 공급할 수 있다. 이를 통해 오일이 압축기본체의 베어링면을 이루는 베인과 베인슬롯의 사이 또는 베인과 롤러 사이에 원활하게 공급되면서 각 베어링면에서의 오일부족으로 인한 마찰손실을 줄일 수 있다.
도 1은 본 실시예에 따른 로터리 압축기에서 압축기본체를 보인 분해 사시도,
도 2는 도 1에서 압축기본체를 조립하여 보인 사시도,
도 3은 도 2에 따른 로터리 압축기의 내부를 보인 단면도,
도 4는 도 3에서 압축부의 내부를 설명하기 위해 보인 평면도,
도 5는 도 1에서 급유부를 설명하기 위해 압축부를 파단하여 보인 사시도,
도 6은 도 5에서 급유통로를 개폐하는 역류방지밸브의 동작을 설명하기 위해 보인 단면도,
도 7은 도 5에서 급유안내부에 대한 다른 실시예를 설명하기 위해 보인 사시도,
도 8은 본 실시예에 따른 회전축을 일측에서 보인 사시도,
도 9는 본 실시예에 따른 회전축을 타측에서 보인 사시도,
도 10은 본 실시예에 따른 회전축을 일측에서 보인 정면도,
도 11은 도 10에서 서브베어링부와 롤러정렬부를 확대하여 보인 정면도,
도 12는 도 10에서 회전축을 축방향으로 보인 평면도,
도 13은 본 실시예에 따른 회전축의 편심부에 롤러를 결합하는 과정을 순서대로 보인 도면들,
도 14는 본 실시예에 따른 오일펌핑부에서 오일이 펌핑되는 통로를 설명하기 위해 베어링을 파단하여 회전축의 외면을 보인 사시도,
도 15는 도 14에서 회전축의 내면을 보인 단면도,
도 16은 회전축에 대한 다른 실시예를 보인 사시도,
도 17은 도 16의 정면도,
도 18은 회전축에 대한 또다른 실시예를 보인 사시도,
도 19는 도 18의 단면도,
도 20은 회전축에 대한 또다른 실시예를 보인 사시도,
도 21은 도 20의 단면도.
도 2는 도 1에서 압축기본체를 조립하여 보인 사시도,
도 3은 도 2에 따른 로터리 압축기의 내부를 보인 단면도,
도 4는 도 3에서 압축부의 내부를 설명하기 위해 보인 평면도,
도 5는 도 1에서 급유부를 설명하기 위해 압축부를 파단하여 보인 사시도,
도 6은 도 5에서 급유통로를 개폐하는 역류방지밸브의 동작을 설명하기 위해 보인 단면도,
도 7은 도 5에서 급유안내부에 대한 다른 실시예를 설명하기 위해 보인 사시도,
도 8은 본 실시예에 따른 회전축을 일측에서 보인 사시도,
도 9는 본 실시예에 따른 회전축을 타측에서 보인 사시도,
도 10은 본 실시예에 따른 회전축을 일측에서 보인 정면도,
도 11은 도 10에서 서브베어링부와 롤러정렬부를 확대하여 보인 정면도,
도 12는 도 10에서 회전축을 축방향으로 보인 평면도,
도 13은 본 실시예에 따른 회전축의 편심부에 롤러를 결합하는 과정을 순서대로 보인 도면들,
도 14는 본 실시예에 따른 오일펌핑부에서 오일이 펌핑되는 통로를 설명하기 위해 베어링을 파단하여 회전축의 외면을 보인 사시도,
도 15는 도 14에서 회전축의 내면을 보인 단면도,
도 16은 회전축에 대한 다른 실시예를 보인 사시도,
도 17은 도 16의 정면도,
도 18은 회전축에 대한 또다른 실시예를 보인 사시도,
도 19는 도 18의 단면도,
도 20은 회전축에 대한 또다른 실시예를 보인 사시도,
도 21은 도 20의 단면도.
이하, 본 발명에 의한 로터리 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다. 본 명세서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일 또는 유사한 참조번호를 부여하고, 그 설명은 처음의 설명으로 대신한다.
또한, 로터리 압축기는 롤러와 베인의 결합유무에 따라 접촉식 로터리 압축기와 힌지베인 로터리 압축기로 구분될 수 있다. 접촉식 로터리 압축기는 베인이 롤러에 미끄러지게 접촉되는 방식이고, 힌지베인 로터리 압축기는 베인이 롤러에 힌지 결합되는 방식이다.
본 실시예는 힌지베인 방식이 적용된 로터리 압축기를 설명하는 것이나, 이에 한정되지 않고 기존에 알려진 로터리 방식의 압축기는 모두 적용될 수 있다. 다만, 이하에서는 힌지베인 방식의 로터리 압축기를 대표예로 설명하므로, 아래의 설명에서 특별한 언급이 없는 한 로터리 압축기는 힌지베인 로터리 압축기를 약칭하여 정의한 것으로 이해될 수 있다.
도 1은 본 실시예에 따른 로터리 압축기에서 압축기본체를 보인 분해 사시도이고, 도 2는 도 1에서 압축기본체를 조립하여 보인 사시도이며, 도 3은 도 2에 따른 로터리 압축기의 내부를 보인 단면도이고, 도 4는 도 3에서 압축부의 내부를 설명하기 위해 보인 평면도이며, 도 5는 도 1에서 급유부를 설명하기 위해 압축부를 파단하여 보인 사시도이고, 도 6은 도 5에서 급유통로를 개폐하는 역류방지밸브의 동작을 설명하기 위해 보인 단면도이며, 도 7은 도 5에서 급유안내부에 대한 다른 실시예를 설명하기 위해 보인 사시도이다.
도 1 내지 도 7을 참조하면, 본 실시예에 따른 로터리 압축기는, 외관을 형성하는 쉘(110), 쉘(110)의 내부공간(110a)에 구비되는 압축기본체(C), 압축기본체(C)를 쉘(110)에 지지하는 지지부(150), 냉매를 압축기본체(C)로 안내하고 압축된 냉매를 토출시키는 흡토출부(160), 쉘(110)의 저유부에 담긴 오일을 압축기본체(C)로 공급하는 급유부(170)를 포함한다. 압축기본체(C)는 구동력을 제공하는 전동부(120), 전동부(120)에 결합되어 전동부(120)에서 발생되는 회전력을 후술할 압축부(140)에 전달하는 회전축(130) 및 전동부(120)로부터 구동력을 전달받아 냉매를 압축하는 압축부(140)를 포함한다.
쉘(110)은 내부공간(110a)이 밀폐되어 압축기본체(C), 지지부(150), 흡토출부(160) 및 급유부(170)가 수용된다. 쉘(110)은 가볍고 열전도계수가 높은 알루미늄 합금(이하, 알루미늄으로 약칭함)으로 이루어지며, 하부쉘(111) 및 상부쉘(112)을 포함한다.
하부쉘(111)은 대략 반구 형상으로 형성된다. 하부쉘(111)에는 흡입파이프(115), 토출파이프(116) 및 프로세스파이프(117)가 각각 관통되어 결합된다. 이들 흡입파이프(115), 토출파이프(116), 프로세스파이프(117)는 각각 하부쉘(111)에 인서트 다이캐스팅 공법에 의해 결합될 수 있다.
상부쉘(112)은 하부쉘(111)과 같이 대략 반구 형상으로 형성된다. 상부쉘(112)은 하부쉘(111)의 상측에서 그 하부쉘(111)에 결합되어 쉘(110)의 내부공간(110a)을 형성한다.
또한, 상부쉘(112)은 하부쉘(111)에 용접하여 결합될 수 있으나, 하부쉘(111)과 상부쉘(112)이 용접이 어려운 알루미늄 소재로 형성되는 경우에는 볼트 체결될 수 있다.
다음으로 전동부를 설명한다.
본 실시예에 따른 전동부(120)는 고정자(121) 및 회전자(122)를 포함한다.
고정자(121)는 쉘(110)의 내주면에서 이격되어 쉘(110)의 내부공간(110a), 즉 하부쉘(111)의 바닥면에 대해 탄력적으로 지지되고, 회전자(122)는 고정자(121)의 안쪽에 회전 가능하게 설치된다.
본 실시예에 따른 고정자(121)는 고정자코어(1211) 및 고정자코일(1212)을 포함한다.
고정자코어(1211)는 전기강판과 같은 금속 재질로 이루어지며, 외부로부터 전동부(120)로 전압을 인가하면 후술하는 고정자코일(1212) 및 회전자(122)와 함께 전자기력을 통한 전자기적 상호 작용을 수행한다.
또한, 고정자코어(1211)는 대략 사각통 형상으로 형성된다. 예를 들어, 고정자코어(1211)의 내주면은 원형으로 형성되고, 외주면은 사각형 모양으로 형성될 수 있다. 고정자코어(1211)의 네 모서리에는 볼트구멍(미도시)이 각각 관통하여 형성되고, 각 볼트구멍에는 고정자체결볼트(미도시)가 각각 통과하여 후술할 메인베어링(141)에 체결된다. 이에 따라, 고정자코어(1211)는 고정자체결볼트에 의해 메인베어링(141)의 하면에 고정된다.
또한, 고정자코어(1211)는 쉘(110)의 내주면에서 축방향 및 반경방향으로 이격된 상태에서 고정자코어(1211)의 하단이 쉘(110)의 바닥면에 대해 후술할 지지스프링(152)에 의해 지지된다. 이에 따라, 운전중에 발생되는 진동이 쉘(110)에 직접적으로 전달되는 것이 억제될 수 있다.
고정자코일(1212)은 고정자코어(1211) 내측에 권선된다. 앞서 살펴 본 바와 같이, 고정자코일(1212)은 외부로부터 전압이 인가되면 전자기력을 발생시켜 고정자코어(1211) 및 회전자(122)와 함께 전자기적 상호작용을 수행한다. 이를 통해, 전동부(120)는 압축부(140)의 왕복 운동을 위한 구동력이 발생된다.
고정자코어(1211)와 고정자코일(1212) 사이에는 인슐레이터(1213)는 배치된다. 이에 따라, 고정자코어(1211)와 고정자코일(1212)의 직접적인 접촉을 억제하여 전자기적 상호작용이 원활하게 이루어질 수 있다.
본 실시예에 따른 회전자(122)는 회전자코어(1221) 및 마그네트(1222)를 포함한다.
회전자코어(1221)는 고정자코어(1211)와 마찬가지로 전기강판과 같은 금속 재질로 이루어지며, 대략 원통 형상으로 형성된다. 회전자코어(1221)의 중심에는 후술할 회전축(130)이 압입되어 결합될 수 있다. 회전축(130)은 편심부(134)를 기준으로 축방향 양단이 후술할 메인베어링(141)과 서브베어링(142)에 의해 각각 반경방향으로 지지되는 것으로, 회전축(130)에 대해서는 나중에 다시 설명한다.
마그네트(1222)는 영구자석으로 이루어지고, 회전자코어(1221)의 원주방향을 따라 등간격으로 삽입되어 결합될 수 있다. 회전자(122)는 전압 인가시, 고정자코어(1211) 및 고정자코일(1212)과의 전자기적 상호 작용을 통해 회전하게 된다. 이에 따라, 회전축(130)이 회전자(122)와 함께 회전하면서 전동부(120)의 회전력을 압축부(140)에 전달하게 된다.
다음으로 압축부를 설명한다.
도 3 및 도 4를 참조하면, 본 실시예에 따른 압축부(140)는 메인베어링(141), 서브베어링(142), 실린더(143), 베인롤러(144)를 포함한다.
메인베어링(141)과 서브베어링(142)은 실린더(143)를 사이에 두고 축방향 양쪽에 구비되어 실린더(143)의 내부에 압축실(V)을 형성한다.
또한, 메인베어링(141)과 서브베어링(142)은 실린더(143)의 축방향 양쪽에서 회전축(130)의 하단과 상단을 각각 반경방향으로 지지한다. 베인롤러(144)는 회전축(130)의 편심부(134)에 결합되어 실린더(143)에서 선회운동을 하면서 냉매를 압축한다.
메인베어링(141)은 메인플레이트부(1411)가 원판 모양으로 형성되고, 메인플레이트부(1411)의 가장자리에는 고정자고정돌부(1412)가 형성될 수 있다. 고정자고정돌부(1412)는 메인플레이트부(1411)의 네 모서리에서 전동부(120)를 향해 하향 돌출되어 형성될 수 있다.
또한, 고정자고정돌부(1412)에는 고정자체결볼트(미부호)에 의해 고정자(121)에 체결되어, 전동부(120)의 고정자(121)와 함께 하부쉘(111)에 탄력 지지될 수 있다.
메인플레이트부(1411)의 중앙에는 메인베어링돌부(1413)가 전동부(120)를 향해 하향 돌출되어 형성되고, 메인베어링돌부(1413)에는 후술할 회전축(130)의 메인베어링부(132)가 삽입되어 지지되도록 메인베어링구멍(1413a)이 관통 형성될 수 있다.
서브베어링(142)은 서브플레이트부(1421)가 원판 모양으로 형성되어 실린더(143)와 함께 메인베어링(141)에 볼트로 체결될 수 있다. 물론, 실린더(143)가 쉘(110)에 고정되는 경우에는 메인베어링(141)은 서브베어링(142)과 함께 실린더(143)에 각각 볼트 체결될 수 있고, 서브베어링(142)이 쉘(110)에 고정되는 경우에는 실린더(143)와 메인베어링(141)이 서브베어링(142)에 볼트로 체결될 수 있다.
서브플레이트부(1421)의 중앙에는 서브베어링돌부(1422)가 쉘(110)의 상면을 향해 상향 돌출되고, 서브베어링돌부(1422)에는 서브베어링구멍(1422a)이 메인베어링구멍(1413a)과 동일축선 상에서 관통되어 형성된다. 서브베어링구멍(1422a)에는 회전축(130)의 상단을 지지하게 된다.
다시 도 4를 참조하면, 실린더(143)는 환형으로 형성된다. 실린더(143)의 내주면은 내경이 동일한 진원형상으로 형성된다. 실린더(143)의 내경은 롤러(1441)의 외경보다 크게 형성된다. 이에 따라 실린더(143)의 내주면과 롤러(1441)의 외주면 사이에는 압축실(V)이 형성된다.
예를 들어, 실린더(143)의 내주면은 압축실(V)의 외벽면을, 롤러(1441)의 외주면은 압축실(V)의 내벽면을, 베인(1445)은 압축실(V)의 측벽면을 각각 형성할 수 있다. 따라서, 롤러(1441)가 선회운동을 함에 따라 압축실(V)의 외벽면은 고정벽을 이루는 반면 압축실(V)의 내벽면과 측벽면은 그 위치가 가변되는 가변벽을 형성하게 될 수 있다.
실린더(143)에는 흡입구(1431)가 형성되고, 흡입구(1431)의 원주방향 일측에는 베인슬롯(1432)이 형성되며, 베인슬롯(1432)을 사이에 두고 흡입구(1431)의 반대쪽에는 토출안내홈(1433)이 형성된다.
흡입구(1431)는 실린더(143)의 외주면에서 내주면을 반경방향으로 관통되도록 형성될 수 있다. 흡입구(1431)는 단일 내경을 가지도록 형성될 수도 있다. 하지만, 후술할 흡입머플러(161)의 출구단에 출구연장부(1613a)가 형성되는 경우에는 그 출구연장부가 삽입되도록 흡입구(1431)의 외주측에는 연장부삽입홈(1431a)이 단차지게 형성될 수 있다. 이에 따라, 흡입머플러(161)의 출구단에 구비된 출구연장부(1613a)가 흡입구(1431)에 삽입되더라도 흡입구(1431)의 내경이 감소되는 것을 억제하여 냉매흡입량을 확보할 수 있다.
또한, 흡입구(1431)의 외주측에는 후술할 흡입머플러 출구부(1613)가 삽입되어 결합되는 머플러장착홈(1435)이 형성될 수 있다. 머플러장착홈(1435)은 실린더(143)의 외주면에서 반경방향으로 함몰되어 형성될 수 있다.
예를 들어, 머플러장착홈(1435)은 흡입머플러 출구부(1613)와 대응하도록 대략 육면체 형상으로 형성될 수 있다. 구체적으로, 머플러장착홈(1435)은 원주방향 양쪽 측면과 흡입구(1431)를 향하는 반경방향 내측면은 각각 막힌 형상으로 형성되고, 축방향 양쪽 측면과 반경방향 외측면은 각각 개구되는 형상으로 형성될 수 있다.
여기서, 머플러장착홈(1435)의 막힌 측면들은 그를 마주보는 흡입머플러 출구부(1613)의 측면들을 지지하는 지지면을 형성하게 된다. 예를 들어, 머플러장착홈(1435)의 원주방향 양쪽 측면은 제1 머플러지지면(1435a)을 형성하고, 머플러장착홈(1435)의 내측면은 제2 머플러지지면(1435b)을 형성하게 된다.
이에 따라, 후술할 흡입머플러 출구부(1613)는 머플러장착홈(1435)의 외주면쪽에서 내주면쪽으로 삽입되어 결합될 수 있다. 그리고, 머플러장착홈(1435)의 상하 축방향 양쪽 측면은 개구됨에 따라, 흡입머플러 출구부(1613)의 단면적을 최대한으로 크게 형성하여 그만큼 흡입머플러 출구부(1613)의 유로면적을 최대한으로 확보할 수 있다. 머플러장착홈(1435)에 대해서는 나중에 흡입머플러(161)와 함께 다시 설명한다.
베인슬롯(1432)은 실린더(143)의 내주면에 외주면을 향하는 방향으로 길게 형성된다. 베인슬롯(1432)의 내주측은 개구되고, 외주측은 막히거나 또는 쉘(110)의 내주면에 의해 막히도록 개구되어 형성된다.
베인슬롯(1432)은 후술할 베인롤러(144)의 베인(1445)이 미끄러질 수 있도록 베인(1445)의 두께 또는 폭과 대략 비슷한 정도의 폭을 가지도록 형성된다. 이에 따라, 베인(1445)의 양쪽 측면은 베인슬롯(1432)의 양쪽 내벽면에 의해 지지되어 대략 직선으로 미끄러지게 된다.
토출안내홈(1433)은 실린더(143)의 내측 모서리에 반구 형상으로 모따기하여 형성된다. 토출안내홈(1433)은 실린더(143)의 압축실(V)에서 압축된 냉매를 서브베어링(142)의 토출구(1423)로 안내하는 역할을 한다. 이에 따라, 토출안내홈(1433)은 토출구(1423)와 연통되도록 축방향 투영시 토출구(1423)와 중첩되는 위치에 형성된다.
하지만, 토출안내홈(1433)은 사체적을 발생시키므로 가급적 토출안내홈(1433)을 형성하지 않는 것이 바람직하며, 토출안내홈(1433)을 형성하더라도 그 체적이 최소가 되도록 형성되는 것이 바람직할 수 있다.
한편, 실린더(143)의 상하 양쪽 측면에는 압축실 실링홈(미부호)이 형성되고, 압축실 실링홈에는 오링 또는 가스켓으로 된 압축실 실링부재(146)가 삽입될 수 있다.
예를 들어, 압축실 실링부재(146)는 환형으로 형성되어 압축실(V)의 주변을 따라 설치될 수 있다. 구체적으로, 압축실 실링부재(146)는 베인슬롯(1432)의 외주측과 토출안내홈(1433)의 외주측을 감싸며, 머플러장착홈(1435)의 내주측과 압축실(V) 사이의 실링면을 통과하여 설치될 수 있다.
이에 따라, 압축실 실링부재(146)가 베인슬롯(1432)과 토출안내홈(1433)을 포함하여 압축실(V)을 감싸 실링하는 동시에 압축실(V)과 머플러장착홈(1435) 사이를 분리하여 실링하게 된다. 이를 통해, 압축실(V)에서 압축되는 고압의 냉매가 상대적으로 저압부를 이루는 쉘(110)의 내부공간(110a)으로 누설되는 것을 억제할 수 있다.
압축실 실링부재(146)는 실린더(143)의 축방향 양쪽 측면에 설치될 수도 있지만, 경우에 따라서는 실린더(143)의 양쪽 측면을 마주보는 메인베어링(141) 또는 서브베어링(142)에 설치될 수도 있다.
한편, 베인롤러(144)는 앞서 설명한 바와 같이 롤러(1441)와 베인(1445)으로 이루어진다. 롤러(1441)와 베인(1445)이 단일체로 형성될 수도 있고, 상대운동을 할 수 있도록 결합될 수도 있다. 이하, 본 실시예는 롤러와 베인이 회전 가능하게 결합된 예를 중심으로 설명한다.
다시 도 4를 참조하면, 롤러(1441)는 원통 형상으로 형성된다. 롤러(1441)는 그 내주면과 외주면이 동일한 중심을 가지는 진원 형상으로 형성될 수도 있고, 경우에 따라서는 롤러(1441)의 내주면과 외주면이 서로 다른 중심을 가지는 진원 형상으로 형성될 수도 있다.
또한, 롤러(1441)의 축방향높이는 실린더(143)의 내주면 높이와 대략 동일하게 형성된다. 하지만, 롤러(1441)가 메인베어링(141)과 서브베어링(142)에 대해 미끄럼 운동을 하여야 하므로, 롤러(1441)의 축방향높이는 실린더(143)의 내주면 높이보다 약간 작게 형성될 수도 있다.
또한, 롤러(1441)의 내주면 높이와 외주면 높이는 거의 동일하게 형성된다. 이에 따라, 롤러(1441)의 내주면과 외주면 사이를 연결하는 양쪽 축방향 단면은 각각 실링면을 형성하게 된다. 이 실링면들은 롤러(1441)의 내주면 또는 외주면에 대해 각각 직각을 이루게 된다. 하지만, 롤러(1441)의 내주면과 각 실링면 사이의 모서리 또는 롤러(1441)의 외주면과 각 실링면 사이의 모서리는 미세하게 경사지거나 곡면으로 형성될 수도 있다.
또한, 롤러(1441)는 회전축(130)의 편심부(134)에 회전 가능하게 삽입되어 결합되고, 베인(1445)은 실린더(143)의 베인슬롯(1432)에 미끄러지게 결합되어 롤러(1441)의 외주면에 힌지 결합된다. 이에 따라, 회전축(130)의 회전시 롤러(1441)는 편심부(134)에 의해 실린더(143)의 내부에서 선회운동을 하고 베인(1445)은 롤러(1441)에 결합된 상태로 왕복운동을 하게 된다.
또한, 롤러(1441)는 실린더(143)에 대해 동일 중심에 위치하도록 정렬될 수도 있지만, 경우에 따라서는 약간 편심되게 정렬될 수 있다.
또한, 롤러(1441)는 그 내주면이 회전축(130)의 편심부(134)의 외주면과 미끄럼 접촉될 수 있는 정도의 내경을 가지도록 환형으로 형성된다. 롤러(1441)의 반경방향 폭(두께)은 후술할 힌지홈(1411)과 실링거리를 확보할 수 있을 정도의 두께로 형성된다.
또한, 롤러(1441)는 두께는 원주방향을 따라 일정하게 형성될 수도 있고, 경우에 따라서는 상이하게 형성될 수도 있다. 예를 들어, 롤러(1441)의 내주면은 타원 형상으로 형성될 수도 있다.
다만, 회전축(130)의 회전시 부하를 최소화하기 위해서는 롤러(1441)의 내주면과 외주면은 동일한 중심을 가지는 진원 형상으로 형성되고, 롤러(1441)의 반경방향 두께는 원주방향을 따라 일정하게 형성되는 것이 바람직할 수 있다.
또한, 롤러(1441)의 외주면에는 후술할 베인(1445)의 베인힌지부(1445b)가 삽입되어 회전할 수 있도록 한 개의 힌지홈(1411)이 형성된다. 힌지홈(1411)은 외주면이 개구된 원호 형상으로 형성된다.
힌지홈(1411)의 내경은 베인힌지부(1445b)의 외경보다는 크게 형성되되, 베인힌지부(1445b)가 삽입된 상태에서 빠지지 않으면서 미끄럼 운동을 할 수 있을 정도의 크기로 형성된다.
한편, 다시 도 4를 참조하면, 베인(1445)은 베인바디부(1445a), 베인힌지부(1445b)를 포함한다.
베인바디부(1445a)는 베인몸체를 이루는 부분으로, 기설정된 길이와 두께를 가지는 평판모양으로 형성된다. 예를 들어, 베인바디부(1445a)는 전체적으로는 장방형의 6면체 형상으로 형성된다. 또한, 베인바디부(1445a)는 롤러(1441)가 베인슬롯(1432)의 반대쪽으로 완전히 이동한 상태에서도 베인(1445)이 베인슬롯(1432)에 남아있을 정도의 길이로 형성된다.
베인힌지부(1445b)는 롤러(1441)를 마주보는 베인바디부(1445a)의 전방측 단부에 연장되어 형성된다. 베인힌지부(1445b)는 힌지홈(1411)에 삽입되어 회전할 수 있는 단면적을 가지도록 형성된다. 베인힌지부(1445b)는 힌지홈(1411)에 대응하도록 반원형 또는 연결부분을 제외한 거의 원형 단면 형상으로 형성될 수 있다.
다음으로 지지부를 설명한다.
다시 도 3을 참조하면, 본 실시예에 따른 지지부(150)는 스프링캡(151), 지지스프링(152)을 포함한다. 지지부(150)는 전동부의 하면과 이를 마주보는 하부쉘(111)의 바닥면 사이를 지지하는 것으로, 통상 전동부(120)의 네 모서리를 쉘(110)에 대해 지지하게 된다. 이에 따라, 지지부(150)는 스프링캡(151)과 지지스프링(152)을 한 쌍으로 지지단위체를 형성하여 각 지지단위체가 압축기본체(C)의 네 모서리를 지지하게 된다. 이하에서는 한 쌍의 지지단위체를 대표예로 설명한다.
본 실시예에 따른 스프링캡(151)은, 하부쉘(111)의 바닥면에 고정되는 제1 스프링캡(1511)과, 전동부(120)의 하면(정확하게는 고정자코어의 하면)에 고정되는 제2 스프링캡(1512)으로 이루어질 수 있다.
제1 스프링캡(1511)과 제2 스프링캡(1512)은 축방향으로 동축 선상에 배치될 수도 있고, 경우에 따라서는 서로 다른 축 선상에 배치될 수도 있다. 제1 스프링캡(1511)과 제2 스프링캡(1512)이 서로 다른 축 선상에 배치되는 경우에는 제2 스프링캡(1512)이 제1 스프링캡(1511)보다 바깥쪽에 위치하도록 배치되는 것이 유리하다.
제1 스프링캡(1511)과 제2 스프링캡(1512)은 각각 고무재질로 형성되거나, 또는 설치강성과 완충을 고려하여 금속재의 외주면에 고무 또는 플라스틱 재질로 감싸져 형성될 수 있다.
예를 들어, 제1 스프링캡(1511)은 금속인 하부쉘(111)에 캡고정홈(미도시)에 삽입되어 견고하게 고정되어야 하므로 금속재로 형성될 수 있다. 하지만, 제2 스프링캡(1512)은 고정자코어(1211)의 하면에서 축방향으로 돌출되는 고정자체결볼트(미도시)의 볼트머리부(미도시)에 삽입되어 고정되므로 고무 또는 플라스틱 재질로 형성될 수 있다.
지지스프링(152)은 압축코일스프링으로 이루어질 수 있다. 지지스프링(152)의 일단은 제1 스프링캡(1511)에 삽입되어 고정되고, 지지스프링(152)의 타단은 제2 스프링캡(1512)에 삽입되어 고정될 수 있다. 이에 따라, 고정자코어(1211)는 지지스프링(152)에 의해 쉘에 탄력적으로 지지될 수 있다.
다음으로 흡토출부를 설명한다.
다시 도 1 내지 도 4를 참조하면, 본 실시예에 따른 흡토출부(160)는 흡입머플러(161), 토출머플러(162)를 포함한다. 흡입머플러(161)는 실린더(143)의 외주면에 결합되고, 토출머플러(162)는 서브베어링(142)의 상면에 결합될 수 있다. 이에 따라, 흡입머플러(161)는 서브베어링(142)보다 하측에 위치하고, 토출머플러(162)는 서브베어링(142)보다 상측에 위치하게 된다.
또한, 흡입머플러(161)의 입구는 쉘(110)의 내주면으로부터 이격되어 쉘(110)의 내부공간(110a)에 연통되고, 흡입머플러(161)의 출구는 흡입구(1431)에 연통되어 압축실(V)에 직접 연결될 수 있다. 이에 따라, 흡입파이프(115)를 통해 흡입되는 냉매는 쉘(110)의 내부공간(110a)을 거쳐 흡입머플러(161)로 유입되고, 이 냉매는 흡입머플러(161)를 통해 압축실(V)로 흡입된다.
또한, 토출머플러(162)의 입구는 서브베어링(142)에 결합되어 토출구(1423)에 직접 연통되고, 토출머플러(162)의 출구는 루프파이프(118)에 연결되어 토출파이프(116)에 직접 연결될 수 있다. 이에 따라, 루프파이프(118)는 쉘(110)의 내부공간(110a)에 채워진 오일의 유면보다 높은 위치에서 토출머플러(162)와 토출파이프(116) 사이를 연결하게 되고, 이로 인해 압축실(V)에서 토출되는 냉매는 쉘(110) 내부공간(110a)의 오일을 가열시키지 않으면서 토출머플러(162), 루프파이프(118), 토출파이프(116)를 통해 압축기의 외부로 배출된다.
흡입머플러와 토출머플러를 구체적으로 살펴보면 다음과 같다. 흡입머플러를 먼저 설명한다.
도 1 내지 도 4를 참조하면, 본 실시예에 따른 흡입머플러(161)는, 흡입머플러 본체부(1611)와, 흡입머플러 입구부(1612)와, 흡입머플러 출구부(1613)를 포함할 수 있다. 흡입머플러(161)는 복수 개의 부재를 조립하여 내부에 후술할 흡입공간(1611a)이 형성되도록 할 수 있다. 본 실시예에서는 하부머플러와 상부머플러를 조립하여 흡입머플러(161)가 형성될 수 있다.
흡입머플러 본체부(1611)의 내부에는 기설정된 체적을 가지는 흡입공간(1611a)이 형성된다. 흡입머플러 본체부(1611)는 단일 부재로 형성될 수도 있지만, 복수 개의 부재를 조립하여 형성될 수도 있다. 하지만, 흡입머플러 본체부(1611)는 내부에 흡입공간(1611a)이 형성되어야 하므로, 통상 복수 개의 부재를 조립하여 형성될 수 있다.
흡입공간(1611a)의 내부는 단일 공간으로 형성될 수도 있지만, 소음 감쇄 효과를 높이기 위해 복수 개의 공간 또는 유로를 가지도록 형성될 수 있다. 이에 대해서는 통상적인 머플러의 내부형상에 준하여 형성될 수 있다.
흡입머플러 입구부(1612)는 흡입공간(1611a)의 하반부에 연통될 수 있다. 또한, 흡입머플러(161)가 전동부를 포함한 압축기본체(C)의 외주면에 인접되게 배치됨에 따라, 흡입머플러 입구부(1612)는 흡입머플러 본체부(1611)의 외측면에 형성되는 것이 바람직할 수 있다.
흡입머플러 입구부(1612)는 흡입유로의 길이를 확보하기 위해 원주방향 일측으로 편심지게 형성되는 것이 바람직할 수 있다. 이에 따라, 후술할 흡입머플러 출구부(1613)는 흡입머플러 입구부(1612)의 원주방향 반대쪽에 편심지게 형성될 수 있다.
흡입머플러 출구부(1613)는 흡입공간(1611a)의 상반부에 연통될 수 있다. 흡입머플러 출구부(1613)는 흡입머플러 본체부(1611)에 연이어 형성될 수 있다. 하지만, 흡입머플러의 출구부(1613)가 실린더(143)의 외주면에 결합되고, 실린더(143)의 하측에는 메인베어링(141)이 위치한다. 그러면, 흡입머플러 출구부(1613)는 흡입머플러 본체부(1611)에 연이어 형성되면 흡입머플러 본체부(1611)는 메인베어링(141)과의 간섭을 피해 반경방향으로 벌어진 위치에 설치되어야 한다. 그러면, 압축기의 횡방향 직경이 증가하게 되어 압축기의 소형화가 어려워질 수 있다.
이에 따라, 흡입머플러 본체부(1611)와 흡입머플러 출구부(1613)는 흡입머플러 연결부(1614)에 의해 연결될 수 있다. 흡입머플러 연결부(1614)는 일종의 머플러의 목부(neck portion)와 같이 길게 형성될 수 있다.
흡입머플러 연결부(1614)는 흡입머플러 본체부(1611)에서 실린더(143)를 향하는 방향으로 기울어지게 형성될 수 있다. 이에 따라, 흡입머플러 본체부(1611)에서 흡입머플러 출구부(1613)로 향하는 냉매의 유동저항이 감소되어 냉매가 원활하게 실린더(143)의 흡입구(1431)로 흡입될 수 있다.
한편, 흡입머플러 출구부(1613)는 실린더(143)의 머플러장착홈(1435)의 단면 형상과 대응되어 형성될 수 있다. 예를 들어, 흡입머플러 출구부(1613)는 반경방향 투영시 대략 사각형 단면 형상으로 형성될 수 있다. 이에 따라, 흡입머플러 출구부(1613)의 원주방향 양쪽 측면은 머플러장착홈(1435)의 원주방향 양쪽 측면에 각각 밀착되어 원주방향으로 지지될 수 있다.
또한, 흡입머플러 출구부(1613)의 원주방향 양쪽 측면에는 머플러고정부(1615)가 원주방향으로 연장되어 형성될 수 있다. 머플러고정부(1615)는 실린더(143)의 외주면 곡률과 동일한 곡률을 가지는 곡선 형상으로 형성될 수 있다. 이에 따라, 머플러고정부(1615)는 실린더(143)의 외주면에 밀착되어 고정될 수 있다.
또한, 머플러고정부(1615)에는 체결구멍(1615a)이 형성되고, 이 체결구멍(1615a)을 마주보는 실린더(143)의 외주면에는 체결홈(143a)이 형성될 수 있다. 이에 따라, 머플러고정부(1615)는 체결구멍(1615a)을 관통하여 체결홈(143a)에 체결되는 머플러체결볼트(1616)에 의해 체결되고, 그러면 흡입머플러(161)가 실린더(143)에 안정적으로 체결되어 고정될 수 있다.
또한, 흡입머플러 출구부(1613)와 이를 반경방향으로 마주보는 실린더(143)의 머플러장착홈(1435)의 내측면 사이에는 머플러실링부재(1617)가 구비될 수 있다. 머플러실링부재(1617)는 오링 또는 평평한 가스켓으로 형성되며, 흡입머플러 출구부(1613)에 후술할 출구연장부(1613a)가 형성되는 경우에는 그 출구연장부(1613a)를 감싸 흡입머플러 출구부(1613)와 머플러장착홈(1435)의 내측면 사이에 밀착될 수 있다.
이에 따라, 쉘(110) 내부공간(110a)의 오일[예를 들어, 후술할 급유부(170)의 급유통로구멍(1771)으로 유입되는 오일]의 일부가 흡입머플러(161)와 실린더(143) 사이의 틈새를 통해 흡입구(1431)로 유입되는 것을 억제할 수 있다.
한편, 흡입머플러 출구부(1613)에는 출구연장부(1613a)가 실린더(143)를 향해 연장 형성될 수 있다. 출구연장부(1613a)는 원통형상으로 형성되며, 전술한 흡입구(1431)의 연장부삽입홈(1431a)에 삽입되어 방사상으로 지지될 수 있다. 이에 따라, 흡입머플러(161)를 머플러장착홈(1435)에 삽입하여 결합하는 경우, 그 흡입머플러(161)의 조립위치를 용이하게 정렬하는 동시에 흡입머플러(161)와 흡입구(1431) 사이의 냉매누설이나 오일유입을 효과적으로 차단할 수 있다.
한편, 도면으로 도시하지는 않았으나, 실린더(143)에 머플러장착홈을 형성하지 않고 흡입머플러 출구부(1613)의 선단면을 실린더(143)의 외주면에 밀착시킨 상태에서 고정할 수 있다.
또한, 전술한 실시예에서는 흡입머플러(161)에 머플러고정부(1615)를 일체로 연장 형성하는 것이나, 경우에 따라서는 머플러고정부를 일체로 형성하지 않고 실린더(143)에 체결되는 별도의 머플러고정부재(미도시)를 이용하여 흡입머플러(161)를 실린더(143)에 고정할 수도 있다.
다음으로 토출머플러를 설명한다.
도 1 및 도 5를 참조하면, 본 실시예에 따른 토출머플러(162)는 토출구(1423)를 수용하도록 토출공간(1621a)을 구비하는 토출머플러 본체부(1621)와, 토출머플러 본체부(1621)에서 연장되어 서브베어링(142)의 상면에 고정되는 토출머플러 고정부(1622)를 포함한다.
토출머플러 본체부(1621)는 토출공간(1621a)을 형성하는 측벽면과 상벽면으로 이루어지고, 토출공간(1621a)을 형성하는 측벽면에는 루프파이프(118)에 연결되어 토출공간(1621a)으로 토출되는 냉매를 토출파이프(116)로 안내하는 냉매배출구멍(1621b)이 형성될 수 있다. 이에 따라, 토출공간(1621a)으로 토출되는 냉매는 그 토출공간(1621a)에서 토출소음이 상쇄되면서 냉매배출구멍(1621b)을 통해 루프파이프(118)로 배출되고, 이 냉매는 토출파이프(116)를 통해 응축기로 이동하게 된다.
또한, 토출머플러 본체부(1621)의 상벽면 중앙에는 서브베어링돌부(1422)가 관통되는 베어링부 관통구멍(1621c)이 형성될 수 있다. 베어링부 관통구멍(1621c)은 토출머플러 본체부(1621)의 상벽면을 단순 관통하여 형성될 수도 있다. 하지만, 서브베어링돌부(1422)가 베어링부 관통구멍(1621c)에 관통되도록 삽입되므로, 그 서브베어링돌부(1422)와의 사이에 실링부재(미부호)를 설치할 수 있도록 토출공간(1621a)의 내측쪽으로 절곡하여 원통 형상으로 형성될 수 있다.
또한, 서브베어링돌부(1422)의 내부에는 회전축(130)이 관통되도록 삽입됨에 따라, 회전축(130)의 상단은 토출머플러(162)의 외부로 개방된다. 이에 따라, 후술할 오일펌핑구멍(1371)이 형성된 회전축(130)의 상단이 토출머플러(162)의 외부로 개방되어, 오일펌핑구멍(1371)을 통해 이송되는 오일은 토출머플러(162)의 외부로 배출되게 된다. 이 오일은 후술할 급유가이드(176)에 의해 베인슬롯(1432)의 후방측으로 공급된다. 이에 대해서는 급유부에서 다시 설명한다.
다음으로 급유부를 설명한다.
도 5 내지 도 7을 참조하면, 본 실시예에 따른 급유부(170)는 오일펌핑부(171) 및 급유안내부(175)를 포함한다.
오일펌핑부(171)는 쉘(110)의 내부공간(110a)에 저장된 오일을 펌핑하여 베어링면 또는 압축부에 공급하는 부분으로, 본 실시예에 따른 오일펌핑부(171)는 오일펌핑통로(172) 및 오일펌프(173)를 포함한다.
오일펌핑통로(172)는 펌핑되는 오일을 회전축(130)의 메인베어링부(132)와 서브베어링부(133)로 안내하는 부분으로, 오일펌핑통로(172)는 오일펌핑구멍(1721), 급유구멍(1722), 제1 급유홈(1723), 제2 급유홈(1724), 제3 급유홈(1725)을 포함한다.
오일펌프(173)는 회전축(130)의 하단에 구비되어 쉘(110)의 내부공간(110a)에 저장된 오일을 오일펌핑통로(172)로 펌핑하는 부분으로, 본 실시예에 따른 오일펌프(173)는 원심펌프로 이루어질 수 있다. 하지만, 오일펌프(173)는 반드시 원심펌프로만 한정되는 것은 아니고 경우에 따라서는 후술할 기어펌프, 점성펌프 등이 적용될 수도 있다. 다만, 오일펌프(173)가 원심펌프인 경우에는 펌프하우징(1731) 및 펌프블레이드(1732)를 포함한다. 본 실시예에 따른 오일펌프를 포함한 오일펌핑부에 대해서는 나중에 회전축과 함께 다시 설명한다.
급유안내부(175)는 오일펌핑부에 의해 펌핑되는 오일을 압축부로 안내하는 부분으로, 본 실시예에 따른 급유안내부(175)는 급유가이드(176) 및 급유통로(177)를 포함한다.
급유가이드(176)는 회전축(130)의 상단에서 비산되는 오일을 포집하는 역할을 하며, 급유통로(177)는 급유가이드(176)에 연결되어 오일을 해당 위치로 안내하는 역할을 한다. 이에 따라, 오일의 유동순서를 기준으로 보면 급유가이드(176)는 회전축(130)의 하류쪽에 구비되고, 급유통로(177)는 급유가이드(176)보다는 후류쪽에 위치하게 구비된다.
급유가이드(176)는 토출머플러(162)의 상벽면 외측에 구비될 수 있다. 급유가이드(176)는 토출머플러(162)에 일체로 형성될 수도 있고, 재질에 따라 용접 또는 체결될 수 있다. 급유가이드(176)는 금속으로 형성될 수도 있고, 플라스틱과 같은 재질로 형성될 수도 있다.
또한, 급유가이드(176)는 토출머플러(162)에 접하는 하면은 개구되고, 회전축(130)의 상단에서 비산되는 오일을 포집할 수 있도록 측면과 상면은 막힌 형상으로 형성될 수 있다. 이에 따라, 급유가이드(176)의 측면 일부와 상면은 토출머플러(163)의 상면과 함께 오일수용공간(1761)이 형성될 수 있다. 다만, 오일수용공간(1761)을 이루는 측면 중에서 급유통로(177)를 향하는 쪽의 측면은 개구되어 가이드출구(1762)가 형성될 수 있다.
가이드출구(1762)의 외주면에는 급유안내부(175)의 일부를 이루는 급유안내돌부(1763)가 형성될 수 있다. 급유안내돌부(1763)는 급유가이드(176)와 급유통로(177)의 사이에 구비될 수 있다. 이에 따라, 급유가이드(176)에서 포집된 오일이 급유안내돌부(1763)에 의해 급유통로구멍(1771)으로 원활하게 이동할 수 있다.
급유안내돌부(1763)는 원주방향을 따라 기설정된 간격을 두고 2개가 서로 대칭되게 형성될 수 있다. 급유안내돌부(1763)의 일단은 2개의 급유안내돌부(1763)가 급유가이드(176)의 양측면에서 각각 연장되고, 급유안내돌부(1763)의 타단에는 2개의 급유안내돌부(1763)의 사이에 급유통로구멍(1771)이 수용되도록 형성될 수 있다. 이에 따라, 2개 한 쌍으로 된 급유안내돌부(1763)에 의해 급유가이드(176)와 급유통로(177) 사이에 오일공급유로를 하게 된다.
본 실시예에 따른 급유안내돌부(1763)는 제1 안내돌부(1763a)와 제2 안내돌부(1763b)로 이루어질 수 있다. 급유안내돌부(1763)는 급유가이드(176)에서 연장되어 토출머플러(162)의 외면과 서브베어링(142)의 외면 중에서 적어도 어느 한쪽에 안착되도록 형성될 수도 있고, 토출머플러(162)의 외면과 서브베어링(142)의 외면 중에서 적어도 어느 한쪽에서 연장되어 형성될 수도 있다. 본 실시예에서는 급유안내돌부(1763)가 급유가이드(176)에서 연장된 예를 중심으로 설명한다.
제1 안내돌부(1763a)는 토출머플러(162)의 상면과 측면을 따라 연이어 형성될 수 있다. 제1 안내돌부(1763a)는 전술한 바와 같이 급유가이드(176)에 일체로 연장 형성될 수도 있고, 토출머플러(162)의 외면에 일체로 형성될 수도 있다. 또한, 제1 안내돌부(1763a)는 급유가이드(176) 또는 토출머플러(162)에 후조립될 수도 있다.
제2 안내돌부(1763b)는 제1 안내돌부(1763a)에 연이어 서브베어링(142)의 상면에 형성될 수 있다. 예를 들어, 제2 안내돌부(1763b)는 후술할 급유통로구멍(1771)의 둘레의 일부를 감싸도록 형성될 수 있다. 이에 따라, 급유안내돌부(1763)에 의해 안내되는 오일이 다른 곳으로 흘러나가지 않고 급유통로구멍(1771)으로 이동할 수 있다.
급유통로(177)는 급유가이드(176)에 의해 안내되는 오일을 압축부(140), 정확하게는 베인슬롯(1432)의 후방쪽으로 공급하도록 서브베어링(142)과 실린더(143)를 관통하여 형성될 수 있다. 예를 들어, 급유통로(177)는 서브베어링(142)에 형성되는 급유통로구멍(1771)을 포함할 수 있다.
급유통로구멍(1771)의 입구단은 쉘(110)의 내부공간(110a)에 노출되도록 쉘(110)의 내부공간(110a)을 향해 개방된다. 이에 따라, 급유통로구멍(1771)의 입구단은 쉘(110)의 내부공간(110a)을 통해 급유가이드(176)에 연통된다.
급유통로구멍(1771)의 출구단은 베인슬롯(1432)에 연통된다. 다만, 베인슬롯(1432)의 외주측에 후술할 급유저장홈(1772)이 형성되는 경우에는 급유통로구멍(1771)의 출구단은 급유저장홈(1772)을 통해 베인슬롯(1432)에 연통될 수 있다.
이에 따라, 급유가이드(176)의 오일수용공간(1761)은 급유통로구멍(1771)을 통해 베인슬롯(1432)에 연통되고, 급유가이드(176)에 의해 포집된 오일은 급유통로구멍(1771)을 통해 베인슬롯(1432)에 공급될 수 있다.
급유통로구멍(1771)의 원주방향 폭은 베인슬롯(1432)의 원주방향 폭보다 넓게 형성될 수 있다. 이에 따라, 급유가이드(176)에서 포집되어 쉘(110)의 하부공간으로 이동하는 오일은 급유통로구멍(1771)에 의해 수용할 수 있다.
한편, 베인슬롯(1432)의 외주측에는 기설정된 넓이와 깊이만큼 함몰되는 급유저장홈(1772) 형성될 수 있다.
급유저장홈(1772)의 단면적은 급유통로구멍(1771)의 단면적과 거의 동일하게, 예를 들어 베인슬롯(1432)보다 넓게 형성될 수 있다. 이에 따라, 급유통로구멍(1771)으로 이동하는 오일이 급유저장홈(1772)에 수용되어, 베인슬롯(1432)의 후방에 항상 일정량의 오일이 저장될 수 있다. 이 오일은 압축기의 운전시에는 베인(1445)과 베인슬롯(1432) 사이의 틈새를 통해 압축실(V)쪽으로 공급되는 반면, 압축기의 정지시에는 급유통로(177)의 중간에 저장되었다가 압축기의 재기동시 신속하게 압축실(V)쪽으로 공급될 수 있다.
예를 들어, 압축기의 운전중에는 베인(1445)이 전진 및 후진운동을 하게 된다. 베인(1445)이 급유저장홈(1772)을 향해 후진운동을 할 때 급유저장홈(1772)의 압력이 상승하게 되고, 급유저장홈(1772)의 압력이 상승함에 따라 급유저장홈(1772)에 저장된 오일은 베인(1445)과 베인슬롯(1432) 사이의 틈새를 통해 실린더(143)의 내주측, 즉 베인(1445)과 롤러(1441)가 연결된 쪽으로 신속하게 이동하게 된다. 반면, 압축기의 정지시에는 급유저장홈(1772)의 단면적이 베인슬롯(1432)의 단면적에 비해 상대적으로 넓어 일정량의 오일이 급유저장홈(1772)에 잔류하게 되고, 이 오일은 재기동시 베인(1445)과 베인슬롯(1432)의 사이로 신속하게 공급될 수 있다.
상기와 같은 본 실시예에 따른 로터리 압축기는 다음과 같이 동작된다.
즉, 전동부(120)에 전원이 인가되면 회전자(122)가 회전을 하게 된다. 회전자(122)가 회전을 하면 그 회전자(122)에 결합된 회전축(130)이 회전을 하면서 회전력을 회전축(130)의 편심부(134)에 결합된 베인롤러(144)에 전달하게 된다.
그러면 베인롤러(144)의 롤러(1441)는 선회운동을 하고, 베인(1445)은 실린더(143)에 삽입되어 왕복운동을 하면서 냉매를 실린더(143)의 압축실(V)로 흡입하여 압축하게 된다.
이 압축된 냉매는 베인롤러(144)의 롤러(1441)와 베인(1445)에 의해 지속적으로 압축되어 메인베어링(141)에 구비된 토출밸브(145)를 열고 토출구(1423)를 통해 토출머플러(162)의 토출공간(1621a)으로 토출되며, 이 토출된 냉매는 루프파이프(118)와 토출파이프(116)를 통해 냉동사이클을 이루는 응축기로 토출되는 일련의 과정을 반복하게 된다.
이때, 쉘(110)의 내부공간(110a)에 저장된 오일은 회전축(130)의 하단에 구비된 오일펌프(173)에 의해 펌핑되고, 이 펌핑되는 오일은 오일펌핑통로(172)를 통해 회전축(130)의 상단을 향해 이송된다.
이 오일의 일부는 급유구멍(1722), 제1 급유홈(1723), 제2 급유홈(1724), 제3 급유홈(1725)을 통과하면서 메인베어링면(Mb)과 서브베어링면(Sb)에 공급된다. 메인베어링면(Mb)과 서브베어링면(Sb)을 윤활한 오일은 서브베어링(142)의 상단에서 급유가이드(176)의 내부, 즉 오일수용공간(1761)으로 흘러나오게 된다.
반면, 오일펌핑통로(172)를 통해 회전축(130)의 상단까지 이송되는 나머지 오일은 회전축(130)의 상단에서 비산되고, 이 오일은 토출머플러(162)의 상면과 급유가이드(176)에 의해 형성되는 오일수용공간(1761)에서 포집된다.
상기와 같이 베어링면(Mb)(Sb)들을 윤활한 오일과 회전축(130)에서 비산되는 오일은 급유가이드(176)의 가이드출구(1762)를 통해 토출머플러(162)의 상면과 서브베어링(142)의 상면을 타고 흘러내리게 된다.
이 오일은 서브베어링(142)의 급유통로구멍(1771)과 급유저장홈(1772)을 통해 베인슬롯(1432)으로 안내되고, 베인슬롯(1432)으로 안내되는 오일은 베인(1445)이 왕복운동을 할 때 베인(1445)과 베인슬롯(1432) 사이의 틈새를 통해 압축실(V)쪽으로 이동하면서 베인(1445)과 베인슬롯(1432)과의 사이를 윤활하거나 또는 롤러(1451)의 베어링면을 윤활하게 된다.
또한, 앞서 설명한 바와 같이 베인슬롯(1432)의 외주측에는 급유저장홈(1772)이 형성됨에 따라 일정량이 오일이 급유저장홈(1772)에 저장되고, 이 급유저장홈(1772)에 저장된 오일은 압축기의 운전중에는 압축실(V)쪽으로 오일을 지속적으로 공급하는 한편 압축기의 정지시에도 일정량의 오일을 저장하고 있다가 압축기의 재기동시 신속하게 오일을 압축실(V)쪽으로 공급할 수 있다. 이를 통해 베인(1445)과 베인슬롯(1432)을 비롯한 압축부(140)에서의 오일부족으로 인한 마찰손실을 줄일 수 있다.
한편, 본 실시예에 따른 로터리 압축기는 쉘(110)의 내부공간(110a)이 저압부를 이루는 저압식 압축기로 이루어짐에 따라 압축부(140)에서 오일 또는 냉매가 쉘(110)의 내부공간(110a)으로 역류하거나 누설될 수도 있다.
예를 들어, 베인(1445)이 후진운동을 할 때 급유저장홈(1772)의 압력이 높아지면서 급유저장홈(1772)에 저장된 오일의 일부가 급유통로구멍(1771)을 통해 쉘(110)의 내부공간(110a)으로 역류하거나, 압축부(140)에서 압축되는 냉매의 일부가 베인(1445)과 베인슬롯(1432) 사이의 틈새를 거쳐 급유통로구멍(1771)을 통해 쉘(110)의 내부공간(110a)으로 누설될 수도 있다.
이에, 도 6에서와 같이 급유통로(177)의 중간을 이루는 급유통로구멍(1771)을 개폐하는 역류방지밸브(1773)가 설치될 수 있다. 역류방지밸브(1773)는 일단이 서브베어링(142)과 실린더(43) 사이에 고정되는 고정부(1773a)를 이루고, 타단이 급유통로구멍(1771)을 개폐하는 개폐부(1773b)로 된 리드밸브 형상이거나 또는 급유통로구멍(1771)의 내부에 삽입되는 볼밸브 등으로 이루어질 수 있다.
또는, 도 7에서와 같이 급유가이드(176)의 가이드출구(1762)와 급유통로구멍(1771) 사이를 급유안내관(1774)으로 밀봉하여 연결할 수도 있다. 급유통로구멍(1771)은 서브베어링(142)의 축방향 양쪽 측면을 관통하여 급유저장홈(1772)에 연통되도록 형성될 수도 있고, 실린더(143)의 반경방향 양쪽 측면을 관통하여 급유저장홈(1772)에 연통되도록 형성될 수 있다.
이를 통해, 본 실시예에서는 급유저장홈(1772)에 저장된 오일 또는 압축부에서 압축되는 냉매의 일부가 급유통로(177)를 통해 쉘(110)의 내부공간(110a)으로 누설되는 것을 억제하여 압축기 성능을 높일 수 있다.
이렇게 하여, 한 개의 쉘을 이용하여 전동부와 로터리 방식의 압축부로 이루어지는 압축기본체를 쉘로부터 이격시켜 탄력 지지하는 스프링지지형의 로터리 압축기를 구성할 수 있다. 이에 따라, 압축기본체에서 발생되는 진동이 쉘로 전달되는 것을 차단하여 압축기의 진동 소음을 줄일 수 있다. 이를 통해, 저진동 로터리 압축기를 구성하면서도 압축기의 부피와 무게를 줄이고 부품수를 줄여 제조비용을 낮출 수 있다.
또한, 스프링지지형이면서 압축부가 전동부의 상측에 위치하는 상부압축형인 로터리 압축기를 구성함으로써, 쉘의 내부에서 토출유로를 이루는 루프파이프가 쉘의 내부공간에 저장된 오일에 잠기지 않으면서 압축부와 토출파이프 사이를 연결하도록 설치할 수 있다. 이에 따라, 쉘 내부에 저장된 오일이 루프파이프를 통해 토출되는 고온의 냉매에 의해 가열되는 것을 미연에 방지할 수 있다. 이를 통해 오일의 점도가 낮아지는 것을 억제하여 압축기본체의 각 베어링면에서의 마찰손실을 줄일 수 있다.
또한, 상부압축형이면서 쉘의 내부공간이 흡입압을 이루는 저압 방식인 로터리 압축기를 구성함으로써, 전동부가 쉘의 내부공간으로 흡입되는 찬 냉매에 의해 신속하게 냉각되어 모터효율과 압축기 성능이 향상될 수 있다.
또한, 저압식이고 스프링지지형이면서 상부압축형인 로터리 압축기를 구성하면서도 오일펌핑부와 급유안내부를 이용하여 쉘에 저장된 오일을 베어링면과 압축부로 원활하게 공급할 수 있다. 이를 통해 베어링면과 압축부에서의 오일부족으로 인한 마찰손실을 줄일 수 있다.
한편, 본 실시예에 따른 로터리 압축기는 양단지지형으로 이루어짐에 따라 편심부의 양측에 각각 메인베어링부와 서브베어링부가 구비되면서 회전축의 전체길이가 길어지게 되고, 이로 인해 압축기의 전체적인 높이가 증가되면서 압축기의 소형화에 불리하게 될 수 있다. 따라서, 회전축의 전체길이가 길어지는 것을 억제하여야 압축기를 소형화하는데 유리할 수 있다. 특히 본 실시예에 따른 로터리 압축기가 정수기기와 같은 소형제품에 적용되는 경우에는 압축기를 높이를 낮춰 소형화를 구현하는 것이 상당히 중요하다.
통상, 양단지지형의 로터리 압축기는 회전축의 중간에 편심부가 형성되고, 편심부의 한쪽에는 메인베어링부가, 다른쪽에는 서브베어링부가 각각 형성된다. 이에 따라, 롤러는 메인베어링부 또는 서브베어링부 중에서 어느 한쪽 베어링부를 통과한 후 편심부에 삽입된다. 이때, 롤러가 편심부에서 연이어 형성되는 베어링부(예를 들어, 서브베어링부)쪽으로 삽입되려면 편심부의 외주면이 서브베어링부의 외주면보다 반경방향으로 돌출되거나 최소한 동일하여야 롤러가 편심부에 걸리지 않고 삽입될 수 있다.
만약, 편심부의 외주면이 서브베어링부의 외주면보다 반경방향으로 함몰되면 롤러의 내주면 일측은 서브베어링부에 밀착된 상태에서 롤러의 내주면 타측은 편심부의 축방향 측면에 걸리게 된다. 그러면 롤러는 서브베어링부와 편심부에 의해 편심부쪽으로의 이동이 제한되면서 편심부의 외주면에 삽입될 수 없게 된다. 따라서, 환형의 롤러를 편심부에 삽입하려면 그 편심부의 최단편심반경이 베어링부의 외경보다 크거나 적어도 같아야 한다.
하지만, 편심부의 최단편심반경이 서브베어링부의 외경보다 크거나 적어도 같게 되면 편심부의 외주면이 서브베어링부의 외주면보다 돌출되거나 적어도 같아지게 된다. 그러면, 베어링부의 외경이 그만큼 작아져야 하므로 서브베어링부의 적정 베어링면적을 유지하기 위해서는 서브베어링부의 길이가 길어지게 된다. 이는 압축기의 소형화에 불리하게 된다.
다시 말해, 베어링부의 외경과 축방향길이는 서로 반비례하는 관계이므로 베어링부의 외경을 가능한 한 늘리는 것이 베어링부의 축방향길이는 줄여 압축기를 소형화하는데 유리하게 된다.
또한, 로터리 압축기는 편심부의 편심량을 늘려서도 압축기를 소형화 및 경량화를 이룰 수 있다. 즉, 로터리 압축기의 압축실 체적이 동일한 경우 편심부의 편심량을 늘리면 편심부의 외경을 줄일 수 있다. 편심부의 외경이 감소하게 되면 롤러의 외경 및 실린더의 내경이 줄어들어 압축기를 소형화 및 경량화할 수 있다. 아울러, 편심부의 외경이 감소함에 따라 양쪽 베어링부의 베어링하중이 낮아지고, 베어링부의 베어링하중이 낮아진 만큼 양쪽 베어링부재의 크기를 줄일 수 있어 압축기를 소형화 및 경량화하는데 유리하다.
하지만, 압축부의 체적을 결정하는 편심부의 외경이 정해진 상태에서 종래의 회전축과 같은 구조, 즉 편심부의 양쪽에 메인베어링부와 서브베어링부가 각각 인접되거나 연이어 형성되는 구조는 앞서 설명한 바와 같이 메인베어링부 또는 서브베어링부의 외경을 줄이는데 한계가 있다.
이에 본 실시예에서는 양단지지형의 로터리 압축기에 적용되는 회전축의 중간에 롤러의 조립위치를 정렬할 수 있는 롤러정렬부가 형성될 수 있다. 이를 통해, 편심부에 롤러를 용이하게 삽입하면서도 그 편심부에서 연이어 형성되는 베어링부의 외경은 늘려 축방향길이를 줄여 압축기의 소형화를 이룰 수 있다.
아울러, 롤러정렬부로 인해 압축실의 체적이 동일한 조건에서 편심부의 편심량을 늘려 편심부의 외경을 줄임으로써 압축기의 소형화 및 경량화, 저진동화를 이룰 수 있다.
도 8은 본 실시예에 따른 회전축을 일측에서 보인 사시도이고, 도 9는 본 실시예에 따른 회전축을 타측에서 보인 사시도이며, 도 10은 본 실시예에 따른 회전축을 일측에서 보인 정면도이고, 도 11은 도 10에서 서브베어링부와 롤러정렬부를 확대하여 보인 정면도이며, 도 12는 도 10에서 회전축을 축방향으로 보인 평면도이다.
도 8 내지 도 12를 참고하면, 본 실시예에 따른 회전축(130)은 앞서 설명한 바와 같이 실린더(143)를 기준으로 하측에 구비되는 메인베어링(141)과 상측에 구비되는 서브베어링(142)에 의해 각각 지지된다. 이에 따라 회전축(130)은 양단지지형을 이루게 된다.
예를 들어, 본 실시예에 따른 회전축(130)은 회전자결합부(131), 메인베어링부(132), 서브베어링부(133), 편심부(134), 롤러정렬부(135), 마찰회피부(136)를 포함한다.
본 실시예에 따른 회전자결합부(131)는 회전자코어(1221)에 압입되는 부분으로, 회전축(130)의 하단부를 이룬다. 회전자결합부(131)의 하단은 회전자(122)의 하단보다 길게 연장되고, 회전자결합부(131)의 하단에는 오일펌핑구멍(1721)의 입구가 형성되고, 오일펌핑구멍(1721)의 입구에는 오일펌프(173)가 설치될 수 있다. 오일펌핑구멍(1721)과 오일펌프(173)에 대해서는 나중에 오일펌핑통로(172)를 설명하면서 구체적으로 설명한다.
회전자결합부(131)의 외경(D1)은 메인베어링부(132)의 외경(D2)과 대략 동일하게 형성될 수 있다. 이에 따라 회전자코어(1221)의 내주면은 상단에서 하단으로 기설정된 깊이만큼 단차지게 베어링삽입홈부(1221a)가 형성되어 메인베어링돌부(1413)가 삽입될 수 있다.
본 실시예에 따른 메인베어링부(132)는 메인베어링(141)과 함께 메인베어링면(Mb)을 이루는 부분으로, 메인베어링구멍(1413a)에 회전 가능하게 삽입된다.
메인베어링부(132)는 회전자결합부(131)와 동일 축선상에 형성되며, 회전축(130)의 중간, 즉 회전자결합부(131)의 상단에서 연이어 형성된다. 이에 따라 메인베어링면(Mb)의 중심이 편심부(134)의 중심, 즉 압축실로로부터 멀리 위치하게 되어 메인베어링부(132)에서의 베어링하중(하측 베어링하중)이 감소된다.
메인베어링부(132)의 외경(D2)은 앞서 설명한 바와 같이 회전자결합부(131)의 외경(D1)과 대략 동일하게 형성되며, 메인베어링구멍(1413a)의 내경(미부호)과도 대략 동일하게 형성된다. 이에 따라, 오일펌핑통로(172)의 일부를 이루는 급유구멍(1722)을 통해 메인베어링면(Mb)으로 유입되는 오일은 회전자결합부(131)쪽으로 흘러내려가지 않고 오일펌핑통로(172)의 일부를 이루는 제1 급유홈(1723)을 통해 메인베어링부(132)의 상측에 위치하는 마찰회피부(136)쪽으로 원활하게 이송될 수 있다.(도 15 참조)
메인베어링부(132)의 축방향길이(L2)는 회전자결합부(131)의 축방향길이(L1)와 대략 동일하게 형성될 수 있다. 이에 따라 메인베어링부(132)는 회전자결합부(31)에서 거의 동일한 규격으로 연장 형성될 수 있다.
본 실시예에 따른 서브베어링부(133)는 서브베어링(142)과 함께 서브베어링면(Sb)을 이루는 부분으로, 서브베어링구멍(1413a)에 회전 가능하게 삽입된다.
서브베어링부(133)의 중심(P3)은 회전자결합부(131)의 중심(P1) 및 메인베어링부(132)의 중심(P2)과 동일 축선 상에 형성되고, 편심부(134)의 상단에서 축방향으로 연장된다. 이에 따라 서브베어링부(133)의 중심(P3)이 편심부(134)의 중심(P4), 즉 압축실(V)로부터 가깝게 위치하게 된다. 이에 따라 서브베어링부(133)에서의 베어링하중(상측 베어링하중은 메인베어링부(132)에서의 베어링하중(하측 베어링하중)보다 증가된다. 이로 인해 (압축실에서의 가스반력을 고려하면) 서브베어링부(133)는 메인베어링부(132)에 비해 넓은 베어링면적이 필요하게 된다.
서브베어링면(Sb)의 베어링면적은 그 서브베어링부(133)의 외경 또는 축방향길이에 의해 결정된다. 하지만 서브베어링부(133)의 외경은 토출구(1423) 및 토출밸브(145), 토출머플러(162)의 체적에 영향을 미치게 되므로 서브베어링부(133)의 외경을 확대하는 것은 제한적이다.
서브베어링부(133)의 축방향길이(L3)는 압축기의 소형화에 영향을 미치게 되므로 서브베어링부(133)의 축방향길이(L3)를 확대하는 것도 제한적이다. 특히 압축기본체(C)가 스프링지지형으로 지지되는 경우에는 압축기본체(C)의 요동이 크게 발생하게 되므로 쉘(110)의 상측에는 길이방향으로 비교적 넓은 공간이 필요하게 된다. 따라서 서브베어링부(133)의 축방향길이(L3)가 길어지면 더 넓은 공간이 필요하게 되어 결국 압축기가 비대하게 될 수 있다.
이에, 본 실시예에 따른 서브베어링부(133)의 외경(D3)은 메인베어링부(132)의 외경(D2)보다 작게 형성되고, 후술할 마찰회피부(136)의 외경(D6)과 대략 동일하게 형성될 수 있다. 서브베어링부(133)의 축방향길이(L3)는 메인베어링부(132)의 축방향길이(L2)와 대략 동일하거나 또는 후술할 롤러정렬부(135)의 축방향길이(L5)와 대략 동일하거나 약간 크거나 작게 형성될 수 있다.
하지만, 경우에 따라서는 서브베어링부(133)의 외경(D3)은 메인베어링부(132)의 외경(D2)보다 크거나 같게 형성되고, 서브베어링부(133)의 축방향길이(L3)는 메인베어링부(132)의 축방향길이(L2)보다 짧게 형성될 수도 있다.
본 실시예에 따른 편심부(134)는 전동부(120)의 회전력을 베인롤러(144)에 전달하는 부분으로, 앞서 설명한 베인롤러(144)의 롤러(1441)가 회전 가능하게 삽입되어 실린더(143)의 내부, 즉 압축실(V)을 이루는 공간에 수용된다.
편심부(134)는 메인베어링부(132)와 서브베어링부(133)의 사이에 형성된다. 구체적으로, 편심부(134)는 롤러정렬부(135)와 서브베어링부(133)의 사이에 형성된다.
편심부(134)는 회전자결합부(131), 메인베어링부(132) 및 서브베어링부(133)에 대해 편심되게 형성된다. 이에 따라 편심부(134)는 회전축(130)의 축중심(Os)에 대해 선회운동을 하게 되고, 편심부(134)에 결합된 베인롤러(144)의 롤러(1441)가 실린더(143)의 내부에서 선회운동을 하면서 냉매를 압축하게 된다.
편심부(134)의 외경(D4)은 메인베어링부(132)의 외경(D2) 및 서브베어링부(133)의 외경(D3)보다 크게 형성된다. 즉, 편심부(134)의 외경(D4)은 메인베어링구멍(1413a)의 내경(미부호) 및 서브베어링구멍(1422a)의 내경(미부호)보다 크게 형성된다. 이에 따라 편심부(134)의 축방향 양쪽 측면은 메인베어링(141)의 메인플레이트부(1411) 및 서브베어링(142)의 서브플레이트부(1421)에 각각 축방향으로 지지될 수 있다.
또한, 편심부(134)의 축방향길이(축방향높이)(L4)는 롤러(1441)의 축방향길이(높이)(L7)와 거의 동일하거나 또는 작게 형성된다. 이에 따라, 편심부(134)에 롤러(1441)를 삽입하기 위해서는 편심부(134)의 최단편심반경(D11)이 메인베어링부(132)의 반경(제1 반경)(D21) 및 서브베어링부(133)의 반경(제2 반경)(D31)보다 크게 형성되어야 앞서 설명한 롤러삽입가능길이를 확보할 수 있어 롤러(1441)의 조립측면에서 유리하다.
여기서, 편심부(134)의 최단편심반경(D41)은 회전축(130)의 축방향 중심선(이하 축중심)(Os)으로부터 편심부(134)의 외주면을 연결한 방사상 길이(또는 방사상 거리)중에서 최단길이(또는 최단거리)로 정의되고, 각 베어링부(132)(133)의 반경(D21)(D31)은 축중심(Os)에서의 반경으로 정의될 수 있다.
하지만, 편심부(134)의 최단편심반경(D41)이 메인베어링부(132)의 반경(D21) 및 서브베어링부(133)의 반경(D31)보다 크거나 같게 형성되면 편심부(134)의 외경(D4)이 증가하면서 롤러(1441)의 조립측면에서는 유리하지만, 메인베어링부(132)의 축방향길이(L2) 또는 서브베어링부(133)의 축방향길이(L3)를 증가시켜야 하므로 압축기의 소형화에 불리하게 된다. 이는 실린더(143)의 내경이 증가하게 되어 압축기의 소형화에 더욱 불리하게 되는 것은 물론, 편심부(134)의 무게가 증가하여 모터효율 및 압축기의 저진동화에도 불리하게 된다.
반면, 편심부(134)의 최단편심반경(D41)이 메인베어링부(132)의 반경(D21) 및 서브베어링부(133)의 반경(D31)보다 작게 형성되면 메인베어링부(132)의 외주면 또는 서브베어링부(133)의 외주면이 편심부(134)의 외주면보다 반경방향으로 돌출되는 돌출부분(A3)이 발생되어 롤러의 조립이 곤란하게 된다.
이에 본 실시예에서는 편심부(134)의 최단편심반경(D41)이 메인베어링부(132)의 반경(D21) 및 서브베어링부(133)의 반경(D31)보다 작게 형성되고, 편심부(134)의 인접된 일측, 구체적으로는 편심부(134)와 메인베어링부(132)의 사이에 롤러정렬부(135)가 연이어 형성될 수 있다. 이에 따라, 편심부(134)의 최단편심반경(D41)이 메인베어링부(132)의 반경(D21)보다 작게 형성된다. 그러면 편심부(134)의 외주면 일부가 메인베어링부(132)의 외주면보다 회전축(130)의 축중심(Os)쪽으로 함몰되더라도 롤러(1441)를 편심부(134)에 조립하기 전에 그 롤러(1441)가 편심부(134)에 걸리지 않고 조립되도록 롤러(1441)의 조립위치를 조절할 수 있다. 그러면 롤러(1441)를 편심부(134)에 쉽게 삽입할 수 있다.
다시 말해, 본 실시예에서는 메인베어링부(132)의 반경(D21) 또는 서브베어링부(133)의 반경(D31)이 편심부(134)의 최단편심반경(D41)보다 크거나 같게 형성되어 롤러삽입가능길이를 확보하지 못하더라도 롤러정렬부(135)를 이용하여 롤러(1441)를 편심부(134)에 용이하게 삽입할 수 있다.
도 8 내지 도 10을 참조하면, 본 실시예에 따른 롤러정렬부(135)는 롤러(1441)를 편심부(134)에 삽입하기 전에 조립위치를 재조정하는 부분으로, 본 실시예에 따른 롤러정렬부(135)는 편심부(134)의 하면에서 메인베어링부(132)를 향하는 방향으로 연이어 형성된다.
예를 들어, 롤러정렬부(135)는 메인베어링부(132)를 기준으로 보면 기설정된 깊이만큼 함몰지거나 단차진 형상이 된다. 이에 따라 롤러정렬부(135)의 외경(D5)은 메인베어링부(132)의 외경(D2)보다 작게 형성된다.
롤러정렬부(135)의 외경(D5)은 서브베어링부(133)의 외경(D3)보다 작게 형성될 수 있다. 이에 따라, 롤러정렬부(135)의 중심(P5)이 회전축(130)의 축중심(Os)과 동일축선상에 위치하는 경우 그 롤러정렬부(135)의 반경(제3 반경)(D51)은 서브베어링부(133)의 반경(제2 반경)(D31)보다 작게 형성될 수 있다.
롤러정렬부(135)의 중심(P5)은 회전축(130)의 축중심(Os)과 일치하도록 형성될 수 있다. 즉, 롤러정렬부(135)의 중심(P5)은 마찰회피부(136)의 중심(P6), 메인베어링부(132)의 중심(P2) 및 회전자결합부(131)의 중심(P1)과 모두 일치하도록 형성될 수 있다. 이에 따라 롤러정렬부(135)는 환형으로 형성될 수 있고, 이로 인해 마찰회피부(136)를 통해 롤러정렬부(135)로 유입되는 오일이 후술할 편심부(134)의 제2 급유홈(1724)으로 원활하게 이송될 수 있다.
또한, 롤러정렬부(135)는 앞서 설명한 바와 같이 롤러(1441)의 반경방향 삽입위치를 조정하여 정렬하는 구간이므로, 롤러정렬부(135)의 축방향길이(L5)는 적어도 롤러(1441)의 축방향높이(L7)보다는 크게 형성되는 것이 바람직하다. 이에 따라 롤러(1441)의 내경이 편심부(134)의 외경(D4)과 거의 동일하게 형성하면서도 롤러(1441)를 편심부(134)에 용이하게 삽입할 수 있다.
도 13은 본 실시예에 따른 회전축의 편심부에 롤러를 결합하는 과정을 순서대로 보인 도면들이다.
먼저, 도 13의 (a)와 같이, 롤러(1441)를 회전축(130)의 하단에서 삽입한다. 이때 롤러(1441)의 내경(D7)은 회전자결합부(131)의 외경(D1) 또는 메인베어링부(132)의 외경(D2))보다 크게 형성됨에 따라 롤러(1441)의 중심(P7)과 회전축(130)의 축중심(Os) 및 편심부(134)의 중심(P4)은 일치시킬 필요는 없다. 이 상태에서의 롤러(1441)는 자유상태가 된다.
다음, 도 13의 (b)와 같이, 롤러(1441)를 회전축(130)을 따라 밀어올려 롤러정렬부(135)에 진입시킨다. 이때에도 롤러(1441)의 내경(D7)이 롤러정렬부(135)의 외경(D5)보다 크게 형성됨에 따라, 롤러(1441)의 중심(P7)과 회전축(130)의 축중심(Os) 및 편심부(134)의 중심(P4)은 일치시킬 필요는 없다. 따라서 이 상태에도 롤러(1441)는 편심부(134)에 대해 편심진 상태에서 자유상태를 유지하게 된다.
다음, 도 13의 (c)와 같이, 롤러(1441)를 반경방향으로 이동시켜 그 롤러(1441)의 중심(P7)이 편심부(134)의 중심(P4)과 일치되도록 정렬시킨다. 이때, 롤러(1441)의 축방향높이(축방향길이)(L4)는 롤러정렬부(135)의 축방향길이(L5)보다 작게 형성되므로 롤러(1441)는 자유롭게 반경방향으로 이동하게 된다. 따라서 롤러(1441)는 회전축(130)에 대해 수평을 유지한 상태에서 조립위치를 정렬할 수 있다.
다음, 도 13의 (d)와 같이, 롤러(1441)를 축방향으로 밀어올려 편심부(134)에 삽입시킨다. 여기서, 롤러(1441)의 내경(D7)은 편심부(134)의 외경(D4)과 거의 동일하게 형성되고, 편심부(134)의 최단편심반경(D41)은 롤러정렬부(135)의 반경(D51)보다 크거나 같게 형성된 상태가 된다. 이에 따라 롤러(1441)를 편심부(134)에 삽입할 때 롤러삽입가능길이를 확보할 수 있다. 그리고 도 13의 (c)에 도시된 단계에서 롤러(1441)는 롤러정렬부(135)에서 롤러(1441)의 중심(P7)과 편심부(134)의 중심(P4)을 일치시킨 상태이므로, 롤러(1441)를 편심부(134)에 쉽게 삽입할 수 있다.
이렇게 하여, 본 실시예에 따른 베어링부의 외경이 증가되어 편심부의 외주면이 베어링부의 외주면보다 반경방향으로 함몰된 상태에서도 롤러를 편심부에 쉽게 조립할 수 있다. 이를 통해, 베어링부의 외경을 늘려 베어링면적을 확보하면서도 베어링부의 축방향길이를 줄여 압축기를 소형화할 수 있다.
또한, 본 실시예에 따른 롤러정렬부는 편심부를 중심으로 상대적으로 여유길이가 있는 메인베어링부쪽에 형성됨에 따라, 롤러정렬부로 인해 회전축의 전체길이가 길어지지 않게 되어 압축기를 소형화할 수 있다.
또한, 본 실시예에 따른 편심부는 롤러정렬부에 의해 편심부의 편심량이 확대되는 만큼 편심부의 외경을 줄일 수 있다. 이에 따라 실린더의 내경을 줄이는 동시에 베어링하중의 감소를 통해 베어링의 크기를 줄여 압축기의 소형화 및 경량화, 저진동화를 이룰 수 있다.
한편, 본 실시예에 따른 회전축(130)에는 쉘(110)의 하부에 저장된 오일을 압축부(140)로 공급하기 위한 오일펌핑부(171)가 더 구비된다. 도 14는 본 실시예에 따른 오일펌핑부에서 오일이 펌핑되는 통로를 설명하기 위해 베어링을 파단하여 회전축의 외면을 보인 사시도이고, 도 15는 도 14에서 회전축의 내면을 보인 단면도이다.
도 14 및 도 15를 참조하면, 본 실시예에 따른 오일펌핑부(171)는 앞서 설명한 바와 같이 오일펌핑통로(172) 및 오일펌프(173)를 포함한다.
오일펌핑통로(172)의 일부는 회전축(130)에 형성되고, 일부는 회전축(130) 또는 이를 마주보는 메인베어링(141) 또는 서브베어링(142)에 형성될 수 있다. 오일펌프(173)는 회전축(130)의 하단에서 오일펌핑통로(172)의 입구단에 연통되도록 구비될 수 있다.
오일펌핑통로(172)는 오일이 펌핑되는 순서를 따라 오일펌핑구멍(1721), 급유구멍(1722), 제1 급유홈(1723), 제2 급유홈(1724), 제3 급유홈(1725)으로 이루어지고, 제2 급유홈(1724)과 제3 급유홈(1725)의 사이에 급유연통홈(1726)이 구비될 수 있다.
오일펌핑구멍(1721)은 회전축(130)의 내부를 축방향으로 관통하여 형성될 수 있다. 물론, 오일펌핑구멍(1721)은 회전축(130)의 내부에서 경사지게 형성될 수도 있고, 축방향 전체를 관통하지 않고 하단에서 기설정된 높이까지만 형성될 수도 있다. 다만, 본 실시예에서는 오일펌핑구멍(1721)이 회전축(130)의 내부를 축방향으로 관통된 예를 중심으로 설명한다.
오일펌핑구멍(1721)은 축방향을 따라 동일한 내경으로 형성될 수도 있다. 하지만, 회전축(130)의 중간높이에서 급유구멍(1722)이 형성되어 펌핑되는 오일의 일부가 회전축(130)의 외부로 이송된다. 따라서, 오일펌핑구멍(1721)은 중간 높이, 예를 들어 급유구멍(1722)까지는 제1 내경(D81)을 가지는 제1 펌핑구멍(1721a)으로, 급유구멍(1722)을 지나서는 제1 내경(D81)보다 작은 제2 내경(D82)을 가지는 제2 펌핑구멍(1721b)으로 형성될 수도 있다. 물론, 오일펌핑구멍(1721)은 제3 내경(미도시)을 가지는 제3 펌핑구멍(미도시) 등이 더 형성될 수도 있다.
다만, 오일펌핑구멍(1721)의 내경(미부호)은 회전축(130)의 강성을 만족하는 범위내에서는 가능한 한 크게 형성되는 것이 회전축(130)의 무게를 낮춰 모터효율 측면에서 유리하고, 오일펌핑시 유로저항을 낮출 수 있어 급유측면에서도 유리할 수 있다.
제1 펌핑구멍(1721a)의 내주면은 평활관 형상으로 형성될 수 있다. 하지만, 펌핑되는 오일의 일부는 회전축(130)의 상단까지 신속하게 이동할 수 있도록 제1 내부급유홈(미도시)이 더 형성될 수 있다. 제1 내부급유홈은 나선형으로 형성될 수 있으나, 그 외 다양한 형상으로 형성될 수 있다.
제2 펌핑구멍(1721b)의 내주면은 평활관 형상으로 형성될 수 있다. 하지만, 제2 펌핑구멍(1721b)은 제1 펌핑구멍(1721a)과 마찬가지로 제2 내부급유홈(미도시)이 더 형성될 수도 있다. 제2 내부급유홈은 제1 내부급유홈과 같이 나선형으로 형성될 수 있으나, 그 외 다양한 형상으로 형성될 수 있다.
급유구멍(1722)은 제1 펌핑구멍(1721a)으로 펌핑되는 오일을 메인베어링부(132)의 외주면쪽으로 이송하는 역할을 한다. 이에 따라 급유구멍(1722)은 오일펌핑구멍(1721)의 내주면에서 외주면으로 관통되어 형성될 수 있다. 구체적으로는 제1 펌핑구멍(1721a)의 내주면에서 메인베어링부(132)의 외주면으로 관통되어 형성될 수 있다.
급유구멍(1722)은 제1 펌핑구멍(1721a)의 제1 내경(D81))보다는 작고, 제2 펌핑구멍(1721b)의 제2 내경(D82)보다는 작거나 같게 형성될 수 있다. 이에 따라 제1 펌핑구멍(1721a)으로 펌핑되는 오일의 일부는 급유구멍(1722)으로, 나머지는 제2 펌핑구멍(1721b)으로 나뉘어 펌핑될 수 있다.
이때, 급유구멍(1722)의 내경(D83)과 제2 펌핑구멍의 내경(D82)이 거의 동일한 경우에는 양쪽으로 펌핑되는 오일량이 유사하게 되어 압축기의 기동 초기에 베어링면(Ms)(Sb)은 물론 압축부(140)에 오일이 균일하면서도 신속하게 공급될 수 있다.
제1 급유홈(1723)은 급유구멍(1722)을 통해 메인베어링부(132)의 외주면으로 이송되는 오일을 메인베어링면(Mb)에서 확산시키는 동시에, 서브베어링부(133)쪽으로 이송하는 역할을 한다. 이에 따라 제1 급유홈(1723)은 급유구멍(1722)과 대략 동일한 단면적을 가지도록 형성되며, 급유구멍(1722)의 외측단에 연결되어 롤러정렬부(135)를 향해 연장된다.
예를 들어, 제1 급유홈(1723)은 메인베어링부(132)의 하반부에서 시작하여 그 메인베어링부(132)의 상반부를 통과한 후 마찰회피부(136)를 하단에서 상단까지 관통하도록 형성될 수 있다.
다시 말해, 제1 급유홈(1723)은 메인베어링부(132)의 외주면과 마찰회피부(136)의 외주면을 따라 연속으로 형성될 수 있다. 이에 따라, 제1 급유홈(1723)은 급유구멍(1722)에 연통되고, 제1 급유홈(1723)의 출구는 마찰회피부(136)와 롤러정렬부(135) 사이의 경계를 이루는 마찰회피부(136)의 단차면(136a)을 통과하여 형성될 수 있다.
제1 급유홈(1723)은 축방향으로 연장될 수도 있고, 축방향에 대해 기설정된 각도만큼 경사지게 나선형으로 연장될 수도 있다.
다만, 제1 급유홈(1723)이 축방향으로 연장되어 형성되면 제1 급유홈(1723)의 길이는 최단거리로 짧아지는 반면 오일에 대한 원심력이 약화되어 오일이 원활하게 이송되지 못할 수 있다. 이에 따라 제1 급유홈(1723)은 축방향에 대해 적정한 경사각을 가진 나선형상으로 형성되는 것이 오일펌핑 측면에서 유리할 수 있다.
아울러, 제1 급유홈(1723)을 통과하는 오일은 메인베어링면(Mb)을 윤활하는 역할을 하게 된다. 따라서 제1 급유홈(1723)은 메인베어링부(132)의 원주방향으로 길게 형성되는 것이 베어링면적을 확대할 수 있어 윤활측면에서 유리할 수 있다. 다만, 제1 급유홈(1723)의 길이가 너무 길면 그 제1 급유홈(1723)에서 오일이 적체될 수 있으므로, 제1 급유홈(1723)의 턴각도는 대략 180~ 360°정도가 되는 나선형상으로 형성될 수 있다. 제1 급유홈(1723)의 턴각도는 회전축(130)의 전체길이(L)에 비례하므로 압축기의 용량에 따라 변경될 수 있다.
제2 급유홈(1724)은 롤러정렬부(135)로 이송된 오일이 편심부(134)를 통과하여 서브베어링부(133)쪽으로 이송되도록 안내하는 역할을 한다. 이에 따라 제2 급유홈(1724)은 제1 급유홈(1723)과 대략 동일한 단면적을 가지도록 형성되며, 편심부(134)의 외주면에 함몰되어 형성되거나 또는 편심부(134)를 관통하여 형성될 수 있다.
본 실시예에 따른 제2 급유홈(1724)은 편심부(134)의 외주면에 함몰지게 형성될 수 있다. 이 경우 제2 급유홈(1724)은 최단편심반경(D41)인 위치의 부근에 형성될 수 있다. 이에 따라 축방향 투영시 제2 급유홈(1724)은 롤러정렬부(135)와 중첩되는 위치에 형성될 수 있다.(도 4 참조)
그러면 제2 급유홈(1724)의 단면적을 최소화하여 롤러(1441)와 편심부(134) 사이의 접촉면적(토크전달면적)을 유지하면서도 롤러정렬부(135)에 연통되는 제2 급유홈(1724)의 통로면적은 최대로 확보할 수 있다.
도면으로 도시하지는 않았으나 제2 급유홈(1724)은 편심부(134)의 외주면을 마주보는 롤러(1441)의 내주면에 형성될 수도 있다. 하지만, 롤러(1441)는 편심부(134)에 대해 회전 가능하게 결합되므로 제2 급유홈(1724)의 위치가 가변되면서 급유량이 일정하지 않을 수도 있다. 따라서, 가능하면 제2 급유홈(1724)은 편심부(134)에 형성하는 것이 유리할 수 있다.
제3 급유홈(1725)은 제2 급유홈(1724)을 통해 서브베어링부(133)의 외주면으로 이송되는 오일을 서브베어링면(Sb)에서 확산시키는 동시에, 회전축(130)의 상단에 구비된 급유가이드(176)의 오일수용공간(1761)으로 이송하는 역할을 한다. 이에 따라 제3 급유홈(1725)은 제2 급유홈(1724)과 대략 동일한 단면적을 가지도록 형성되며, 제2 급유홈(1724)에 연통되어 급유가이드(176)를 향해 연장된다.
제3 급유홈(1725)은 제1 급유홈(1723)과 같이 축방향으로 형성될 수도 있고, 나선형상으로 형성될 수도 있다. 이 경우에도 제3 급유홈(1725)은 나선형상으로 형성되는 것이 윤활측면에서 유리하다.
제3 급유홈(1725)은 회전축(130)을 이루는 서브베어링부(133)의 외주면에 형성될 수도 있고, 이를 마주보는 서브베어링(142)을 이루는 서브베어링구멍(1422a)의 내주면에 형성될 수 있다. 본 실시예는 제3 급유홈(1725)이 서브베어링구멍(1422a)의 내주면에 형성된 예를 도시하고 있다.
제3 급유홈(1725)은 그 형성위치에 따라 급유연통홈(1726)이 형성될 수 있다. 예를 들어, 제3 급유홈(1725)이 서브베어링부(133)의 외주면에 형성되는 경우에는 그 제3 급유홈(1725)이 제2 급유홈(1724)에 항상 연통되도록 직접 연결하여 형성될 수 있다. 이 경우에는 별도의 급유연통홈(1726)이 형성될 필요가 없을 수도 있다.
하지만, 제3 급유홈(1725)이 서브베어링구멍(1422a)의 내주면에 형성되는 경우에는 제2 급유홈(1724)의 위치가 회전축(130)의 회전을 따라 가변되므로 제2 급유홈(1724)과 제3 급유홈(1725)이 항상 연통될 수 없다. 이에 따라 서브베어링부(133)의 외주면 또는 이를 마주보는 서브베어링구멍(1422a)의 내주면에 급유연통홈(1726)이 형성될 수 있다.
다시 도 4를 참조하면, 급유연통홈(1726)은 앞서 설명한 바와 같이 제2 급유홈(1724)을 통과하여 서브베어링부(133)쪽으로 이송되는 오일이 서브베어링부(133)의 하단에서 원주방향을 따라 확산되도록 하는 역할을 한다. 이에 따라 급유연통홈(1726)은 서브베어링부(133)의 하단, 즉 편심부(134)의 상면과 연결되는 서브베어링부(133)의 하단에 환형으로 형성될 수 있다.
급유연통홈(1726)의 단면적은 제2 급유홈(1724) 또는 제3 급유홈(1725)의 단면적과 대략 동일하게 형성될 수 있다. 이에 따라 제2 급유홈(1724)을 통해 급유연통홈(1726)으로 이송되는 오일은 막힘없이 제3 급유홈(1725)으로 이송될 수 있다.
한편, 오일펌프(173)는 쉘(110)의 하부에 저장된 오일을 압축부를 향해 펌핑하는 역할을 한다. 오일펌프(173)는 용적펌프, 점성펌프, 원심펌프 등 다양하게 적용될 수 있다. 다만, 기어펌프와 점성펌프는 앞서 설명한 바와 같이 구조가 복잡하고 부품수 및 조립공수가 증가하여 제조비용이 증가할 수 있다. 이에 본 실시예에서는 상대적으로 구조가 간소하면서도 저렴한 원심펌프가 적용될 수 있다. 따라서 이하에서 오일펌프(173)라고 기재된 펌프는 특별하게 구분하여 정의하지 않는 한 원심펌프로 이해될 수 있다.
다시 도 14 및 도 15를 참조하면, 본 실시예에 따른 오일펌프(173)는 펌프하우징(1731), 펌프블레이드(1732)를 포함할 수 있다.
펌프하우징(1731)은 입구단(1731a)은 개구된 끝단으로 갈수록 점차 좁아지는 원추형상이나 전체적으로는 원통 형상으로 형성될 수 있다. 펌프하우징(1731)의 출구단(1731b)은 회전축(130)의 하단 외주면에 압입되어 고정 결합될 수 있다. 필요에 따라서는 펌프하우징의 출구단은 스폿용접 또는 나사 체결되어 회전축에 고정할 수도 있다.
펌프하우징(1731)의 내부공간은 빈공간이고 펌프블레이드(1732)가 삽입되어 고정된다. 예를 들어 펌프하우징(1731)의 측면에는 펌프블레이드(1732)의 양쪽 측면이 삽입되어 고정되도록 블레이드고정홈(1731c)이 형성될 수 있다.
펌프블레이드(1732)는 블레이드본체(1732a)와 블레이드고정돌기(1732b)로 이루어질 수 있다.
블레이드본체(1732a)는 단순 평판형상으로 형성될 수도 있고, 필요에 따라서는 프로펠러 형상으로 비틀려 형성될 수도 있다.
블레이드고정돌기(1732b)는 블레이드본체(1732a)의 양쪽 측면에서 반경방향으로 돌출되어 형성될 수 있다. 블레이드고정돌기(1732b)는 펌프하우징(1731)의 블레이드고정홈(1731c)에 삽입되어 고정된다. 이에 따라 펌프블레이드(1732)는 펌프하우징(1731)에 삽입된 상태로 고속회전하더라도 펌프하우징(1731)에서 탈거되지 않고 원활하고 지속적으로 오일을 펌핑할 수 있다.
상기와 같은 로터리 압축기에서 쉘에 저장된 오일이 압축부로 펌핑되는 과정은 다음과 같다.
즉, 오일펌프(173)는 회전축(130)과 함께 회전을 하면서 펌핑력을 발생하게 되고, 이 펌핑력에 의해 쉘에 저장된 오일은 오일펌핑통로(172)의 입구를 이루는 오일펌핑구멍(1721)의 제1 펌핑구멍(1721a)으로 흡입된다.
이 오일의 일부는 제1 펌핑구멍(1721a)을 따라 이송되다가 급유구멍(1722)을 통해 회전축(130)의 외주면쪽으로 이송되고, 나머지는 제2 펌핑구멍(1721b)을 따라 회전축(130)의 상단으로 이송된다.
급유구멍(1722)으로 이송되는 오일은 제1 급유홈(1723)을 따라 메인베어링면(Mb)을 윤활한 후 롤러정렬부(135)쪽으로 이송된다. 이때, 메인베어링면(Mb)을 이루는 메인베어링부(132)의 외주면과 메인베어링구멍(1413a)의 내주면 사이의 간극이 좁아 오일은 제1 급유홈(1723)에서 빠져나가지 않고 그 제1 급유홈(1723)을 따라 이송될 수 있다.
아울러, 메인베어링부(132)의 상측에 위치하는 마찰회피부(136)의 외경(D6)은 메인베어링부(132)의 외경(D2)보다 작게 형성됨에 따라 마찰회피부(136)의 외주면과 메인베어링구멍(1413a)의 내주면 사이의 간극(t2)이 메인베어링면(Mb)에서의 간극(t1)보다는 크다. 하지만 마찰회피부(136)의 하측에서 메인베어링면(Mb)을 이루는 메인베어링부(132)의 단차면(132a)에 의해 오일은 제1 급유홈(1723)에서 빠져나가지 않고 그 제1 급유홈(1723)을 따라 이송될 수 있다.
롤러정렬부(135)로 유입되는 오일은 환형으로 형성된 롤러정렬부(135)의 내부를 채우게 된다. 롤러정렬부(135)를 채운 오일은 제2 급유홈(1724)을 통해 편심부(134)를 통과한 후 서브베어링부(133)쪽으로 이송된다. 이에 따라, 회전축(130)의 외주면을 따라 이송되는 오일이 메인베어링면(Mb)을 원활하게 윤활하는 동시에, 롤러정렬부(135)의 외주면에 오일연통공간(S)이 형성되도록 하여 오일이 회전축(130)의 상단을 향해 누설없이 이송되도록 할 수 있다.
서브베어링부(133)쪽으로 이송되는 오일은 환형으로 된 급유연통홈(1726)을 거쳐 제3 급유홈(1725)으로 이송되고, 이 오일은 제3 급유홈(1725)을 따라 회전축(130)의 상단으로 이동하면서 서브베어링면(Sb)을 윤활하게 된다.
회전축(130)의 상단으로 이송되는 오일은 그 회전축(130)의 상단을 감싸는 급유가이드의 오일수용공간(1761)에 모이게 되고, 이 오일은 제2 펌핑구멍(1721b)을 통해 비산되는 오일과 함께 앞서 설명한 급유통로(177)를 통해 압축기본체(C)로 공급된다.
한편, 압축기본체(C)로 공급되지 않는 오일은 쉘(110)의 내면 또는 압축기본체(C)의 외면을 타고 흘러내려 쉘(110)의 내부공간(110a)에 저장되고, 이 오일은 앞서 설명한 오일펌프(173)를 통해 압축기본체(C)로 공급되는 일련의 과정을 반복하게 된다.
이렇게 하여, 상부압축형이면서 양단지지형인 로터리 압축기에서 회전축의 하단에 원심펌프로 된 오일펌프를 적용하면서도 쉘의 하부에 저장된 오일을 회전축의 상단까지 원활하게 펌핑할 수 있다. 이를 통해 상대적으로 구조가 단순하고 부품수가 적어 저렴한 오일펌프를 사용할 수 있어 그만큼 압축기의 제조비용이 절감될 수 있다.
또한, 본 실시예에 따른 회전축은 메인베어링부가 회전축의 하반부에서 회전자결합부에 연이어 형성됨에 따라 급유홈의 시작단을 오일펌프에 인접하게 배치할 수 있다. 이를 통해 회전축의 외경을 확대하거나 급유홈의 길이 및 턴수를 늘리지 않고도 오일에 대한 원심력을 높일 수 있다. 결과적으로 원심펌프로 된 오일펌프를 적용하면서도 오일을 회전축의 상단으로 이송할 수 있다.
또한, 본 실시예에 따른 회전축은 메인베어링부가 회전축의 하반부에 형성됨에 따라 메인베어링부의 베어링하중을 낮출 수 있다. 이를 통해 회전축에서 메인베어링부에 해당하는 부위의 직경 또는 길이를 줄여 모터 효율을 높일 수 있다. 아울러, 메인베어링부가 회전축의 하반부에 형성됨에 따라 메인베어링부와 편심부 사이에 롤러정렬부가 형성될 수 있고, 이를 통해 회전축의 길이를 늘리지 않고도 롤러를 쉽게 조립할 수 있다.
한편, 회전축에 대한 다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예들에서는 롤러정렬부의 중심이 회전축의 축중심과 동일축선상에 위치하도록 형성되는 것이나, 경우에 따라서는 롤러정렬부의 중심이 회전축의 축중심으로부터 편심지게 형성될 수 있다.
도 16은 회전축에 대한 다른 실시예를 보인 사시도이고, 도 17은 도 16의 정면도이다.
도 16 및 도 17을 참조하면, 본 실시예에 따른 회전축(130)은 앞서 설명한 실시예들과 같이 회전자결합부(131), 메인베어링부(132), 서브베어링부(133), 편심부(134), 롤러정렬부(135) 및 마찰회피부(136)를 포함한다.
회전축(130)을 이루는 이들 각 부분의 전체적인 구성이나 그에 따른 작용 효과는 전술한 실시예와 대동소이하므로 이에 대한 구체적인 설명은 전술한 실시예에 대한 설명으로 대신한다.
다만, 본 실시예에 따른 회전축(130)은 롤러정렬부(135)가 회전축(130)의 축중심(Os)으로부터 편심지게 형성될 수 있다. 예를 들어, 롤러정렬부(135)의 외경(D5')은 서브베어링부(133)의 외경(D3)과 대략 동일하게 형성되고, 롤러정렬부(135)의 중심(P5)은 회전축(130)의 축중심(Os)에서 편심부(134)의 중심(P4)이 편심진 방향으로 기설정된 간격만큼 이격되게 형성될 수 있다.
이 경우에도 회전축(130)의 축중심(Os)으로부터 롤러정렬부(135)의 외주면까지의 최단길이 또는 최단거리인 제2 최단편심반경(D52)은 편심부(134)의 최단편심반경인 제1 최단편심반경(D41)보다 작거나 같게 형성되어야 한다. 이에 따라 롤러(1441)가 롤러정렬부(135)에서 조립위치를 정렬한 후 편심부(134)에 원활하게 삽입될 수 있다.
본 실시예에 따른 회전축(130)은 롤러정렬부(135)가 편심부(134)의 편심방향으로 연장되어 형성되는 것이어서 롤러정렬부(135)의 외경이 확대될 수 있다. 이를 통해 편심부(134)의 편심량이 증가하더라도 롤러정렬부(135)에서의 회전축(130)에 대한 강성을 확보할 수 있어 신뢰성을 유지할 수 있다.
또한, 이 경우에는 롤러정렬부(135)가 편심되는 만큼 그 롤러정렬부(135)의 외주면과 메인베어링구멍(1413a)의 내주면 사이에 형성되는 오일연통공간(S)이 초승달 모양으로 형성되고, 이 오일연통공간(S)이 롤러정렬부(135)의 외주면 중에서 제2 급유홈(1724)과 인접된 부위에서의 단면적이 확대될 수 있다. 그러면 오일연통공간(S)의 횡방향면적이 감소되어 오일연통공간(S)을 지나는 오일의 펌핑경로가 단축되어 오일수용공간으로 유입되는 오일이 신속하게 제2 급유홈(1724)쪽으로 이송될 수 있다.
또한, 이 경우에는 롤러정렬부(135)가 편심되는 쪽의 외주면은 메인베어링구멍(1413a)의 내주면에 근접됨에 따라, 오일연통공간(S)의 반대쪽 외주면 또는 메인베어링구멍(1413a)의 내주면에 연결급유홈(1727)이 더 형성될 수 있다.
연결급유홈(1727)은 롤러정렬부(135)의 외주면 또는 메인베어링구멍(1413a)의 내주면을 따라 대략 나선형으로 형성될 수 있다. 이에 따라, 오일연통공간(S)의 오일이 더욱 신속하게 제2 급유홈(1724)으로 이송될 수 있다.
한편, 회전축에 대한 또다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예들에서는 오일펌핑구멍이 회전축을 축방향으로 관통하여 형성되는 것이나, 경우에 따라서는 오일펌핑구멍이 회전축의 하단에서 중간높이까지만 형성될 수도 있다.
도 18은 회전축에 대한 또다른 실시예를 보인 사시도이고, 도 19는 도 18의 단면도이다.
도 18 및 도 19를 참조하면, 본 실시예에 따른 회전축(130)은 앞서 설명한 실시예들과 같이 회전자결합부(131), 메인베어링부(132), 서브베어링부(133), 편심부(134), 롤러정렬부(135) 및 마찰회피부(136)를 포함한다.
상기와 같은 본 실시예에 따른 회전축(130)에는 오일펌핑통로(172)를 이루는 오일펌핑구멍(1721), 급유구멍(1722a)(1722b), 제1 급유홈(1723a)(1723b), 제2 급유홈(1724), 제3 급유홈(1725), 급유연통홈(1726)이 형성된다.
회전축(130)을 이루는 이들 각 부분의 전체적인 구성이나 그에 따른 작용 효과는 전술한 실시예와 대동소이하므로 이에 대한 구체적인 설명은 전술한 실시예에 대한 설명으로 대신한다.
다만, 본 실시예에 따른 회전축(130)은 내부에 오일펌핑구멍(1721)이 형성되되, 오일펌핑구멍(1721)은 회전축(130)의 하단에서 중간높이까지만 형성될 수도 있다. 예를 들어, 오일펌핑구멍(1721)은 급유구멍(1722a)(1722b)이 연통될 수 있도록 메인베어링부(132)의 범위까지만 형성되고, 마찰회피부(136), 롤러정렬부(135), 편심부(134), 서브베어링부(133)에서는 오일펌핑구멍이 형성되지 않을 수 있다.
다시 말해, 오일펌핑구멍(1721)이 중간에서 막힌 소위 오일펌핑홈과 같은 형상으로 형성될 수 있다. 이에 따라 급유구멍(1722a)(1722b)은 복수 개가 형성될 수 있다. 복수 개의 급유구멍(1722a)(1722b)은 오일펌핑구멍(1721)의 내주면에서 원주방향을 따라 등간격을 두고 형성될 수 있다.
급유구멍(1722a)(1722b)이 복수 개로 형성됨에 따라 각각의 급유구멍(1722a)(1722b)에 연결되는 제1 급유홈(1723a)(1723b)도 복수 개로 형성될 수 있다. 복수 개의 제1 급유홈(1723)(1723b)은 서로 동일한 방향을 따라 나선형으로 형성될 수 있다.
상기와 같이 오일펌핑구멍(1721)이 회전축(130)의 중간높이까지 형성되는 경우에는 롤러정렬부(135)의 외경(D5")을 전술한 실시예들에 비해 더욱 작게 형성할 수 있다. 그러면, 편심부(134)의 편심량을 더욱 늘려 편심부(134)의 외경을 더욱 줄일 수 있다.
또한, 롤러정렬부(135)의 외경(D5")이 작아지면 롤러정렬부(135)의 외주면과 메인베어링구멍(1413a)의 내주면 사이에 형성되는 오일연통공간(S)의 체적이 증가하여 압력차가 증가하면서 오일펌핑구멍(1721)의 오일을 오일연통공간(S)으로 신속하게 끌어올릴 수 있다.
또한, 오일펌핑구멍(1721)이 회전축(130)의 중간높이까지 형성되는 경우에는 펌핑되는 오일이 회전축(130)의 외주면에 구비되는 급유구멍(1722a)(1722b)과 급유홈(1723)(1724)(1725)(1726)을 통해서만 이동하게 되어 메인베어링면(Mb)과 서브베어링면(Sb)으로의 오일공급량이 증가될 수 있다. 이를 통해 저속운전 또는 초기 기동시에도 오일이 각각의 베어링면(Mb)(Sb)으로 원활하게 공급되면서 각 베어링면(Mb)(Sb)에서의 마찰손실을 줄일 수 있다.
한편, 회전축에 대한 또다른 실시예가 있는 경우는 다음과 같다.
즉, 전술한 실시예들에서는 롤러정렬부가 메인베어링부쪽에 형성되는 것이나, 경우에 따라서는 롤러정렬부가 서브베어링부쪽에 형성될 수도 있다.
도 20은 회전축에 대한 또다른 실시예를 보인 사시도이고, 도 21은 도 20의 단면도이다.
도 20 및 도 21을 참조하면, 본 실시예에 따른 회전축(130)을 이루는 이들 각 부분의 전체적인 구성이나 그에 따른 작용 효과는 전술한 실시예와 대동소이하므로 이에 대한 구체적인 설명은 전술한 실시예에 대한 설명으로 대신한다.
다만, 본 실시예에서는 롤러정렬부(135)가 서브베어링부(133)와 편심부(134)의 사이에 형성될 수 있다. 이에 따라, 편심부(134)의 상면에서 서브베어링부(133)의 상단까지의 길이는 전술한 실시예들에 비해 증가하게 되고, 이로 인해 회전축(130)의 전체길이(L')가 길어져 압축기의 소형화 및 경량화에 불리할 수 있다.
하지만, 본 실시예에서는 메인베어링부(132)가 편심부(134)의 하면에서 연이어 형성될 수 있다. 즉, 메인베어링부(132)가 회전축(130)의 제1 부분(A1) 중에서 상단에 형성될 수 있다.
그러면, 서브베어링부(133)가 감당해야 할 베어링하중의 일부를 메인베어링부(132)가 부담하게 되고, 이로 인해 서브베어링부(133)의 외경이 전술한 도 10의 실시예와 동일한 경우라면 서브베어링부(133)의 축방향길이(L3')를 도 10의 실시예에서의 축방향길이(L3)보다는 줄일 수 있다. 이에 따라 회전축(130)의 전체길이(L")가 증가되는 증가폭을 줄일 수 있다.
아울러, 서브베어링부(133)의 외경(D3)을 전술한 도 10의 실시예와 같이 롤러정렬부(135)의 외경(D5)보다 크고 메인베어링부(132)의 외경(D2)보다 작거나 같게 형성할 수 있다. 그러면 서브베어링부(133)의 베어링면적을 확보할 수 있어 서브베어링부(133)의 축방향길이(L3')가 길어지는 것을 최소화할 수 있고, 이를 통해 회전축(130)의 전체길이(L')에 대한 증가폭을 더욱 낮출 수 있다.
본 실시예에 따른 회전축(130)은 메인베어링부(132)가 편심부(134)의 하면에서 연장 형성됨에 따라 오일펌핑통로(172)에서 오일이 누설되는 것을 최소화하여 베어링면을 효과적으로 윤활할 수 있다. 이를 통해 베어링면에서의 마찰손실을 줄여 압축기 성능을 높일 수 있다.
또한, 이 경우에는 오일펌프(173)는 원심펌프에 비해 상대적으로 펌핑력이 우수한 기어펌프가 적용될 수 있다.
이상에서는 본 발명의 특정한 실시예에 관하여 도시하고 설명하였다. 하지만, 본 발명은 그 사상 또는 본질적인 특징에서 벗어나지 않는 범위 내에서 여러 가지 형태로 실시될 수 있으므로, 위에서 설명된 실시예는 그 상세한 설명의 내용에 의해 제한되지 않아야 한다.
또한, 앞서 기술한 상세한 설명에서 일일이 나열되지 않은 실시예라 하더라도 첨부된 특허청구범위에서 정의된 그 기술 사상의 범위 내에서 넓게 해석되어야 할 것이다. 그리고, 특허청구범위의 기술적 범위와 그 균등범위 내에 포함되는 모든 변경 및 변형은 첨부된 특허청구범위에 의해 포함되어야 할 것이다.
110: 쉘 110a: 내부공간
111: 하부쉘 112: 상부쉘
115: 흡입파이프 116: 토출파이프
117: 프로세스파이프 118: 루프파이프
120: 전동부 121: 고정자
1211: 고정자코어 1212: 고정자코일
1213: 인슐레이터 122: 회전자
1221: 회전자코어 1221a: 베어링삽입홈부
1222: 마그네트 130: 회전축
131: 회전자결합부 132: 메인베어링부
132a: 단차면 133: 서브베어링부
134: 편심부 135: 롤러정렬부
136: 마찰회피부 141: 메인베어링
1411: 메인플레이트부 1412: 고정자고정돌부
1413: 메인베어링돌부 1413a: 메인베어링구멍
142: 서브베어링 1421: 서브플레이트부
1422: 서브베어링돌부 1422a: 서브베어링구멍
1423: 토출구 143: 실린더
143a: 체결홈 1431: 흡입구
1431a: 연장부삽입홈 1432: 베인슬롯
1433: 토출안내홈 1435: 머플러장착홈
1435a: 제1 머플러지지면 1435b: 제2 머플러지지면
144: 베인롤러 1441: 롤러
1441a: 힌지홈 1445: 베인
1445a: 베인바디부 1445b: 베인힌지부
145: 토출밸브 146: 압축실 실링부재
150: 지지부 151: 스프링캡
1511: 제1 스프링캡 1512: 제2 스프링캡
152: 지지스프링 160: 흡토출부
161: 흡입머플러 1611: 흡입머플러 본체부
1611a: 흡입공간 1612: 흡입머플러 입구부
1613: 흡입머플러 출구부 1613a: 출구연장부
1614: 흡입머플러 연결부 1615: 머플러고정부
1615a: 체결구멍 1616: 머플러체결볼트
1617: 머플러실링부재 162: 토출머플러
1621: 토출머플러 본체부 1621a: 토출공간
1621b: 냉매배출구멍 1621c: 베어링부 관통구멍
1622: 토출머플러 고정부 170: 급유부
171: 오일펌핑부 172: 오일펌핑통로
1721: 오일펌핑구멍 1721a: 제1 펌핑구멍
1721b: 제2 펌핑구멍 1722: 급유구멍
1723: 제1 급유홈 1724: 제2 급유홈
1725: 제3 급유홈 1726: 급유연통홈
173: 오일펌프 1731: 펌프하우징
1731a: 펌프하우징의 입구단 1731b: 펌프하우징의 출구단
1731c: 블레이드고정홈 1732: 펌프블레이드
1732a: 블레이드본체 1732b: 블레이드고정돌기
175: 급유안내부 176: 급유가이드
1761: 오일수용공간 1762: 가이드출구
1763: 급유안내돌부 1763a: 제1 안내돌부
1763b: 제2 안내돌부 177: 급유통로
1771: 급유통로구멍 1772: 급유저장홈
1773: 역류방지밸브 1773a: 고정부
1773b: 개폐부 1774: 급유안내관
A1: 회전축의 제1 부분 A2: 회전축의 제2 부분
A3: 돌출부분 C: 압축기본체
D1: 회전자결합부의 외경 D2: 메인베어링부의 외경
D21: 메인베어링부의 반경(제1 반경) D3: 서브베어링부의 외경
D31: 서브베어링부의 반경(제2 반경) D3': 서브베어링구멍의 내경
D4: 편심부의 외경
D41: 편심부의 최단편심반경(제1 최단편심반경)
D5,D5',D5": 롤러정렬부의 외경 D51: 롤러정렬부의 반경(제3 반경)
D52: 롤러정렬부의 최단편심반경(제2 최단편심반경)
D7: 롤러의 내경 D81: 오일펌핑구멍의 제1 내경
D82: 오일펌핑구멍의 제2 내경 D83: 급유구멍의 내경
L: 회전축의 전체길이 L1: 회전자결합부의 축방향길이
L2: 메인베어링부의 축방향길이 L3: 서브베어링부의 축방향길이
L5: 롤러정렬부의 축방향길이(높이) L7: 롤러의 축방향길이(높이)
P1: 회전자결합부의 중심 P2: 메인베어링부의 중심
P3: 서브베어링부의 중심 P4: 편심부의 중심
P5: 롤러정렬부의 중심 P6: 마찰회피부의 중심
P7: 롤러의 중심 Mb: 메인베어링면
Sb: 서브베어링면 Os: 회전축의 축중심
S: 오일연통공간 V: 압축실
111: 하부쉘 112: 상부쉘
115: 흡입파이프 116: 토출파이프
117: 프로세스파이프 118: 루프파이프
120: 전동부 121: 고정자
1211: 고정자코어 1212: 고정자코일
1213: 인슐레이터 122: 회전자
1221: 회전자코어 1221a: 베어링삽입홈부
1222: 마그네트 130: 회전축
131: 회전자결합부 132: 메인베어링부
132a: 단차면 133: 서브베어링부
134: 편심부 135: 롤러정렬부
136: 마찰회피부 141: 메인베어링
1411: 메인플레이트부 1412: 고정자고정돌부
1413: 메인베어링돌부 1413a: 메인베어링구멍
142: 서브베어링 1421: 서브플레이트부
1422: 서브베어링돌부 1422a: 서브베어링구멍
1423: 토출구 143: 실린더
143a: 체결홈 1431: 흡입구
1431a: 연장부삽입홈 1432: 베인슬롯
1433: 토출안내홈 1435: 머플러장착홈
1435a: 제1 머플러지지면 1435b: 제2 머플러지지면
144: 베인롤러 1441: 롤러
1441a: 힌지홈 1445: 베인
1445a: 베인바디부 1445b: 베인힌지부
145: 토출밸브 146: 압축실 실링부재
150: 지지부 151: 스프링캡
1511: 제1 스프링캡 1512: 제2 스프링캡
152: 지지스프링 160: 흡토출부
161: 흡입머플러 1611: 흡입머플러 본체부
1611a: 흡입공간 1612: 흡입머플러 입구부
1613: 흡입머플러 출구부 1613a: 출구연장부
1614: 흡입머플러 연결부 1615: 머플러고정부
1615a: 체결구멍 1616: 머플러체결볼트
1617: 머플러실링부재 162: 토출머플러
1621: 토출머플러 본체부 1621a: 토출공간
1621b: 냉매배출구멍 1621c: 베어링부 관통구멍
1622: 토출머플러 고정부 170: 급유부
171: 오일펌핑부 172: 오일펌핑통로
1721: 오일펌핑구멍 1721a: 제1 펌핑구멍
1721b: 제2 펌핑구멍 1722: 급유구멍
1723: 제1 급유홈 1724: 제2 급유홈
1725: 제3 급유홈 1726: 급유연통홈
173: 오일펌프 1731: 펌프하우징
1731a: 펌프하우징의 입구단 1731b: 펌프하우징의 출구단
1731c: 블레이드고정홈 1732: 펌프블레이드
1732a: 블레이드본체 1732b: 블레이드고정돌기
175: 급유안내부 176: 급유가이드
1761: 오일수용공간 1762: 가이드출구
1763: 급유안내돌부 1763a: 제1 안내돌부
1763b: 제2 안내돌부 177: 급유통로
1771: 급유통로구멍 1772: 급유저장홈
1773: 역류방지밸브 1773a: 고정부
1773b: 개폐부 1774: 급유안내관
A1: 회전축의 제1 부분 A2: 회전축의 제2 부분
A3: 돌출부분 C: 압축기본체
D1: 회전자결합부의 외경 D2: 메인베어링부의 외경
D21: 메인베어링부의 반경(제1 반경) D3: 서브베어링부의 외경
D31: 서브베어링부의 반경(제2 반경) D3': 서브베어링구멍의 내경
D4: 편심부의 외경
D41: 편심부의 최단편심반경(제1 최단편심반경)
D5,D5',D5": 롤러정렬부의 외경 D51: 롤러정렬부의 반경(제3 반경)
D52: 롤러정렬부의 최단편심반경(제2 최단편심반경)
D7: 롤러의 내경 D81: 오일펌핑구멍의 제1 내경
D82: 오일펌핑구멍의 제2 내경 D83: 급유구멍의 내경
L: 회전축의 전체길이 L1: 회전자결합부의 축방향길이
L2: 메인베어링부의 축방향길이 L3: 서브베어링부의 축방향길이
L5: 롤러정렬부의 축방향길이(높이) L7: 롤러의 축방향길이(높이)
P1: 회전자결합부의 중심 P2: 메인베어링부의 중심
P3: 서브베어링부의 중심 P4: 편심부의 중심
P5: 롤러정렬부의 중심 P6: 마찰회피부의 중심
P7: 롤러의 중심 Mb: 메인베어링면
Sb: 서브베어링면 Os: 회전축의 축중심
S: 오일연통공간 V: 압축실
Claims (28)
- 오일이 저장되도록 내부공간을 가지는 쉘;
상기 쉘의 내부공간에 구비되는 전동부;
상기 쉘의 내부공간에서 상기 전동부의 축방향 일측에 구비되어 압축실을 형성하는 실린더;
상기 실린더의 축방향 양쪽에 결합되어 상기 실린더와 함께 상기 압축실을 형성하는 메인베어링 및 서브베어링;
상기 실린더의 압축실에 수용되며 축중심에 대해 편심지는 편심부, 상기 편심부를 사이에 두고 축방향 양측에 구비되어 상기 메인베어링 및 상기 서브베어링에 의해 각각 반경방향으로 지지되는 메인베어링부 및 서브베어링부를 포함하는 회전축; 및
환형으로 형성되어 상기 편심부의 외주면에 삽입되는 롤러;를 포함하며,
상기 회전축에는 상기 편심부의 축방향 일측에 롤러정렬부가 형성되고, 상기 롤러정렬부의 축방향길이는 상기 롤러의 축방향길이보다 길게 형성되며,
상기 메인베어링부는 상기 편심부를 기준으로 상기 전동부를 향해 연장되고, 상기 롤러정렬부는 상기 편심부와 상기 메인베어링부의 사이에 형성되며,
상기 회전축의 축중심에서 상기 메인베어링부의 외주면까지 거리를 제1 반경, 상기 회전축의 축중심에서 상기 서브베어링부의 외주면까지의 거리를 제2 반경, 상기 회전축의 축중심에서 상기 편심부까지의 최단거리를 제1 최단편심반경이라고 할 때,
상기 제1 반경 및 상기 제2 반경은 상기 제1 최단편심반경보다 크거나 같게 형성되고,
상기 메인베어링부와 상기 롤러정렬부의 사이에는 마찰회피부가 더 형성되고,
상기 마찰회피부의 외경은 상기 메인베어링부의 외경보다는 작고 상기 롤러정렬부의 외경보다는 크게 형성되는 로터리 압축기. - 제1항에 있어서,
상기 메인베어링부의 반경 또는 상기 서브베어링부의 반경은 상기 편심부의 최단편심반경보다 크거나 같고,
상기 롤러정렬부의 반경은 상기 편심부의 최단편심반경보다 작게 형성되는 로터리 압축기. - 제1항에 있어서,
상기 롤러정렬부의 중심은 상기 메인베어링부의 중심 또는 상기 서브베어링부의 중심과 동일축선상에 위치하도록 형성되는 로터리 압축기. - 제1항에 있어서,
상기 롤러정렬부의 중심은 상기 메인베어링부의 중심 또는 상기 서브베어링부의 중심으로부터 편심된 위치에 형성되는 로터리 압축기. - 삭제
- 제1항에 있어서,
상기 서브베어링부의 외경은 상기 롤러정렬부의 외경보다 크게 형성되는 로터리 압축기. - 제1항에 있어서,
상기 서브베어링부의 축방향길이는 상기 롤러정렬부의 축방향길이보다 짧거나 같게 형성되는 로터리 압축기. - 삭제
- 제1항에 있어서,
상기 마찰회피부의 중심은 상기 회전축의 축중심과 동일축선상에 형성되는 로터리 압축기. - 삭제
- 제1항에 있어서,
상기 롤러정렬부의 중심은 상기 회전축의 축중심에 대해 동일축선상에 형성되고,
상기 롤러정렬부의 반경을 이루는 제3 반경은 상기 제1 최단편심반경보다 작게 형성되는 로터리 압축기. - 제1항에 있어서,
상기 롤러정렬부의 중심은 상기 회전축의 축중심에 대해 편심되게 형성되고, 상기 회전축의 축중심에서 상기 롤러정렬부의 외주면까지의 최단거리를 제2 최단편심반경이라고 할 때,
상기 제2 최단편심반경은 상기 제1 최단편심반경보다 작게 형성되는 로터리 압축기. - 제1항에 있어서,
상기 메인베어링부의 중심에서 상기 편심부의 중심까지의 축방향거리를 제1 축방향거리, 상기 서브베어링부의 중심에서 상기 편심부의 중심까지의 축방향거리를 제2 축방향거리라고 할 때,
상기 제2 축방향거리는 상기 제1 축방향거리보다 짧게 형성되고, 상기 롤러정렬부는 상기 메인베어링부와 상기 편심부 사이에 형성되는 로터리 압축기. - 제13항에 있어서,
상기 마찰회피부의 중심은 상기 회전축의 축중심과 동일축선상에 형성되는 로터리 압축기. - 제1항에 있어서,
상기 서브베어링부는 상기 편심부를 기준으로 상기 전동부에 대해 반대쪽으로 연장되어 형성되며,
상기 롤러정렬부는 상기 서브베어링부와 상기 편심부 사이에 형성되는 로터리 압축기. - 제15항에 있어서,
상기 편심부의 최단편심반경은 상기 서브베어링부의 반경보다 작거나 같고,
상기 롤러정렬부의 반경은 상기 편심부의 최단편심반경보다 작게 형성되는 로터리 압축기. - 제1항에 있어서,
상기 회전축의 메인베어링부쪽 단부에는 상기 쉘의 내부공간에 저장된 오일을 펌핑하도록 오일펌프가 구비되고,
상기 회전축에는 상기 오일펌프에 의해 펌핑되는 오일을 상기 회전축의 타단으로 안내하는 오일펌핑통로가 형성되는 로터리 압축기. - 제17항에 있어서,
상기 오일펌프는 원심펌프로 이루어지고, 상기 메인베어링부는 상기 메인베어링의 하단에 위치하도록 형성되는 로터리 압축기. - 제17항에 있어서,
상기 회전축의 메인베어링부측 단부에는 오일펌핑구멍이 형성되고, 상기 오일펌핑구멍의 내주면에서 상기 메인베어링부의 외주면으로 급유구멍이 관통되며,
상기 회전축의 외주면에는 상기 급유구멍을 상기 롤러정렬부의 외주면과 이를 마주보는 상기 메인베어링의 내주면 사이로 연통시키는 제1 급유홈이 형성되는 로터리 압축기. - 제19항에 있어서,
상기 제1 급유홈은 상기 마찰회피부의 외주면을 따라 연장되어 상기 마찰회피부와 상기 롤러정렬부 사이의 경계를 이루는 단차면을 통과하는 로터리 압축기. - 제17항에 있어서,
상기 편심부에는 축방향 양쪽을 연통시키는 제2 급유홈이 형성되고,
상기 제2 급유홈은 상기 편심부의 외주면에서 기설정된 깊이만큼 함몰되어 상기 편심부의 축방향 양쪽 측면 사이를 연통시키는 로터리 압축기. - 제21항에 있어서,
상기 서브베어링부의 외주면 또는 이를 마주보는 상기 서브베어링의 내주면에는 제3 급유홈이 형성되는 로터리 압축기. - 제22항에 있어서,
상기 제2 급유홈과 상기 제3 급유홈의 사이에는 급유연통홈이 형성되고,
상기 급유연통홈은 상기 편심부에서 연장되는 상기 서브베어링부의 외주면에 환형으로 형성되는 로터리 압축기. - 제1항 내지 제4항, 제6항 내지 제7항, 제9항, 제11항 내지 제23항 중 어느 한 항에 있어서,
상기 실린더는 상기 전동부의 축방향 상측에 구비되며,
상기 전동부는 상기 쉘의 내주면으로부터 이격되어 탄력을 가지는 지지부에 의해 상기 쉘에 대해 탄력 지지되는 로터리 압축기. - 제24항에 있어서,
상기 쉘에서 펌핑되는 오일을 상기 압축실로 공급하는 급유안내부를 더 포함하며,
상기 급유안내부는,
상기 서브베어링 또는 상기 실린더를 관통하여 상기 실린더에 구비되는 베인슬롯에 연통되도록 급유통로구멍이 형성되는 로터리 압축기. - 제25항에 있어서,
상기 회전축의 상측에는 오일을 포집하는 급유가이드가 구비되고,
상기 급유가이드의 출구는 상기 쉘의 내부공간을 통해 상기 급유통로구멍에 연통되는 로터리 압축기. - 제25항에 있어서,
상기 서브베어링 또는 상기 실린더에는 상기 급유통로구멍을 개폐하는 역류방지밸브가 구비되는 로터리 압축기. - 제25항에 있어서,
상기 회전축의 상측에는 오일을 포집하여 상기 급유통로구멍을 향해 안내하는 급유가이드가 구비되고,
상기 급유가이드의 출구는 상기 급유통로구멍에 급유안내관으로 연결되는 로터리 압축기.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200148741A KR102442468B1 (ko) | 2020-11-09 | 2020-11-09 | 로터리 압축기 |
PCT/KR2021/004739 WO2022097853A1 (ko) | 2020-11-09 | 2021-04-15 | 로터리 압축기 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200148741A KR102442468B1 (ko) | 2020-11-09 | 2020-11-09 | 로터리 압축기 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220063805A KR20220063805A (ko) | 2022-05-18 |
KR102442468B1 true KR102442468B1 (ko) | 2022-09-14 |
Family
ID=81458034
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200148741A KR102442468B1 (ko) | 2020-11-09 | 2020-11-09 | 로터리 압축기 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102442468B1 (ko) |
WO (1) | WO2022097853A1 (ko) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003328972A (ja) * | 2002-05-09 | 2003-11-19 | Hitachi Home & Life Solutions Inc | 密閉形2シリンダロータリ圧縮機及びその製造方法 |
JP2013249737A (ja) * | 2012-05-30 | 2013-12-12 | Daikin Industries Ltd | 回転式圧縮機 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58202389A (ja) * | 1982-05-21 | 1983-11-25 | Diesel Kiki Co Ltd | ベ−ン型圧縮機 |
KR19980015241U (ko) * | 1996-09-06 | 1998-06-25 | 김광호 | 회전압축기 |
KR20000059891A (ko) | 1999-03-09 | 2000-10-16 | 전주범 | 에어컨디셔너의 로터리 압축기의 냉매 흡입 구조 |
JP4265229B2 (ja) | 2003-01-29 | 2009-05-20 | ダイキン工業株式会社 | 回転式圧縮機 |
US8194859B2 (en) | 2005-09-01 | 2012-06-05 | Qualcomm Incorporated | Efficient key hierarchy for delivery of multimedia content |
KR20070095484A (ko) * | 2005-09-06 | 2007-10-01 | 엘지전자 주식회사 | 압축기 |
-
2020
- 2020-11-09 KR KR1020200148741A patent/KR102442468B1/ko active IP Right Grant
-
2021
- 2021-04-15 WO PCT/KR2021/004739 patent/WO2022097853A1/ko active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003328972A (ja) * | 2002-05-09 | 2003-11-19 | Hitachi Home & Life Solutions Inc | 密閉形2シリンダロータリ圧縮機及びその製造方法 |
JP2013249737A (ja) * | 2012-05-30 | 2013-12-12 | Daikin Industries Ltd | 回転式圧縮機 |
Also Published As
Publication number | Publication date |
---|---|
KR20220063805A (ko) | 2022-05-18 |
WO2022097853A1 (ko) | 2022-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11248608B2 (en) | Compressor having centrifugation and differential pressure structure for oil supplying | |
KR20100010443A (ko) | 압축기 | |
US11971032B2 (en) | Vane rotary compressor with pressure reducing member inserted into the oil supply passage | |
US8342827B2 (en) | Hermetic compressor and refrigeration cycle device having the same | |
KR102442468B1 (ko) | 로터리 압축기 | |
KR102561486B1 (ko) | 스크롤 압축기 | |
US11692547B2 (en) | Hermetic compressor having oil guide that surrounds rotating shaft | |
KR102411986B1 (ko) | 로터리 압축기 | |
US11713752B2 (en) | Scroll compressor of lower compression type enabling active oil supply | |
KR102500685B1 (ko) | 로터리 압축기 | |
KR102393072B1 (ko) | 로터리 압축기 | |
US12117002B2 (en) | Scroll compressor having oil supply groove in communication with oil supply hole defined from oil passage to rotating shaft surface | |
US11767843B2 (en) | Scroll compressor having an oil supply passage including first end open at the orbiting space and second end open at an Oldham ring | |
US11788531B2 (en) | Scroll compressor | |
KR102446771B1 (ko) | 스크롤 압축기 | |
US11603840B2 (en) | Scroll compressor having compression chamber oil supplies having stages in which oil supply overlaps and stages in which oil supply does not overlap | |
US20220260074A1 (en) | Scroll compressor | |
KR20240113020A (ko) | 스크롤 압축기 | |
KR20230142025A (ko) | 스크롤 압축기 | |
KR20230111992A (ko) | 스크롤 압축기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant |