[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102410956B1 - Carbon material rotor and vane for vehicle vacuum pump and manufacturing method thereof - Google Patents

Carbon material rotor and vane for vehicle vacuum pump and manufacturing method thereof Download PDF

Info

Publication number
KR102410956B1
KR102410956B1 KR1020200065529A KR20200065529A KR102410956B1 KR 102410956 B1 KR102410956 B1 KR 102410956B1 KR 1020200065529 A KR1020200065529 A KR 1020200065529A KR 20200065529 A KR20200065529 A KR 20200065529A KR 102410956 B1 KR102410956 B1 KR 102410956B1
Authority
KR
South Korea
Prior art keywords
vane
rotor
carbon material
impregnation
vacuum pump
Prior art date
Application number
KR1020200065529A
Other languages
Korean (ko)
Other versions
KR20210148568A (en
Inventor
고재식
이영순
Original Assignee
극동씰테크 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 극동씰테크 주식회사 filed Critical 극동씰테크 주식회사
Priority to KR1020200065529A priority Critical patent/KR102410956B1/en
Publication of KR20210148568A publication Critical patent/KR20210148568A/en
Application granted granted Critical
Publication of KR102410956B1 publication Critical patent/KR102410956B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0072Heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/47Oils, fats or waxes natural resins
    • C04B41/478Bitumen, asphalt, e.g. paraffin
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2210/00Working fluid
    • F05B2210/10Kind or type
    • F05B2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/22Manufacture essentially without removing material by sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

본 발명에서는 탄소소재를 이용한 차량의 진공펌프용 로타 및 베인의 제조방법을 개시한다. 본 발명의 로타 및 베인은, 탄소분말 100 중량부, 다진 피치계 탄소섬유 분말 10~20 중량부, 피치계 바인더 20~40 중량부를 용매와 함께 혼합기에 투입하여 혼합된 탄소소재를 형성하는 습식혼합단계와, 탄소소재를 건조하는 건조단계와, 탄소소재를 입자화하는 입자화단계와, 프레스 금형을 이용하여 성형된 로타 및 베인으로 제조하는 성형 단계와, 고온으로 열처리하여 소결된 로타 및 베인으로 제조하는 소결단계와, 메조상피치 100 중량부를 함침장치에 투입하여 소결된 로타 및 베인에 생성된 기공을 채우는 함침단계를 포함한다. 본 발명에 의하면, 평균 굴곡 강도가 우수하여 내구성이 양호한 차량의 브레이크시스템 진공펌프용 로타 및 베인을 탄소소재로 제조할 수 있다.The present invention discloses a method of manufacturing a rotor and a vane for a vacuum pump of a vehicle using a carbon material. The rotor and vane of the present invention are wet mixed to form a mixed carbon material by putting 100 parts by weight of carbon powder, 10 to 20 parts by weight of minced pitch-based carbon fiber powder, and 20 to 40 parts by weight of a pitch-based binder together with a solvent in a mixer. Step, a drying step of drying the carbon material, a granulation step of granulating the carbon material, a molding step of manufacturing the rotor and vane molded using a press mold, and the rotor and vane sintered by heat treatment at high temperature It includes a sintering step to prepare, and an impregnation step of filling the pores generated in the sintered rotor and vane by putting 100 parts by weight of the mesophase pitch into the impregnation device. According to the present invention, it is possible to manufacture a rotor and a vane for a vacuum pump of a brake system of a vehicle having excellent average flexural strength and good durability from a carbon material.

Description

탄소소재를 이용한 차량용 진공펌프용 로타 및 베인과 그 제조방법{CARBON MATERIAL ROTOR AND VANE FOR VEHICLE VACUUM PUMP AND MANUFACTURING METHOD THEREOF}A rotor and vane for a vacuum pump for a vehicle using a carbon material and a manufacturing method thereof

본 발명은 탄소소재를 이용한 차량 브레이크시스템 진공펌프용 로타 및 베인 제조방법에 관한 것으로, 더욱 자세하게는 차량 진공펌프용 탄소재 로타 및 베인을 분말 성형하여 초기형상을 제조한 후 고온 소결하고 소결공정에서 불순물, 휘발분 및 불용분 등이 제거된 만큼 발생하는 기공을 피치를 함침하여 메꾸는 공정을 수차례 반복하여 기계적 물성 특히 팽창계수를 낮추고 내마모성을 향상시켜 내구성이 양호한 차량 브레이크시스템 진공펌프용 탄소재 로타 및 베인을 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a rotor and a vane for a vacuum pump for a vehicle brake system using a carbon material, and more particularly, to a carbon material for a vehicle vacuum pump by powder-molding a rotor and a vane for an initial shape, then sintering at a high temperature and sintering in the sintering process Carbon material rotor for vehicle brake system vacuum pump with good durability by lowering mechanical properties, especially expansion coefficient, and improving wear resistance by repeating the process of filling the pores by impregnating the pitch several times as much as impurities, volatile matter and insoluble matter are removed and to a method of manufacturing the vanes.

기존 기계식 브레이크 시스템을 제어하는 진공펌프는 엔진오일을 이송시켜 발생한 유압(油壓)으로 브레이크시스템을 가동하는 습식펌프 이었으나 전자식 진공펌프로 진화하면서 공해 및 오염을 유발시키는 엔진오일 대신 대기 중의 에어(Air)를 흡입 이송시켜 로타의 회전 및 베인의 마찰력으로 발생하는 에어(Air)의 압력만으로 브레이크 시스템을 가동하는 건식펌프로 대체되고 있다.The vacuum pump that controls the existing mechanical brake system was a wet pump that operates the brake system with hydraulic pressure generated by transferring engine oil. ) by suction and transfer, it is being replaced by a dry pump that operates the brake system only with the pressure of air generated by the rotation of the rotor and the frictional force of the vanes.

기존 통상적으로 사용되던 철계(Fe)제품은 고속회전 하에서 금속(펌프내부 Stuffing box내 Plate)과 금속(내부 회전력을 발생시키는 Rotor)의 건식마찰의 경우 급속한 금속의 마모와 마찰소음, 불꽃발생으로 인한 폭발의 위험성이 내재되어 있어 적용을 할 수 없는 소재구성이므로 건식마찰가동이 가능한 탄소재의 적용이 필수적이며 수입한 반제품 형태의 탄소재를 가공하여 Rotor 및 Vane을 제조하고 있으나 탄소분말을 금형을 이용하여 초기 성형한 후 고온 진공열처리 및 기계적 물성 향상을 위한 피치함침으로 내구성 향상시키고자 하였다.In the case of dry friction between metal (the plate in the stuffing box inside the pump) and the metal (the rotor that generates the internal rotational force) under high-speed rotation, the iron-based (Fe) products that were conventionally used in the past are caused by rapid metal abrasion, friction noise, and sparks. Since the material composition cannot be applied due to the inherent danger of explosion, it is essential to apply a carbon material capable of dry friction operation. After initial molding, high-temperature vacuum heat treatment and pitch impregnation to improve mechanical properties were used to improve durability.

등록특허공보 제10-1996205호 “자동차 생산라인 내 차량이송 대차용 탄소 섬유 을 적용한 친환경 탄소베어링 및 그 제조방법”에서는, 탄소분말, 탄소 섬유, 피치바인더를 혼합하여 원천소재를 형성한 후, 원천소재를 분쇄 및 드라이아이스를 통해 그레인 또는 그레뉼로 중간소재를 형성한 후, 중간소재를 전처리공정, 진공열처리, 탄소화과정을 거쳐서 최종적으로 탄소베어링을 제조하게 됨으로써, 환경친화적이면서 동시에 기계적 강도 등이 종래의 베어링과 동일 또는 유사한 효과가 있으며, 함침공정을 배제하였고 탄소베어링에 혼합된 피치계 탄소섬유에 의해 마찰계수가 낮아져 내마모성의 향상과 내구성 증대를 가져온 탄소복합재를 이용한 새로운 탄소베어링에 대하여 개시하고 있다.In Registered Patent Publication No. 10-1996205 “Eco-friendly carbon bearing applied with carbon fiber for vehicle transport in automobile production line and its manufacturing method”, carbon powder, carbon fiber, and pitch binder are mixed to form a source material, After grinding the material and forming an intermediate material into grains or granules through dry ice, the intermediate material undergoes a pretreatment process, vacuum heat treatment, and carbonization process to finally manufacture a carbon bearing, which is environmentally friendly and has mechanical strength, etc. This conventional bearing has the same or similar effect, the impregnation process is excluded, and the friction coefficient is lowered by the pitch-based carbon fiber mixed with the carbon bearing, thereby improving wear resistance and increasing durability. are doing

등록특허공보 제10-1996205호 “자동차 생산라인 내 차량이송 대차용 탄소 섬유 을 적용한 친환경 탄소베어링 및 그 제조방법”(2019년06월27일 등록)Registered Patent Publication No. 10-1996205 “Eco-friendly carbon bearing applied with carbon fiber for vehicle transport in automobile production line and its manufacturing method” (registered on June 27, 2019)

본 발명의 목적은, 내구성이 우수한 차량의 브레이크시스템 진공펌프용 로타 및 베인과 그 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a rotor and a vane for a vacuum pump for a brake system of a vehicle having excellent durability, and a method for manufacturing the same.

본 발명의 다른 목적은, 친환경적인 차량의 진공펌프용 로타 및 베인과 그 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide an eco-friendly rotor and vane for a vacuum pump of a vehicle and a manufacturing method thereof.

본 발명의 목적은 이상에서 언급된 목적으로 제한되지 않으며, 언급되지 않은 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Objects of the present invention are not limited to the objects mentioned above, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.

상기 목적을 이루기 위한 하나의 양태에 따르면, 탄소소재를 이용한 차량의 브레이크시스템 진공펌프용 로타 및 베인의 제조방법에 있어서, 탄소분말 100 중량부, 피치계 탄소섬유 분말(0.1mm~1.5mm) 10~20 중량부, 300℃~350℃에서 진공 열처리하여 불순물 및 휘발분을 정제한 피치계 바인더 20~40 중량부를 용매와 함께 혼합기에 투입하여 혼합된 탄소소재를 형성하는 습식혼합단계; 상기 습식혼합단계에서 혼합된 탄소소재를 건조하는 건조단계; 상기 건조된 탄소소재를 60Mesh로 입자화하는 입자화단계; 상기 입자화된 탄소소재를 프레스 금형을 이용하여 가압성형된 로타 및 베인으로 제조하는 성형 단계; 상기 성형된 로타 및 베인을 고온으로 진공열처리하여 소결하는 소결단계; 및 상기 소결된 로타 및 베인에 소결공정에서 휘발분, 불순물 및 불용분이 제거된 만큼 생성된 기공을 메우기 위해, 메조상피치 100 중량부를 함침장치에 투입하여 연화점인 300℃의 온도범위에서 녹인 후, 상기 소결된 로타 및 베인을 투입하여 액상피치를 강제 압입(함침)시키는 함침단계;를 포함한다.According to one aspect for achieving the above object, in a method for manufacturing a rotor and a vane for a vacuum pump for a brake system of a vehicle using a carbon material, 100 parts by weight of carbon powder, pitch-based carbon fiber powder (0.1mm to 1.5mm) 10 ~ 20 parts by weight, wet mixing step of forming a mixed carbon material by adding 20-40 parts by weight of a pitch-based binder obtained by vacuum heat treatment at 300 ° C. to 350 ° C. to purify impurities and volatiles in a mixer together with a solvent; a drying step of drying the carbon material mixed in the wet mixing step; a granulation step of granulating the dried carbon material into 60 mesh; A molding step of manufacturing the granulated carbon material into press molds and press-molded rotors and vanes; a sintering step of sintering the molded rotor and vane by vacuum heat treatment at a high temperature; and 100 parts by weight of the mesophase pitch was put into the impregnation apparatus to fill the pores generated by the removal of volatiles, impurities and insolubles in the sintering process in the sintered rotor and vane, and melted in the softening point of 300 ° C. and an impregnation step of forcibly press-fitting (impregnating) the liquid pitch by inputting the sintered rotor and vanes.

상기 습식혼합단계에서, 상기 용매는 메틸알코올, NMP(N-methyl-2-pyrrolidone), DMF(dimethylformamide), DMSO(dimethyl sulfoxide), 톨루엔(toluene)으로 이루어지는 군에서 선택되는 어느 하나를 10~30 중량부 투입할 수 있다.In the wet mixing step, the solvent is any one selected from the group consisting of methyl alcohol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and toluene 10 to 30 Weight parts can be added.

상기 입자화단계는, 상기 건조된 탄소소재를 분쇄하여 60 mesh상으로 걸러낸 뒤, 스프레이 드라이 공법을 사용하여 상기 탄소소재를 평균 입자 크기가 1.0~2.0mm인 그레인 형상의 과립형으로 입자화시킬 수 있다.In the granulation step, the dried carbon material is pulverized and filtered into a 60 mesh shape, and then the carbon material is granulated into grain-shaped granules having an average particle size of 1.0 to 2.0 mm using a spray drying method. can

상기 소결단계 앞에, 상기 성형된 로타 및 베인을 400~800℃에서 6~10시간 동안 열처리하는 전처리단계;를 더 포함할 수 있다.Before the sintering step, a pretreatment step of heat-treating the molded rotor and vane at 400 to 800° C. for 6 to 10 hours; may further include.

상기 소결단계는, 질소분위기에서 2,300~2,800℃에서 8시간 동안 열처리할 수 있다.In the sintering step, heat treatment may be performed at 2,300 to 2,800° C. for 8 hours in a nitrogen atmosphere.

상기 함침단계는, 상기 함침장치에 투입된 피치와 흑연을 200~400℃의 온도에서 녹이고, 상기 소결된 베인을 투입한 후, 1~3 bar에서 3~7시간 동안 함침을 실시할 수 있다. 함침단계는 기계적 물성의 향상을 위해 3~4회 반복하여 실시할 수 있다.In the impregnation step, the pitch and graphite injected into the impregnation device are melted at a temperature of 200 to 400° C., and the sintered vane is added, and then the impregnation may be performed at 1 to 3 bar for 3 to 7 hours. The impregnation step may be repeated 3 to 4 times to improve mechanical properties.

상기 함침단계 이후에, 상기 함침된 베인을 500~600℃에서 1~5시간 동안 열처리하는 후처리단계;를 더 포함할 수 있다.After the impregnation step, a post-treatment step of heat-treating the impregnated vane at 500 to 600° C. for 1 to 5 hours; may further include.

본 발명에 따른 차량의 진공펌프용 로타 및 베인과 그 제조방법은, 열팽창계수를 낮추어 건식· 고속회전(약 8,000 rpm)에서 사용할 수 있는 소재로 브레이크 작동시 안정된 기능을 수행할 수 있으며 내구성이 우수하다.The rotor and vane for a vehicle vacuum pump and a method for manufacturing the same according to the present invention are materials that can be used in dry and high-speed rotation (about 8,000 rpm) by lowering the coefficient of thermal expansion, and can perform a stable function during brake operation and have excellent durability do.

본 발명에 따른 차량 브레이크시스템 진공펌프용 로타 및 베인과 그 제조방법은, 불순물 및 유해중금속이 없는 친환경적인 탄소재로 환경문제를 야기하지 않는다.The rotor and vane for a vacuum pump for a vehicle brake system according to the present invention and a method for manufacturing the same do not cause environmental problems as an environmentally friendly carbon material free of impurities and harmful heavy metals.

본 발명의 효과가 상술한 효과들로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 통상의 기술자에게 명확히 이해될 수 있을 것이다.Effects of the present invention are not limited to the above-described effects, and effects not mentioned will be clearly understood by those skilled in the art from this specification and the accompanying drawings.

도 1은 본 발명의 일 실시 예에 따른 로타 및 베인이 차량용 진공펌프에 사용되는 모습을 나타내는 사진이다.
도 2는 본 발명의 일 실시 예에 따른 차량용 진공펌프에 사용되는 로타 및 베인과 그 탄소소재를 제조하는 방법을 나타내는 순서도이다.
도 3은 본 발명의 일 실시 예에 따른 차량의 브레이크시스템용 진공펌프에 사용되는 로타 및 베인을 위한 분말 성형용 금형의 단면도이다.
도 4는 본 발명의 일 실시 예에 따른 로타 및 베인의 제조공정 중 함침시간에 따른 밀도 변화를 나타내는 그래프와 함침 전후의 외관을 나타내는 사진이다.
도 5는 본 발명의 일 실시 예에 따른 로타와 베인의 함침전, 함침후, 함침후 열처리 후에 각각 평균 굴곡강도를 비교한 그래프이다.
1 is a photograph showing a state in which a rotor and a vane according to an embodiment of the present invention are used in a vacuum pump for a vehicle.
2 is a flowchart illustrating a method of manufacturing a rotor and a vane used in a vehicle vacuum pump and a carbon material thereof according to an embodiment of the present invention.
3 is a cross-sectional view of a mold for powder molding for rotors and vanes used in a vacuum pump for a brake system of a vehicle according to an embodiment of the present invention.
4 is a graph showing the density change according to the impregnation time during the manufacturing process of the rotor and the vane according to an embodiment of the present invention, and a photograph showing the appearance before and after the impregnation.
5 is a graph comparing average flexural strengths before, after, and after heat treatment after impregnation of a rotor and a vane according to an embodiment of the present invention.

이하, 첨부한 도면들 및 후술되어 있는 내용을 참조하여 본 발명의 바람직한 실시 예들을 상세히 설명한다. 그러나 본 발명은 여기서 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 한편, 본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급되지 않는 한 복수형도 포함된다. 명세서에서 사용되는 "포함한다(comprises)." 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/또는 소자가 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings and the content to be described later. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosed content may be thorough and complete, and the spirit of the present invention may be sufficiently conveyed to those skilled in the art. Like reference numerals refer to like elements throughout. Meanwhile, the terminology used herein is for the purpose of describing the embodiments and is not intended to limit the present invention. In this specification, the singular form also includes the plural form unless otherwise specified in the phrase. As used herein, "comprises." and/or "comprising" does not exclude the presence or addition of one or more other components, steps, acts and/or elements in which the recited elements, steps, acts and/or elements are.

이하, 도면을 참조하여, 본 발명의 일 실시 예에 따른 차량의 진공펌프용 탄소소재, 로타 및 베인과 그 제조방법에 대하여 상세히 설명하기로 한다. Hereinafter, with reference to the drawings, a carbon material for a vehicle vacuum pump, a rotor, and a vane and a manufacturing method thereof according to an embodiment of the present invention will be described in detail.

도 1은 본 발명의 일 실시 예에 따른 로타 및 베인이 차량용 진공펌프에 사용되는 모습을 나타내는 사진이다.1 is a photograph showing a state in which a rotor and a vane according to an embodiment of the present invention are used in a vacuum pump for a vehicle.

도 1(a)은 종래의 기계식 진공펌프를 나타내고, 도 1(b)은 본 발명이 적용되는 전동식 진공펌프를 나타낸다.Figure 1 (a) shows a conventional mechanical vacuum pump, Figure 1 (b) shows an electric vacuum pump to which the present invention is applied.

도 1(a)을 참조하면, 종래의 기계식 진공펌프는 공기가 투입되고 배출되는 투입구와 배출구를 구비한 하우징(110)과, 하우징에 설치된 캠링(130)과, 캠링 내부에 캠링과 편심되어 장착되는 로타(150)와, 로타의 슬롯에 삽입되어 있는 베인(170), 그리고 캠링의 상부를 덮는 플레이트(190) 등으로 구성된다. 로타가 회전하면, 베인(170)은 원심력에 의해 캠링의 내면과 접촉하여 회전하고, 베인에 의해 캠링과 로타 사이의 공간이 막힌다. 로타가 캠링과 편심되게 회전하므로, 막힌 공간의 크기는 회전에 의해 줄어들어 공기가 압축되면서 진공을 발생시킨다. 기계식 진공펌프는 회전축이 엔진의 구동축과 연결되어 브레이크 작동과 무관하게 엔진구동시 상시 작동하는 구조로 엔진의 힘을 분산시켜 효율성이 낮고 불필요한 연료의 소모를 가져온다.Referring to FIG. 1( a ), a conventional mechanical vacuum pump includes a housing 110 having an inlet and an outlet through which air is input and discharged, a cam ring 130 installed in the housing, and a cam ring and eccentrically mounted inside the cam ring. It is composed of a rotor 150 to be used, a vane 170 inserted into the slot of the rotor, and a plate 190 covering the upper portion of the cam ring. When the rotor rotates, the vane 170 rotates in contact with the inner surface of the cam ring by centrifugal force, and the space between the cam ring and the rotor is blocked by the vane. Since the rotor rotates eccentrically with the cam ring, the size of the closed space is reduced by rotation, which creates a vacuum as the air is compressed. The mechanical vacuum pump has a structure in which the rotating shaft is connected to the engine's drive shaft and operates at all times regardless of brake operation.

도 1(b)를 참조하면, 전동식 진공펌프는 하우징(115)과, 캠링(135)과, 로타(155)와, 베인(175)과, 플레이트(195)를 포함한다. 전동식 진공펌프는 엔진과 독립적으로 구성되어, 차량의 발전기나 배터리로부터 구동되어 필요한 때에만 가동할 수 있어서 연비와 효율면에서 유리하다. 엔진과 분리된 별도의 진공펌프로 엔진오일이 불필요한 구조로 단순화, 경량화가 가능하여 연비향상에 유리하다. 전동식 진공펌프는 간단한 구조를 위해 별도의 윤활유 공급라인이 없으므로 건식 윤활 장치로 불린다. 로타(155)가 회전하면 베인(175)은 원심력에 의해 돌출하여 캠링(135)의 내면과 맞닿은 상태로 회전한다. 고속회전에 의해 베인과 캠링에 마찰이 발생하고, 마찰열에 의해 베인이 마모되면 진공 성능이 떨어지고, 심한 경우 브레이크작동이 비정상적으로 변화될 수 있다.Referring to FIG. 1B , the electric vacuum pump includes a housing 115 , a cam ring 135 , a rotor 155 , a vane 175 , and a plate 195 . The electric vacuum pump is configured independently of the engine and is driven from the vehicle's generator or battery to operate only when necessary, which is advantageous in terms of fuel efficiency and efficiency. With a separate vacuum pump separated from the engine, it has a structure that does not require engine oil, so it is possible to simplify and reduce the weight, which is advantageous for improving fuel efficiency. The electric vacuum pump is called a dry lubrication device because it does not have a separate lubricating oil supply line for its simple structure. When the rotor 155 rotates, the vane 175 protrudes by centrifugal force and rotates in contact with the inner surface of the cam ring 135 . Friction occurs between the vane and the cam ring due to high-speed rotation, and when the vane is worn by frictional heat, the vacuum performance deteriorates, and in severe cases, the brake operation may change abnormally.

이를 방지하기 위해 로타(155)와 베인(175)은 마찰열에 위한 물성 및 치수 변화를 최소화 할 수 있는 고밀도 탄소소재를 이용하여 피치로 탄소성형체내 기공을 메우고 기계적 물성을 향상시켜 제작한다, 캠링(135)은 스테인리스강, 알루미늄 등의 금속으로 제작하되 내면을 텅스텐 디설파이드(WS2), 몰리브덴 디설파이드(MoS2) 등의 저마찰 물질로 코팅할 수 있다.To prevent this, the rotor 155 and the vane 175 are manufactured by using a high-density carbon material that can minimize physical properties and dimensional changes for frictional heat, filling the pores in the carbon molded body with pitch and improving mechanical properties, cam ring ( 135) is made of a metal such as stainless steel or aluminum, but the inner surface may be coated with a low friction material such as tungsten disulfide (WS 2 ) or molybdenum disulfide (MoS 2 ).

도 2는 본 발명의 일 실시 예에 따른 차량용 브레이크시스템 진공펌프에 사용되는 로타 및 베인과 그 탄소소재를 제조하는 방법을 나타내는 순서도이다.2 is a flowchart illustrating a method for manufacturing a rotor and a vane used in a vacuum pump for a brake system for a vehicle and a carbon material thereof according to an embodiment of the present invention.

차량용 브레이크시스템 진공펌프에 사용되는 로타(155) 또는 베인(175)을 제조하는 공정은, 그 소재인 탄소소재를 제조하는 탄소소재제조단계(S210)와, 탄소소재를 사용하여 로타 또는 베인의 형태를 성형하는 분말프레스성형단계(S250)와, 성형된 소재를 고온으로 열처리하여 기계적 강도를 부여하는 소결단계(S250)와, 소결시 고온의 열을 인가하므로 탄소소재 내부의 물질이 휘발분, 불순물 및 불용분이 제거되는 경우 발생하는 기공을 메워주는 함침단계(S250)를 포함한다.The process of manufacturing the rotor 155 or the vane 175 used in the vehicle brake system vacuum pump includes the carbon material manufacturing step (S210) of manufacturing the carbon material, which is the material, and the form of the rotor or vane using the carbon material. In the powder press molding step (S250) of molding, the sintering step (S250) of heat-treating the molded material at high temperature to give mechanical strength, and applying high-temperature heat during sintering, the material inside the carbon material is volatile, impurities and It includes an impregnation step (S250) to fill the pores generated when the insoluble matter is removed.

탄소소재제조단계(S210)는 습식혼합단계(S220)와, 건조단계(S230)와, 입자화단계(S240)를 포함한다.The carbon material manufacturing step (S210) includes a wet mixing step (S220), a drying step (S230), and a granulation step (S240).

습식혼합단계(S220)는, 탄소분말 100 중량부, 피치계 탄소섬유 분말 10~20 중량부, 정제된 피치계 바인더 20~40 중량부를 용매와 함께 혼합하여 슬러리를 형성한다. In the wet mixing step (S220), 100 parts by weight of carbon powder, 10 to 20 parts by weight of pitch-based carbon fiber powder, and 20 to 40 parts by weight of a refined pitch-based binder are mixed with a solvent to form a slurry.

탄소 분말로는 구상흑연을 사용하며 탄소 분말의 경우 평균 입자 크기는 50~250μm인 것을 사용한다. 탄소섬유의 경우 평균 길이가 0.1~1.5mm 정도로 분말화 한 것을 사용할 수 있다. 피치계 바인더는 300~350℃에서 진공 열처리하여 불순물 및 휘발분을 정제한 것을 사용할 수 있다.Nodular graphite is used as the carbon powder, and in the case of carbon powder, an average particle size of 50 to 250 μm is used. In the case of carbon fibers, powdered ones with an average length of 0.1 to 1.5 mm can be used. The pitch-based binder may be used in which impurities and volatiles are purified by vacuum heat treatment at 300 to 350°C.

습식혼합단계(S220)에서는, 혼합기로는 공·자전식 정밀 혼합장치를 사용할 수 있으며, 혼합기에 용매를 10~30 중량부와 탄소소재를 투입하고 회전속도 60~100 rpm에서 2~6시간 충분히 혼합한다. 용매는 탄소분말과 피치류를 분산시킬 수 있는 메틸알코올, NMP(N-methyl-2-pyrrolidone), DMF(dimethylformamide), DMSO(dimethyl sulfoxide), 톨루엔(toluene) 등과 같은 유기 용매 중에서 선택하여 사용할 수 있다. In the wet mixing step (S220), as the mixer, an air-rotation precision mixing device can be used, and 10 to 30 parts by weight of a solvent and a carbon material are put into the mixer, and the rotation speed is 60 to 100 rpm for 2 to 6 hours. Mix. The solvent may be selected from organic solvents such as methyl alcohol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and toluene that can disperse carbon powder and pitches. have.

건조단계(S230)는, 혼합물을 온도 40~80℃에서 20~40분간 건조해, 용매를 제거한다. In the drying step (S230), the mixture is dried at a temperature of 40 to 80° C. for 20 to 40 minutes to remove the solvent.

입자화단계(S240)는, 건조된 시료를 분쇄하여 60 mesh로 선별 포집한 후, 스프레이 드라이 공법을 사용하여 탄소소재를 평균 입자 크기가 1.0~2.0mm인 그레인 형상의 과립형으로 입자화시킨다.In the granulation step (S240), the dried sample is pulverized and selectively collected into 60 mesh, and then the carbon material is granulated into grain-shaped granules having an average particle size of 1.0 to 2.0 mm by using a spray drying method.

입자상태의 탄소소재를 이용하여 로타 또는 베인을 제조하기 위해서, 로타 또는 베인의 형상을 가진 성형체를 만들어주는 분말프레스성형단계(S250)와, 치수안정성을 확보할 수 있는 전처리공정과 입자간의 결합을 이루게 하는 소결단계(S270)와, 내부 기공을 메워주는 함침단계(S290)를 포함한다.In order to manufacture a rotor or a vane using a carbon material in a particulate state, a powder press molding step (S250) of making a molded body having the shape of a rotor or a vane, a pretreatment process that can ensure dimensional stability, and bonding between particles It includes a sintering step (S270) to achieve, and an impregnating step (S290) to fill the internal pores.

프레스성형단계(S250)는, 입자화된 탄소소재를 프레스 금형에 투입하여 로타 또는 베인의 형상을 가진 성형체를 제조한다. In the press molding step (S250), a particulated carbon material is put into a press mold to manufacture a molded body having a shape of a rotor or a vane.

도 3은 본 발명의 일 실시 예에 따른 차량용 진공펌프에 사용되는 로타 및 베인을 위한 프레스 금형의 단면도이다. 도 3(a)는 금형을 정면에서 바라볼 때 금형의 중앙을 절단한 면을 나타내는 도면이고, 도 3(b)는 금형을 측면에서 바라볼 때 금형의 중앙을 절단한 면을 나타내는 도면이다.3 is a cross-sectional view of a press mold for a rotor and a vane used in a vacuum pump for a vehicle according to an embodiment of the present invention. Fig. 3 (a) is a view showing a surface cut through the center of the mold when viewed from the front, and Fig. 3 (b) is a view showing a surface cut from the center of the mold when viewed from the side.

프레스 금형은 베이스(310)와, 상부 패드(330), 하부 패드(350)를 포함한다. 베이스에 대해 하부 패드가 고정된 상태에서 하부 패드(350)의 위쪽 공간에 입자화된 탄소소재를 투입한다. 상부 패드(330)를 아래로 내려서 탄소소재에 압력을 가한다. 프레스 압력은 0.5~2.0ton/cm2을 인가할 수 있다. The press mold includes a base 310 , an upper pad 330 , and a lower pad 350 . In a state in which the lower pad is fixed with respect to the base, the granulated carbon material is put into the space above the lower pad 350 . The upper pad 330 is lowered to apply pressure to the carbon material. The press pressure can be applied from 0.5 to 2.0 ton/cm 2 .

상부 패드가 설정된 거리만큼 이동하여 정지한 경우, 베이스(310)와 하부 패드(350) 그리고 상부 패드(330)는 성형체의 형상에 맞는 성형공간(370)을 형성할 수 있다. 성형이 완료된 경우, 하부 패드(350)를 베이스에 대해 상승시켜 성형된 탄소소재를 배출할 수 있다.When the upper pad moves by a set distance and stops, the base 310 , the lower pad 350 , and the upper pad 330 may form a molding space 370 suitable for the shape of the molded body. When the molding is completed, the lower pad 350 may be raised with respect to the base to discharge the molded carbon material.

소결단계(S270)는, 프레스성형단계에서 성형된 로타 또는 베인을 고온으로 열처리하는 단계이다. 탄소소재는 고온의 열처리에 의해 결합이 강해지므로 성형된 로타 또는 베인은 소결단계에서 기계적 강도가 향상된다. 한편, 고온의 열처리에 의해 탄소소재 내부의 일부 성분이 휘발하여 탄소소재 내부에 기공이 형성되는 경우 로타 또는 베인의 내구성을 저하하는 요인이 될 수 있다. 따라서 소결단계는 2단계로 나누어 순차적으로 진행하는 것이 바람직하다. 즉 소결단계 앞에 전처리단계를 추가하여 진행할 수 있다.The sintering step (S270) is a step of heat-treating the rotor or vane formed in the press forming step at a high temperature. Since the carbon material is strongly bonded by high-temperature heat treatment, the mechanical strength of the molded rotor or vane is improved during the sintering step. On the other hand, when some components inside the carbon material are volatilized by high-temperature heat treatment and pores are formed inside the carbon material, it may be a factor to reduce the durability of the rotor or vane. Therefore, it is preferable to divide the sintering step into two steps and proceed sequentially. That is, it can proceed by adding a pre-treatment step before the sintering step.

전처리단계는, 성형된 로타 또는 베인을 400~800℃에서 6~10시간 열처리한다. 전처리 단계에서는 불순물제거와 일차적인 수축과정을 통해 최종적인 탄소성형체의 치수를 확보할 수 있는 치수안정화를 목적으로 실시한다.In the pre-treatment step, the molded rotor or vane is heat-treated at 400-800° C. for 6-10 hours. In the pre-treatment stage, it is carried out for the purpose of dimensional stabilization that can secure the dimensions of the final carbon molded body through the removal of impurities and the primary shrinkage process.

소결단계는, 2,300~2,800℃에서 6~10시간 열처리한다. 고온 열처리를 통해서 경도, 강도, 밀도와 같은 기계적 성질을 향상시키고 균일한 조직을 얻을 수 있다. 소결단계는 질소 또는 아르곤 등 불활성기체 분위기를 조성하여 탄소성형체가 산화 또는 탄화됨을 방지한다.In the sintering step, heat treatment is performed at 2,300 to 2,800° C. for 6 to 10 hours. Through high-temperature heat treatment, mechanical properties such as hardness, strength, and density can be improved and a uniform structure can be obtained. The sintering step prevents oxidation or carbonization of the carbon compact by creating an atmosphere of an inert gas such as nitrogen or argon.

함침단계(S290)는, 소결공정에서 탄소성형체 내부의 휘발분, 불순물 및 불용분이 제거되는 경우 제거된 만큼의 기공이 발생하므로 이들 공극을 메워주어 안정된 마모를 이루기 위해 실시한다.In the impregnation step (S290), when the volatile matter, impurities and insoluble matter inside the carbon molded body are removed in the sintering process, as many pores as the removed are generated, these voids are filled to achieve stable wear.

함침 장치에, 피치 100 중량부를 함침장치에 투입하고, 연화점 300℃의 온도범위인 200~400℃에서 녹인 후, 소결이 완료된 제품을 투입하고, 1~3 bar 상태에서 3~7시간 동안 함침을 실시한다. 피치는 메조상 피치가 바람직하며, 필요에 따라 흑연 10~20 중량부를 추가로 투입할 수 있다.In the impregnation device, 100 parts by weight of the pitch is put into the impregnation device, melted at 200-400° C., which is a softening point of 300° C., and then the sintered product is put in, and the impregnation is performed at 1 to 3 bar for 3 to 7 hours. Conduct. The pitch is preferably mesophase, and if necessary, 10 to 20 parts by weight of graphite may be additionally added.

함침 후에는 500~600℃에서 1~5시간 동안 열처리하는 후처리공정을 추가할 수 있다.After impregnation, a post-treatment process of heat treatment at 500-600° C. for 1 to 5 hours may be added.

이하, 실시 예를 참조하여, 본 발명의 일 실시 예에 따른 차량의 진공펌프용 탄소소재인 로타 및 베인 그 제조방법에 대하여 상세히 설명하기로 한다. Hereinafter, with reference to the embodiment, a rotor and a vane, which are carbon materials for a vehicle vacuum pump, according to an embodiment of the present invention will be described in detail.

<실시예 - 탄소소재 제조><Example - Carbon material manufacturing>

탄소분말 100 중량부, 다진 피치계 탄소섬유 분말(0.1mm~1.5mm) 15 중량부, 피치계 바인더 30 중량부를 메틸알코올 20 중량부에 섞어서 정밀 혼합장치에 투입하였다. 혼합장치를 80rpm으로 회전시키면서 4시간동안 골고루 섞이게 하였다.100 parts by weight of carbon powder, 15 parts by weight of chopped pitch-based carbon fiber powder (0.1mm to 1.5mm), and 30 parts by weight of a pitch-based binder were mixed with 20 parts by weight of methyl alcohol and put into a precision mixing device. The mixing device was rotated at 80 rpm to evenly mix for 4 hours.

혼합이 완료된 시료는 60℃ 건조기에서 30분 동안 건조시켰다.After mixing, the sample was dried in a dryer at 60° C. for 30 minutes.

60 mesh의 탄소입자를 포집하여 스프레이 드라이 공정을 통해 평균 입자크기 1.5mm인 과립형 탄소소재를 제조하였다.A granular carbon material with an average particle size of 1.5 mm was prepared through a spray-drying process by collecting 60 mesh carbon particles.

<< 실시예Example - - 로타Rota 및 베인 성형 및 소결> and vane forming and sintering>

제조된 탄소소재를 분말프레스의 호퍼(소재 자동 공급장치)에 투입하고, 프레스 장치를 동작시켜 로타 및 베인 형상을 성형하였다. 프레스 장치는 시료에 1.5 ton/cm2의 압력을 인가하여 로타 및 베인을 냉간 성형하였다. The manufactured carbon material was put into the hopper (automatic material feeding device) of the powder press, and the rotor and vane shapes were formed by operating the press device. The press device applied a pressure of 1.5 ton/cm 2 to the sample to cold-form the rotor and the vane.

소결의 전처리공정으로 600℃에서 8시간 동안 열처리한 후, 소결 공정은 질소분위기에서 2,300℃에서 8시간동안 진행하였다.After heat treatment at 600° C. for 8 hours as a pretreatment process for sintering, the sintering process was performed at 2,300° C. for 8 hours in a nitrogen atmosphere.

<< 실시예Example - - 로타Rota 및 베인 and vanes 함침impregnation >>

소결이 완료된 제품에 피치함침을 실시하였다. 메조상(mesophase) 피치 100 중량부를 함침장치에 투입하고 300℃로 녹인 후, 소결이 끝난 제품을 투입한 후, 2 bar(약 2기압) 상태에서 5시간 동안 함침을 실시하였다. 함침후에는 550℃에서 약 3시간 열처리하였다.Pitch impregnation was performed on the sintered product. 100 parts by weight of mesophase pitch was put into the impregnation device, melted at 300° C., and then the sintered product was added, followed by impregnation at 2 bar (about 2 atm) for 5 hours. After impregnation, heat treatment was performed at 550° C. for about 3 hours.

도 4는 본 발명의 일 실시예에 따른 로타 및 베인의 제조공정 중 함침시간에 따른 밀도 변화를 나타내는 그래프와 함침 전후의 외관을 나타내는 사진이다.4 is a graph showing the density change according to the impregnation time during the manufacturing process of the rotor and the vane according to an embodiment of the present invention, and a photograph showing the appearance before and after impregnation.

도 4(a)는 함침 시간에 따른 밀도변화를 나타내는데, 함침 시간이 증가함에 따라 밀도가 점점 증가함을 알 수 있다. 다만, 1시간 이후의 밀도증가는 제한적이다. 이후 실험에서는 함침시간을 5시간으로 유지하여 실험하였다.4 (a) shows the density change according to the impregnation time, it can be seen that the density gradually increases as the impregnation time increases. However, the density increase after 1 hour is limited. In subsequent experiments, the impregnation time was maintained at 5 hours.

도 4(b)는 함침 전의 외관을 나타내는 사진이고, 도 4(c)는 함침 후의 외관을 나타내는 사진이다. 함침전의 사진에서는 검은 점으로 표시된 기공(410)이 다수 보이고 있으나, 함침 후에는 기공이 보이지 않음을 확인할 수 있다.Figure 4 (b) is a photograph showing the appearance before impregnation, Figure 4 (c) is a photograph showing the appearance after impregnation. In the photo before impregnation, a large number of pores 410 indicated by black dots are visible, but it can be seen that the pores are not visible after impregnation.

<< 실험예Experimental example - 평균 굴곡강도> - Average flexural strength>

표 1은 함침전, 함침후, 함침후 열처리 후에 각각 평균 굴곡강도와 Shore 경도를 측정한 결과를 정리하여 나타낸 표이다. Table 1 summarizes the results of measurement of average flexural strength and Shore hardness before impregnation, after impregnation, and after heat treatment after impregnation.

도 5는 본 발명의 일 실시예에 따른 로타 및 베인의 함침전, 함침후, 함침후 열처리 후에 각각 평균 굴곡강도를 비교한 그래프이다.5 is a graph comparing the average flexural strength of rotors and vanes according to an embodiment of the present invention before impregnation, after impregnation, and after heat treatment after impregnation.

함침전에는 평균 굴곡강도가 목표값에 미달하였으나, 함침후 평균 굴곡강도가 대폭 향상된 것을 알 수 있다. Shore 경도의 경우 소폭 하락하였으나, 목표값 대비 여유가 있어서 문제되지 않는 수준이다. Before impregnation, the average flexural strength did not reach the target value, but it can be seen that the average flexural strength after impregnation was significantly improved. In the case of Shore hardness, it decreased slightly, but it is not a problem because there is room compared to the target value.

평균 굴곡강도
(kgf/cm2)
average flexural strength
(kgf/cm 2 )
Shore 경도Shore hardness 평가evaluation
목표값target value 490.00490.00 7575 함침전before impregnation 394.67394.67 8888 ×× 함침후after impregnation 658.29658.29 8484 함침후 열처리Heat treatment after impregnation 819.03819.03 8484

이상의 결과에서 메조상 피치를 이용한 함침 및 함침후 열처리에 의해 차량의 브레이크시스템 진공펌프용 로타 및 베인의 평균 굴곡강도를 대폭 향상시킬 수 있음을 알 수 있다.From the above results, it can be seen that the average flexural strength of the rotor and the vane for the brake system vacuum pump of a vehicle can be significantly improved by impregnation using mesophase pitch and heat treatment after impregnation.

115 : 하우징 135 : 캠링
155 : 로타 175 : 베인
195 : 플레이트 410 : 기공
115: housing 135: cam ring
155: Rota 175: Vane
195: plate 410: pore

Claims (5)

탄소소재를 이용한 차량의 브레이크시스템 진공펌프용 로타 또는 베인의 제조방법에 있어서,
탄소분말 100 중량부, 다진 피치계 탄소섬유 분말 10~20 중량부, 피치계 바인더 20~40 중량부를 용매와 함께 혼합기에 투입하여 혼합된 탄소소재를 형성하는 습식혼합단계;
상기 습식혼합단계에서 혼합된 탄소소재를 건조하는 건조단계;
상기 건조된 탄소소재를 입자화하는 입자화단계;
상기 입자화된 탄소소재를 프레스 금형을 이용하여 로타 또는 베인의 형상을 가진 성형체를 제조하는 성형 단계;
상기 성형체를 고온으로 열처리하여 소결체를 제조하는 소결단계; 및
상기 소결단계 이후에, 상기 소결체에 생성된 기공을 채우기 위해, 메조상피치 100 중량부를 함침장치에 투입하여 녹인 후, 상기 소결체를 투입하여 함침시키는 함침단계;를 포함하며,
상기 소결단계 앞에, 상기 성형체를 400~800℃에서 6~10시간 동안 열처리하는 전처리단계;를 더 포함하고,
상기 소결단계는, 질소분위기에서 2,300~2,800℃에서 6~10시간 동안 열처리하고,
상기 함침단계는, 상기 함침장치에 투입된 함침용 피치를 200~400℃의 온도에서 녹이고, 상기 소결체를 투입한 후, 1~3 bar에서 3~7시간동안 함침을 실시하고,
상기 함침단계 이후에, 함침된 로타 또는 베인을 500~600℃에서 1~5시간 동안 열처리하는 후처리단계;를 더 포함하는 것을 특징으로 하는 차량의 브레이크시스템 진공펌프용 로타 또는 베인의 제조방법.
In the manufacturing method of a rotor or vane for a brake system vacuum pump of a vehicle using a carbon material,
100 parts by weight of carbon powder, 10 to 20 parts by weight of chopped pitch-based carbon fiber powder, and 20 to 40 parts by weight of a pitch-based binder together with a solvent are put into a mixer to form a mixed carbon material;
a drying step of drying the carbon material mixed in the wet mixing step;
a granulation step of granulating the dried carbon material;
A molding step of manufacturing a molded body having a shape of a rotor or a vane using the granulated carbon material using a press mold;
a sintering step of heat-treating the molded body at a high temperature to produce a sintered body; and
After the sintering step, in order to fill the pores generated in the sintered body, 100 parts by weight of the mesophase pitch is put into an impregnation device to melt it, and then the impregnation step of impregnating the sintered body by inputting the sintered body; includes,
Before the sintering step, a pretreatment step of heat-treating the molded body at 400 to 800° C. for 6 to 10 hours; further comprising,
In the sintering step, heat treatment is performed at 2,300 to 2,800 ° C. for 6 to 10 hours in a nitrogen atmosphere,
In the impregnation step, the impregnation pitch put into the impregnation device is melted at a temperature of 200 to 400° C., and after the sintered body is put in, the impregnation is performed at 1 to 3 bar for 3 to 7 hours,
After the impregnation step, a post-treatment step of heat-treating the impregnated rotor or vane at 500 to 600° C. for 1 to 5 hours; the method of manufacturing a rotor or vane for a vacuum pump for a brake system of a vehicle further comprising a further comprising.
제1항에 있어서,
상기 습식혼합단계에서, 상기 용매는 메틸알코올, NMP(N-methyl-2-pyrrolidone), DMF(dimethylformamide), DMSO(dimethyl sulfoxide), 톨루엔(toluene)에서 선택되는 어느 하나를 10~30 중량부 투입하는 것을 특징으로 하는 차량의 브레이크시스템 진공펌프용 로타 또는 베인의 제조방법.
The method of claim 1,
In the wet mixing step, the solvent is 10 to 30 parts by weight of any one selected from methyl alcohol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and toluene. A method of manufacturing a rotor or vane for a vacuum pump for a brake system of a vehicle, characterized in that
제1항에 있어서,
상기 입자화단계는, 상기 건조된 탄소소재를 분쇄하여 60 mesh로 걸러낸 후, 스프레이 드라이 공법을 사용하여 상기 탄소소재를 평균 입자 크기가 1.0~2.0mm인 그레인 형상의 과립형으로 입자화시는 것을 특징으로 하는 차량의 브레이크시스템 진공펌프용 로타 또는 베인의 제조방법.
The method of claim 1,
In the granulation step, after pulverizing the dried carbon material and filtering it to 60 mesh, the carbon material is granulated into grain-shaped granules having an average particle size of 1.0 to 2.0 mm using a spray-drying method. A method of manufacturing a rotor or vane for a vacuum pump for a brake system of a vehicle, characterized in that.
삭제delete 삭제delete
KR1020200065529A 2020-05-30 2020-05-30 Carbon material rotor and vane for vehicle vacuum pump and manufacturing method thereof KR102410956B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200065529A KR102410956B1 (en) 2020-05-30 2020-05-30 Carbon material rotor and vane for vehicle vacuum pump and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200065529A KR102410956B1 (en) 2020-05-30 2020-05-30 Carbon material rotor and vane for vehicle vacuum pump and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20210148568A KR20210148568A (en) 2021-12-08
KR102410956B1 true KR102410956B1 (en) 2022-06-21

Family

ID=78867754

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200065529A KR102410956B1 (en) 2020-05-30 2020-05-30 Carbon material rotor and vane for vehicle vacuum pump and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102410956B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230063462A (en) 2021-11-02 2023-05-09 주식회사 엘지에너지솔루션 Cylindrical secondary battery with excellent structural safety and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309858B2 (en) 1995-05-19 2002-07-29 ユーティー‐バテル・エルエルシー Fast molding process for fiber preforms and structural composites
US20060073338A1 (en) 2004-10-01 2006-04-06 Simpson Allen H Formulation for the manufacture of carbon-carbon composite materials
KR101620943B1 (en) * 2015-10-12 2016-05-13 극동씰테크 주식회사 Carbon composite material with pitch based carbon fiber, method for manufacturing the same, and carbon roller comprising the same
KR101996205B1 (en) * 2019-01-28 2019-10-17 극동씰테크 주식회사 Eco-friendly carbon bearing using carbon fiber for vehicle transportation in vehicle production line and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3339075B2 (en) * 1992-10-02 2002-10-28 三菱化学株式会社 Carbon fiber reinforced carbon composite, method for producing the same, and sliding material using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3309858B2 (en) 1995-05-19 2002-07-29 ユーティー‐バテル・エルエルシー Fast molding process for fiber preforms and structural composites
US20060073338A1 (en) 2004-10-01 2006-04-06 Simpson Allen H Formulation for the manufacture of carbon-carbon composite materials
KR101620943B1 (en) * 2015-10-12 2016-05-13 극동씰테크 주식회사 Carbon composite material with pitch based carbon fiber, method for manufacturing the same, and carbon roller comprising the same
KR101996205B1 (en) * 2019-01-28 2019-10-17 극동씰테크 주식회사 Eco-friendly carbon bearing using carbon fiber for vehicle transportation in vehicle production line and its manufacturing method

Also Published As

Publication number Publication date
KR20210148568A (en) 2021-12-08

Similar Documents

Publication Publication Date Title
US5580834A (en) Self-sintered silicon carbide/carbon graphite composite material having interconnected pores which may be impregnated and raw batch and process for producing same
JP5735501B2 (en) Hard non-oxide or oxide ceramic / hard non-oxide or oxide ceramic composite hybrid seal parts
CN1095050C (en) Composition for use in friction materials and articles formed threrefrom
JP3309858B2 (en) Fast molding process for fiber preforms and structural composites
US3998646A (en) Process for forming high density silicon carbide
KR102410956B1 (en) Carbon material rotor and vane for vehicle vacuum pump and manufacturing method thereof
JP5852308B2 (en) Friction material manufacturing method
CN105149593A (en) Petrol pump motor oil bearing manufacturing method based on powder metallurgy
EP1440955B1 (en) A seal assembly containing a sliding element and the use of a sliding element for seals
JP2006144004A (en) Abrasion-resistant sliding material comprising graphite and synthetic resin binder
KR101620943B1 (en) Carbon composite material with pitch based carbon fiber, method for manufacturing the same, and carbon roller comprising the same
KR20210148524A (en) Carbon material, rotor or vane for vehicle vacuum pump and manufacturing method thereof
US20010025014A1 (en) Body of anti-friction material and method for preparing the body
CN1169708A (en) Selfsintered silicon carbide/carbon composite material
CN116136067B (en) Preparation method of carbon ceramic brake disc
KR101996205B1 (en) Eco-friendly carbon bearing using carbon fiber for vehicle transportation in vehicle production line and its manufacturing method
JP3764089B2 (en) Composite SiC sliding member, sealing ring for mechanical seal, mechanical seal, and method for manufacturing composite SiC sliding member
RU2088007C1 (en) Electric brush manufacturing process
CN112996878B (en) Sintered friction material and method for producing sintered friction material
JPS6036375A (en) Manufacture of ceramic internal combustion engine parts
JP2002338357A (en) Sliding body and mechanical seal
JP2543093B2 (en) Sliding parts for seals
JP4031266B2 (en) Underwater sliding resin composition containing fine powder of RBC or CRBC
JPH09208314A (en) Production of carbonaceous material
CN115677350A (en) Preparation method of carbon shaft sleeve for new energy automobile electronic water pump

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant