KR102290999B1 - 해상 풍력 터빈을 위한 부유식 구조물 - Google Patents
해상 풍력 터빈을 위한 부유식 구조물 Download PDFInfo
- Publication number
- KR102290999B1 KR102290999B1 KR1020207001750A KR20207001750A KR102290999B1 KR 102290999 B1 KR102290999 B1 KR 102290999B1 KR 1020207001750 A KR1020207001750 A KR 1020207001750A KR 20207001750 A KR20207001750 A KR 20207001750A KR 102290999 B1 KR102290999 B1 KR 102290999B1
- Authority
- KR
- South Korea
- Prior art keywords
- wind turbine
- upper body
- horizontal axis
- lower body
- turbine structure
- Prior art date
Links
- 238000007667 floating Methods 0.000 title claims abstract description 42
- 238000000034 method Methods 0.000 claims description 16
- 238000009434 installation Methods 0.000 claims description 13
- 238000004873 anchoring Methods 0.000 claims description 7
- 238000011900 installation process Methods 0.000 claims description 3
- 244000043261 Hevea brasiliensis Species 0.000 claims description 2
- 229920003052 natural elastomer Polymers 0.000 claims description 2
- 229920001194 natural rubber Polymers 0.000 claims description 2
- 230000005611 electricity Effects 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 230000033001 locomotion Effects 0.000 description 11
- 230000008901 benefit Effects 0.000 description 6
- 238000005188 flotation Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000013011 mating Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011089 mechanical engineering Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005404 monopole Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
- F03D13/22—Foundations specially adapted for wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
- F03D13/25—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B1/00—Hydrodynamic or hydrostatic features of hulls or of hydrofoils
- B63B1/02—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
- B63B1/10—Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
- B63B1/107—Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
- B63B21/507—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers with mooring turrets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/10—Assembly of wind motors; Arrangements for erecting wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/20—Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/30—Commissioning, e.g. inspection, testing or final adjustment before releasing for production
- F03D13/35—Balancing static or dynamic imbalances
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D13/00—Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
- F03D13/40—Arrangements or methods specially adapted for transporting wind motor components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor
- F03D7/0204—Controlling wind motors the wind motors having rotation axis substantially parallel to the air flow entering the rotor for orientation in relation to wind direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/70—Bearing or lubricating arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/80—Arrangement of components within nacelles or towers
- F03D80/82—Arrangement of components within nacelles or towers of electrical components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D80/00—Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
- F03D80/80—Arrangement of components within nacelles or towers
- F03D80/88—Arrangement of components within nacelles or towers of mechanical components
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B21/00—Tying-up; Shifting, towing, or pushing equipment; Anchoring
- B63B21/50—Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
- B63B2021/505—Methods for installation or mooring of floating offshore platforms on site
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
- B63B2035/4433—Floating structures carrying electric power plants
- B63B2035/446—Floating structures carrying electric power plants for converting wind energy into electric energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/95—Mounting on supporting structures or systems offshore
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/97—Mounting on supporting structures or systems on a submerged structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/727—Offshore wind turbines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Wind Motors (AREA)
Abstract
본 발명은 부유식 해상 수평 축선 풍력 터빈 구조물(1)에 관한 것이며, 이 부유식 해상 수평 축선 풍력 터빈 구조물은 해저에 앵커링되는 앵커링된 부품(3), 및 회전가능한 부품(4)을 포함하며, 이 구조물은 선회 부표(pivot buoy)를 포함하는 적어도 3개의 부유 수단들(6, 9)에 의해 지지되고, 선회 부표(6)는, 해저(13)에 앵커링되는 하부 본체(7), 및 회전가능한 부품(4)에 고정되는 상부 본체(8), 선회 부표(6)의 하부 본체(7)와 상기 상부 본체(8) 사이의 전기 연결부; 하부 본체(7)와 상부 본체(8)를 연결시키는 요 시스템(yaw system)을 포함하며, 요 시스템은 수직한 요 축선(2) 주위에서 서로에 대해 회전하도록 구성되는 내부 링(19) 및 외부 링(18)을 포함하는 회전 수단(17)을 포함하고, 그리고 요 시스템은 내부 센터링 수단(20) 및 외부 센터링 수단(21)을 더 포함한다.
Description
본 발명은 해상 풍력 에너지의 분야에 속한다. 특히, 본 발명은 해상 풍력 터빈 발전기(해상 WTG, 또는 OWTG), 더 구체적으로, HAWT(horizontal axis wind turbine)에 기초한 OWTG의 지지를 위한 부유 구조물, 및 이 부유 구조물을 특징화하는 서브시스템들을 지칭한다.
부유식 해상 풍력 분야는, 오직 다루기 힘든 개념들이 풀-스케일 프로토타입(full-scale prototype), 및 (스타토일(Statoil)에 의해 구축된) 단일 상용 풍력단지(single pre-commercial windfarm)로 성공적인 시험 단계를 겪으면서, 2017년과 같이 상업용 레벨에서 거의 존재하지 않은 상태로 남아 있다. 그러나, 해상 하부구조물들을 부유시키기 위한 다양한 개념들은 다른 특허들에서 설명되고 그리고 공개되어 있다. 이들 중 일부, 특히 본 발명에 관한 개념은 다음에서 강조된다.
US 6,294,844는, 프레임에 장착되는 풍차들을 포함하는 설비에 관한 것이며, 상기 프레임에는 부유 본체들이 제공되며, 그리고 이 프레임은 바람을 향해 풍차들을 터닝시키기 위해 수직 축선을 중심으로 한 회전을 할 수 있다. 풍차들이 서 있는 상태를 유지시키기 위해, 지지 수단, 예를 들어 저부에 앵커링되는 본체는 풍차들의 평면으로부터 일정 거리만큼 멀리 배치된다. 게다가, 유지보수를 개선시키거나 간소화시키기 위한 수단이 제공된다.
특허 WO02073032 A1는, 전체 구조물이 선회 지점으로서 작용하는 베어링을 포함하는 앵커 지점 주위에서 회전하는 것을 허용하는 수동식 웨더베이닝 시스템(passive weathervaning system)을 갖는 다른 유사한 시스템을 설명한다. 다시, 이 시스템은 그의 자체 타워를 각각 갖는 다수의 풍력 터빈들을 지지할 수 있는 것으로 나타난다. 이러한 구조물의 앵커링이 어떻게 수행될 수 있는지, 전기 케이블을 어떻게 관리하는지, 또는 주요 컴포넌트들 중 하나를 어떻게 대체하는지(이는 크레인 베슬들(crane vessels)의 사용 또는 전체 구조물을 항구로 견인하는 것을 요구할 것임)를 상세히 설명하지 않고, 수개의 가능한 구성들이 제시된다.
특허 DE3107252 A1은 다른 부유 시스템을 설명하는데, 이 시스템은, 제어된 선회 지점(베어링)의 존재 없이, 해저(sea bed) 바로 위에 앵커 지점 주위에서 수동식으로 웨더베이닝한다(weathervane). 이는 계류 시스템(lmooring system) 그 자체에 대한 그리고 전기 케이블에 대한 위험한 문제를 제시하며, 이는 결국 제어되지 않는 구조물 회전에 의해 손상될 것이다.
종래 기술에서의 다른 명백한 전례들은, 터빈 축선이 바람과 양호하게 정렬된 상태를 유지하는 것을 보장하기 위해 자켓(jacket) 또는 모노폴(monopole) 기반의 최상부 상에 거의 변함없이 튜브형인 타워, 및 능동식 요(yaw) 시스템을 갖는 최상부에 장착된 나셀을 포함하는 전형적인 육상 풍력 터빈들의 “해상” 버전들인 FOWT(fixed offshore wind turbines)이다. FOWT들이 육상에서 이용가능한 것들보다 훨씬 더 높은 평균 풍속들을 향유하지만, FOWT들은, 주로 임의의 중요한 조작을 위한 대형 크레인 베슬들의 사용의 필요로 인해, 육상 풍력 터빈들의 비용들보다 훨씬 더 높은 설치, O&M(Operation and Maintenance) 비용들을 갖는다.
최종적으로, 시장에 이미 존재하는 몇몇의 주요 FOWT(floating offshore wind turbine) 개념들이 강조될 수 있다. 거의 변함없이, FOWT 개념들은 해상 플랫폼들에서 석유 및 가스 추출을 위한 기술로부터 계승되는 부유 하부구조물을 사용한다. 이러한 하부구조물의 최상부 상에서, 이 개념들은 다소 종래의 터빈에 튜브형 타워 및 능동식 요 시스템을 장착한다. 특히, 몇몇의 특허들이 강조될 수 있다:
특허 US9139266 B2는 Principle Power에 의해 개발된 윈드플로트(Windfloat) 개념을 설명한다. 이 윈드플로트 개념은 해상 석유 및 가스 섹터에서 주지되어 있는 반잠수형(세미서브(semisub)) 플랫폼에 기초한다. 이러한 구조물은, 장력이 있는 상태로 구조물에 연결되는 6개의 계류 라인들로 해저를 향해 반경 방향으로 그리고 하방으로 연장하는 상대적으로 복잡한 현수식 계류 시스템(catenary mooring system)을 가지면서, 매우 무겁다는 단점을 나타내며, 이는 조작을 다소 어렵고 그리고 시간-소모적으로 만든다. 터빈 고장의 경우에, 플랫폼은 연결해제될 수 있고 그리고 O&M을 위해 항구로 가져올 수 있지만, 이러한 연결해제 조작은 초기 연결과 같이 복잡하며, 그리고 임시적인 부표는, 이후에 플랫폼에 다시 연결되도록 6개의 계류 라인들 및 전기 케이블을 표면에 가깝게 유지시키기 위해 제자리에 두어야 한다.
특허 CA2609745 C는 회사 Norsk-Hydro로부터의 Hywind 컨셉을 설명하며, Hywind 컨셉은 스파 부표(spar buoy), 및 긴 스파 부표의 저부 단부에 대형 균형추(counterweight)를 통해 그의 안정성을 획득하는 다른 주지된 석유 및 가스 플랫폼을 사용한다. 그의 주요 단점들은, 효과적인 균형추를 필요하지만, 풍력 터빈의 항구 조립을 불가능하게 만드는 100m 초과(이들이 지지하는 풍력 터빈과 대략 동일한 높이)의 대형 드래프트(draft)이다. 이는 대형 크레인 베슬들을 사용하여 심해(deep water)에서 수행되어야 하며, 이는 주요 컴포넌트가 대체되어야 하거나 전체 시스템을 설치해제할 필요가 있을 때마다 또한 필요하다. 이는 또한 길고 무거운 체인들을 갖는 현수식 계류 시스템을 사용한다.
특허 WO2015000909 A1은 해상 풍력 터빈을 지지하기 위한 TLP(tension leg platform) 하부 구조물을 설명한다. TLP는, 테더들(tethers) 상의 예비장력(pretension)으로 인해 대부분의 부유 요소들을 완전히 잠겨진 상태를 유지하게 하는 수직 케이블들(또는 테더들)의 시스템을 특징으로 하는, 더 깊은 심해(very deep water) 시스템들을 위한 석유 및 가스 분야에서 개발된 다른 주지된 해상 플랫폼이다. 풍력 터빈들을 위한 지지 구조물로서의 그의 사용시의 그의 주요 문제는 외양(open sea)에서 그의 매우 복잡하고 그리고 위험한 설치이다. 풍력 터빈이 연안에서 또는 항구에서 설치된다면, 전체적인 시스템은 현장으로의 운송 동안 그리고 설치 및 계류 동안 불안정하다. TLP가 우선적으로 계류되고 그리고 그 후 풍력 터빈이 최상부 상에 장착된다면, 대형 크레인 베슬들의 사용이 요구된다. 다시, 터빈의 임의의 주요 컴포넌트의 대체는 대형 크레인 베슬들의 사용을 요구한다. 전체적인 플랫폼이 항구로 보내어진다면, 복잡한 플랫폼 연결해제 공정은 수행되어야 하며, 그리고 이 플랫폼 연결해제 공정이 초기 설치와 같이 복잡하다.
WO02/073032는 본 특허 출원의 제1 항의 전제부의 특징들 모두를 개시하는 부유식 해상 풍력 터빈 발전소에 관한 것이다.
WO2016/083634는, 풍력 터빈, 및 길이 방향 축선에 대해 평행하고 그리고 바 구조물들에 의해 상호연결되는 2개의 수평의 동일한 원통형 부유 요소들을 갖는 타워를 포함하는 풍력 에너지를 하네싱하기(harnessing) 위한 부유 플랫폼을 개시한다.
US2016/0061192는 그의 상부 부분들 및 부유물들의 형상의 수단들과 연관되는 하부 부분들에 의해 나셀을 지지하는 3개의 지지 아암들을 포함하는 부유식 풍력 터빈 구조물에 관한 것이다.
WO2010/071433은 계류 시스템으로 해저로 계류하고 있는 부유식 개방 구조물 상에 장착되는 적어도 2개의 풍력 터빈들을 포함하는 제거가능한 해상 풍력 터빈들을 갖는 사전-설치된 계류 시스템을 설명한다.
EP2993270은 전복 모멘트(overturning moment)에 기초하여 구조물의 경사를 조절하고 그리고 잠수를 조절하기 위한 수단이 설비되는 펌핑 시스템과 빔에 의해 함께 결합된 콘크리트 본체들을 포함하는 해상 설비들에서 터빈 타워들을 위한 잠수가능한 능동식 지지 구조물을 개시한다.
WO02/073032는 본 특허 출원의 제1 항의 전제부의 특징들 모두를 개시하는 부유식 해상 풍력 터빈 발전소에 관한 것이다.
WO2016/083634는, 풍력 터빈, 및 길이 방향 축선에 대해 평행하고 그리고 바 구조물들에 의해 상호연결되는 2개의 수평의 동일한 원통형 부유 요소들을 갖는 타워를 포함하는 풍력 에너지를 하네싱하기(harnessing) 위한 부유 플랫폼을 개시한다.
US2016/0061192는 그의 상부 부분들 및 부유물들의 형상의 수단들과 연관되는 하부 부분들에 의해 나셀을 지지하는 3개의 지지 아암들을 포함하는 부유식 풍력 터빈 구조물에 관한 것이다.
WO2010/071433은 계류 시스템으로 해저로 계류하고 있는 부유식 개방 구조물 상에 장착되는 적어도 2개의 풍력 터빈들을 포함하는 제거가능한 해상 풍력 터빈들을 갖는 사전-설치된 계류 시스템을 설명한다.
EP2993270은 전복 모멘트(overturning moment)에 기초하여 구조물의 경사를 조절하고 그리고 잠수를 조절하기 위한 수단이 설비되는 펌핑 시스템과 빔에 의해 함께 결합된 콘크리트 본체들을 포함하는 해상 설비들에서 터빈 타워들을 위한 잠수가능한 능동식 지지 구조물을 개시한다.
논의된 바와 같이, 종래 기술에서 설명되는 모든 FOWT에 대한 일반적인 문제는, FOWT들이 제품 수명 주기(product life cycle)의 수개의 단계들에서 강력한 선박들 및 무거운 크레인 베슬들의 연속적인 사용을 요구한다는 점이다. 이는, 베슬들의 이러한 선단(fleet)이 드물게 이용가능한 이러한 플래닛(planet)의 보다 멀리 있는 구역들에서 전력 생성을 위한 FOWT들의 전개를 제한하며, 이러한 구역들은 실제로 이러한 종류의 재생 에너지 생산 플랫폼에 대한 접근으로부터 가장 유익한 것들이다.
본 발명의 목적은, 다시 말해, FOWT 수명주기의 수개의 단계들(설치, O&M, 해체)에서 무거운 크레인 베슬들의 사용을 제거하는 일부 예들에서 위에서 논의된 문제들 중 적어도 일부를 극복하는 것, 그리고 일부 예들에서, 이 단계들이 적은 승무원들에 의해 신속하게 그리고 효과적으로 이루어질 수 있도록, 플랫폼의 연결 및 연결해제 시스템을 간소화시키는 것이다. 또한, 일부 예들에서, 제안된 플랫폼은 종래 기술에서의 대부분의 FOWT들과 비교하여 매우 가벼우며, 이는 그 자체가 큰 이점이다.
이러한 목적들 중 하나 이상은, 첨부된 청구항들에 따라, 1개 또는 2개의 키 서브시스템들(key subsystems)을 포함하는 FOWT 구조물에 의해 만족된다.
본 발명의 일 양태에 따라, 1차 서브시스템은, 구조물이 실질적으로 수직한 축선 주위에서 우세한 바람 방향을 따라 (수동식으로) 웨더베이닝할 수 있도록, 구조물의 요잉(yawing) 회전을 제어하는 조립체를 포함한다. FOWT 시스템이 그의 20 또는 25년의 수명시간 동안 겪을 것인 완전한 회전들의 수를 예측하는 것이 불가능하기 때문에, 체인들 또는 케이블들과 직접적으로 이루어진 해저에 대한 웨더베이닝 구조물의 직접적인 연결은 실패하기 쉬울 것인데, 왜냐하면 계류 시스템의 이러한 제어되지 않은 비틀림이 결국 기계 고장을 발생시킬 것이기 때문이다.
편리하게는, 본 발명의 제1 양태에 따라, FOWT 플랫폼은 앵커링된 부품을 포함하며, 이 앵커링된 부품은 웨더베이닝하지 않고 그리고 계류 시스템(통상적으로, 체인, 테더들, 케이블들, 또는 이들의 임의의 조합)을 통해 해저에 부착된다. 이러한 계류 시스템은 FOWT를 1개 이상의 앵커링 지점들에 연결시키며, 이의 선택은 주로 해저에서의 토양의 유형에 의존한다. 이들은, 예를 들어, (바위로 된 해저를 위한) 그로팅된 파일들(grouted piles), 해저가 모래인 경우, 다수의 앵커링들, 또는 계류 라인들을 위한 내장된 부착 지점들을 갖는 대형 콘크리트 블록으로 간단히 구성될 수 있는 중력 베이스(gravity base)를 갖는 다수의 천공된 홀들일 수 있다. FOWT의 나머지는, FOWT의 회전가능한 부품의 요잉 회전이 제어되는 방식으로, 그리고 양호하게 규정된 축선 주위에서, FOWT의 앵커링된 부품과 회전가능한 부품 사이의 낮은 마찰을 가지고, 저널 베어링들(journal bearings), 롤링 베어링들, 또는 동등물과 같은 상이한 실시예들을 가질 수 있는 회전 수단을 통해 앵커링된 부품에 연결되는 회전가능한 부품일 것이다.
본 발명의 다른 양태에 따라, FOWT의 회전가능한 부품으로 구축된 크레인이 제공된다. 튜브형 타워를 가지는 종래의 풍력 터빈에서, 나셀은 타워의 최상부에 배치된다. 나셀 자체는 통상적으로, (상대적으로 작은 요 모터들 중 하나와 같은) 작은 중량들을 리프팅하는 것을 용이하게 하기 위해 작은 호이스트(hoist)를 포함하지만, 기어박스 또는 발전기와 같은 주요 컴포넌트를 리프팅하기 위한 파워를 가지지 않는다. 주요 문제는, 이러한 대형 호이스트가 나셀 자체 상에 견고한 하부구조물을 요구할 것이라는 것이며, 이는 나셀의 2차 프레임을 복잡하게 한다. 얼마나 많은 보강재들(reinforcements)이 프레임에 추가되든지, 명백하게는 나셀-장착 호이스트는 결코 나셀 자체를 리프팅할 수 없을 것이며, 이는 이러한 서브시스템에 대한 매우 흥미로운 특징일 것이다.
유리하게는, 본 발명의 예들에서 설명되는 FOWT는 능동식 요 시스템을 갖는 타워의 최상부에 장착되는 나셀을 특징으로 하지 않는다. 대신에, 전체적인 회전가능한 부품은 (바람직하게는) 수동식으로 바람을 따라 요잉할 것이며, 이는 결국, FOWT가 전체적인 나셀을 리프팅할 수 있는 크레인을 잠재적으로 포함하는 것을 허용하는 위치에서 나셀을 조립하는 하는 것을 허용한다.
본 발명의 다른 특징들 및 이점들은, 본 발명에 따른 FOWT(floating offshore wind turbine)의 구조물의 바람직한 실시예들의 상세한 설명을 판독함으로 보다 명백하게 될 것이다. 바람직한 실시예들은 첨부 도면들의 도움으로 비제한적인 예들로서 설명된다.
도 1은 FOWT 구조물(1)의 예의 등축도이다.
도 2는, 해수면(12) 및 해저(13)를 또한 도시하는, 도 1의 예의 FOWT(1)의 측면도이며, 여기서 구조물은 앵커링된다(anchored). 로터-나셀 조립체(rotor-nacelle assembly)(5)의 포지션은 매스트(mast) 구조물의 정점 바로 아래에서 보일 수 있다. 또한, 구조물의 앵커링된 부품(3) 및 회전가능한 부품(4)으로 구성되는 요소들이 강조된다.
도 3은, 회전 수단(17), 센터링 시스템(20, 21), 탄성 요소 시스템(22), 및 동축 케이블(23)의 확대도를 포함하는, 도 1 및 도 2의 예의 선회 부표(pivot buoy)(6)의 부분도이다.
도 4는, 예시적인 예로서, 연결/연결해제를 위한 수단(26), 및 회전 수단들(28, 29)에 작용하는 모터(27)를 포함하는, 전기 케이블 부분(30)에서 누적된 비틀림을 풀도록 제안되는 기구의 가능한 실시예를 도시한다.
도 5는, 매스트들(10)의 트러스(truss) 구조물에 직접 장착되는, 풀리들(34)에 의해 지지되는 2개의 케이블들(35)에 작용하는 크레인 모터(33)를 포함하는, 로터-나셀 조립체(5)의 임의의 컴포넌트(32)를 리프팅하도록 제안되는 시스템의 가능한 실시예를 예시한다. 도 5는 또한, 정점(31)의 포지션 및 직원용 리프팅 수단(39)을 위한 케이블(38)의 부분을 도시한다.
도 6은 리프팅 수단(39)을 위한 바람직한 구성을 도시하며, 이 리프팅 수단은 선회 부표(6)를 정점(31)에 연결시키는 매스트(10) 내측 그리고 매스트를 통해 순환하며, 그리고 여기서 헬리콥터 접근 지점(40)이 또한 위치되며, 선회 부표(6)는 그 자체가 선박들을 위한 접근 지점이다. 이 도면은 또한 HAWT로부터 로터(36), 및 블레이드들(37) 중 하나를 보다 명백하게 도시한다.
도 7은, 수형(male)(내부) 및 암형(female)(외부) 센터링 수단들(20, 21)이 상부 본체(8)를 하강시키기 전에 정렬되어, 전체 회전가능한 부품(4)이 앵커링된 부품(3)의 최상부 상의 그의 작업 포지션으로 적절하게 잠금될 수 있도록, 적합한 지지부들과 끼워맞춤되는 반잠수형 바지선(semi-submersible barge)(41)이 이미 설치된 하부 본체(7)의 최상부 상에서의 선회 부표(6)의 상부 본체(8)의 위치 결정을 어떻게 제어할 수 있는지의 일 예를 예시한다. 상부 본체(7)의 부품은 이러한 이미지를 만들도록 절취되어 있어서, 외부 센터링 수단(21)이 단면도에서 보이게 되는 것에 유의한다.
도 1은 FOWT 구조물(1)의 예의 등축도이다.
도 2는, 해수면(12) 및 해저(13)를 또한 도시하는, 도 1의 예의 FOWT(1)의 측면도이며, 여기서 구조물은 앵커링된다(anchored). 로터-나셀 조립체(rotor-nacelle assembly)(5)의 포지션은 매스트(mast) 구조물의 정점 바로 아래에서 보일 수 있다. 또한, 구조물의 앵커링된 부품(3) 및 회전가능한 부품(4)으로 구성되는 요소들이 강조된다.
도 3은, 회전 수단(17), 센터링 시스템(20, 21), 탄성 요소 시스템(22), 및 동축 케이블(23)의 확대도를 포함하는, 도 1 및 도 2의 예의 선회 부표(pivot buoy)(6)의 부분도이다.
도 4는, 예시적인 예로서, 연결/연결해제를 위한 수단(26), 및 회전 수단들(28, 29)에 작용하는 모터(27)를 포함하는, 전기 케이블 부분(30)에서 누적된 비틀림을 풀도록 제안되는 기구의 가능한 실시예를 도시한다.
도 5는, 매스트들(10)의 트러스(truss) 구조물에 직접 장착되는, 풀리들(34)에 의해 지지되는 2개의 케이블들(35)에 작용하는 크레인 모터(33)를 포함하는, 로터-나셀 조립체(5)의 임의의 컴포넌트(32)를 리프팅하도록 제안되는 시스템의 가능한 실시예를 예시한다. 도 5는 또한, 정점(31)의 포지션 및 직원용 리프팅 수단(39)을 위한 케이블(38)의 부분을 도시한다.
도 6은 리프팅 수단(39)을 위한 바람직한 구성을 도시하며, 이 리프팅 수단은 선회 부표(6)를 정점(31)에 연결시키는 매스트(10) 내측 그리고 매스트를 통해 순환하며, 그리고 여기서 헬리콥터 접근 지점(40)이 또한 위치되며, 선회 부표(6)는 그 자체가 선박들을 위한 접근 지점이다. 이 도면은 또한 HAWT로부터 로터(36), 및 블레이드들(37) 중 하나를 보다 명백하게 도시한다.
도 7은, 수형(male)(내부) 및 암형(female)(외부) 센터링 수단들(20, 21)이 상부 본체(8)를 하강시키기 전에 정렬되어, 전체 회전가능한 부품(4)이 앵커링된 부품(3)의 최상부 상의 그의 작업 포지션으로 적절하게 잠금될 수 있도록, 적합한 지지부들과 끼워맞춤되는 반잠수형 바지선(semi-submersible barge)(41)이 이미 설치된 하부 본체(7)의 최상부 상에서의 선회 부표(6)의 상부 본체(8)의 위치 결정을 어떻게 제어할 수 있는지의 일 예를 예시한다. 상부 본체(7)의 부품은 이러한 이미지를 만들도록 절취되어 있어서, 외부 센터링 수단(21)이 단면도에서 보이게 되는 것에 유의한다.
FOWT의 설치는 2개의 단계들로 분할될 수 있다. 제1 단계에서, 해저 앵커링 지점들(13) 및 앵커링 수단(14)을 포함하는 FOWT의 앵커링된 부품(3)이 설치된다. 동일한 단계에서, 바다속 전기 케이블(16)의 연결이 이루어질 수 있다.
바람직하게는 최소 O&M 요건들의 경우, 모든 이러한 요소들은 바람직하게는 FOWT의 수명(20 내지 25년이 통상적임) 동안 바다에서 유지되어야 한다. 제2 단계에서, 터빈(5) 자체를 포함하는 FOWT의 회전가능한 부분(4)이 설치된다. 회전가능한 부분은 능동식으로 회전되도록 또는 수동식으로 웨더베이닝하도록(weathervane) 구성될 수 있다. 본원에서 사용되는 “웨더베이닝(Weathervaning)”은 풍력 터빈을 우세한 바람 방향으로 정렬시키기 위해 실질적으로 수직한 축선에 대해 풍력 터빈을 포함하는 상부 구조물을 회전시키는 것으로서 이해되어야 한다.
예에서, 제안되는 해결책은 전체적인 회전가능한 부분(4)을 항구(port) ─ 항구에서, 전체적인 회전가능한 부분이 완전히 조립될 수 있음 ─ 로부터 설치 장소로 수송하는 것, 그리고 무거운 크레인 베슬들의 필요 없이 보조 선박들 및 바지선들로 이 전체적인 회전가능한 부분들을 단지 견인하는 것을 허용한다. 이러한 제2 단계 동안의 중요한 조작은 회전가능한 부분(4)과 앵커링된 부품(3) 사이의 연결이며, 이는 이상적으로 신속하게 그리고 안전하게 실행되어야 한다.
FOWT의 회전가능한 부분(4)의 신속한 연결/연결해제 능력뿐만 아니라, 신속한 그리고 안전한 연결을 위한 이러한 요건을 해결하기 위해, 필수적인 회전 수단(17)을 포함하는 신규한 요 서브-시스템(yaw sub-system)이 본원에서 제시된다. 이러한 서브-시스템은 다음의 특징 요소들 중 하나 이상을 포함할 수 있다:
● 회전 수단들(17) 자체─ 이는 실질적으로 수직한 축선 주위에 있는 구조물의 회전가능부/회전가능한 부품(4)의 자유로운 요잉 모션을 허용함 ─ . 이러한 회전 수단들(17)은 특히 베어링들일 수 있고 그리고 기계적인 엔지니어링에서 공지된 상이한 실시예들(롤러 베어링들, 마찰 베어링들 등)을 가질 수 있지만, 통상적으로 이들은 앵커링된 부품(3)에 연결되는 내부 링(19), 및 FOWT(1)의 회전가능한 부품(4)에 연결되는 외부 링(18)을 가질 것이다. 설계의 특정한 토폴로지(topology)에 의존하여, 대신에 외부 링(18)을 앵커링 부품에 연결시키는 것이 보다 편리할 수 있다.
● 내부 센터링 수단(20) 및 외부 센터링 수단(21), 선택적으로 원뿔부 및 카운터-원뿔부 쌍의 시스템 ─ 이 시스템은 이들이 바다에서 상하로 연결될 필요가 있을 때에 앵커링된 부품(3)의 최상부 상에 회전가능부/회전가능한 부품(4)을 위치결정하는 것을 도움 ─ . 이러한 종류의 원뿔형 연결은 이러한 위치결정 및 연결 조작을 도울 수 있는데, 왜냐하면 이들이 서로 접촉하기 직전에, 앵커링된 부품(3) 및 회전가능부/회전가능한 부품(4)이 서로 독립적으로 부유하기 때문이다. 이러한 구조물들의 크기로 인해, 심지어 온화한 날씨 조건들에서도 바다에서 이들의 상대적인 모션을 정확하게 제어하는 것을 시도하는 것은 매우 어렵다(그리고 위험하다). (앵커링된 부품(3) 상의) 원뿔부 및 (회전 수단(17)의 내부 링(19)에 연결되는) 카운터-원뿔부에 의해 기계적인 연결을 수행하는 것은 연결을 효과적으로 자체-센터링한다. 대신에, 앵커링된 부품(3)에서 내부 센터링 수단(20)을 가지는 것이 또한 가능하며, 이는 대안적인 실시예일 수 있다. 이러한 기하학적 형상은, 내부 센터링 수단(20) 및 외부 센터링 수단(21)이 반드시 원뿔 형상을 가져야 할 필요가 없는 것을 의미하지만, 내부 센터링 수단(20)과 외부 센터링 수단(21) 사이에 충격이 존재했다면 발생할 수 있는 영구 변형에 대해 또한 상대적으로 저항이 있으면서, 제조하기에 그리고 직접적인 측정에 의해 도량학적으로(metrologically) 확인하기에 상대적으로 용이하다. 내부 센터링 요소 및 외부 센터링 요소는 상보적인 표면들을 갖는 수형-암형 커플링을 형성할 수 있다. 특히, 수형-암형 커플링 표면들은 커플링 축선을 따라 점차적으로 증가하고 있는 폭/직경을 가질 수 있다.
● 탄성 요소들(22)의 시스템 ─ 이 시스템은 회전 수단(17)의 일 측면에 기계적인 인터페이스로서 작용하여, 앵커링된 부품(3)과 회전가능한 부품(4) 사이의 기계적인 로드 전달 경로가 효과적으로 됨 ─ . 탄성 요소들(22)의 이러한 시스템은 또한, FOWT(1)의 요 축선(2)에 대해 수직한 축선에서 앵커링된 부품(3)과 회전가능한 부품(4) 사이의 제한된 상대적인 회전을 허용하는 기능을 가질 수 있고, 그리고 이외에도, 설치 공정 동안 발생할 수 있는 불가피한 충격들에 대해 회전 수단(17)을 보호할 수 있다. 그렇지 않으면, 이러한 충격들은, 특히 이것이 롤러 베어링이라면, 그의 하중 용량(load capacity)과는 독립적으로, 낮은 저항과 함께 요잉 모션을 허용하는 그의 기능을 손상시키는 위험과 함께 회전 수단(17)을 잠재적으로 손상시킬 수 있고, 그리고 심지어 전체적인 FOWT의 안정성을 손상시킬 수 있는 심각한 고장으로 이어질 수 있다. 확실하게는, 작은 논-요잉(non-yawing) 회전들을 허용하는 기능은, 예를 들어 구형 롤러 베어링을 사용하여 달성될 수 있지만, 이들은 보다 낮은 하중 용량을 가지고 그리고 충격 하중들에 특히 민감하다. 따라서, 탄성 요소들(22)의 충격 보호 능력은 그렇지 않으면 획득하기 쉽지 않은 중요한 이점들을 제공한다. 일부 예들에서, 회전 수단(17)의 타 측면에서의 탄성 요소들의 제2 시스템이 포함될 수 있다. 그 결과, 회전 수단(17)은 직렬로 작동하는 탄성 요소들의 2개의 시스템들 사이에서 “부유한다”. 이는 논-요잉 회전들을 수용하기 위해 다소 보다 큰 능력을 제공한다.
● 동축 전기 연결부(23). 앵커링된 부품(3)과 웨더베이닝/회전가능한 부품(4) 사이의 상대적인 포지션은 요 축선(2)에 대한 방위각 포지션을 제외하고, 모든 자유도들에서 센터링 수단들(20, 21)에 의해 보장될 수 있다. 일부 예들에서, 센터링 수단들(20, 21)은 센터링 수단들(20, 21) 사이의 방위각 포지션을 제어하기 위해 기계적인 요소들을 포함할 수 있다. 이는, 전기 연결이 센터링 수단들(20, 21) 사이의 인터페이스의 임의의 지점에서 실행되는 것을 허용하는 하나의 방식이다. 그러나, 이러한 시스템은 복잡하게 될 수 있다. 다른 예에서, 임의의 방위각 포지션이 허용되며, 그리고 동축 전기 연결은, 바람직하게는 센터링 수단들(20, 21)을 통해 직접적으로 케이블들을 라우팅함(routing)으로써 구축될 수 있다. 사용자는, 물리적으로 동축으로 통과하지 않지만, 그 자체가 센터링 수단들(20, 21)과 동축일 전기 연결 링들을 가질 것인 (또는 즉 브러쉬들과 동등한) 슬립-링 해결책의 사용을 요구하는 전기 연결을 선택할 수 있다.
이미 언급된 바와 같이, 앵커링된 부품(3)으로부터 회전가능한 부품(4)으로 통하는 전기 동축 케이블(23)의 누적된 비틀림으로 인한 고장을 회피하기 위해 제자리에 시스템을 가지는 것이 유리할 수 있다. 다른 선택은, 비틀림의 빌드-업 (및 필수적인 해제)을 회피할 수 있는 (슬립 링들, 또는 심지어 변압기(transformer)와 같은 무접점 트랜스미션 장치(contactless transmission device)를 통해) 회전 연결을 사용하는 것이다. 다른 한편으로, 이들은 최대 5%의 관련된 에너지 손실들을 가질 수 있고, 그리고 이러한 적용에서 검토해야 하는 전력 및 세기에 대해 꽤 값비싸다. 이들은 또한, 실패의 경우에 유지되거나 대체하기에 어렵다.
본 발명의 예에서, 따라서, 케이블의 최대 허용된 비틀림 각도를 초과하지 않고, 케이블의 요 축선 주위에 FOWT의 적어도 완전한 턴을 허용하는 목적을 가지면서, 케이블의 부분이 특정한 양의 비틀림을 누적할 수 있도록, 케이블의 부분이 자유로운 상태가 되는 것이 제안된다.
이러한 유형의 케이블에 대한 최대 허용가능한 비틀림 각도를 위한 통상적인 값들은 자유로운 케이블의 각각의 미터에 대해 약 100°일 수 있다. 따라서, 약 8미터의 직선형 케이블 부분은 앵커링된 부품(3) 주위에서 회전가능한 부품(4)의 2번의 완전한 턴들을 이미 흡수할 수 있다. 적합한 센서들과의 이러한 각도를 제어하는 경우, 케이블의 일 단부를 적시에 완전히 연결해제하고 그리고 측정된 회전에 대해 반대 방향으로 상기 케이블의 자유 단부를 회전시켜, 비틀림을 경감시키는 것이 가능하다. 이후에, 케이블의 자유 단부는 다시 기계식으로 연결될 수 있다.
이러한 전체적인 조작(이 조작은 무선으로 또는 자동으로 이루어질 수 있음)은 그의 능동식 요 시스템을 통해 육상의 WTG의 전체 나셀을 회전시키는 것보다 실제적으로 매우 더 빠르며, 이는 전통적인 타워 장착 WTG들에서 이 문제가 다루어지는 방법이다. 명백하게는, 제안된 해결책에서, 케이블은, 케이블이 적합한 플러그를 통해 연결되거나 연결해제될 때 (전압으로) 작동하지 않을 수 있으며, 적합한 스위치를 가지는 것이 또한 유리하다. 그러나, 이러한 스위치는 요 서브시스템의 구역 주위에 직원들이 존재할 때와 같은 다른 조작들을 위해 그래도 바람직하다.
요 서브시스템의 부가적인 양태(및 특히 요 베어링)는, 이 요 서브시스템이 예상된 HAT(highest astronomical tide) 위에 양호하게 설치되는 동안, 요 서브시스템이 폭풍 상태들에서의 파도로부터의 물에 의해 도달될 수 있다는 것이다. 바람직한 예들에서, 앵커링된 부품(3)과 회전가능한 부품(4) 사이의 인터페이스 내측으로의 물 접근(water access)이 회피된다. 요 모션의 최상부 상에서, 요 축선에 대한 수직한 축선들에서의 작은 회전들이 또한 존재할 수 있기 때문에, 이는 정상적인 밀봉부를 가지는 것과 같이 간단하지 않다. 바람직한 예에서, (하나 이상의 탄성적인 도넛-형상(torus-shaped) 공압식 챔버들을 갖는) 공압식 시스템을 사용하는 것이 본원에 제안되며, 이 공압식 시스템은 심지어 완전히 잠수될 때 물이 민감한 시스템들에 도달하는 것을 회피하기 위해 폭풍 상태들 동안 가압될 수 있다.
온화한 날씨 조건들에서, 압력은 영이거나 거의 영일 수 있으며, 이는 FOWT의 요 모션 동안 인터페이스의 2개의 정합 측면들에 대한 마찰로부터 발생하는 공압식 챔버 상의 마모를 최소화한다.
제안된 제2 서브시스템은, 나셀(32) 자체, 또는 그의 서브-컴포넌트들 중 임의의 서브-컴포넌트를 리프팅할 수 있는 크레인이다. 이를 위해, 이러한 예를 따른 FOWT(1)는 의도적으로 수직 타워를 사용하는 것을 회피한다. 로터-나셀 조립체(5)의 필수적인 상승은 경사진 매스트들(10)을 포함하는 구조물에 의해 달성되며, 각각의 매스트는 부유 수단들(6, 9)에 연결되며, 이 부유 수단들 모두는 FOWT(1) 구조물의 가장 높은 지점(정점(31))에서 수렴한다.
각각의 부유 수단은 또한 실질적으로 수평한 폰툰들(horizontal pontoons)(11)에 의해 연속적인 수단들 중 적어도 하나에 연결되며, 이들은 수면(12) 아래로 전체적으로 또는 부분적으로 잠겨지며, 여기서의 바람직한 실시예의 해결책은 3개의 부유 수단들(6, 9)을 사용하는 것이며, 이에 의해 구조물은 결국 사면체의 형상을 가지게 된다. 이러한 유형의 구조물은, 강도 비율에 대해 특히 양호한 중량을 갖는다.
테트라플로트(Tetrafloat)로서 공지된 이러한 구조물을 사용하는 적어도 하나의 공지된 FOWT가 존재한다. 본 개시의 하나의 신규한 양태는 구조물의 정점(31)에 대한 로터/나셀 조립체(5)의 포지션 및 연결이며, 이는 종래 기술에서 이루어지는 바와 같이, 최상부 대신에 정점(31) 바로 아래에서 이루어진다. 이렇게 할 때, 수미터의 터빈 축선 높이는 손실되며 그리고 나셀(32) 자체를 다소 다시 설계하는 것이 필요하지만, 일반적으로 이러한 변경들은 나셀(32)에서의 실질적인 중량 감소를 초래하는데, 왜냐하면 로터 주요 베어링들로부터 타워 또는 지지 구조물로 하중들을 전달하는 주요 프레임을 가지는 것이 필요하지 않기 때문이다. 대신에, 상기 주요 베어링들 주위의 프레임의 구역 바로 주위에서 나셀(32)을 지지하는 것이 가능하다.
이러한 방식으로 나셀(32)을 위치결정하는 다른 이점은, 이것이 FOWT(1)의 회전가능한 부품(4) 상에 크레인을 장착시키기 위해 매스트(10) 구조물을 사용하는 가능성을 여는 것이다. 매스트(10) 구조물의 견고함은 전체적인 로터/나셀 조립체(5), 또는 물론 그의 주요 컴포넌트들 중 하나, 예컨대 나셀(5), 기어박스, 발전기, 또는 심지어 블레이드들(37) 중 일부 블레이드들을 그라운드(또는 물위의 플랫폼)으로부터 정점(31) 아래의 그의 작동 포지션으로 고정되고 그리고 제어된 방식으로, 수직으로 하강시키고 그리고 상승시키기에 강력한 크레인을 장착하는 것을 가능하게 하며, 이러한 지점에서의 나셀은 구조물의 매스트들(10) 및/또는 정점(31)의 저부 표면들과 접촉하게 된다. FOWT(1)가 그의 자체 매스트(10) 구조물 상에 장착되는 이러한 크레인을 가진다면, 임의의 고정된-저부 해상 풍력 터빈을 위해 요구되는, 대형 크레인 베슬들을 사용하는 것이 필요하지 않다.
매스트(10) 상에 장착되는 크레인은 또한 항구 조립 단계 동안 유용하며; 외부 크레인은 단지 서로에 대해 매스트들(10)을 조립하도록 요구된다. 이러한 지점으로부터, 리프팅할 하중들을 측방향으로 제어하기 위해 단지 2차 크레인들이 필요하지만, 대형 크레인들(및 일단 바다에서라면, 크레인 베슬들)의 사용이 회피된다. 특정한 조작들은, 앵커링된 부품(3)으로부터 FOWT(1)의 회전가능한 부품(4)을 연결해제─ 이는 요 서브시스템에서 설명되었던 바와 같이 특히 간단함 ─ 하지 않으면서, 해파(ocean wave) 환경 상태에서 실행하기에 위험이 있을 수 있으며, 조립체는 잔잔한 물들 또는 가까운 항구로 견인될 수 있고 그리고 파도들 없이 거기서 조작을 실시할 수 있다.
완벽함의 이유들로, 제2 서브시스템의 다양한 양태들이 다음 내용에서 제시된다:
● 로터/곤돌라 조립체(5)의 상승이 비스듬한 매스트들(10)의 구조물에 의해 달성될 수 있으며, 이는 구조물의 정점(31)에서 수렴하며 그리고 각각의 매스트(10)는 그의 베이스가 부유 수단들(6, 9)에 연결된다.
● 로터/곤돌라 조립체(5)의 에너지 생성 포지션은 전체적으로 또는 부분적으로 매스트들(10)이 수렴하는 정점(31) 아래에 있을 수 있어, 로터/곤돌라 조립체(5) ─ 또는 그의 컴포넌트들(32) 중 일부 ─ 가 매스트들(10)의 구조물과 간섭하지 않고 수직으로 상승되거나 하강되는 것을 허용한다.
● 로터/곤돌라 조립체는, 모터들(33), 풀리들(34), 케이블들(35) 및 크레인의 다른 리프팅 요소들의 영구적 또는 제거가능한 시스템을 가지며, 이는 외부 크레인을 사용할 필요 없이 로터/나셀 조립체(5) 또는 그의 컴포넌트들(32) 중 임의의 컴포넌트를 상승/하강시키는 것을 허용한다.
일부 예들에서, 블레이드(37)가 풍력 터빈의 로터(36) 바로 아래에 있는 수직 포지션에 위치결정되어 있을 때, 하나 이상의 케이블들(35)은 상기 블레이드(37)에 대해 정반대편에 위치되는 로터(36)에서 홀을 통해 지날 수 있어, 모터(33)에 작용하는 상기 블레이드(37)를 상승/하강시킬 수 있다.
일부 예들에서, 모터(27)는 지지부로서 매스트들(10) 중 하나를 사용하여 순환하는 리프팅 수단(39)을 이동시키기 위해 케이블(38)에 작용할 수 있어서, 직원 및/또는 하중들이 접근 지점(40)으로부터 로터/곤돌라 조립체(5)의 높이로 상승될 수 있다.
일부 예들에서, 접근 지점(40)을 가지지 않는 매스트들(10)은 나셀로부터 매스트(10)의 베이스로의 리프팅 수단(39)을 갖는다.
전술된 2개의 서브시스템들은, 비록 다른 구성들이 가능할 수 있지만, 이들의 이점들을 가장 잘 이용하는 도 1 내지 도 7의 예에서 매우 특정한 구조물의 FOWT(1)에 통합될 수 있다.
구조물은 2개의 주요 부유 수단들(9) ─ 바람직하게는 AMF(1)의 부유능력의 대부분을 제공하는 원통형 부표들 ─ 및 제3 부유 수단, FOWT(1)의 앵커링된 부품(3)에 통합되는 하부 본체(7)에서 결국 분할되는 선회 부표(6), 및 FOWT(1)의 회전가능부/회전가능한 부품(4)에 통합되는 상부 본체(8)를 포함한다.
선회 부표(6)에 의해 제공되는 부유가 제한되며, 그리고 그의 기능은 FOWT를 위한 제3 지지 지점을 제공하여 FOWT를 안정하게 하는 것이다. 주요 부유 수단들(9)은 주요 부유 수단들 자체 사이에 그리고 실질적으로 수평한 폰톤들(11)에 의해 선회 부표에 상호연결될 수 있다.
각각의 주요 부유 수단들(9)로부터 그리고 선회 부표(6)의 상부 본체(8)로부터, 경사진 매스트는 3개의 매스트들이 연결되는 구조물의 정점을 향해 상방으로 연장한다. 이러한 매스트들(10) 중 2개는, 로터 평면에 대해 평행한 (또는 약간 풍하측으로(downwind) 경사진) 실질적으로 수직한 동일 평면에 있을 수 있다. 로터 자체가 바람직하게는 “풍하측” 구성인 것을 유의해야 하며, 이는 구조물의 나머지로부터 바람 방향으로 하류인 것을 의미한다.
매스트들(10)은 공기역학적 손실들을 감소시키기 위해 트러스 구조물들일 수 있다. 수평 폰툰들(11)은 또한 바람직하게는, 파도가 실질적으로 평탄한 표면에 부딪힐 때 발생할 수 있고 그리고 일부 상황들에서 매우 격렬할 수 있는 파도 슬래밍(wave slamming)을 최소화하기 위해 트러스 구조물들일 수 있다. 이러한 충격들은, 상대적으로 작은 직경의 원통형 튜브들을 사용하여 여기에 구축된 이러한 유형의 트러스 구조물들에서 작으며, 이는 슬래밍 현상이 심각할 수 있는 평탄 표면들을 제공하지 않는다.
로터의 언급된 풍하측 구성은 로터/나셀 조립체(5) ─ 로터/나셀 조립체는 가장 높은 공기 항력(aerodynamic drag)을 가짐 ─ 를 요 축선(2)으로부터 가능한 한 멀리 두며, 이는 바람 방향의 변경에 대해 보다 빠르게 응답하는 FOWT(1)를 초래하여, 구조물을 정렬시키는 요잉 모션(이 요잉 모션은 공력 하중(aerodynamic load)의 중심 ─ 대략적으로 로터 중심 ─ 과 요 축선(2) 사이의 거리에 비례함)을 최대화함으로써 수동식 요 시스템의 응답을 개선시킨다.
언급된 바와 같이, 선회 부표(6)는 회전가능한 부품(4)으로 통합되는 상부 본체(8), 및 앵커링된 부품(3)으로 통합되는 하부 본체로 분할되며, 이 앵커링된 부품은 3개의 실질적으로 수직한 계류 라인들(mooring lines)(14)에 의해 해저(13)에 연결되며, 이들의 연결 지점들은 실질적으로 정삼각형을 형성한다.
각각의 계류 라인들(14)은 통상적으로 (양단부들에서의) 체인들 및 강 케이블(체인 부분들을 연결시키는 가장 긴 부분)의 조합을 포함할 수 있다. 따라서, 선회 부표(6)의 하부 본체(7)는 감소된 치수들의 TLP(tension leg platform)의 특성을 가질 수 있다.
이러한 “미니(mini)-TLP”는, 수면(12) 평면 상의 수평 병진 운동을 제외한 이의 모션을 현저하게 제한하기에 충분한 테더 사전장력(tether pretension)을 갖는다. 이러한 움직임은 터빈의 추력에 대해 보상하기 위해 어느 정도까지 일어날 것이다. 이러한 미니-TLP는, 3개의 계류 라인들(14)이 연결되는 그의 바다속 앵커 지점(15)이 물리적으로 단일 본체일 수 있다는 이점을 가져, TLP의 일반적인 특성을 가지지 않는 다른 가능한 계류 시스템들과 비교할 때 설치 시간을 상당히 감소시킨다.
그러나, 본 발명은 TLP-유형 계류 시스템과의 그의 사용에 제한되지 않으며, 이러한 시스템은 매우 다양한 물 깊이 및 해저 유형에 대해 유리한 특징들을 갖는다. 이는, (수직한) 가장 짧은 가능한 계류 라인들을 특징으로 하며, 3개 모든 라인들은 (일부 상황들에서 전체적인 터빈 추력을 가지는 각각의 라인과는 대조적으로) 터빈 로터 추력에 대응하는 것에 참여한다. 이는 또한, 선회 부표의 수직 모션을 제약하며, 이는 결국, 제안된 실시예에서, 그의 자신의 축선을 따라 로터 모션을 제한하고, 이는 풍력 터빈의 전력 안정성에 대해 유익하다.
회전가능한 부품(4)이 요 축선(2)에 대해 수직한 2개의 축선에서의 작은 회전들을 겪을 것인 것이라는 사실을 고려할 때, 탄성 요소들(22)의 시스템의 유용성이 여기서 명백해진다. 그들 사이의 주요 부유 수단들(9) 사이의 그리고 선회 부표(6)에 대한 거리는 (수면(12) 위에 있는 로터/나셀 조립체(5)의 상승과 동일한 크기 정도로) 상당할 수 있다. 80미터 이상에서, 구조물의 피치/롤 각도는 심지어 심각한 바다 상태들에서 10° 미만일 수 있다. 이는, 적합하게 설계된다면, 탄성 요소들(22)의 시스템에 의해 이미 흡수될 수 있다.
본원에서 설명되는 것과 같은, 하지만 보다 작은 치수들을 갖는 FOWT는 잔잔한 물 위치들에서 실행가능하지만, 최대 30m의 높이의 파도들이 발생할 수 있는 북대서양과 같은 외양(open ocean)의 물에서는 실행가능하지 않다. 이러한 탄성 요소들에 대한 바람직한 재료는, 그의 우수한 기계적인 특성들 및 부식 내성으로 인해, 프리로딩된(preloaded) 천연 고무이며, 이는 어떠한 유지 보수를 요구하지 않고, 수년 동안 도로 및 기차 교량들을 지지하는 데 사용되는 토목 공학 분야에서 주지되어 있다.
요 서브시스템에 대한 바람직한 실시예는 도 3에서 상세도로 도시된다. 선택된 회전 수단(17)은 이중 열 원뿔형 롤러 베어링이며, 외부 레이스웨이(outer raceway)(18)는 선회 부표(6)의 상부 본체(8)에 부착된다. 2개의 열들의 각도 접촉 베어링 볼들을 갖는 베어링을 사용하는 것이 또한 가능할 것이며, 이는, 육지의 풍력 터빈의 요 시스템 및 피치 시스템을 위해 일반적으로 사용되는 것들과 유사한 특성들을 갖는다.
베어링(17)의 내부 레이스웨이(19)는, 원뿔형 내부 표면을 가지는 2개의 원형 판들(24)에 견고하게 연결될 수 있으며, 둘 모두의 원형 판들(24)은 베어링(17)의 중간 수평 평면에 대해 대칭으로, 베어링(17)의 내부 레이스웨이(19) 아래에 포개어져 배열된다. 탄성 요소들(22)은 타일(tile)과 같이 성형될 수 있고, 그리고 원형 판들(24)의 내부 원뿔형 표면을 따라 균일하게 분포될 수 있고, 그리고 내부 레이스웨이(19)를 원형 판들(24)에 연결시키는 볼트결합식 연결이 폐쇄됨에 따라 프리로딩되어질 수 있어, 도 3에서 도시되는 바와 같이, 탄성 요소들(22)의 내부 표면들 중간에 센터링 카운터-원뿔부(21)를 또한 트랩핑한다(trapping).
베어링(17), 원형 판들(24), 탄성 요소들(22), 및 센터링 카운터-원뿔부(21)의 조립체는 독립적으로 조립될 수 있고, 그리고 본체로의 설치 전에 선회 부표(6)의 상부 본체(8) 아래에 장착될 수 있다. 설치 동안, 이러한 상부 본체(8)는 하부 본체(7) 위로 상승되며, 이 하부 본체는 이전에 사전-조립되어 있고 그리고 그의 미니-TLP 구성으로 앵커링된 부품(3)의 나머지와 프리로딩되어 있다.
이러한 예의 센터링 원뿔부(20)는 이러한 하부 본체(7)의 부품이며, 이 부품은 약간 넉넉한 치수들을 갖는다. 센터링 원뿔부의 각도는 그의 센터링 카운터-원뿔부(21)와의 인터로킹(interlocking)을 회피하도록, 그리고 통하는 하중들을 처리하기에 충분한 구조적 견고도를 가지도록 설계될 수 있다.
비록 10° 내지 30°의 값들이 실행가능하지만, 약 15°의 원뿔 각도가 일부 예들에서 제안된다. 일단 상부 본체(8)가 하부 본체(7)의 최상부 상에 다소 동심으로 위치결정된다면, 상부 본체(8)는 하강되며 그리고 원뿔부(20) 및 카운터-원뿔부(21)는 접촉 허용되며, 충격 에너지는 탄성 요소들(22)에 의해 흡수된다. 조립체는, 상부 본체(8)가 하강하는 동안, 원뿔부(20)와 카운터-원뿔부(21) 사이의 갭이 폐쇄됨에 따라 자동으로 셀프-센터링한다(self-center).
일단 이러한 조인트가 폐쇄된다면, 회전가능한 부품(4)이 앵커링된 부품(3)에 이미 견고하게 부착되며, 그리고 사용자는 조인트를 고정시키는 것을 진행할 수 있다. 동축 케이블(23)의 연결을 허용하기 위해, 큰 크기의(특별한 스레드 M200 또는 이보다 큰 크기의 스레드가 MW 시스템을 위해 요구될 수 있음), 그리고 내측이 중공형인 마스터 볼트(master bolt)(25)에 의해 이를 실행하는 것이 본원에 제안된다. 이러한 마스터 볼트(25)는 센터링 원뿔부(20)의 선단부에서 원통형 내부 표면에서 기계가공된 내부 스레드로 직접적으로 스레딩되고, 그리고 마스터 볼트가 조여짐에 따라, 마스터 볼트는 카운터-원뿔부(21)에 대해 센터링 원뿔부(20)를 완전히 잠금시킨다. 이들 사이의 큰 접촉 표면 및 마스터 볼트(25) 상의 조임 토크(tightening torque)로 인해, 다양한 하중들을 위한 하중 경로는, 마스터 볼트(25)를 통할 것 대신에 센터링 수단들(20, 21)를 통할 것이며, 이는 피로 관점으로부터 매우 편리하다.
선회 부표(6)의 상부 본체(8)의 리프팅 및 하강을 제어하는 수단에 관해 말하자면, 설치 공정 동안, 예에서, 상기 상부 본체에 부착되도록 특별히 설계된 바지선(41)에 의해 그렇게 실행하는 것(그리고 항구로부터 구조물의 운송을 보조하는 것)이 제안되며, 이는 드래프트(draft)를 제어하기 위해 잠수함과 같이, 침수되거나 비워질 수 있는 내부 챔버들의 시스템에 의해 가변적인 부유를 제공할 수 있다. 이러한 종류의 반잠수형 바지선(41)은 시장에서 용이하게 이용가능하며, 단지 상부 본체(8)에 대한 적합한 연결 시스템 또는 상부 본체 주위에 있는 폰톤들은 임시적으로 설계될 수 있다. 대안적으로, 하부 본체(7)는 대신에 부분적으로 잠길 수 있는데, 왜냐하면 하부 본체가 이미 챔버들의 시스템을 갖기 때문이다. 둘 모두의 조합이 또한 가능하다.
케이블 비틀림을 해제하는 시스템은 실행가능할 다수의 구성들을 가질 수 있으며; 도 4는 예시적인 예로서 가능한 실시예를 도시한다. 후퇴가능한 플러그(retractable plug)(26)는 선회 부표(6)의 상부 본체(8)의 최상부 구역에 장착된다. 동일한 구역에서, 작은 모터(27)가 장착되며, 이 작은 모터는 웜(worm)(28)과 커플링되고, 이 웜은 FOWT(1)의 동일한 수직한 요 축선(2) 주위에서 회전하는 웜 휠(worm wheel)(29)과 맞물린다
전기 케이블(30)의 부분은 웜 휠의 하부 측에 부착되고, 그리고 예컨대, 적어도 8미터의 거리(FOWT가 바람을 따라 웨더베이닝함에 따라 FOWT(1)의 2번의 완전한 턴들을 수용하기에 충분한 거리) 로 수직 하방으로 연장하고, 그 후 마스터 볼트(25)의 중공형 부분을 통해 걸쳐지고 그리고 동축 케이블(23)에 연결된다. 이러한 방식으로, 회전가능한 부품(4)의 2번의(수직 하방의 케이블 부분(30)의 길이에 따라 2번 초과의) 완전한 회전들 후에, 후퇴가능한 플러그(26)는 물리적으로 연결해제될 수 있으며, 그리고 그 후, 모터(27)는 누적된 비틀림에 대해 반대의 방향으로 케이블(30)을 권선해제하도록 구동되고, 그 후 후퇴가능한 플러그(26)는 다시 플러그 인될 수 있다. 이러한 예에 따른 시스템은, 대안예인 로터리(rotary) 연결에 연관된 상당한 에너지 손실들을 회피할 수 있다. 그리고, 전체적인 조작이 육상의 풍력 터빈(이는 전체적인 나셀의 회전을 요구하며, 이는 극도로 느림)에서의 동등물보다 훨씬 더 빠른 것을 고려하면, 기계의 강제된 정지에 관련된 에너지 손실들이 보다 낮을 것이다.
FOWT(1)의 회전가능한 부품(4) 상에 장착되는 크레인 시스템은 또한 다양한 가능한 실시예들을 갖는다. 구동 트레인은 타워의 최상부 상에 있는 대신에, 매스트들(10)의 정점(31) 아래에 있는 구조물에 부착될 수 있으며, 이는 크레인 구조물로서 매스트들(10)의 구조물을 사용하는 것을 가능하게 한다.
매스트들(10)의 트러스 구조물은, Derrick-유형 크레인의 것과 유사한 구성 및 특성들을 가질 수 있지만, 회전가능한 부품(4)에 대해 고정된 크레인 붐(boom)을 갖는다.
도 5는, 컴포넌트(32), 이러한 경우에 나셀(nacelle)에 대한 가상적인 리프트 조작을 나타내는 예시적인 예로서 포함된다. 매스트들(10) 중 하나의 마지막 부분은 여기서 시각화를 보다 용이하게 하도록 제거되어 있다. 크레인 모터(33)는 여기서, 선회 부표(6)에 연결되지만 Derrick 크레인들에서 일반적인 것과 마찬가지로 저부에서 또한 장착될 수 있는 매스트(10)의 최상부에서 도시된다. 1개 대신에 2개의 리프팅 케이블들(35)의 사용은 하중을 제어하는 것을 보다 용이하게 한다. 크레인 모터(33)가 장착되는 동일한 매스트(10)를 통해 이동할 것인 ─ 그 자체 케이블(38)을 갖는 리프트, 또는 엘리베이터인 ─ 상승 수단(39)을 동원하기 위해 동일한 크레인 모터(33)를 사용하는 것이 또한 제안되며, 이는 이러한 상당히 강력한 크레인 모터(33)에게 이중 기능을 부여한다.
이러한 이중 기능은, 동일한 모터를 사용하여, 클러치를 가지는 2개의 기능들을 위한 독립적인 액슬들을 갖는 기어박스에 의해 호환성이 있는 것으로 만들어진다. 주요 상승 수단(39) 이외에도, 구조물은 접근 지점(40) 없이 매스트들 상의 2차 상승 수단과 끼워맞춤될 수 있으며, 매스트들 자체의 검사(용접들, 페인트 등)의 목적으로 매스트들 모두는 크레인 모터(33)에 연결되거나 작은 2차 모터들을 갖는다.
도 7은, 수형(내부) 및 암형(외부) 센터링 수단들(20, 21)이 상부 본체(8)를 하강시키기 전에 정렬되도록, 적합한 지지부들과 끼워맞춤되는 반잠수형 바지선(41)이 이미 설치된 하부 본체(7)의 최상부 상의 선회 부표(6)의 상부 본체(8)의 위치 결정을 어떻게 제어할 수 있는지의 일 예를 예시한다. 이미 전에 언급된 바와 같이, 하부 본체(7)와 상부 본체(8) 사이의 상대적인 움직임은 또한, 특히 장력 레그 플랫폼을 포함하는 하부 본체의 경우에 하부 본체의 부력을 제어함으로써 달성될 수 있다.
이러한 예에서, 바다에서 하부 본체(7)와 상부 본체(8)를 결합하기 전에, 상부 본체(8)가 원뿔부(20)를 수용하기에 적합한 베어링, 즉, 회전 수단 및 센터링 수단, 이러한 경우에, 암형 커플링(21)과 사전-조립되는 것이 유의되어야 한다. 즉, 바다에서 앵커링된 부품과 정합될 수 있는 시스템은, 구조물의 회전가능한 부품에 고정되는 상부 본체(8)의 일부 및 앵커링될 것인 하부 본체(7)의 일부를 포함한다. 조립 후에, 센터링 수단들 모두는 구조물의 앵커링된 부품(3)의 일부를 형성한다. 수형-암형 센터링 수단들은, 심지어 바다에서, 전체적인 회전가능한 부품(4)이 앵커링된 부품(3)의 최상부 상의 그의 작업 포지션으로 적절하게 잠금될 수 있는 것을 가능하게 한다.
Claims (15)
- 부유식 해상 수평 축선 풍력 터빈 구조물(floating offshore horizontal axis wind turbine structure)(1)로서,
해저에 앵커링되는(anchored) 앵커링된 부품(3), 및 회전가능한 부품(4)을 포함하며, 상기 구조물(1)은 선회 부표(pivot buoy)(6, 9)를 포함하는 적어도 3개의 부유 수단들에 의해 지지되고,
상기 선회 부표(6)는,
상기 해저(13)에 앵커링되는 하부 본체(7), 및 상기 풍력 터빈 구조물(1)의 상기 회전가능한 부품(4)에 고정되는 상부 본체(8),
상기 선회 부표(6)의 상기 하부 본체(7)와 상기 상부 본체(8) 사이의 전기 연결부, 및
상기 하부 본체(7)와 상기 상부 본체(8)를 연결시키는 요 시스템(yaw system)을 포함하며,
상기 요 시스템은 상기 상부 본체(8) 및 상기 하부 본체(7) 중 하나에 연결되는 내부 레이스웨이(inner raceway)(19), 및 상기 상부 본체 및 상기 하부 본체 중 다른 하나에 연결되는 외부 레이스웨이(18)를 포함하는 회전 수단(17)을 포함하고, 그리고
상기 내부 레이스웨이(19) 및 상기 외부 레이스웨이(18)는 수직한 요 축선(2) 주위에서 서로에 대해 회전하도록 구성되며, 상기 요 시스템은 상기 수직한 요 축선(2)을 중심으로 회전함으로써, 우세한 바람 방향과의 상기 풍력 터빈 구조물(1)의 회전가능한 부품(4)의 정렬을 허용하도록 구성되며,
상기 요 시스템은,
상기 요 축선(2)과 동축인 내부 센터링 수단(inner centering means)(20) 및 외부 센터링 수단(outer centering means)(21), 그리고
상기 내부 센터링 수단(20)과 상기 회전 수단의 내부 레이스웨이(19) 사이에 배열되는 탄성 요소들(22)을 포함하며, 상기 탄성 요소들(22)은 상기 회전 수단(17)의 일 측면에서 기계적인 인터페이스(mechanical interface)로서 작용하고 그리고 상기 회전 수단(17)으로 기계적인 하중들을 전달하도록 구성되어, 상기 요 축선(2)에 대해 수직한 축선에서 상기 회전가능한 부품(4)과 상기 앵커링된 부품(3) 사이에 제한된 상대적인 회전을 허용하고 그리고 상기 회전가능한 부품(4) 및 상기 앵커링된 부품(3)의 조립체의 해상 설치 공정 동안 발생할 수 있는 충격들의 상기 회전 수단(17)을 보호하는 것을 특징으로 하는,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항에 있어서,
상기 선회 부표(6)의 상기 하부 본체(7)와 상기 상부 본체(8) 사이의 상기 전기 연결부는 상기 요 축선(2)과 동축인,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항 또는 제2 항에 있어서,
상기 내부 센터링 수단(20)은 원뿔부(cone)이며, 그리고 상기 외부 센터링 수단(21)은 카운터-원뿔부(counter-cone)인,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항 또는 제2 항에 있어서,
상기 회전 수단(17)은 베어링들이며, 그리고 상기 베어링들의 내부 레이스웨이(19)는 원뿔형 내부 표면을 가지는 2개의 원형 판들(24)에 견고하게 연결되고, 상기 원형 판들(24) 모두는 상기 베어링(17)의 중간 수평 평면에 대해 대칭으로, 하나가 상기 베어링의 내부 레이스웨이(19)의 위에 그리고 다른 하나가 상기 베어링의 내부 레이스웨이(19)의 아래에 배열되며, 그리고 상기 탄성 요소들(22)은 타일(tile)과 같은 형상으로 성형되고, 그리고 상기 원형 판들(24)의 내부 원뿔형 표면을 따라 균일하게 분포되며, 그리고 상기 탄성 요소들은, 상기 내부 레이스웨이(19)를 상기 원형 판들(24)에 연결시키는 수단들 또는 볼트결합식(bolted) 연결에 의해 프리로딩되어(preloaded), 상기 탄성 요소들(22)의 내부 표면들 사이에 센터링 카운터-원뿔부(21)를 또한 트랩핑하는(trapping),
부유식 해상 수평 축선 풍력 터빈 구조물. - 제4 항에 있어서,
상기 탄성 요소들(22)은 프리로딩된 천연 고무로 만들어지는,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항에 있어서,
상기 회전 수단(17)의 타 측면에서 탄성 요소들의 제2 시스템이 포함되는,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항 또는 제2 항에 있어서,
상기 요 시스템은, 상기 회전가능한 부품이 상기 우세한 바람 방향과 웨더베이닝하고(weathervane) 그리고 정렬하는 것을 허용하도록 구성되는 수동식 요 시스템인,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항 또는 제2 항에 있어서,
상기 앵커링된 부품(3)은 부유식 하부 본체(7) 및 복수의 계류 라인들(mooring lines)(14)을 포함하는 장력 레그 플랫폼(tension leg platform)을 포함하는,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항 또는 제2 항에 있어서,
상기 선회 부표(6)의 상기 하부 본체(7)와 상기 상부 본체(8) 사이의 상기 전기 연결부는 전기 케이블(30)의 부분을 포함하며, 상기 전기 케이블(30)의 부분을 통해 풍력 터빈에 의해 생성되는 전기가 전달되고, 그리고 상기 전기 케이블(30)의 부분은 상기 선회 부표(6)를 통하며, 상기 케이블의 비틀림 제한을 초과하지 않고, 상기 앵커링된 부품(3)에 대한 상기 회전가능한 부품(4)의 적어도 1번의 완전한 턴(turn)의 비틀림을 수용하기에 충분히 긴 축선의 자유 길이를 가지는,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제9 항에 있어서,
상기 전기 케이블(30)의 연결/연결해제를 위한 기계적인 수단(26),
상기 전기 케이블에 누적된 비틀림을 보상하기 위해 상기 전기 케이블(30)의 단부들 중 하나를 터닝할(turning) 수 있는 모터(motor)(27)에 의해 구동되는 회전 수단들(28, 29), 및
제어 시스템을 더 포함하며, 상기 제어 시스템은 상기 선회 부표(6)의 상기 하부 본체(7)와 상기 상부 본체(8) 사이의 특정한 회전 각도를 측정한 후, 상기 연결/연결해제를 위한 기계적인 수단들(26)을 언플러깅하고(unplug), 상기 회전 수단들이 작용하는 상기 전기 케이블(30)의 단부 상에서 상기 회전 수단들(28, 29)이 상기 시스템에 의해 측정되는 턴들(turns)을 권선해제할 때까지, 상기 모터(27)를 구동시켜, 상기 전기 케이블에 누적된 상기 비틀림을 해제하고, 그리고 그 후 상기 연결/연결해제 수단(26)에서 다시 플러깅하는(plug),
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항 또는 제2 항에 있어서,
상기 구조물의 상기 회전가능한 부품(4)과 상기 앵커링된 부품(3) 사이에 로터리(rotary) 전기 연결부를 포함하는,
부유식 해상 수평 축선 풍력 터빈 구조물. - 제1 항 또는 제2 항에 따른, 부유식 해상 수평 축선 풍력 터빈 구조물을 설치하기 위한 방법으로서,
선회 부표(6)의 하부 본체(7)를 앵커링하는 단계 ─ 상기 하부 본체는 상기 내부 센터링 수단 및 상기 외부 센터링 수단 중 하나를 운반함 ─ ,
설치 전에, 육상에서 상기 상부 본체(8) 아래에 상기 탄성 요소들(22)을 장착하는 단계;
상기 하부 본체(7) 위에 상기 상부 본체(8)를 위치결정하는 단계 ─ 상기 상부 본체는 상기 요 축선(2)과 동축인 상기 내부 센터링 수단(20) 및 상기 외부 센터링 수단(21) 중 다른 하나를 운반함 ─ , 및
상기 내부 센터링 수단 및 상기 외부 센터링 수단이 서로 맞물리도록 상기 상부 본체(8) 및 상기 하부 본체(7)를 서로에 대해 이동시키는 단계를 포함하는,
부유식 해상 수평 축선 풍력 터빈 구조물을 설치하기 위한 방법. - 제12 항에 있어서,
상기 상부 본체(8)의 위치결정 및 상기 상부 본체(8)의 하강은 반잠수형 바지선(semi-submersible barge)(41)으로 실행되는,
부유식 해상 수평 축선 풍력 터빈 구조물을 설치하기 위한 방법. - 제12 항에 있어서,
상기 하부 본체(7)는 장력 레그 플랫폼(tension leg platform)을 포함하며, 그리고 상기 하부 본체(7)의 상승이 상기 장력 레그 플랫폼의 부력을 제어함으로써 실행되는,
부유식 해상 수평 축선 풍력 터빈 구조물을 설치하기 위한 방법. - 삭제
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ESP201730817 | 2017-06-20 | ||
ES201730817A ES2694449B2 (es) | 2017-06-20 | 2017-06-20 | Estructura flotante para aerogenerador marino |
PCT/IB2018/054499 WO2018234986A1 (en) | 2017-06-20 | 2018-06-19 | FLOATING STRUCTURE FOR WIND TURBINES AT SEA |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200020851A KR20200020851A (ko) | 2020-02-26 |
KR102290999B1 true KR102290999B1 (ko) | 2021-08-18 |
Family
ID=63036269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207001750A KR102290999B1 (ko) | 2017-06-20 | 2018-06-19 | 해상 풍력 터빈을 위한 부유식 구조물 |
Country Status (10)
Country | Link |
---|---|
US (1) | US11060507B2 (ko) |
EP (1) | EP3642479B1 (ko) |
JP (1) | JP6894016B2 (ko) |
KR (1) | KR102290999B1 (ko) |
DK (1) | DK3642479T3 (ko) |
ES (2) | ES2694449B2 (ko) |
MA (1) | MA52528B1 (ko) |
PL (1) | PL3642479T3 (ko) |
PT (1) | PT3642479T (ko) |
WO (1) | WO2018234986A1 (ko) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9709029B2 (en) | 2011-06-21 | 2017-07-18 | University Of Virginia Patent Foundation | Morphing segmented wind turbine and related method |
SE542925C2 (en) * | 2018-01-19 | 2020-09-15 | Freia Offshore Ab | Floating wind power platform |
WO2019143283A1 (en) * | 2018-01-19 | 2019-07-25 | Freia Offshore Ab | Floating wind power platform with tension leg device |
BR112021015902A2 (pt) * | 2019-02-15 | 2021-11-03 | Univ Northeastern | Turbina eólica flutuante de base larga e calado raso sem nacele |
US11560876B2 (en) | 2019-03-18 | 2023-01-24 | George J. Syrovy | Stabilized horizontal-axis wind turbine |
GB2595521A (en) * | 2020-05-29 | 2021-12-01 | Trivane Ltd | Floating vessel with wind turbine support |
NO346067B1 (en) * | 2020-06-11 | 2022-01-31 | Oddmund Vik | Floating windmill |
CN111980870B (zh) * | 2020-09-03 | 2021-07-06 | 明阳智慧能源集团股份公司 | 一种抑制漂浮式双叶轮风电机组浮台横摇运动的控制方法 |
GB2598615A (en) | 2020-09-04 | 2022-03-09 | Ebtec As | Floating support arrangement |
DK202170169A1 (en) * | 2021-04-12 | 2022-10-19 | Stiesdal Offshore As | Offshore wind turbine with a floating platform |
CN118339073A (zh) | 2021-11-10 | 2024-07-12 | 指数可再生能源有限公司 | 将海上浮动结构联接预铺设系泊系统的快速连接器及方法 |
WO2023173100A1 (en) * | 2022-03-11 | 2023-09-14 | Sofec, Inc. | Offshore wind turbine systems and processes for installing same |
CN115675768B (zh) * | 2022-12-09 | 2023-04-28 | 北方工业大学 | 一种海上风电抗风浪浮式基础 |
CN116905884B (zh) * | 2023-09-14 | 2023-11-21 | 国网山西省电力公司长治供电公司 | 一种装配高压配电线路的智能型耐张杆 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002073032A1 (en) | 2001-03-08 | 2002-09-19 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Offshore floating wind power generation plant |
GB2394498A (en) | 2002-10-23 | 2004-04-28 | Engineering Business Ltd | Socket foundation for an offshore structure |
WO2010071433A2 (en) | 2008-12-18 | 2010-06-24 | Single Buoy Moorings Inc. | Removable offshore wind turbines with pre-installed mooring system |
US20160061192A1 (en) | 2013-04-18 | 2016-03-03 | Marc Guyot | Floating wind turbine structure |
WO2016083634A1 (es) | 2014-11-26 | 2016-06-02 | Saitec, S.A. | Plataforma flotante de aprovechamiento de energía eólica |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3107252A1 (de) | 1981-02-26 | 1982-09-09 | Erno Raumfahrttechnik Gmbh, 2800 Bremen | "schwimmende windkraftanlage" |
JPH03222872A (ja) * | 1990-01-29 | 1991-10-01 | Mitsubishi Heavy Ind Ltd | 風車のヨー制御方法 |
NL1006496C2 (nl) * | 1997-07-07 | 1999-01-08 | Lagerwey Windturbine B V | Windmolen-eiland. |
JP2003035251A (ja) * | 2001-07-19 | 2003-02-07 | Fuji Heavy Ind Ltd | ビル用風力発電装置 |
NO20052704L (no) | 2005-06-06 | 2006-12-07 | Norsk Hydro As | Flytende vindturbininstallasjon. |
JP5297606B2 (ja) * | 2007-07-03 | 2013-09-25 | 五洋建設株式会社 | 洋上風力発電装置の設置方法 |
PL2271547T3 (pl) | 2008-04-23 | 2014-08-29 | Principle Power Inc | Platforma, typu offshore, stabilizowana kolumnami, z płytami tłumiącymi, typu „pułapki wodnej”, oraz z asymetrycznym systemem cumowniczym do podtrzymywania turbin wiatrowych, typu offshore |
PL218742B1 (pl) * | 2011-06-07 | 2015-01-30 | Vistal Wind Power Spółka Z Ograniczoną Odpowiedzialnością | Morska elektrownia wiatrowa oraz sposób stawiania morskiej elektrowni wiatrowej |
CN112009634A (zh) | 2013-04-30 | 2020-12-01 | Acs服务通信与能源公司 | 在近海设施中的可潜的主动式支撑结构 |
JP2014222045A (ja) * | 2013-05-14 | 2014-11-27 | 三井海洋開発株式会社 | 浮体式洋上風力発電装置の浮体への支承装置 |
EP2821335B1 (en) | 2013-07-02 | 2018-11-14 | Alstom Renovables España, S.L. | Floating wind turbine |
ES2440894B1 (es) * | 2013-10-23 | 2014-11-07 | Saitec, S.A. | Procedimiento de fabricación de una plataforma eólica marina, plataforma resultante y sistema de aprovechamiento de energía eólica |
-
2017
- 2017-06-20 ES ES201730817A patent/ES2694449B2/es not_active Expired - Fee Related
-
2018
- 2018-06-19 EP EP18746288.2A patent/EP3642479B1/en active Active
- 2018-06-19 PT PT187462882T patent/PT3642479T/pt unknown
- 2018-06-19 WO PCT/IB2018/054499 patent/WO2018234986A1/en active Search and Examination
- 2018-06-19 MA MA52528A patent/MA52528B1/fr unknown
- 2018-06-19 KR KR1020207001750A patent/KR102290999B1/ko active IP Right Grant
- 2018-06-19 JP JP2019571219A patent/JP6894016B2/ja active Active
- 2018-06-19 DK DK18746288.2T patent/DK3642479T3/da active
- 2018-06-19 ES ES18746288T patent/ES2874800T3/es active Active
- 2018-06-19 PL PL18746288T patent/PL3642479T3/pl unknown
- 2018-06-19 US US16/623,971 patent/US11060507B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002073032A1 (en) | 2001-03-08 | 2002-09-19 | Ishikawajima-Harima Jukogyo Kabushiki Kaisha | Offshore floating wind power generation plant |
GB2394498A (en) | 2002-10-23 | 2004-04-28 | Engineering Business Ltd | Socket foundation for an offshore structure |
WO2010071433A2 (en) | 2008-12-18 | 2010-06-24 | Single Buoy Moorings Inc. | Removable offshore wind turbines with pre-installed mooring system |
US20160061192A1 (en) | 2013-04-18 | 2016-03-03 | Marc Guyot | Floating wind turbine structure |
WO2016083634A1 (es) | 2014-11-26 | 2016-06-02 | Saitec, S.A. | Plataforma flotante de aprovechamiento de energía eólica |
Also Published As
Publication number | Publication date |
---|---|
EP3642479B1 (en) | 2021-03-17 |
PL3642479T3 (pl) | 2021-10-04 |
JP6894016B2 (ja) | 2021-06-23 |
MA52528A (fr) | 2020-04-29 |
WO2018234986A1 (en) | 2018-12-27 |
ES2694449A1 (es) | 2018-12-20 |
US20200173422A1 (en) | 2020-06-04 |
ES2694449B2 (es) | 2020-06-02 |
JP2020524240A (ja) | 2020-08-13 |
PT3642479T (pt) | 2021-06-17 |
US11060507B2 (en) | 2021-07-13 |
MA52528B1 (fr) | 2021-07-29 |
ES2874800T3 (es) | 2021-11-05 |
DK3642479T3 (da) | 2021-06-14 |
KR20200020851A (ko) | 2020-02-26 |
EP3642479A1 (en) | 2020-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102290999B1 (ko) | 해상 풍력 터빈을 위한 부유식 구조물 | |
EP2606228B1 (en) | Offshore wind turbine and methods of installing same | |
US8240955B2 (en) | Tower segments and method for off-shore wind turbines | |
KR101713618B1 (ko) | 해안 풍력 터빈의 지지를 위한 워터-엔트랩먼트 플레이트 및 비대칭 무링 시스템을 가진 칼럼-안정화된 해안 플랫폼 | |
US9347433B2 (en) | Wind turbine installation and advance double counter-rotating blades, 90° drive assembly with lower generator mounting system | |
US8662792B2 (en) | Seat portion structure for a hydraulic turbine engine | |
US8937395B2 (en) | Ocean floor mounting of wave energy converters | |
US20120093589A1 (en) | Foundation support system for an offshore wind energy convertor, corresponding to an offshore wind power generating facility | |
US20220128033A1 (en) | Shallow draft, wide-base floating wind turbine without nacelle | |
EP2185809A2 (en) | Deep water water current turbine installations | |
US20130052015A1 (en) | Arrangement and a method in connection with a floating wind turbine | |
EP0015131A1 (en) | Support structure for wind-powered electric generators | |
WO2022098286A1 (en) | Semi-submersible wind power platform and method of docking such platform | |
WO2010151145A1 (en) | Windmill and method of installation, intervention or decommissioning | |
GB2587316A (en) | Floating apparatus for extracting energy from fluid currents | |
SE542891C2 (en) | A floating vertical axis wind turbine with peripheral water turbine assemblies | |
KR20130048853A (ko) | 부유식 해상 풍력발전장치 | |
US20230287869A1 (en) | Offshore wind turbine systems and processes for installing same | |
WO2023140736A1 (en) | Windmill construction and method for installation of same | |
WO2022049269A1 (en) | Floating support arrangement | |
NO20200856A1 (ko) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |