JP4031266B2 - Underwater sliding resin composition containing fine powder of RBC or CRBC - Google Patents
Underwater sliding resin composition containing fine powder of RBC or CRBC Download PDFInfo
- Publication number
- JP4031266B2 JP4031266B2 JP2002062406A JP2002062406A JP4031266B2 JP 4031266 B2 JP4031266 B2 JP 4031266B2 JP 2002062406 A JP2002062406 A JP 2002062406A JP 2002062406 A JP2002062406 A JP 2002062406A JP 4031266 B2 JP4031266 B2 JP 4031266B2
- Authority
- JP
- Japan
- Prior art keywords
- fine powder
- rbc
- synthetic resin
- crbc
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Sliding-Contact Bearings (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、水中での摩擦係数が小さい水中で用いる軸受の摺動材に適した水中摺動用合成樹脂組成物に関する。
日本において90万トン/年、世界中で3300万トン/年も排出されている米ぬかを利用して、多孔質炭素材料を得ようとすることは、本件の第一発明者である堀切川 一男の研究により知られている。(機能材料 1997年 5月号 Vol.17 No.5 p24〜28参照)
ここには、米ぬかから得られる脱脂ぬかと、熱硬化性樹脂を混合して混錬し、加圧成型した成型体を乾燥させた後、乾燥成型体を不活性ガス雰囲気中で焼成した炭素材料であるRBセラミックス(以下RBCという)及びその製造方法が示されている。熱硬化性樹脂は、熱硬化しさえすればどのようなものでも良く、代表的にはフェノール系樹脂、ジアリールフタレート系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、トリアジン系樹脂が挙げられる。とくにフェノール系樹脂が好適に用いられる。 脱脂ぬかと熱硬化性樹脂の混合割合は、質量比で、50〜90:50〜10であるが、好適には75:25 が用いられる。
焼成温度は、700℃〜1000℃であり、通常はロータリーキルンが用いられ、焼成時間は約40分から120分である。
RBセラミックスをさらに改良した炭素材料であるCRBセラミックス(以下CRBCという)は、米ぬかから得られる脱脂ぬかと、熱硬化性樹脂とから得られるRBセラミックスの改良材であって、米ぬかから得られる脱脂ぬかと、熱硬化性樹脂を混合して混錬し、不活性ガス中700℃〜1000℃で一次焼成した後、100メッシュ程度以下に粉砕して炭化粉末とし、該炭化粉末と熱硬化性樹脂を混合して混錬し、圧力20MPa〜30MPaで加圧成型した後、成型体を不活性ガス雰囲気中で再び500℃〜1100℃で熱処理して得られる黒色樹脂ないし多孔質セラミックスである。
【0002】
RBC及びCRBCは、次のような優れた特徴を持っている。
・硬度が高い。
・粒子にしても形状がいびつ。
・膨張係数が非常に小さい。
・組織構造がポーラスである。
・電気伝導性を有する。
・比重が小さく軽い。
・摩擦係数が非常に小さい。
・耐摩耗性に優れる。
・材料が米ぬかで地球環境への悪影響が少なく、省資源に繋がる。
本発明においては、RBC及びCRBCを平均粒子径300μm以下、好ましくは10〜100μmとくに好ましくは、10〜50μmに微粉末化して用い、合成樹脂と混合することにより得られる合成樹脂組成物を特殊な用途に利用する技術に関する。
【0003】
【従来技術】
従来、ウオータポンプなど液体中で使われるポンプの軸受には、軸受に液体が浸入しないように、シールドが施されていた。また、液体中で使われるポンプの軸受として、シールドしないで液体中で用いるスリーブ軸受構造など直接液体に触れる軸受を構成する材料の摩擦特性は、液体中で好ましい特性を発揮するものは知られていない。
【0004】
【発明が解決しようとする課題】
本発明者は、シールドしないで液体中で用いるスリーブ軸受構造など直接液体に触れる軸受を構成する材料に適した摩擦特性を有する水中摺動用合成樹脂組成物を提供することを目的としている。さらに、本発明の別の目的は、RBC又はCRBCの微粉末を含む合成樹脂組成物は、グリースを用いない画期的なスリーブ軸受を製造するための軸受材料を開発することにある。
【0005】
【課題を解決するための手段】
本発明者は、RBC(RBセラミックス)又はCRBC(CRBセラミックス)の特異性に着目し、鋭意研究した結果驚くべきことには、RBC又はCRBCの微粉末を均一に分散し、とくに、RBC又はCRBCの微粉末:合成樹脂の質量比が、30〜90:70〜10とした樹脂組成物が、水、アルコール、エチレングリコール及びこれらの混合物の液体中において、驚異的な摩擦特性を発揮することを見いだし、本発明を完成させるに至った。
本発明の水中摺動用合成樹脂組成物の典型的な製造方法は、RBC又はCRBCの微粉末を合成樹脂の融点付近の温度で混錬することにより、RBC又はCRBCの微粉末を均一に分散することにより簡単に得られる。
【0006】
【本発明の実施の形態】
本発明において用いるRBC又はCRBCの微粉末は、平均粒子径300μm以下のものが用いられる。特に平均粒子径10〜100μmより好ましくは10〜50μmのものが、摩擦係数の良い表面状態を作り出し、水中摺動用合成樹脂組成物として適している。
【0007】
本発明において用いることが出来る合成樹脂としては、ポリアミド、ポリエステル、ポリオレフィン等の熱可塑性樹脂が挙げられる。具体的には、ナイロン66(ポリヘキサメチレンアジポアミド)、ナイロン6(ポリカプラミド)、ナイロン11(ポリウンデカンアミド)、ナイロン12、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイド等の熱可塑性樹脂が挙げられる。とくに、ナイロン66が好ましく用いられる。これら熱可塑性樹脂は、1種又は2種以上を混合して用いても良い。
【0008】
さらに、本発明の趣旨を逸脱しない範囲において、熱硬化性樹脂を組成物全体の20質量%程度まで併用することも出来る。このような熱硬化性樹脂としては、フェノール系樹脂、ジアリールフタレート系樹脂、不飽和ポリエステル系樹脂、エポキシ系樹脂、ポリイミド系樹脂、トリアジン系樹脂などが挙げられる。
本発明において、合成樹脂の添加割合は、RBC又はCRBCの微粉末:合成樹脂の質量比が、30〜90:70〜10であることが必要である。合成樹脂の添加割合が70質量%を超えると、摩擦特性が悪くなり、10質量%以下では、成型が難しくなる。
【0009】
成型は、通常、押出成型または射出成型で行われる。
また、金型の温度をやや低めに設定すると良いことが解っている。基本的には合成樹脂のガラス転移点ないし融点の範囲の温度が良い。さらに、金型は、急冷するよりも徐冷する方が、良い摩擦特性の成型物が得られることがわかっている。
本発明の水中摺動用合成樹脂組成物は、水中ポンプを含む一般軸受材料としての用途に用いることが出きる。これらは低摩擦、低摩耗の特徴を生かしたものであるが、さらに、導電性の特性を生かせばキーキャップなどにも利用できるばかりか、分散特性がよいことから、各種のRBC又はCRBCの微粉末を含む合成樹脂の成型品を作り出すことができる。
【0010】
本発明の実施の形態をまとめると、以下のとおりである。
(1)水中で直接水に触れる軸受を構成する材料に用いられ、平均径が、300μm以下であるRBC又はCRBCの微粉末を、RBC又はCRBCの微粉末:合成樹脂の質量比が、30〜90:70〜10で合成樹脂中に均一に分散した水中摺動用合成樹脂組成物。
(2) 合成樹脂が、ナイロン66、ナイロン6、ナイロン11、ナイロン12、ポリアセタール、ポリブチレンテレフタレート、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイドから選ばれる樹脂の1種又は2種以上である上記(1)に記載した水中摺動用合成樹脂組成物。
(3) 熱硬化性樹脂の1種又は2種以上を併用する上記(1)又は上記(2)に記載した水中摺動用合成樹脂組成物。
(4)RBC又はCRBCの微粉末の平均径が、10〜50μmである上記(1)ないし上記(3)のいずれかに記載した水中摺動用合成樹脂組成物。
【0011】
(実施例)
本発明を実施例に基づいてさらに詳細に説明する。
実施例1
(RBC微粉末の製造)
米ぬかから得られる脱脂ぬか750gと液体状のフェノール樹脂(レゾール)250gを、50℃〜60℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
混合物を、ロータリーキルンを使って窒素雰囲気中900℃で100分焼き上げ、得られた炭化焼成物を、さらに粉砕機を用いて粉砕し、ついで150メッシュの篩にかけて、平均粒径が140〜160μmであるRBC微粉末を得た。
(RBC微粉末と合成樹脂混合物の作成)
得られたRBC微粉末500g、ナイロン66粉末500gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。RBC微粉末の含有量は50質量%であった。
(試験片の作成)
RBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、試験片を作成した。
【0012】
実施例2
実施例1と同じ方法を用いて、平均粒径が140〜160μmであるRBC微粉末を得た。
(RBC微粉末と合成樹脂混合物の作成)
得られたRBC微粉末700g、ナイロン66粉末300gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。RBC微粉末の含有量は70質量%であった。
(試験片の作成)
RBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、試験片を作成した。
【0013】
実施例3
(RBC微粉末の製造)
米ぬかから得られる脱脂ぬか750gと液体状のフェノール樹脂(レゾール)250gを、50℃〜60℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
混合物を、ロータリーキルンを使って窒素雰囲気中1000℃で100分焼き上げ、得られた炭化焼成物を、さらに粉砕機を用いて粉砕し、ついで400メッシュの篩にかけて、平均粒径が40〜50μmであるRBC微粉末を得た。
(RBC微粉末と合成樹脂混合物の作成)
得られたRBC微粉末700g、ナイロン66粉末300gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。RBC微粉末の含有量は70質量%であった。
(試験片の作成)
RBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、試験片を作成した。
【0014】
実施例4(CRBC微粉末の製造)
米ぬかから得られる脱脂ぬか750gと液体状のフェノール樹脂(レゾール)250gを、50℃〜60℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
混合物を、ロータリーキルンを使って窒素雰囲気中で900℃で60分焼き上げた。得られた炭化焼成物を、粉砕機を用いて粉砕し、ついで200メッシュの篩にかけて、平均粒径が100〜120μmであるRBC微粉末を得た。
得られたRBC微粉末750gと固体状のフェノール樹脂(レゾール)500gを100℃〜150℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。
次いで、可塑物を圧力22MPaで直径約1cmの球形に加圧成型した。金型の温度は150℃であった。
金型から成型体を取り出し、窒素雰囲気中で500℃までは1℃/分の昇温速度で温度を上げ、500℃で60分間保持し、900℃で約120分焼結した。
次いで500℃までは2〜3℃/分の冷却速度で、温度を下げ、500℃以下になると自然放冷した。
得られたCRBC成型物を、粉砕機を用いて粉砕し、ついで500メッシュの篩にかけて、平均粒径が20〜30μmであるCRBC微粉末を得た。
(CRBC微粉末と合成樹脂混合物の作成)
得られたCRBC微粉末500g、ナイロン66粉末500gを240℃〜290℃に加熱しながら、混合して混錬した。可塑性を有する均質な混合物が得られた。CRBC微粉末の含有量は50質量%であった。
(試験片の作成)
CRBC微粉末とナイロン66を溶融混合して得られた樹脂組成物を、射出成形して、試験片を作成した。
【0015】
実施例5〜9及び比較例1
実施例1〜3と同じ、RBCまたはCRBC微粉末を用いて同様にして、表1に示すような条件で試験片を作成した。
さらに、市販の水中ポンプ用PPS樹脂(出光石油化学株式会社製)を用いて比較試験を行った。
【表1】
【0016】
実施例1〜9で得られた水中摺動用合成樹脂組成物の特性を表2にまとめる。
【表2】
【0017】
実施例1〜9で得られた水中摺動用合成樹脂組成物の水中での摩擦特性を表3にまとめる。
【表3】
【0018】
【本発明の効果】
表3の結果からも明らかなように、本発明のRBC又はCRBCの微粉末及び合成樹脂からなる水中摺動用合成樹脂組成物は、水中での摩擦特性が際立って優れており、液体中で使われるポンプの軸受として、シールドしないで液体中で用いるスリーブ軸受構造など直接液体に触れる軸受を構成する材料として有望である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a synthetic resin composition for sliding under water suitable for a sliding material of a bearing used in water having a small coefficient of friction in water.
It is Kazuo Horikiri who is the first inventor of this matter to try to obtain a porous carbon material using rice bran, which is discharged 900,000 tons / year in Japan and 33 million tons / year worldwide. It is known by research. (Refer to Functional Materials, May 1997, Vol.17 No.5 p24-28)
Here, a carbon material obtained by mixing a defatted bran obtained from rice bran and a thermosetting resin, kneading, drying the pressure-molded molded body, and then firing the dried molded body in an inert gas atmosphere RB ceramics (hereinafter referred to as RBC) and a method for producing the same are shown. The thermosetting resin may be anything as long as it is thermosetted. Typically, phenolic resins, diaryl phthalate resins, unsaturated polyester resins, epoxy resins, polyimide resins, and triazine resins are used. Can be mentioned. In particular, phenolic resins are preferably used. The mixing ratio of the degreased bran and the thermosetting resin is 50 to 90:50 to 10 in terms of mass ratio, but 75:25 is preferably used.
The firing temperature is 700 ° C. to 1000 ° C., usually a rotary kiln is used, and the firing time is about 40 minutes to 120 minutes.
CRB ceramics (hereinafter referred to as CRBC), which is a carbon material further improved from RB ceramics, is a degreasing braid obtained from rice bran and a thermosetting resin, and is a degreasing braid obtained from rice bran. And kneading the mixture with a thermosetting resin, followed by primary firing in an inert gas at 700 ° C. to 1000 ° C., and then pulverizing it to about 100 mesh or less to obtain a carbonized powder. It is a black resin or porous ceramic obtained by mixing and kneading, press molding at a pressure of 20 MPa to 30 MPa, and then heat-treating the molded body again at 500 ° C. to 1100 ° C. in an inert gas atmosphere.
[0002]
RBC and CRBC have the following excellent features.
・ High hardness.
・ Even if particles, the shape is irregular.
・ Expansion coefficient is very small.
-Organizational structure is porous.
・ It has electrical conductivity.
・ The specific gravity is small and light.
・ Friction coefficient is very small.
・ Excellent wear resistance.
・ If the material is not rice, there is little adverse effect on the global environment, leading to resource saving.
In the present invention, RBC and CRBC having an average particle diameter of 300 μm or less, preferably 10 to 100 μm, particularly preferably 10 to 50 μm, are used in a fine powder, and a synthetic resin composition obtained by mixing with a synthetic resin is used as a special product. It relates to the technology used for the purpose.
[0003]
[Prior art]
Conventionally, pump bearings used in liquids such as water pumps have been shielded to prevent liquids from entering the bearings. In addition, as a bearing of a pump used in a liquid, a frictional characteristic of a material constituting a bearing that directly contacts a liquid such as a sleeve bearing structure used in a liquid without shielding is known to exhibit a preferable characteristic in a liquid. Absent.
[0004]
[Problems to be solved by the invention]
This inventor aims at providing the synthetic resin composition for underwater sliding which has a friction characteristic suitable for the material which comprises the bearing which touches a liquid directly, such as the sleeve bearing structure used in a liquid without shielding. Furthermore, another object of the present invention is to develop a bearing material for producing an innovative sleeve bearing in which a synthetic resin composition containing fine RBC or CRBC powder does not use grease.
[0005]
[Means for Solving the Problems]
The present inventor has paid attention to the specificity of RBC (RB ceramics) or CRBC (CRB ceramics), and as a result of earnest research, surprisingly, the RBC or CRBC fine powder is uniformly dispersed, particularly RBC or CRBC. The resin composition having a fine powder: synthetic resin mass ratio of 30 to 90:70 to 10 exhibits surprising friction characteristics in liquids of water, alcohol, ethylene glycol and mixtures thereof. As a result, the present invention has been completed.
A typical method for producing the synthetic resin composition for sliding under water of the present invention is to uniformly disperse RBC or CRBC fine powder by kneading RBC or CRBC fine powder at a temperature near the melting point of the synthetic resin. Can be easily obtained.
[0006]
[Embodiments of the Invention]
As the RBC or CRBC fine powder used in the present invention, those having an average particle diameter of 300 μm or less are used. In particular, those having an average particle size of 10 to 100 μm, more preferably 10 to 50 μm, are suitable as a synthetic resin composition for sliding underwater because it produces a surface state with a good coefficient of friction.
[0007]
Examples of the synthetic resin that can be used in the present invention include thermoplastic resins such as polyamide, polyester, and polyolefin. Specifically, nylon 66 (polyhexamethylene adipamide), nylon 6 (polycoupleramide), nylon 11 (polyundecanamide), nylon 12, polyacetal, polybutylene terephthalate, polyethylene terephthalate, polypropylene, polyethylene, polyphenylene sulfide, etc. A thermoplastic resin is mentioned. In particular, nylon 66 is preferably used. These thermoplastic resins may be used alone or in combination.
[0008]
Furthermore, a thermosetting resin can be used in combination up to about 20% by mass of the entire composition without departing from the spirit of the present invention. Examples of such thermosetting resins include phenolic resins, diaryl phthalate resins, unsaturated polyester resins, epoxy resins, polyimide resins, and triazine resins.
In the present invention, the addition ratio of the synthetic resin is required such that the mass ratio of RBC or CRBC fine powder: synthetic resin is 30 to 90:70 to 10. When the addition ratio of the synthetic resin exceeds 70% by mass, the frictional characteristics are deteriorated, and when it is 10% by mass or less, molding becomes difficult.
[0009]
Molding is usually performed by extrusion molding or injection molding.
It has also been found that the mold temperature should be set slightly lower. Basically, a temperature in the range of the glass transition point or melting point of the synthetic resin is good. Furthermore, it has been found that a mold having good friction characteristics can be obtained by slowly cooling the mold rather than quenching.
The synthetic resin composition for underwater sliding of the present invention can be used for applications as a general bearing material including an underwater pump. These take advantage of the characteristics of low friction and low wear. Furthermore, they can be used for keycaps etc. by taking advantage of their conductive properties. Synthetic resin moldings containing powder can be created.
[0010]
The embodiments of the present invention are summarized as follows.
(1) RBC or CRBC fine powder, which is used as a material constituting a bearing that directly contacts water in water and has an average diameter of 300 μm or less , RBC or CRBC fine powder: Synthetic resin mass ratio is 30 to 90: 70-10, a synthetic resin composition for sliding underwater dispersed uniformly in a synthetic resin.
(2) synthetic resin, nylon 66, nylon 6, nylon 11, nylon 12, polyacetal, polybutylene terephthalate, polyethylene terephthalate, polypropylene, polyethylene, one resin selected from polyphenylene sulfide or two or more in the above (1 ) Synthetic resin composition for sliding under water.
(3) The synthetic resin composition for sliding under water as described in said (1) or said (2) which uses together 1 type, or 2 or more types of thermosetting resin.
(4) The synthetic resin composition for underwater sliding described in any one of (1) to (3) above, wherein the average diameter of the fine powder of RBC or CRBC is 10 to 50 μm.
[0011]
(Example)
The present invention will be described in more detail based on examples.
Example 1
(Manufacture of RBC fine powder)
750 g of defatted bran obtained from rice bran and 250 g of a liquid phenol resin (resole) were mixed and kneaded while heating to 50 ° C to 60 ° C. A homogeneous mixture with plasticity was obtained.
The mixture is baked in a nitrogen atmosphere at 900 ° C. for 100 minutes using a rotary kiln, and the resulting carbonized fired product is further pulverized using a pulverizer and then passed through a 150-mesh sieve to have an average particle size of 140 to 160 μm. RBC fine powder was obtained.
(Preparation of RBC fine powder and synthetic resin mixture)
500 g of the obtained RBC fine powder and 500 g of nylon 66 powder were mixed and kneaded while heating to 240 ° C. to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of RBC fine powder was 50% by mass.
(Creation of specimen)
A resin composition obtained by melt-mixing RBC fine powder and nylon 66 was injection molded to prepare a test piece.
[0012]
Example 2
Using the same method as in Example 1, RBC fine powder having an average particle size of 140 to 160 μm was obtained.
(Preparation of RBC fine powder and synthetic resin mixture)
700 g of the obtained RBC fine powder and 300 g of nylon 66 powder were mixed and kneaded while heating to 240 ° C. to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of RBC fine powder was 70% by mass.
(Creation of specimen)
A resin composition obtained by melt-mixing RBC fine powder and nylon 66 was injection molded to prepare a test piece.
[0013]
Example 3
(Manufacture of RBC fine powder)
750 g of defatted bran obtained from rice bran and 250 g of a liquid phenol resin (resole) were mixed and kneaded while heating to 50 ° C to 60 ° C. A homogeneous mixture with plasticity was obtained.
The mixture is baked for 100 minutes at 1000 ° C. in a nitrogen atmosphere using a rotary kiln, and the resulting carbonized fired product is further pulverized using a pulverizer and then passed through a 400 mesh sieve, and the average particle size is 40-50 μm. RBC fine powder was obtained.
(Preparation of RBC fine powder and synthetic resin mixture)
700 g of the obtained RBC fine powder and 300 g of nylon 66 powder were mixed and kneaded while heating to 240 ° C. to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of RBC fine powder was 70% by mass.
(Creation of specimen)
A resin composition obtained by melt-mixing RBC fine powder and nylon 66 was injection molded to prepare a test piece.
[0014]
Example 4 (Production of CRBC fine powder)
750 g of defatted bran obtained from rice bran and 250 g of a liquid phenol resin (resole) were mixed and kneaded while heating to 50 ° C to 60 ° C. A homogeneous mixture with plasticity was obtained.
The mixture was baked at 900 ° C. for 60 minutes in a nitrogen atmosphere using a rotary kiln. The obtained carbonized fired product was pulverized using a pulverizer and then passed through a 200 mesh sieve to obtain RBC fine powder having an average particle size of 100 to 120 μm.
750 g of the obtained RBC fine powder and 500 g of a solid phenol resin (resole) were mixed and kneaded while heating to 100 ° C. to 150 ° C. A homogeneous mixture with plasticity was obtained.
Subsequently, the plastic was pressure-molded into a spherical shape having a diameter of about 1 cm at a pressure of 22 MPa. The mold temperature was 150 ° C.
The molded body was taken out from the mold, heated up to 500 ° C. at a heating rate of 1 ° C./min in a nitrogen atmosphere, held at 500 ° C. for 60 minutes, and sintered at 900 ° C. for about 120 minutes.
Next, the temperature was lowered to 500 ° C. at a cooling rate of 2 to 3 ° C./min, and when it became 500 ° C. or less, it was naturally cooled.
The obtained CRBC molded product was pulverized using a pulverizer and then passed through a 500 mesh sieve to obtain CRBC fine powder having an average particle size of 20 to 30 μm.
(Making CRBC fine powder and synthetic resin mixture)
500 g of the obtained CRBC fine powder and 500 g of nylon 66 powder were mixed and kneaded while heating to 240 ° C. to 290 ° C. A homogeneous mixture with plasticity was obtained. The content of the CRBC fine powder was 50% by mass.
(Creation of specimen)
A resin composition obtained by melt-mixing CRBC fine powder and nylon 66 was injection molded to prepare a test piece.
[0015]
Examples 5 to 9 and Comparative Example 1
Test pieces were prepared under the same conditions as shown in Table 1 using the same RBC or CRBC fine powder as in Examples 1 to 3.
Further, a comparative test was performed using a commercially available PPS resin for submersible pumps (Idemitsu Petrochemical Co., Ltd.).
[Table 1]
[0016]
Table 2 summarizes the characteristics of the synthetic resin compositions for sliding in water obtained in Examples 1-9.
[Table 2]
[0017]
The friction characteristics in water of the synthetic resin compositions for sliding in water obtained in Examples 1 to 9 are summarized in Table 3.
[Table 3]
[0018]
[Effect of the present invention]
As is clear from the results in Table 3, the synthetic resin composition for sliding under water comprising the fine powder of RBC or CRBC of the present invention and a synthetic resin is remarkably excellent in friction characteristics in water and used in a liquid. as a bearing for dividing the pump, it is promising as a material constituting the bearing touching directly the liquid such as a sleeve bearing structure for use in a liquid without shields.
Claims (4)
Priority Applications (13)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002062406A JP4031266B2 (en) | 2002-03-07 | 2002-03-07 | Underwater sliding resin composition containing fine powder of RBC or CRBC |
US10/376,419 US20030179963A1 (en) | 2002-03-01 | 2003-02-28 | Low friction sleeve bearing |
US10/377,851 US7140778B2 (en) | 2002-03-01 | 2003-02-28 | Synthetic resin composites and bearings formed therefrom and method |
US10/377,964 US20030220421A1 (en) | 2002-03-01 | 2003-02-28 | Low noise synthetic resin composition and method |
US10/376,580 US6787075B2 (en) | 2002-03-01 | 2003-02-28 | Method of making synthetic resin composition with lubricative underwater properties containing RBC or CRBC fine powder |
US10/377,849 US7144932B2 (en) | 2002-03-01 | 2003-02-28 | Low-friction, high-dispersion synthetic resin composition containing fine particles of RB ceramic or CRB ceramic and a method for its preparation |
CN03107515.0A CN1453310A (en) | 2002-03-01 | 2003-03-03 | Low friction, high-dispersion synthetic resin composition containing RB ceramic or CRB ceramic microparticles and producing process thereof |
EP03075651A EP1528081A2 (en) | 2002-03-07 | 2003-03-03 | Synthetic resin composites and bearings formed therefrom and method |
EP03075621A EP1344791A1 (en) | 2002-03-01 | 2003-03-03 | Low noise synthetic resin composition and method |
EP03251265A EP1347009A1 (en) | 2002-03-01 | 2003-03-03 | A low friction sleeve bearing |
CN03120680.8A CN1451690A (en) | 2002-03-01 | 2003-03-03 | Low noise synthetic resin composition and process for preparing same |
CN03120682.4A CN1237118C (en) | 2002-03-01 | 2003-03-03 | Synthetic resin compound material, bearing therefrom and preparing method |
US10/931,707 US20050032939A1 (en) | 2002-03-01 | 2004-08-28 | Synthetic resin composition with lubricative underwater properties containing RBC or CRBC fine powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002062406A JP4031266B2 (en) | 2002-03-07 | 2002-03-07 | Underwater sliding resin composition containing fine powder of RBC or CRBC |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2003261778A JP2003261778A (en) | 2003-09-19 |
JP2003261778A5 JP2003261778A5 (en) | 2005-09-02 |
JP4031266B2 true JP4031266B2 (en) | 2008-01-09 |
Family
ID=29196199
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002062406A Expired - Fee Related JP4031266B2 (en) | 2002-03-01 | 2002-03-07 | Underwater sliding resin composition containing fine powder of RBC or CRBC |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4031266B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5885128B2 (en) * | 2012-07-11 | 2016-03-15 | 日立金属株式会社 | Elastic composition and molded article using the same |
-
2002
- 2002-03-07 JP JP2002062406A patent/JP4031266B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003261778A (en) | 2003-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6787075B2 (en) | Method of making synthetic resin composition with lubricative underwater properties containing RBC or CRBC fine powder | |
CN104862512B (en) | Improve graphene and the method for Copper substrate adhesion in copper-base graphite alkene composite | |
US3342667A (en) | Dry fluorocarbon bearing material | |
JP5514558B2 (en) | Ceramic elements containing inclusions | |
JP2020006441A (en) | Manufacturing method for graphene metal composite material | |
FR2484998A1 (en) | COMPOSITE SINTERED CERAMIC ARTICLE AND PROCESS FOR PRODUCING THE SAME | |
JP4044330B2 (en) | Synthetic resin foam molding in which fine powder of RBC or CRBC is dispersed, its production method and its use | |
JP2002187773A5 (en) | ||
JP4031266B2 (en) | Underwater sliding resin composition containing fine powder of RBC or CRBC | |
JP7292941B2 (en) | Aluminum nitride composite filler | |
JP3636516B2 (en) | Synthetic resin composition and synthetic resin molding | |
JP2002187774A5 (en) | ||
KR20040027447A (en) | Porous carbon material and porous carbon material product obtained by using the same | |
JP2002216788A (en) | Method of producing carbonaceous molding | |
JP2010110159A (en) | Slider of ultrasonic motor and ultrasonic motor | |
JP5041312B2 (en) | Carbon material manufacturing method | |
JP2004003611A (en) | Sleeve bearing for underwater and its application | |
JP2009057261A (en) | Method for producing carbon molding material | |
WO2006025555A1 (en) | Electrically conductive composites with resin and vgcf, production process, and use thereof | |
JP4973917B2 (en) | Carbon material manufacturing method | |
JP2006083297A (en) | Molded product of fluororesin and method for producing the same | |
KR100435006B1 (en) | Method for Manufacturing Homogeneous Preform of Reaction-Bonded Silicon Carbide Using the Powders of Multimodal Particle Size Distribution | |
JP2005190846A (en) | Conductive molding and reduction method of its resistance value | |
KR20240103701A (en) | Manufacturing method of ptc heating element and ptc heating element manufactured thereby | |
JP2009249195A (en) | Method for producing carbon molded product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050302 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050302 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070606 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071003 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071018 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |