[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102352203B1 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
KR102352203B1
KR102352203B1 KR1020150063764A KR20150063764A KR102352203B1 KR 102352203 B1 KR102352203 B1 KR 102352203B1 KR 1020150063764 A KR1020150063764 A KR 1020150063764A KR 20150063764 A KR20150063764 A KR 20150063764A KR 102352203 B1 KR102352203 B1 KR 102352203B1
Authority
KR
South Korea
Prior art keywords
secondary battery
lithium secondary
surface portion
concentration
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020150063764A
Other languages
Korean (ko)
Other versions
KR20150138812A (en
Inventor
황덕철
임진섭
한국현
Original Assignee
에스케이온 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이온 주식회사 filed Critical 에스케이온 주식회사
Priority to US14/728,680 priority Critical patent/US10217991B2/en
Priority to CN201510296035.9A priority patent/CN105322220B/en
Publication of KR20150138812A publication Critical patent/KR20150138812A/en
Priority to KR1020220004101A priority patent/KR20220009482A/en
Application granted granted Critical
Publication of KR102352203B1 publication Critical patent/KR102352203B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Materials Engineering (AREA)

Abstract

본 발명은 양극, 음극 및 비수 전해액을 포함하는 리튬 이차 전지에 관한 것으로서, 보다 상세하게는, 상기 양극은 금속 중 적어도 1종이 중심부에서 표면부까지 연속적인 농도 경사를 갖는 리튬-금속 산화물을 포함하는 양극 활물질을 포함하며, 상기 음극은 d002가 3.356 내지 3.365Å인 흑연을 포함하는 음극 활물질을 포함함으로써, 고온 저장 특성 및 수명 특성이 개선된 리튬 이차 전지에 관한 것이다.The present invention relates to a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, and more particularly, the positive electrode includes a lithium-metal oxide in which at least one of the metals has a continuous concentration gradient from the center to the surface. It includes a positive electrode active material, wherein the negative electrode includes a negative electrode active material including graphite having d002 of 3.356 to 3.365 Å, and thus relates to a lithium secondary battery having improved high temperature storage characteristics and lifespan characteristics.

Description

리튬 이차 전지{LITHIUM SECONDARY BATTERY}Lithium secondary battery {LITHIUM SECONDARY BATTERY}

본 발명은 리튬 이차전지에 관한 것이며, 보다 상세하게는 고온 저장 특성 및 수명 특성이 우수한 리튬 이차 전지에 관한 것이다.The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery having excellent high-temperature storage characteristics and lifespan characteristics.

전자, 통신, 컴퓨터 산업의 급속한 발전에 따라, 캠코더, 휴대폰, 노트북PC 등과 같은 휴대용 전자통신 기기들이 눈부신 발전을 하고 있다. 이에 따라, 이들을 구동할 수 있는 동력원으로서 리튬 이차 전지의 수요가 나날이 증가하고 있다. 특히 친환경 동력원으로서 전기자동차, 무정전 전원장치, 전동공구 및 인공위성 등의 응용과 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다.BACKGROUND With the rapid development of electronics, communication, and computer industries, portable electronic communication devices, such as camcorders, mobile phones, and notebook PCs, are admirably developing. Accordingly, the demand for lithium secondary batteries as a power source capable of driving them is increasing day by day. In particular, as an eco-friendly power source, R&D is being actively carried out in Japan, Europe, and the United States as well as in Korea in relation to the application of electric vehicles, uninterruptible power supplies, power tools, and satellites.

현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 탄소재 등의 음극, 리튬 함유 산화물 등으로 된 양극 및 혼합 유기용매에 리튬염이 적당량 용해된 비수 전해액으로 구성되어 있다.Among the currently applied secondary batteries, the lithium secondary battery developed in the early 1990s contains an anode made of a carbon material capable of occluding and releasing lithium ions, a cathode made of lithium-containing oxide, etc., and lithium salt dissolved in an appropriate amount in a mixed organic solvent. It is composed of a non-aqueous electrolyte.

그런데, 리튬 이차전지의 응용 범위가 확대되면서 고온 이나 저온 환경 등 보다 가혹한 환경에서도 리튬 이차전지를 사용해야 하는 경우가 늘어나고 있다. However, as the application range of lithium secondary batteries has been expanded, the need to use lithium secondary batteries in harsher environments such as high temperature or low temperature environments is increasing.

하지만, 리튬 이차전지의 양극 활물질로서 사용되는 리튬 전이금속 산화물 또는 복합 산화물은 만충전 상태에서 고온 보관 시에 양극에서 금속 성분이 이탈되어 열적으로 불안정한 상태에 놓이게 되는 문제점이 있다.However, lithium transition metal oxide or composite oxide used as a positive electrode active material of a lithium secondary battery has a problem in that the metal component is separated from the positive electrode when stored at a high temperature in a fully charged state, and thus is placed in a thermally unstable state.

이러한 문제를 해결하기 위해, 한국공개특허 제2006-0134631호는 코어부와 쉘부가 서로 다른 리튬 전이금속 산화물로 이루어지는 코어-쉘 구조의 양극 활물질을 개시한 바 있으나, 여전히 수명 특성의 향상 정도가 미흡하다.In order to solve this problem, Korean Patent Application Laid-Open No. 2006-0134631 discloses a cathode active material having a core-shell structure in which a core part and a shell part are made of different lithium transition metal oxides, but the improvement in lifespan characteristics is still insufficient. do.

특허문헌 1: 한국공개특허 제2006-0134631호Patent Document 1: Korean Patent Publication No. 2006-0134631

본 발명은 고온 저장 특성 및 수명 특성이 우수한 리튬 이차 전지를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a lithium secondary battery having excellent high-temperature storage characteristics and lifespan characteristics.

1. 양극, 음극 및 비수 전해액을 포함하며, 상기 양극은 금속 중 적어도 1종이 중심부에서 표면부까지 연속적인 농도 경사를 갖는 리튬-금속 산화물을 포함하는 양극 활물질을 포함하고, 상기 음극은 결정면간 간격 d002가 3.356 내지 3.365Å인 흑연을 포함하는 음극 활물질을 포함하는, 리튬 이차 전지.1. A positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode includes a positive active material including lithium-metal oxide, wherein at least one of the metals has a continuous concentration gradient from the center to the surface, and the negative electrode has an interplanar spacing d002 is 3.356 to 3.365 Å, including a negative active material comprising graphite, a lithium secondary battery.

2. 항목 1에 있어서, 상기 리튬-금속 산화물을 형성하는 금속 중 다른 1종은 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.2. The lithium secondary battery according to item 1, wherein the other one of the metals forming the lithium-metal oxide has a constant concentration from the center to the surface.

3. 항목 1에 있어서, 상기 리튬-금속 산화물은 중심부에서 표면부까지 농도가 증가하는 농도 경사 구간을 갖는 제1 금속과 중심부에서 표면부까지 농도가 감소하는 농도 경사 구간을 갖는 제2 금속을 포함하는, 리튬 이차 전지.3. The method according to item 1, wherein the lithium-metal oxide comprises a first metal having a concentration gradient range in which the concentration increases from the center to the surface portion, and a second metal having a concentration gradient range in which the concentration decreases from the center to the surface portion. which is a lithium secondary battery.

4. 항목 1에 있어서, 상기 리튬-금속 산화물은 하기 화학식 1로 표시되며, 하기 화학식 1에서 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부까지 연속적인 농도 경사를 갖는, 리튬 이차 전지:4. The method of item 1, wherein the lithium-metal oxide is represented by the following formula (1), M1 in the following formula (1), At least one of M2 and M3 has a continuous concentration gradient from the central portion to the surface portion, a lithium secondary battery:

[화학식 1][Formula 1]

LixM1aM2bM3cOy Li x M1 a M2 b M3 c O y

(식 중, M1, M2 및 M3은 Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되며, (wherein, M1, M2 and M3 are selected from the group consisting of Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga and B becomes,

0<x≤1.1, 2≤y≤2.02, 0≤a≤1, 0≤b≤1, 0≤c≤1, 0<a+b+c≤1 임).0<x≤1.1, 2≤y≤2.02, 0≤a≤1, 0≤b≤1, 0≤c≤1, 0<a+b+c≤1).

5. 항목 4에 있어서, 상기 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부까지 농도가 증가하는 농도 경사 구간을 가지며, 나머지는 중심부에서 표면부까지 농도가 감소하는 농도 경사 구간을 갖는, 리튬 이차 전지.5. The method according to item 4, wherein M1, At least one of M2 and M3 has a concentration gradient section in which the concentration increases from the center portion to the surface portion, and the remainder has a concentration gradient section in which the concentration decreases from the center portion to the surface portion.

6. 항목 4에 있어서, 상기 M1, M2 및 M3 중 어느 하나는 중심부에서 표면부까지 농도가 증가하는 농도 경사 구간을 가지며, 다른 하나는 중심부에서 표면부까지 농도가 감소하는 농도 경사 구간을 가지며, 나머지 하나는 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.6. The method according to item 4, wherein M1, One of M2 and M3 has a concentration gradient section in which the concentration increases from the center to the surface portion, the other has a concentration gradient section in which the concentration decreases from the center portion to the surface portion, and the other one has a constant concentration from the center to the surface portion. having, a lithium secondary battery.

7. 항목 4에 있어서, 상기 M1, M2 및 M3은 각각 Ni, Co 및 Mn인, 리튬 이차 전지.7. Item 4, wherein said M1, M2 and M3 are Ni, Co and Mn, respectively, a lithium secondary battery.

8. 항목 4 내지 7 중 어느 한 항목에 있어서, 상기 M1이 Ni이고, 0.6≤a≤0.95 및 0.05≤b+c≤0.4인, 리튬 이차 전지.8. The lithium secondary battery according to any one of items 4 to 7, wherein M1 is Ni, and 0.6≤a≤0.95 and 0.05≤b+c≤0.4.

9. 항목 4 내지 7 중 어느 한 항목에 있어서, 상기 M1이 Ni이고, 0.7≤a≤0.9 및 0.1≤b+c≤0.3인, 리튬 이차 전지.9. The lithium secondary battery according to any one of items 4 to 7, wherein M1 is Ni, and 0.7≤a≤0.9 and 0.1≤b+c≤0.3.

10. 항목 1에 있어서, 상기 리튬-금속 산화물의 1차 입자는 막대형(rod-type) 형상인, 리튬 이차 전지.10. The lithium secondary battery according to item 1, wherein the primary particles of the lithium-metal oxide have a rod-type shape.

11. 항목 1에 있어서, 상기 흑연은 결정면간 간격 d002가 3.361 내지 3.365Å인, 리튬 이차 전지.11. The lithium secondary battery according to item 1, wherein the graphite has an interplanar spacing d002 of 3.361 to 3.365 Å.

12. 항목 1에 있어서, 상기 흑연은 d002가 3.356 내지 3.360Å인 제1 흑연 및 d002가 3.361 내지 3.365Å인 제2 흑연의 혼합물인, 리튬 이차 전지.12. The lithium secondary battery according to item 1, wherein the graphite is a mixture of first graphite having d002 of 3.356 to 3.360 Å and second graphite having d002 of 3.361 to 3.365 Å.

13. 항목 12에 있어서, 상기 제1 흑연과 상기 제2 흑연의 혼합 중량비는 0:100 내지 90:10인, 리튬 이차 전지.13. The lithium secondary battery according to item 12, wherein a mixing weight ratio of the first graphite and the second graphite is 0:100 to 90:10.

14. 항목 12에 있어서, 상기 제1 흑연과 상기 제2 흑연의 혼합 중량비는 0:100 내지 50:50인, 리튬 이차 전지.14. The lithium secondary battery according to item 12, wherein a mixing weight ratio of the first graphite and the second graphite is 0:100 to 50:50.

본 발명의 리튬 이차 전지는 연속적인 농도 경사를 갖는 금속을 포함하는 양극 활물질과 특정 구조의 흑연을 포함하는 음극 활물질을 조합함으로써 고온 저장 특성과 수명 특성이 모두 현저하게 개선된 효과를 나타낼 수 있다.In the lithium secondary battery of the present invention, both high-temperature storage characteristics and lifespan characteristics can be significantly improved by combining a positive electrode active material containing a metal having a continuous concentration gradient and a negative electrode active material containing graphite having a specific structure.

도 1은 실시예에 따른 리튬-금속 산화물의 농도 측정 위치를 개략적으로 도시한 도면이다.
도 2는 실시예 1의 리튬-금속 산화물의 TEM 사진이다.
도 3은 비교예 1의 리튬-금속 산화물의 TEM 사진이다.
1 is a diagram schematically illustrating a position for measuring a concentration of a lithium-metal oxide according to an embodiment.
2 is a TEM photograph of the lithium-metal oxide of Example 1.
3 is a TEM photograph of the lithium-metal oxide of Comparative Example 1.

본 발명은 양극, 음극 및 비수 전해액을 포함하는 리튬 이차 전지에 있어서, 상기 양극은 금속 중 적어도 1종이 중심부에서 표면부까지 연속적인 농도 경사를 갖는 리튬-금속 산화물을 포함하는 양극 활물질을 포함하며, 상기 음극은 d002가 3.356 내지 3.365Å인 흑연을 포함하는 음극 활물질을 포함함으로써, 고온 저장 특성 및 수명 특성이 개선된 리튬 이차 전지에 관한 것이다.The present invention relates to a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the positive electrode includes a positive active material comprising a lithium-metal oxide in which at least one of the metals has a continuous concentration gradient from the center to the surface portion, The negative electrode relates to a lithium secondary battery having improved high temperature storage characteristics and lifespan characteristics by including a negative active material including graphite having d002 of 3.356 to 3.365 Å.

이하, 본 발명을 보다 상세하게 설명하도록 한다.Hereinafter, the present invention will be described in more detail.

양극 활물질cathode active material

본 발명에 따른 양극 활물질은 금속 중 적어도 1종이 중심부에서 표면부까지 연속적인 농도 경사를 갖는 리튬-금속 산화물을 포함한다. 이러한 양극 활물질은 농도 변화가 없는 양극 활물질에 비하여 수명 특성이 탁월하다.The positive active material according to the present invention includes a lithium-metal oxide in which at least one of the metals has a continuous concentration gradient from the central portion to the surface portion. Such a positive active material has excellent lifespan characteristics compared to a positive active material having no change in concentration.

본 발명에서 리튬-금속 산화물 중 금속이 중심부에서 표면부까지 연속적인 농도 경사를 갖는다는 것은, 리튬을 제외한 금속이 리튬-금속 산화물 입자의 중심부에서 표면부까지 일정한 경향으로 변화하는 농도 분포를 갖는 것을 의미한다. 일정한 경향이란 전체적인 농도 변화 추이가 감소 또는 증가되는 것을 의미하며, 일부 지점에서 그러한 추이와 반대되는 값을 갖는 것을 배제하는 것은 아니다. In the present invention, that the metal among lithium-metal oxides has a continuous concentration gradient from the center to the surface means that metals other than lithium have a concentration distribution that changes with a constant tendency from the center to the surface of the lithium-metal oxide particles. it means. A constant trend means that the overall concentration change trend decreases or increases, and does not exclude having a value opposite to the trend at some points.

본 발명에 있어서 입자의 중심부는 활물질 입자의 정중앙으로부터 반경 0.2㎛ 이내를 의미하며, 입자의 표면부는 입자의 최외각으로부터 0.2㎛ 이내를 의미한다.In the present invention, the central portion of the particle means within a radius of 0.2 μm from the center of the active material particle, and the surface portion of the particle means within 0.2 μm from the outermost part of the particle.

본 발명에 따른 양극 활물질은 농도 경사를 갖는 금속을 적어도 1종 포함한다. 따라서, 일 실시예로서, 중심부에서 표면부까지 농도가 증가하는 농도 경사 구간을 갖는 제1 금속과 중심부에서 표면부까지 농도가 감소하는 농도 경사 구간을 갖는 제2 금속을 포함할 수 있다. 상기 제1 금속 또는 제2 금속은 서로 독립적으로 1종 이상일 수 있다.The positive electrode active material according to the present invention includes at least one metal having a concentration gradient. Accordingly, as an embodiment, the first metal having a concentration gradient section in which the concentration increases from the center to the surface portion and the second metal having a concentration gradient section in which the concentration decreases from the center portion to the surface portion may be included. The first metal or the second metal may be independently of one another.

본 발명의 다른 실시예로서, 본 발명에 따른 양극 활물질은 중심부에서 표면부까지 일정한 농도를 갖는 금속을 포함할 수도 있다.As another embodiment of the present invention, the positive electrode active material according to the present invention may include a metal having a constant concentration from the center to the surface portion.

본 발명에 따른 양극 활물질의 구체적인 예로는 하기 화학식 1로 표시되는 리튬-금속 산화물을 들 수 있으며, 하기 화학식 1에서 M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부까지 연속적인 농도 경사를 갖는다:Specific examples of the positive electrode active material according to the present invention include a lithium-metal oxide represented by the following formula (1), M1 in the following formula (1), At least one of M2 and M3 has a continuous concentration gradient from the center to the surface:

[화학식 1][Formula 1]

LixM1aM2bM3cOy Li x M1 a M2 b M3 c O y

(식 중, M1, M2 및 M3은 Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga 및 B로 이루어진 군에서 선택되며, (wherein, M1, M2 and M3 are selected from the group consisting of Ni, Co, Mn, Na, Mg, Ca, Ti, V, Cr, Cu, Zn, Ge, Sr, Ag, Ba, Zr, Nb, Mo, Al, Ga and B becomes,

0<x≤1.1, 2≤y≤2.02, 0≤a≤1, 0≤b≤1, 0≤c≤1, 0<a+b+c≤1 임).0<x≤1.1, 2≤y≤2.02, 0≤a≤1, 0≤b≤1, 0≤c≤1, 0<a+b+c≤1).

본 발명의 일 실시예에 있어서, M1, M2 및 M3 중 적어도 하나는 중심부에서 표면부까지 농도가 증가하는 농도 경사 구간을 가지며, 나머지는 중심부에서 표면부까지 농도가 감소하는 농도 경사 구간을 가질 수 있다.In one embodiment of the present invention, M1, At least one of M2 and M3 may have a concentration gradient section in which the concentration increases from the central portion to the surface portion, and the rest may have a concentration gradient section in which the concentration decreases from the center portion to the surface portion.

본 발명의 다른 일 실시예에 있어서, M1, M2 및 M3 중 어느 하나는 중심부에서 표면부까지 농도가 증가하는 농도 경사 구간을 가지며, 다른 하나는 중심부에서 표면부까지 농도가 감소하는 농도 경사 구간을 가지며, 나머지 하나는 중심부에서 표면부까지 일정한 농도를 가질 수 있다.In another embodiment of the present invention, M1, One of M2 and M3 has a concentration gradient section in which the concentration increases from the center to the surface portion, the other has a concentration gradient section in which the concentration decreases from the center portion to the surface portion, and the other one has a constant concentration from the center to the surface portion. can have

본 발명의 구체적인 예시로서, M1, M2 및 M3은 각각 Ni, Co 및 Mn일 수 있다.As a specific example of the present invention, M1, M2 and M3 may be Ni, Co and Mn, respectively.

본 발명에 따른 리튬-금속 산화물은 상대적으로 니켈(Ni)의 함량이 많을 수 있다. 니켈을 사용할 경우 전지 용량 개선에 도움이 되는데, 종래의 양극 활물질 구조에서는 니켈의 함량이 많을 경우 수명이 전하되는 문제가 있으나, 본 발명에 따른 양극 활물질의 경우 니켈의 함량이 많아도 수명 특성이 저하되지 않는다. 따라서, 본 발명의 양극 활물질은 높은 용량을 유지하면서도 우수한 수명 특성을 나타낼 수 있다.The lithium-metal oxide according to the present invention may have a relatively high content of nickel (Ni). When nickel is used, it helps to improve battery capacity. In the conventional positive electrode active material structure, when the content of nickel is large, there is a problem in that the life is charged. does not Accordingly, the positive active material of the present invention may exhibit excellent lifespan characteristics while maintaining high capacity.

예를 들어, 본 발명에 따른 리튬-금속 산화물에 있어서, 니켈의 몰 비가 0.6 내지 0.95, 바람직하게는 0.7 내지 0.9 일 수 있다. 즉, 상기 화학식 1에서 M1이 Ni인 경우, 0.6≤a≤0.95 및 0.05≤b+c≤0.4일 수 있으며, 바람직하게는, 0.7≤a≤0.9 및 0.1≤b+c≤0.3일 수 있다.For example, in the lithium-metal oxide according to the present invention, the molar ratio of nickel may be 0.6 to 0.95, preferably 0.7 to 0.9. That is, when M1 in Formula 1 is Ni, 0.6≤a≤0.95 and 0.05≤b+c≤0.4, preferably, 0.7≤a≤0.9 and 0.1≤b+c≤0.3.

본 발명에 따른 리튬-금속 산화물은 그 입자 형상을 특별히 한정하지는 않으나 바람직하게는 1차 입자가 막대형(rod-type) 형상을 가질 수 있다. The lithium-metal oxide according to the present invention does not specifically limit the particle shape, but preferably, the primary particle may have a rod-type shape.

본 발명에 따른 리튬-금속 산화물은 그 입자 크기를 특별히 한정하지는 않으며, 예를 들면 3 내지 20㎛일 수 있다.The particle size of the lithium-metal oxide according to the present invention is not particularly limited, and may be, for example, 3 to 20 μm.

본 발명에 따른 양극 활물질은 전술한 리튬-금속 산화물에 코팅층을 더 구비할 수도 있다. 코팅층은 금속 또는 금속 산화물을 포함하여 이루어질 수 있는데, 예를 들면, Al, Ti, Ba, Zr, Si, B, Mg, P 및 이들의 합금을 포함하거나, 상기 금속의 산화물을 포함할 수 있다.The positive electrode active material according to the present invention may further include a coating layer on the above-described lithium-metal oxide. The coating layer may include a metal or a metal oxide. For example, it may include Al, Ti, Ba, Zr, Si, B, Mg, P and alloys thereof, or an oxide of the metal.

필요에 따라, 본 발명에 따른 양극 활물질은 전술한 리튬-금속 산화물이 금속 또는 금속 산화물로 도핑된 것일 수도 있다. 도핑 가능한 금속 또는 금속 산화물은 Al, Ti, Ba, Zr, Si, B, Mg, P 및 이들의 합금이거나, 상기 금속의 산화물일 수 있다.If necessary, the cathode active material according to the present invention may be doped with the above-described lithium-metal oxide with a metal or a metal oxide. The dopable metal or metal oxide may be Al, Ti, Ba, Zr, Si, B, Mg, P and alloys thereof, or an oxide of the metal.

본 발명에 따른 리튬-금속 산화물은 공침법을 사용하여 제조될 수 있다. The lithium-metal oxide according to the present invention can be prepared using a co-precipitation method.

이하에서는, 본 발명에 따른 양극 활물질의 제조 방법의 일 실시예를 설명하도록 한다.Hereinafter, an embodiment of a method for manufacturing a cathode active material according to the present invention will be described.

먼저, 농도가 서로 다른 금속 전구체 용액을 제조한다. 금속 전구체 용액은 양극 활물질에 포함될 적어도 1종의 금속의 전구체를 포함하는 용액이다. 금속 전구체는 통상적으로 금속의 할로겐화물, 수산화물, 산(acid)염 등을 예로 들 수 있다.First, metal precursor solutions having different concentrations are prepared. The metal precursor solution is a solution including a precursor of at least one metal to be included in the positive electrode active material. Metal precursors are typically halides, hydroxides, acid salts of metals, and the like.

제조되는 금속 전구체 용액은, 제조하려는 양극 활물질의 중심부의 조성의 농도를 갖는 전구체 용액 및 표면부의 조성에 해당하는 농도를 갖는 전구체 용액의 2종의 전구체 용액을 각각 얻는다. 예를 들어, 리튬 외에 니켈, 망간, 코발트를 포함하는 금속 산화물 양극 활물질을 제조하는 경우에는, 양극 활물질의 중심부 조성에 해당하는 니켈, 망간 및 코발트의 농도를 갖는 전구체 용액과 양극 활물질의 표면부 조성에 해당하는 니켈, 망간 및 코발트의 농도를 갖는 전구체 용액을 제조한다.The metal precursor solution to be prepared obtains two types of precursor solutions, a precursor solution having a concentration of the composition of the central portion of the positive electrode active material to be prepared, and a precursor solution having a concentration corresponding to the composition of the surface portion, respectively. For example, in the case of manufacturing a metal oxide positive active material containing nickel, manganese, and cobalt in addition to lithium, a precursor solution having concentrations of nickel, manganese, and cobalt corresponding to the central composition of the positive active material and the surface portion composition of the positive electrode active material Prepare a precursor solution having concentrations of nickel, manganese and cobalt corresponding to .

다음으로, 2종의 금속 전구체 용액을 혼합하면서 침전물을 형성한다. 상기 혼합 시, 2종의 금속 전구체 용액의 혼합비는 원하는 활물질 내의 농도 경사에 대응하도록 연속적으로 변화시킨다. 따라서, 침전물은 금속의 농도가 활물질 내의 농도 경사를 갖는다. 침전은 상기 혼합 시 킬레이트 시약과 염기를 가하여 수행될 수 있다.Next, a precipitate is formed while mixing the two kinds of metal precursor solutions. Upon mixing, the mixing ratio of the two metal precursor solutions is continuously changed to correspond to the concentration gradient in the desired active material. Thus, the precipitate has a concentration gradient in the concentration of the metal in the active material. Precipitation may be performed by adding a chelating reagent and a base upon mixing.

제조된 침전물은 열처리한 후 리튬염과 혼합하고 다시 열처리하면, 본 발명에 따른 양극 활물질을 얻을 수 있다.After the prepared precipitate is heat-treated, mixed with lithium salt and heat-treated again, the positive electrode active material according to the present invention can be obtained.

음극 활물질negative active material

본 발명에 따른 음극 활물질은 결정면간 간격 d002가 3.356 내지 3.365Å인 흑연을 포함한다. 본 발명의 리튬 이차 전지는 상기 특정 d002 값을 갖는 흑연을 음극 활물질로 하여 전술한 본 발명의 양극 활물질과 함께 사용하는 경우 수명 특성이 현저하게 상승할 수 있다. 이러한 측면에서 결정면간 간격 d002가 3.361 내지 3.365Å인 것이 보다 바람직하다. 결정면간 간격 d002가 3.356Å 미만인 경우 수명 특성이 저하되며 3.365Å를 초과하는 경우 용량이 저하된다.The negative active material according to the present invention includes graphite having an interplanar spacing d002 of 3.356 to 3.365 Å. In the lithium secondary battery of the present invention, when graphite having the specific d002 value is used as an anode active material and used together with the cathode active material of the present invention, lifespan characteristics may be significantly increased. In this respect, it is more preferable that the interplanar spacing d002 is 3.361 to 3.365 Å. When the interplanar spacing d002 is less than 3.356 Å, the lifetime characteristic is deteriorated, and when it exceeds 3.365 Å, the capacity is decreased.

필요에 따라, 본 발명에 따른 흑연은 d002가 3.356 내지 3.360Å인 제1 흑연 및 d002가 3.361 내지 3.365Å인 제2 흑연의 혼합물로 사용될 수 있다. 이와 같은 혼합물로 사용할 경우 수명 특성의 개선 측면에서 보다 바람직하다. 이 때, 상기 제1 흑연과 상기 제2 흑연의 혼합 중량비는 0:100 내지 90:10일 수 있다. 제1 흑연과 제2 흑연을 혼합하는 경우에 수명 특성의 개선 측면에서는 제1 흑연과 상기 제2 흑연의 혼합 중량비는 0:100 내지 50:50인 것이 보다 바람직하다. 제2 흑연의 함량이 제1 흑연의 함량보다 많을수록 수명 특성의 개선 정도가 더욱 상승한다.If necessary, the graphite according to the present invention may be used as a mixture of first graphite having d002 of 3.356 to 3.360 Å and second graphite having d002 of 3.361 to 3.365 Å. When used as such a mixture, it is more preferable in terms of improvement of life characteristics. In this case, the mixing weight ratio of the first graphite and the second graphite may be 0:100 to 90:10. In the case of mixing the first graphite and the second graphite, it is more preferable that the mixing weight ratio of the first graphite and the second graphite is 0:100 to 50:50 from the viewpoint of improving the lifespan characteristics. As the content of the second graphite is greater than that of the first graphite, the degree of improvement in the lifespan characteristics is further increased.

본 발명에서 사용되는 흑연의 크기는 특별히 한정되지는 않으나, 그 평균 입경이 5 내지 30㎛일 수 있다.The size of the graphite used in the present invention is not particularly limited, but may have an average particle diameter of 5 to 30 μm.

이차 전지secondary battery

본 발명은 전술한 본 발명에 따른 양극 활물질 및 음극 활물질을 이용하여 제조되는 리튬 이차 전지를 제공한다.The present invention provides a lithium secondary battery manufactured using the positive electrode active material and the negative electrode active material according to the present invention described above.

본 발명에 따른 리튬 이차 전지는 양극, 음극, 및 비수 전해액을 포함하여 제조될 수 있다.The lithium secondary battery according to the present invention may be manufactured including a positive electrode, a negative electrode, and a non-aqueous electrolyte.

양극 및 음극은 각각 전술한 본 발명에 따른 양극 활물질 및 음극 활물질에 용매, 필요에 따라 바인더, 도전재, 분산재 등을 혼합 및 교반하여 합제를 제조한 후 이를 금속 재료의 집전체에 도포(코팅)하고 압축한 뒤 건조하여 양극 및 음극을 제조할 수 있다.The positive electrode and the negative electrode are prepared by mixing and stirring the positive electrode active material and the negative electrode active material according to the present invention with a solvent and, if necessary, a binder, a conductive material, a dispersing material, etc. Then, it can be compressed and dried to manufacture a positive electrode and a negative electrode.

바인더로는 당분야에서 사용되는 것이 특별한 제한 없이 사용될 수 있으며, 예를 들면, 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate) 등의 유기계 바인더, 또는 스티렌-부타디엔 러버(SBR) 등의 수계 바인더를 카르복시메틸 셀룰로오스(CMC)와 같은 증점제와 함께 사용할 수 있다. As a binder, those used in the art may be used without particular limitation, for example, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride, PVDF), An organic binder such as polyacrylonitrile and polymethylmethacrylate, or an aqueous binder such as styrene-butadiene rubber (SBR) may be used together with a thickener such as carboxymethyl cellulose (CMC).

도전재로는 통상적인 도전성 탄소재가 특별한 제한 없이 사용될 수 있다.As the conductive material, a conventional conductive carbon material may be used without particular limitation.

금속 재료의 집전체는 전도성이 높고 상기 양극 또는 음극 활물질의 합제가 용이하게 접착할 수 있는 금속으로서, 전지의 전압 범위에서 반응성이 없는 것이면 어느 것이라도 사용할 수 있다. 양극 집전체의 비제한적인 예로는 알루미늄, 니켈 또는 이들의 조합에 의하여 제조되는 호일 등이 있으며, 음극 집전체의 비제한적인 예로는 구리, 금, 니켈 또는 구리 합금 또는 이들의 조합에 의하여 제조되는 호일 등이 있다.The current collector made of a metal material has high conductivity and is a metal to which the positive or negative electrode active material mixture can easily adhere, and any metal that has no reactivity in the voltage range of the battery may be used. Non-limiting examples of the positive electrode current collector include a foil made of aluminum, nickel, or a combination thereof, and non-limiting examples of the negative electrode current collector include copper, gold, nickel, or a copper alloy or a combination thereof. foil, etc.

양극과 음극 사이에는 세퍼레이터가 개재되는데, 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 세퍼레이터를 전지에 적용하는 방법으로는 일반적인 방법인 권취(winding) 이외에도 세퍼레이터와 전극의 적층(lamination, stack) 및 접음(folding) 등이 가능하다. A separator is interposed between the positive electrode and the negative electrode. As the separator, a conventional porous polymer film conventionally used as a separator, such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/ A porous polymer film made of a polyolefin-based polymer such as a methacrylate copolymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high-melting glass fiber, polyethylene terephthalate fiber, etc. can be used, but is not limited thereto. As a method of applying the separator to a battery, in addition to winding, which is a general method, lamination, stacking, and folding of a separator and an electrode are possible.

비수 전해액은 전해질인 리튬염과 유기 용매를 포함하며, 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 유기 용매로는 대표적으로 프로필렌 카보네이트(propylene carbonate, PC), 에틸렌 카보네이트(ethylene carbonate, EC), 디에틸 카보네이트(diethyl carbonate, DEC), 디메틸 카보네이트(dimethyl carbonate, DMC), 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트, 디프로필 카보네이트, 디메틸설퍼옥사이드, 아세토니트릴, 디메톡시에탄, 디에톡시에탄, 비닐렌 카보네이트, 설포란, 감마-부티로락톤, 프로필렌 설파이트 및 테트라하이드로푸란으로 이루어진 군에서 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 사용될 수 있다.The non-aqueous electrolyte includes a lithium salt as an electrolyte and an organic solvent, and the lithium salt can be used without limitation those commonly used in electrolytes for lithium secondary batteries. Examples of the organic solvent include propylene carbonate (PC), ethylene carbonate (ethylene carbonate, EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), methylpropyl carbonate, dipropyl carbonate, dimethylsulfuroxide, acetonitrile, dimethoxy Any one selected from the group consisting of ethane, diethoxyethane, vinylene carbonate, sulfolane, gamma-butyrolactone, propylene sulfite, and tetrahydrofuran, or a mixture of two or more thereof may be used.

비수 전해액은 양극, 음극 및 양극과 음극 사이에 개재된 세퍼레이터로 이루어진 전극 구조체에 주입하여 리튬 이차전지로 제조된다. 본 발명의 리튬 이차 전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The non-aqueous electrolyte is injected into an electrode structure comprising a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode to prepare a lithium secondary battery. The external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch type, or a coin type.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 이들 실시예는 본 발명을 예시하는 것일 뿐 첨부된 특허청구범위를 제한하는 것이 아니며, 본 발명의 범주 및 기술사상 범위 내에서 실시예에 대한 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다. Hereinafter, preferred embodiments are presented to help the understanding of the present invention, but these examples are merely illustrative of the present invention and do not limit the appended claims, and are within the scope and spirit of the present invention. It is obvious to those skilled in the art that various changes and modifications are possible, and it is natural that such variations and modifications fall within the scope of the appended claims.

실시예Example 1 One

<양극><Anode>

양극활물질로 전체 조성은 LiNi0 . 8Co0 . 1Mn0 . 1O2이며, 중심부 조성 LiNi0.84Co0.11Mn0.05O2에서부터 표면 조성 LiNi0 . 78Co0 . 10Mn0 . 12O2까지 농도 경사를 갖는 리튬-금속 산화물(이하 CAM-10)을 사용하고, 도전재로 Denka Black, 바인더로 PVDF를 사용하고 92 : 5 : 3의 각각의 질량비 조성으로 양극 합제를 제조한 후, 이를 알루미늄 기재 위에 코팅, 건조, 프레스를 실시하여 양극을 제조하였다.As a cathode active material, the total composition is LiNi 0 . 8 Co 0 . 1 Mn 0 . 1 O 2 , and the surface composition LiNi 0 from the central composition LiNi 0.84 Co 0.11 Mn 0.05 O 2 . 78 Co 0 . 10 Mn 0 . A positive electrode mixture was prepared using lithium-metal oxide (hereinafter CAM-10) having a concentration gradient up to 12 O 2 , Denka Black as a conductive material, PVDF as a binder, and each mass ratio composition of 92: 5: 3 Then, it was coated, dried, and pressed on an aluminum substrate to prepare a positive electrode.

참고로, 제조된 리튬-금속 산화물의 농도 경사는 하기 표 1과 같으며, 농도 측정 위치는 도 1에 도시된 바와 같다. 측정 위치는 입자의 중심에서 표면까지의 거리 5㎛인 리튬-금속 산화물 입자에 대해서 표면부터 5/7㎛ 간격으로 측정하였다.For reference, the concentration gradient of the prepared lithium-metal oxide is shown in Table 1 below, and the concentration measurement position is as shown in FIG. 1 . Measurement positions were measured at intervals of 5/7 μm from the surface for lithium-metal oxide particles having a distance of 5 μm from the center of the particle to the surface.

위치location NiNi MnMn CoCo 1One 77.9777.97 11.9611.96 10.0710.07 22 80.9880.98 9.299.29 9.739.73 33 82.6882.68 77 10.3210.32 44 82.682.6 7.47.4 1010 55 82.5582.55 7.077.07 10.3710.37 66 83.2483.24 5.95.9 10.8610.86 77 84.3384.33 4.844.84 10.8310.83

<음극><Cathode>

음극 활물질로 천연 흑연(d002 3.358Å) 93중량%, 도전재로 flake type 도전재인 KS6 5중량%, 바인더로 SBR 1중량% 및 증점제 CMC 1중량%를 포함하는 음극 합제를 구리 기재 위에 코팅, 건조 및 프레스를 실시하여 음극을 제조하였다.A negative electrode mixture comprising 93 wt% of natural graphite (d002 3.358Å) as an anode active material, 5 wt% of KS6, a flake type conductive material, as a conductive material, 1 wt% of SBR and 1 wt% of a thickener CMC as a binder is coated on a copper substrate and dried and press to prepare a negative electrode.

<전지><Battery>

양극 극판과 음극 극판을 각각 적당한 사이즈로 Notching하여 적층하고 양극 극판과 음극 극판사이에 세퍼레이터(폴리에틸렌, 두께 25㎛)를 개재하여 셀을 구성하고, 양극의 탭부분과 음극의 탭부분을 각각 용접을 하였다. 용접된 양극/세퍼레이터/음극의 조합체를 파우치안에 넣고 전해액 주액부면을 제외한 3면을 실링을 하였다. 이때 탭이 있는 부분은 실링 부위에 포함시킨다. 나머지 한 부분으로 전해액을 주액하고 남은 한 면을 실링하고 12시간이상 함침을 시켰다. 전해액은 EC/EMC/DEC (25/45/30; 부피비)의 혼합 용매로 1M LiPF6 용액을 제조한 후, 비닐렌 카보네이트(VC) 1wt%, 1,3-프로펜설톤(PRS) 0.5wt% 및 리튬 비스(옥살레이토)보레이트(LiBOB) 0.5wt%를 첨가한 것을 사용하였다.The positive and negative electrode plates are notched to the appropriate size and laminated, and a separator (polyethylene, thickness 25㎛) is interposed between the positive and negative electrode plates to form a cell, and the tab of the positive electrode and the tab portion of the negative electrode are welded, respectively. did The welded anode/separator/cathode combination was placed in a pouch and sealed on three sides except for the electrolyte injection side. In this case, the part with the tab is included in the sealing part. After injecting electrolyte into the remaining part, the remaining side was sealed and impregnated for more than 12 hours. The electrolyte solution was prepared by preparing a 1M LiPF 6 solution with a mixed solvent of EC/EMC/DEC (25/45/30; volume ratio), then vinylene carbonate (VC) 1wt%, 1,3-propensultone (PRS) 0.5wt % and lithium bis(oxalato)borate (LiBOB) of 0.5 wt% was used.

이후 Pre-charging을 0.25C에 해당하는 전류(2.5A)로 36분 동안 실시하였다. 1시간후에 Degasing을 하고 24시간이상 에이징을 실시한 후 화성충방전을 실시하였다(충전조건 CC-CV 0.2C 4.2V 0.05C CUT-OFF, 방전조건 CC 0.2C 2.5V CUT-OFF). 그 후 표준충방전을 실시하였다(충전조건 CC-CV 0.5C 4.2V 0.05C CUT-OFF,방전조건 CC 0.5C 2.5V CUT-OFF). Thereafter, pre-charging was performed for 36 minutes at a current (2.5A) corresponding to 0.25C. After 1 hour of degasing and aging for 24 hours or more, chemical charge and discharge were performed (charge condition CC-CV 0.2C 4.2V 0.05C CUT-OFF, discharge condition CC 0.2C 2.5V CUT-OFF). After that, standard charge/discharge was performed (charge condition CC-CV 0.5C 4.2V 0.05C CUT-OFF, discharge condition CC 0.5C 2.5V CUT-OFF).

실시예Example 2-7 2-7

음극활물질로 천연 흑연(d002 3.358Å)과 인조 흑연(d002 3.363Å)의 혼합물을 사용한 것을 제외하고는, 실시예 1과 동일하게 전지를 제조하였다. 흑연의 혼합비는 하기 표 2에 기재하였다.A battery was prepared in the same manner as in Example 1, except that a mixture of natural graphite (d002 3.358 Å) and artificial graphite (d002 3.363 Å) was used as the negative electrode active material. The mixing ratio of graphite is shown in Table 2 below.

비교예comparative example 1 One

양극활물질로 입자 전체로 균일한 조성을 갖는 LiNi0 .8Co0 .1Mn0 .1O2(이하 CAM-20)을 사용한 것을 제외하고는, 실시예 1과 동일하게 전지를 제조하였다.LiNi 0 .8 in the positive electrode active material having a uniform composition in the entire particles Co 0 .1 Mn 0 .1 O 2 ( hereinafter CAM-20) was prepared and is the battery in the same manner as in Example 1 except for using.

비교예comparative example 2-7 2-7

음극활물질로 천연 흑연(d002 3.358Å)과 인조 흑연(d002 3.363Å)의 혼합물을 사용한 것을 제외하고는, 비교예 1과 동일하게 전지를 제조하였다. 흑연의 혼합비는 하기 표 2에 기재하였다.A battery was prepared in the same manner as in Comparative Example 1, except that a mixture of natural graphite (d002 3.358 Å) and artificial graphite (d002 3.363 Å) was used as the negative electrode active material. The mixing ratio of graphite is shown in Table 2 below.

비교예comparative example 8-11 8-11

양극 활물질 및 음극활물질로 하기 표 3에 기재된 것을 사용한 것을 제외하고는, 비교예 1과 동일하게 전지를 제조하였다. A battery was prepared in the same manner as in Comparative Example 1, except that those shown in Table 3 were used as the positive electrode active material and the negative electrode active material.

실험예Experimental example 1 One

1. 상온 수명 특성1. Room temperature life characteristics

실시예 및 비교예에서 제조된 셀로 충전(CC-CV 2.0 C 4.2V 0.05C CUT-OFF) 및 방전(CC 2.0C 2.75V CUT-OFF)을 500회 반복한 후, 500회에서의 방전용량을 1회 방전용량 대비 %로 계산하여 상온 수명 특성을 측정하였다.After repeating charging (CC-CV 2.0 C 4.2V 0.05C CUT-OFF) and discharging (CC 2.0C 2.75V CUT-OFF) 500 times with the cells prepared in Examples and Comparative Examples, the discharge capacity at 500 times The room temperature life characteristics were measured by calculating as a percentage of the discharge capacity at one time.

그 결과를 하기 표 2에 기재하였다.The results are shown in Table 2 below.

2. 용량 회복률2. Capacity recovery rate

CC-CV 0.5 C 4.2V 0.05C CUT-OFF의 조건으로 충전된 실시예 및 비교예의 셀을 60℃ 오븐에 4주간 저장한 후에, CC 0.5C 2.75V CUT-OFF 조건으로 방전하고 CC-CV 0.5 C 4.2V 0.05C CUT-OFF 조건으로 충전 후 다시 CC 0.5C 2.75V CUT-OFF 조건으로 방전하여 이 방전량을 표준충방전시의 방전량과 비교하여 용량회복률을 측정하였다.After the cells of Examples and Comparative Examples charged under CC-CV 0.5 C 4.2V 0.05C CUT-OFF condition were stored in an oven at 60° C. for 4 weeks, discharged under CC 0.5C 2.75V CUT-OFF condition and CC-CV 0.5 After charging under the C 4.2V 0.05C CUT-OFF condition, it was discharged again under the CC 0.5C 2.75V CUT-OFF condition.

그 결과를 하기 표 2에 기재하였다.The results are shown in Table 2 below.

양극
활물질
anode
active material
음극활물질anode active material 수명(%)
(500cycle)
life span(%)
(500cycle)
고온저장
4주 방치후
용량회복률(%)
high temperature storage
After 4 weeks left
Capacity recovery rate (%)
종류Kinds 혼합비mixing ratio 실시예1Example 1 CAM-10CAM-10 천연흑연/인조흑연Natural graphite/artificial graphite 100/0100/0 8080 7878 실시예2Example 2 CAM-10CAM-10 천연흑연/인조흑연Natural graphite/artificial graphite 90/1090/10 8282 8181 실시예3Example 3 CAM-10CAM-10 천연흑연/인조흑연Natural graphite/artificial graphite 70/3070/30 8686 8383 실시예4Example 4 CAM-10CAM-10 천연흑연/인조흑연Natural graphite/artificial graphite 50/5050/50 8888 8585 실시예5Example 5 CAM-10CAM-10 천연흑연/인조흑연Natural graphite/artificial graphite 30/7030/70 9090 8787 실시예6Example 6 CAM-10CAM-10 천연흑연/인조흑연Natural graphite/artificial graphite 10/9010/90 9292 8989 실시예7Example 7 CAM-10CAM-10 천연흑연/인조흑연Natural graphite/artificial graphite 0/1000/100 9595 9090 비교예1Comparative Example 1 CAM-20CAM-20 천연흑연/인조흑연Natural graphite/artificial graphite 100/0100/0 7070 8080 비교예2Comparative Example 2 CAM-20CAM-20 천연흑연/인조흑연Natural graphite/artificial graphite 90/1090/10 7171 8181 비교예3Comparative Example 3 CAM-20CAM-20 천연흑연/인조흑연Natural graphite/artificial graphite 70/3070/30 7373 8383 비교예4Comparative Example 4 CAM-20CAM-20 천연흑연/인조흑연Natural graphite/artificial graphite 50/5050/50 7575 8585 비교예5Comparative Example 5 CAM-20CAM-20 천연흑연/인조흑연Natural graphite/artificial graphite 30/7030/70 7777 8787 비교예6Comparative Example 6 CAM-20CAM-20 천연흑연/인조흑연Natural graphite/artificial graphite 10/9010/90 7979 8989 비교예7Comparative Example 7 CAM-20CAM-20 천연흑연/인조흑연Natural graphite/artificial graphite 0/1000/100 8080 9090 비교예8Comparative Example 8 CAM-10CAM-10 천연흑연(d002 0.350Å)Natural graphite (d002 0.350Å) 단독사용single use 7676 7878 비교예9Comparative Example 9 CAM-10CAM-10 인조흑연(d002 3.370Å)Artificial graphite (d002 3.370Å) 단독사용single use 9797 9090 비교예10Comparative Example 10 CAM-20CAM-20 천연흑연(d002 3.350Å)Natural graphite (d002 3.350Å) 단독사용single use 65 65 8080 비교예11Comparative Example 11 CAM-20CAM-20 인조흑연(d002 3.370Å)Artificial graphite (d002 3.370Å) 단독사용single use 8383 9090

상기 표 2를 참고하면, 실시예들의 전지가 비교예들에 비해 우수한 수명특성 및 고온 저장 특성(고온저장 후 용량 회복률)을 나타내는 것을 확인할 수 있다.Referring to Table 2, it can be seen that the batteries of Examples exhibit superior lifespan characteristics and high temperature storage characteristics (capacity recovery rate after high temperature storage) compared to Comparative Examples.

구체적으로, 실시예 1 내지 7과 비교예 1 내지 7을 대비하면, 본 발명에 따른 양극 활물질을 사용하는 경우, 고온 저장 특성은 비교예와 동등 이상의 우수성을 나타내며, 수명 특성은 농도 기울기가 없는 양극 활물질보다 우수한 것을 확인할 수 있다. Specifically, when Examples 1 to 7 and Comparative Examples 1 to 7 are compared, when the positive electrode active material according to the present invention is used, high-temperature storage characteristics show superiority equal to or greater than that of Comparative Examples, and life characteristics are positive electrodes without a concentration gradient It can be confirmed that it is superior to the active material .

또한, d002가 3.363Å인 인조흑연의 함량이 커질수록 수명 특성의 상승폭이 더 커지는 것을 알 수 있으며, 특히 인조흑연이 천연흑연 이상이 되는 경우 상승폭의 차이가 확연해짐을 알 수 있다.In addition, it can be seen that as the content of artificial graphite with d002 of 3.363 Å increases, the increase in lifespan characteristics increases. In particular, it can be seen that the difference in increase becomes clear when artificial graphite is greater than or equal to natural graphite.

한편, d002가 본 발명의 범위를 벗어나는 비교예 9 및 11의 경우 수명 특성이나 고온 저장 특성은 실시예 수준을 나타내었으나, 음극 활물질의 용량이 300 mAh/g이하가 되어 전지의 용량이 실제로 사용되지 못하는 정도로 감소되었다.On the other hand, in Comparative Examples 9 and 11, where d002 is outside the scope of the present invention, the lifespan characteristics and high temperature storage characteristics showed the Example level, but the capacity of the negative active material was 300 mAh/g or less, so the capacity of the battery was not actually used. decreased to the extent that

또한, 도 2 및 도 3에는 각각 실시예 1과 비교예 1의 양극 활물질 입자의 TEM 사진을 나타내었다. 도 2(실시예 1) 및 도 3(비교예 1)을 참고하면, 실시예의 양극 활물질 1차 입자가 막대형 형상을 하고 있는 반면, 비교예의 양극 활물질은 1차 입자가 구형에 가까운 형상을 하고 있는 것을 알 수 있다.In addition, TEM photographs of the positive active material particles of Example 1 and Comparative Example 1 are shown in FIGS. 2 and 3, respectively. Referring to FIGS. 2 (Example 1) and 3 (Comparative Example 1), the primary particles of the positive active material of the Example have a rod-like shape, whereas the positive active material of the Comparative Example has a shape close to a spherical shape, it can be seen that there is

Claims (15)

양극, 음극 및 비수 전해액을 포함하며,
상기 양극은 하기 화학식 1로 표시되는 리튬-금속 산화물 입자;를 포함하는 양극 활물질을 포함하고,
하기 화학식 1에서 M1은 입자 중심부 및 표면부 사이에 연속적인 농도 경사 구간을 갖고, a는 입자 모든 영역에서 0.7797 이상이며, c는 입자 모든 영역에서 0.12 이하이고,
상기 음극은 결정면간 간격 d002가 3.356 내지 3.365Å이고, 천연 흑연 및 인조 흑연을 0:100 내지 90:10의 중량비로 포함하는 흑연;을 포함하는 음극 활물질을 포함하는, 리튬 이차 전지.
[화학식 1]
LixM1aM2bM3cOy
(식 중, M1, M2 및 M3은 각각, Ni, Co 및 Mn이고, 0<x≤1.1, 2≤y≤2.02, 0<a<1, 0<b<1, 0<c<1, 0<a+b+c≤1 임).
anode, cathode and non-aqueous electrolyte;
The positive electrode includes a positive active material comprising a lithium-metal oxide particle represented by the following Chemical Formula 1;
In the following formula (1), M1 has a continuous concentration gradient section between the particle center and the surface portion, a is 0.7797 or more in all regions of the particle, c is 0.12 or less in all regions of the particle,
The negative electrode has an interplanar spacing d002 of 3.356 to 3.365 Å, and graphite including natural graphite and artificial graphite in a weight ratio of 0:100 to 90:10; A lithium secondary battery comprising a negative active material comprising a.
[Formula 1]
Li x M1 a M2 b M3 c O y
(wherein, M1, M2 and M3 are Ni, Co and Mn, respectively, 0<x≤1.1, 2≤y≤2.02, 0<a<1, 0<b<1, 0<c<1, 0<a+b+c ≤1).
청구항 1에 있어서, 상기 M2 및 M3 중 적어도 하나는 입자 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.
The lithium secondary battery according to claim 1, wherein at least one of M2 and M3 has a constant concentration from a particle center to a surface portion.
청구항 1에 있어서, 상기 M1은 입자 중심부에서 표면부 방향으로 농도가 감소하는 농도 경사 구간을 갖고, 상기 M2 및 M3 중 적어도 하나는 입자 중심부에서 표면부 방향으로 농도가 증가하는 농도 경사 구간을 갖는, 리튬 이차 전지.
The method according to claim 1, wherein M1 has a concentration gradient section in which the concentration decreases from the particle center to the surface portion, and at least one of M2 and M3 has a concentration gradient section in which the concentration increases from the particle center to the surface portion direction, lithium secondary battery.
삭제delete 청구항 1에 있어서, 상기 M1은 입자 중심부에서 표면부 방향으로 농도가 감소하는 농도 경사 구간을 갖고, 상기 M2 및 M3는 입자 중심부에서 표면부 방향으로 농도가 증가하는 농도 경사 구간을 갖는, 리튬 이차 전지.
The lithium secondary battery according to claim 1, wherein M1 has a concentration gradient section in which the concentration decreases from the particle center to the surface portion, and M2 and M3 have a concentration gradient section in which the concentration increases from the particle center to the surface portion direction. .
청구항 1에 있어서, 상기 M1은 입자 중심부에서 표면부 방향으로 농도가 감소하는 농도 경사 구간을 갖고, 상기 M3는 입자 중심부에서 표면부 방향으로 농도가 증가하는 농도 경사 구간을 가지며, 상기 M2는 입자 중심부에서 표면부까지 일정한 농도를 갖는, 리튬 이차 전지.
The method according to claim 1, wherein M1 has a concentration gradient section in which the concentration decreases in the direction from the particle center to the surface portion, M3 has a concentration gradient section in which the concentration increases in the direction from the particle center to the surface portion, and M2 is the particle center A lithium secondary battery having a constant concentration from to the surface portion.
삭제delete 청구항 1에 있어서, 0.6<a≤0.95 및 0.05≤b+c<0.4인, 리튬 이차 전지.
The lithium secondary battery according to claim 1, wherein 0.6<a≤0.95 and 0.05≤b+c<0.4.
청구항 1에 있어서, 0.7<a≤0.9 및 0.1≤b+c<0.3인, 리튬 이차 전지.
The lithium secondary battery according to claim 1, wherein 0.7<a≤0.9 and 0.1≤b+c<0.3.
청구항 1에 있어서, 상기 리튬-금속 산화물 입자는 막대형(rod-type)의 1차 입자를 포함하는, 리튬 이차 전지.
The lithium secondary battery of claim 1 , wherein the lithium-metal oxide particles include rod-type primary particles.
삭제delete 청구항 1에 있어서, 상기 천연 흑연은 d002가 3.356 내지 3.360Å이고, 상기 인조 흑연은 d002가 3.361 내지 3.365Å인, 리튬 이차 전지.
The lithium secondary battery of claim 1, wherein d002 of the natural graphite is 3.356 to 3.360 Å, and d002 of the artificial graphite is 3.361 to 3.365 Å.
삭제delete 청구항 1에 있어서, 상기 천연 흑연 및 상기 인조 흑연의 중량비는 0:100 내지 50:50인, 리튬 이차 전지.
The lithium secondary battery according to claim 1, wherein a weight ratio of the natural graphite and the artificial graphite is 0:100 to 50:50.
청구항 1에 있어서, 상기 농도 경사 구간은 입자 중심부에서 표면부까지 전체적으로 형성된, 리튬 이차 전지.The lithium secondary battery according to claim 1, wherein the concentration gradient section is formed entirely from the particle center to the surface portion.
KR1020150063764A 2014-06-02 2015-05-07 Lithium secondary battery Active KR102352203B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/728,680 US10217991B2 (en) 2014-06-02 2015-06-02 Lithium secondary battery
CN201510296035.9A CN105322220B (en) 2014-06-02 2015-06-02 Lithium secondary battery
KR1020220004101A KR20220009482A (en) 2014-06-02 2022-01-11 Lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140067149 2014-06-02
KR20140067149 2014-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220004101A Division KR20220009482A (en) 2014-06-02 2022-01-11 Lithium secondary battery

Publications (2)

Publication Number Publication Date
KR20150138812A KR20150138812A (en) 2015-12-10
KR102352203B1 true KR102352203B1 (en) 2022-01-17

Family

ID=54979158

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020150063764A Active KR102352203B1 (en) 2014-06-02 2015-05-07 Lithium secondary battery
KR1020220004101A Ceased KR20220009482A (en) 2014-06-02 2022-01-11 Lithium secondary battery
KR1020230044263A Ceased KR20230050297A (en) 2014-06-02 2023-04-04 Lithium secondary battery

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020220004101A Ceased KR20220009482A (en) 2014-06-02 2022-01-11 Lithium secondary battery
KR1020230044263A Ceased KR20230050297A (en) 2014-06-02 2023-04-04 Lithium secondary battery

Country Status (2)

Country Link
KR (3) KR102352203B1 (en)
CN (1) CN105322220B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102580002B1 (en) * 2016-01-13 2023-09-19 에스케이온 주식회사 Lithium secondary battery
US11936041B2 (en) * 2016-12-16 2024-03-19 Sk On Co., Ltd. Lithium secondary battery
KR102117621B1 (en) * 2016-12-28 2020-06-02 주식회사 엘지화학 Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same
KR20190027601A (en) * 2017-09-07 2019-03-15 현대자동차주식회사 Electrode material slurry and secondary battery comprising the same
KR102571672B1 (en) * 2018-01-17 2023-08-25 에스케이온 주식회사 Lithium secondary battery
KR102472882B1 (en) * 2018-01-18 2022-11-30 에스케이온 주식회사 Lithium secondary battery
CN109473668A (en) * 2018-10-26 2019-03-15 溧阳天目先导电池材料科技有限公司 A kind of modified prelithiation material and preparation method thereof and lithium battery
CN110364711B (en) * 2019-07-08 2020-07-31 光鼎铷业(广州)集团有限公司 Gradient rubidium doped nickel-cobalt-manganese positive electrode material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187866A (en) * 2001-12-20 2003-07-04 Mitsubishi Chemicals Corp Lithium secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379925B2 (en) * 1998-04-21 2009-12-09 住友金属工業株式会社 Graphite powder suitable for anode material of lithium ion secondary battery
US7052803B2 (en) * 2002-07-31 2006-05-30 Matsushita Electric Industrial Co., Ltd. Lithium rechargeable battery
KR100725399B1 (en) 2005-06-23 2007-06-07 한양대학교 산학협력단 Cathode active material for lithium secondary battery having core shell structure, lithium secondary battery using same and manufacturing method thereof
KR101185366B1 (en) * 2010-01-14 2012-09-24 주식회사 에코프로 A method of preparing positive active material precursor and positive active material for lithium battery with concentration grandients using batch reactor
KR101292757B1 (en) * 2011-01-05 2013-08-02 한양대학교 산학협력단 Cathod active material of full gradient, method for preparing the same, lithium secondary battery comprising the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187866A (en) * 2001-12-20 2003-07-04 Mitsubishi Chemicals Corp Lithium secondary battery

Also Published As

Publication number Publication date
KR20220009482A (en) 2022-01-24
KR20150138812A (en) 2015-12-10
CN105322220A (en) 2016-02-10
KR20230050297A (en) 2023-04-14
CN105322220B (en) 2018-03-02

Similar Documents

Publication Publication Date Title
KR102397826B1 (en) Lithium secondary battery
KR102446271B1 (en) lithium secondary battery
KR102436308B1 (en) Lithium secondary battery
KR102397827B1 (en) Lithium secondary battery
KR102296819B1 (en) Lithium secondary battery
KR102352203B1 (en) Lithium secondary battery
KR102446272B1 (en) Lithium secondary battery
US10217991B2 (en) Lithium secondary battery
KR102539669B1 (en) Lithium secondary battery
KR102296877B1 (en) Lithium secondary battery
KR102366065B1 (en) Lithium secondary battery
KR102687648B1 (en) Lithium secondary battery
KR102467458B1 (en) Lithium secondary battery
KR20200136329A (en) Lithium secondary battery
KR20230127189A (en) Lithium secondary battery
KR102446270B1 (en) Lithium secondary battery
KR102446269B1 (en) Lithium secondary battery
KR102446273B1 (en) Lithium secondary battery
KR102503009B1 (en) Lithium secondary battery
KR102480473B1 (en) Lithium secondary battery and method of fabricating the same

Legal Events

Date Code Title Description
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20150507

PG1501 Laying open of application
PA0201 Request for examination

Patent event code: PA02012R01D

Patent event date: 20200504

Comment text: Request for Examination of Application

Patent event code: PA02011R01I

Patent event date: 20150507

Comment text: Patent Application

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20210528

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20211015

PN2301 Change of applicant

Patent event date: 20211224

Comment text: Notification of Change of Applicant

Patent event code: PN23011R01D

A107 Divisional application of patent
PA0107 Divisional application

Comment text: Divisional Application of Patent

Patent event date: 20220111

Patent event code: PA01071R01D

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20220112

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20220112

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20241212

Start annual number: 4

End annual number: 4