[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR102260344B1 - SiC 웨이퍼의 생성 방법 - Google Patents

SiC 웨이퍼의 생성 방법 Download PDF

Info

Publication number
KR102260344B1
KR102260344B1 KR1020170123451A KR20170123451A KR102260344B1 KR 102260344 B1 KR102260344 B1 KR 102260344B1 KR 1020170123451 A KR1020170123451 A KR 1020170123451A KR 20170123451 A KR20170123451 A KR 20170123451A KR 102260344 B1 KR102260344 B1 KR 102260344B1
Authority
KR
South Korea
Prior art keywords
wafer
modified layer
sic
ingot
single crystal
Prior art date
Application number
KR1020170123451A
Other languages
English (en)
Other versions
KR20180035689A (ko
Inventor
가즈야 히라타
Original Assignee
가부시기가이샤 디스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시기가이샤 디스코 filed Critical 가부시기가이샤 디스코
Publication of KR20180035689A publication Critical patent/KR20180035689A/ko
Application granted granted Critical
Publication of KR102260344B1 publication Critical patent/KR102260344B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02027Setting crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

(과제) 생산성의 향상이 도모되는 웨이퍼 생성 방법을 제공한다.
(해결 수단) 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼의 생성 방법으로서, SiC 에 대해 투과성을 갖는 파장의 펄스 레이저 광선의 집광점을 잉곳의 상면으로부터 생성해야 할 웨이퍼의 두께에 상당하는 깊이에 위치 결정함과 함께, 잉곳을 오프각이 형성되는 방향과 직교하는 방향으로 가공 이송함으로써, 잉곳 내부에 개질층과, 그 개질층으로부터 c 면을 따라 전파되는 크랙을 형성하는 개질층 형성 가공을, 오프각이 형성되는 방향으로 잉곳을 인덱스 이송하여 복수 회 실시하여 박리면을 형성하는 박리면 형성 공정과, 박리면을 계면으로 하여 잉곳의 일부를 박리하여 SiC 웨이퍼를 생성하는 웨이퍼를 생성 공정을 포함한다. SiC 웨이퍼의 생성 방법은, 추가로, 박리한 SiC 웨이퍼의 외주에 모따기 가공을 실시하여 버를 제거하는 모따기 가공 공정과, SiC 웨이퍼의 박리면을 연삭하여 평활면으로 마무리하는 연삭 공정을 포함한다.

Description

SiC 웨이퍼의 생성 방법{SiC WAFER PRODUCING METHOD}
본 발명은, 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼의 생성 방법에 관한 것이다.
IC 나 LSI, LED 등의 디바이스는, Si (실리콘) 나 Al2O3 (사파이어) 등을 소재로 한 웨이퍼의 표면에 기능층이 적층되어 분할 예정 라인에 의해 구획되어 형성된다. 또, 파워 디바이스나 LED 등은 단결정 SiC (탄화규소) 를 소재로 한 웨이퍼의 표면에 기능층이 적층되어 분할 예정 라인에 의해 구획되어 형성된다. 디바이스가 형성된 웨이퍼는, 절삭 장치나 레이저 가공 장치에 의해 분할 예정 라인에 가공이 실시되어 개개의 디바이스 칩으로 분할된다. 분할된 각 디바이스 칩은 휴대전화나 PC 등의 전기 기기에 이용되고 있다.
디바이스가 형성되는 웨이퍼는, 일반적으로 원기둥 형상인 잉곳을 와이어 소로 얇게 절단함으로써 생성된다. 절단된 웨이퍼의 표면 및 이면은, 연마함으로써 경면으로 마무리된다 (특허문헌 1 참조). 그러나, 잉곳을 와이어 소로 절단하고, 절단된 웨이퍼의 표면 및 이면을 연마하면, 잉곳의 대부분 (70 ∼ 80 %) 이 버려지게 되어 경제적이지 않다는 문제가 있다. 특히 단결정 SiC 잉곳에 있어서는, 모스 경도가 높아 와이어 소에 의한 절단이 곤란하여 상당한 시간을 필요로 하기 때문에 생산성이 나쁨과 함께, 잉곳의 단가가 높아서 효율적으로 웨이퍼를 생성하는 것에 과제를 가지고 있다.
그래서, SiC 에 대해 투과성을 갖는 파장의 레이저 광선의 집광점을 SiC 잉곳의 내부에 위치 결정하여 SiC 잉곳에 레이저 광선을 조사함으로써 절단 예정면에 개질층을 형성하고, 개질층이 형성된 절단 예정면을 절단하여 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 기술이 제안되어 있다 (특허문헌 2 참조).
일본 공개특허공보 2000-94221호 일본 공개특허공보 2013-49161호
그런데, 특허문헌 2 에 개시된 종래의 기술로 SiC 잉곳으로부터 SiC 웨이퍼를 생성하기 위해서는 개질층을 10 ㎛ 정도의 간격을 두고 조밀하게 형성해야만 하여 생산성이 나쁘다는 문제가 있다.
따라서, 본 발명의 목적은, 생산성의 향상이 도모되는 SiC 웨이퍼 생성 방법을 제공하는 것이다.
본 발명에 의하면, 제 1 면과, 그 제 1 면과 반대측인 제 2 면과, 그 제 1 면으로부터 그 제 2 면에 도달하여 그 제 1 면의 수선에 대해 경사져 있는 c 축과, 그 c 축과 직교하는 c 면을 갖고, 그 c 면과 그 제 1 면 사이에 오프각이 형성되는 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼 생성 방법으로서, SiC 에 대해 투과성을 갖는 파장의 펄스 레이저 광선의 집광점을 그 제 1 면으로부터 생성해야 할 웨이퍼의 두께에 상당하는 깊이에 위치 결정함과 함께, 그 오프각이 형성되는 제 2 방향과 직교하는 제 1 방향으로 그 단결정 SiC 잉곳과 그 집광점을 상대적으로 가공 이송하면서 그 단결정 SiC 잉곳에 펄스 레이저 광선을 조사함으로써, SiC 가 Si 와 C 로 분리되고 다음으로 조사되는 펄스 레이저 광선이 이전에 형성된 C 에 흡수되어 연쇄적으로 SiC 가 Si 와 C 로 분리되어 형성되는 직선상의 개질층과, 그 개질층으로부터 그 c 면을 따라 전파되는 크랙을 형성하는 개질층 형성 가공을, 그 오프각이 형성되는 제 2 방향으로 그 단결정 SiC 잉곳과 그 집광점을 상대적으로 인덱스 이송하여 복수 회 실시하여 박리면을 형성하는 박리면 형성 공정과, 그 박리면을 계면으로 하여 그 단결정 SiC 잉곳의 일부를 박리하여 SiC 웨이퍼를 생성하는 웨이퍼 생성 공정과, 박리한 SiC 웨이퍼의 외주에 모따기 가공을 실시하여 버를 제거하는 모따기 가공 공정과, 그 모따기 가공 공정을 실시한 후, SiC 웨이퍼의 박리면을 연삭하여 평활면으로 마무리하는 연삭 공정을 포함하는 SiC 웨이퍼의 생성 방법이 제공된다.
본 발명의 SiC 웨이퍼의 생성 방법에서는, 개질층 형성 가공에 의해, 직선상의 개질층이 동일 c 면 상에 형성됨과 함께, 개질층의 양 측으로 c 면을 따라 크랙이 전파된다. 그리고, 오프각이 형성되는 제 2 방향으로 단결정 SiC 잉곳과 집광점을 상대적으로 인덱스 이송하여 개질층 형성 가공을 복수 회 실시하면, 오프각이 형성되는 제 2 방향에 있어서 인접하는 개질층끼리는 크랙에 의해 연결되므로, 복수의 개질층 및 크랙으로 구성되는 박리면을 계면으로 하여 단결정 SiC 잉곳의 일부를 박리함으로써, 원하는 두께의 SiC 웨이퍼를 용이하게 생성할 수 있다. 따라서, 본 발명의 SiC 웨이퍼의 생성 방법에서는, 생산성의 향상이 충분히 도모됨과 함께, 버려지는 소재량을 충분히 경감시킬 수 있어 30 % 전후로 억제할 수 있다.
개질층 형성 가공에서는, 최초로 형성되는 개질층은 레이저 광선의 집광점에서 형성되고, 최초의 개질층에 계속해서 형성되는 개질층은 집광점보다 점차 얕은 위치에 형성되고, 레이저 광선의 조사가 개시되는 단결정 SiC 잉곳의 일방의 단부 (端部) 로부터 수십 ㎛ 정도의 영역에 있어서 개질층의 상승이 발생한다. 그리고, 단결정 SiC 잉곳의 내부에 있어서 레이저 광선의 파워 밀도가 소정의 값이 되는 깊이에 개질층이 도달하면 개질층의 상승이 멈추어, 레이저 광선의 파워 밀도가 소정의 값이 되는 깊이에서 안정적으로 개질층이 형성된다. 그리고, 박리면을 계면으로 하여 단결정 SiC 잉곳의 일부를 박리하면, 개질층의 상승이 발생하는 것에서 기인하여, SiC 웨이퍼의 외주에 돌기상의 버가 형성된다. SiC 웨이퍼에 버가 형성되어 버리면, 연삭 공정에 있어서 연삭 지석이 버에 접촉했을 때에 버의 근원 부분에 응력 집중이 발생하여 SiC 웨이퍼가 균열되어 버리거나 하는 가공 품질의 저하를 초래하게 될 수 있지만, 본 발명의 SiC 웨이퍼의 생성 방법에서는, 연삭 공정을 실시하기 전에, 단결정 SiC 잉곳으로부터 박리한 SiC 웨이퍼의 외주에 모따기 가공을 실시하여 버를 제거하는 모따기 가공 공정을 실시하므로, SiC 웨이퍼의 외주에 형성된 버가 연삭 공정의 방해가 되지 않아, 연삭 공정을 원활하게 수행할 수 있고, 따라서 가공 품질이 안정적이며 생산성의 향상이 도모된다.
도 1 은, 단결정 SiC 잉곳의 평면도 (a) 및 정면도 (b) 이다.
도 2 는, 박리면 형성 공정이 실시되고 있는 상태를 나타내는 사시도 (a) 및 정면도 (b) 이다.
도 3 은, 박리면이 형성된 SiC 잉곳의 평면도 (a), B-B 선 단면도 (b) 및 D 부 확대도 (c) 이다.
도 4 는, 웨이퍼 생성 공정이 실시되고 있는 상태를 나타내는 사시도 (a), 및 박리된 웨이퍼의 부분 단면도 (b) 이다.
도 5 는, 모따기 가공 공정이 실시되고 있는 상태를 나타내는 정면도 (a), 및 모따기 가공이 실시된 웨이퍼의 부분 단면도 (b) 이다.
도 6 은, 연삭 공정이 실시되고 있는 상태를 나타내는 사시도이다.
이하, 본 발명의 SiC 웨이퍼의 생성 방법의 실시형태에 대해 도면을 참조하면서 설명한다.
도 1 에 나타내는 전체적으로 원기둥 형상인 육방정 단결정 SiC 잉곳 (2) (이하 「잉곳 (2)」이라고 한다) 은, 원 형상의 제 1 면 (4) 과, 제 1 면 (4) 과 반대측인 원 형상의 제 2 면 (6) 과, 제 1 면 (4) 및 제 2 면 (6) 사이에 위치하는 원통 형상의 둘레면 (8) 과, 제 1 면 (4) 으로부터 제 2 면 (6) 에 이르는 c 축 (<0001> 방향) 과, c 축과 직교하는 c 면 ({0001}면) 을 갖는다. 잉곳 (2) 에 있어서는, 제 1 면 (4) 의 수선 (10) 에 대해 c 축이 경사져 있고, c 면과 제 1 면 (4) 에서 오프각 (α) (예를 들어 α = 4 도) 이 형성되어 있다 (오프각 (α) 이 형성되는 방향을 도 1 에 화살표 A 로 나타낸다). 또 잉곳 (2) 의 둘레면 (8) 에는, 결정 방위를 나타내는 사각형상의 제 1 오리엔테이션 플랫 (12) 및 제 2 오리엔테이션 플랫 (14) 이 형성되어 있다. 제 1 오리엔테이션 플랫 (12) 은, 오프각 (α) 이 형성되는 방향 A 와 평행하며, 제 2 오리엔테이션 플랫 (14) 은, 오프각 (α) 이 형성되는 방향 A 와 직교하고 있다. 도 1(a) 에 나타내는 바와 같이, 수선 (10) 의 방향으로 보아, 제 2 오리엔테이션 플랫 (14) 의 길이 (L2) 는, 제 1 오리엔테이션 플랫 (12) 의 길이 (L1) 보다 짧다 (L2 < L1).
본 실시형태에서는, 먼저, 잉곳 (2) 의 내부에 있어서, 생성해야 할 웨이퍼의 두께에 상당하는 깊이에 박리면을 형성하는 박리면 형성 공정을 실시한다. 박리면 형성 공정은, 예를 들어 도 2 에 그 일부를 나타내는 레이저 가공 장치 (16) 를 사용하여 실시할 수 있다. 레이저 가공 장치 (16) 는, 척 테이블 (18) 및 집광기 (20) 를 구비한다. 척 테이블 (18) 은, 회전 수단에 의해 상하 방향으로 연장되는 축선을 중심으로 하여 회전됨과 함께, X 방향 이동 수단에 의해 X 방향으로 진퇴되고, Y 방향 이동 수단에 의해 Y 방향으로 진퇴된다 (모두 도시하고 있지 않다). 집광기 (20) 는, 레이저 가공 장치 (16) 의 펄스 레이저 광선 발진기로부터 발진된 펄스 레이저 광선 (LB) 을 집광하여 피가공물에 조사하기 위한 집광 렌즈 (모두 도시하고 있지 않다) 를 포함한다. 또한, X 방향은 도 2 에 화살표 X 로 나타내는 방향이며, Y 방향은 화살표 Y 로 나타내는 방향으로서 X 방향과 직교하는 방향이다. X 방향 및 Y 방향이 규정하는 평면은 실질상 수평이다.
박리면 형성 공정에서는, 먼저, 잉곳 (2) 의 제 2 면 (6) 과 레이저 가공 장치 (16) 의 척 테이블 (18) 의 상면 사이에 접착제 (예를 들어 에폭시 수지계 접착제) 를 개재시켜, 잉곳 (2) 을 척 테이블 (18) 에 고정시킨다. 혹은, 척 테이블 (18) 의 상면에 복수의 흡인공이 형성되어 있고, 척 테이블 (18) 의 상면에 흡인력을 생성하여 잉곳 (2) 을 유지해도 된다. 이어서, 레이저 가공 장치 (16) 의 촬상 수단 (도시하고 있지 않다) 에 의해 제 1 면 (4) 의 상방으로부터 잉곳 (2) 을 촬상한다. 이어서, 촬상 수단에 의해 촬상된 잉곳 (2) 의 화상에 기초하여, X 방향 이동 수단, Y 방향 이동 수단 및 회전 수단에 의해 척 테이블 (18) 을 이동 및 회전시키는 것에 의해, 잉곳 (2) 의 방향을 소정의 방향으로 조정함과 함께, 잉곳 (2) 과 집광기 (20) 의 XY 평면에 있어서의 위치를 조정한다. 잉곳 (2) 의 방향을 소정의 방향으로 조정할 때에는, 도 2(a) 에 나타내는 바와 같이, 제 1 오리엔테이션 플랫 (12) 을 Y 방향에 정합시킴과 함께, 제 2 오리엔테이션 플랫 (14) 을 X 방향에 정합시키는 것에 의해, 오프각 (α) 이 형성되는 방향 A 를 Y 방향에 정합시킴과 함께, 오프각 (α) 이 형성되는 방향 A 와 직교하는 방향을 X 방향에 정합시킨다. 이어서, 레이저 가공 장치 (16) 의 집광점 위치 조정 수단 (도시하고 있지 않다) 에 의해 집광기 (20) 를 승강시켜, 도 2(b) 에 나타내는 바와 같이, 제 1 면 (4) 으로부터 생성해야 할 웨이퍼의 두께에 상당하는 깊이의 위치에 집광점 (FP) 을 위치 결정한다. 이어서, 집광점 (FP) 에 대해 척 테이블 (18) 을 소정의 가공 이송 속도로 X 방향 이동 수단에 의해 X 방향 (즉, 오프각 (α) 이 형성되는 방향 A 와 직교하는 방향) 으로 가공 이송하면서, SiC 에 대해 투과성을 갖는 파장의 펄스 레이저 광선 (LB) 을 집광기 (20) 로부터 잉곳 (2) 에 조사함으로써 개질층 (22) 및 크랙 (24) 을 형성하는 개질층 형성 가공을 실시한다.
개질층 형성 가공을 실시하면, 도 3 에 나타내는 바와 같이, 펄스 레이저 광선 (LB) 의 조사에 의해 SiC 가 Si (실리콘) 와 C (탄소) 로 분리되고 다음으로 조사되는 펄스 레이저 광선 (LB) 이 이전에 형성된 C 에 흡수되어 연쇄적으로 SiC 가 Si 와 C 로 분리되어 형성되는 직선상의 개질층 (22) 과, 개질층 (22) 으로부터 c 면을 따라 개질층 (22) 의 양측으로 전파되는 크랙 (24) 이 형성된다. 또한, 개질층 형성 가공에서는, 개질층 (22) 이 형성되는 깊이에 있어서 인접하는 펄스 레이저 광선 (LB) 의 스폿이 서로 중첩되도록 척 테이블 (18) 을 X 방향으로 가공 이송하면서 펄스 레이저 광선 (LB) 을 잉곳 (2) 에 조사하여, Si 와 C 로 분리시킨 개질층 (22) 에 다시 펄스 레이저 광선 (LB) 이 조사되도록 한다. 인접하는 스폿이 서로 중첩되기 위해서는, 펄스 레이저 광선 (LB) 의 반복 주파수 (F) (Hz) 와 척 테이블 (18) 의 가공 이송 속도 (V) (㎜/s) 와, 스폿의 직경 (D) (㎜) 으로 규정되는 G = (V/F) - D 가 G < 0 인 것을 필요로 한다. 또, 인접하는 스폿의 중첩 비율은 |G|/D 로 규정된다.
개질층 형성 가공에서는, 도 2(b) 에 나타내는 바와 같이, 최초로 형성되는 개질층 (22) 은 펄스 레이저 광선 (LB) 의 집광점 (FP) 에서 형성되고, 최초의 개질층 (22) 에 계속해서 형성되는 개질층 (22) 은 집광점 (FP) 보다 점차 얕은 위치에 형성되어, 펄스 레이저 광선 (LB) 의 조사가 개시되는 잉곳 (2) 의 일방의 단부 (2a) 로부터 수십 ㎛ 정도의 영역 (26) 에 있어서, 집광점 (FP) 의 깊이로부터 30 ∼ 50 ㎛ 정도, 개질층 (22) 의 상승이 발생한다. 잉곳 (2) 에 있어서 집광점 (FP) 이 통과하는 라인을 도 2(b) 에 점선으로 나타낸다. 그리고, 잉곳 (2) 의 내부에 있어서 펄스 레이저 광선 (LB) 의 파워 밀도가 소정의 값이 되는 깊이에 개질층 (22) 이 도달하면 개질층 (22) 의 상승이 멈추어, 펄스 레이저 광선 (LB) 의 파워 밀도가 소정의 값이 되는 깊이에서 안정적으로 개질층 (22) 이 형성된다. 즉, 개질층 형성 가공에 있어서, 펄스 레이저 광선 (LB) 이 조사되는 잉곳 (2) 의 일방의 단부 (2a) 로부터 타방의 단부 (2b) 까지 중, 개질층 (22) 의 상승이 발생한 영역 (26) 이외의 영역 (28) 에서는, 펄스 레이저 광선 (LB) 의 집광점 (FP) 의 앞 (조사면인 제 1 면 (4) 측) 에서 파워 밀도가 소정의 값이 되는 위치에서 안정적으로 개질층 (22) 이 형성된다. 또한, 파워 밀도 (E) (J/㎠) 는, 평균 출력 (P) (W) 과, 집광점 (FP) 보다 얕은 위치로서 개질층 (22) 이 형성되는 위치에 있어서의 스폿의 면적 S = πD2/4 (㎠) 와, 반복 주파수 (F) (Hz) 로 규정된다 (E = P/(S·F)).
박리면 형성 공정에서는, 집광점 (FP) 에 대해 척 테이블 (18) 을 Y 방향 이동 수단에 의해 Y 방향 (즉, 오프각 (α) 이 형성되는 방향 (A)) 으로 소정 인덱스량 (Li) 만큼 인덱스 이송하여 개질층 형성 가공을 복수 회 실시한다. 이로써 도 3 에 나타내는 바와 같이, 잉곳 (2) 의 내부에 있어서 생성해야 할 웨이퍼의 두께에 상당하는 깊이에, 복수의 개질층 (22) 및 크랙 (24) 으로 구성되는 박리면 (30) 을 형성할 수 있다. 박리면 (30) 에서는, 오프각 (α) 이 형성되는 방향 (A) 에 있어서 인접하는 개질층 (22) 끼리가 크랙 (24) 에 의해 연결되어 있다. 이와 같은 박리면 형성 공정은, 예를 들어 이하의 레이저 가공 조건으로 실시할 수 있다.
펄스 레이저 광선의 파장 : 1064 ㎚
반복 주파수 : 80 ㎑
평균 출력 : 3.2 W
펄스 폭 : 4 ns
집광점의 직경 : 3 ㎛
집광 렌즈의 개구 수 (NA) : 0.43
인덱스량 : 250 ∼ 400 ㎛
가공 이송 속도 : 120 ∼ 260 ㎜/s
박리면 형성 공정을 실시한 후, 박리면 (30) 을 계면으로 하여 잉곳 (2) 의 일부를 박리하여 웨이퍼를 생성하는 웨이퍼 생성 공정을 실시한다. 웨이퍼 생성 공정은, 예를 들어 도 4(a) 에 그 일부를 나타내는 박리 장치 (32) 를 사용하여 실시할 수 있다. 박리 장치 (32) 는, 실질상 수평하게 연장되는 아암 (34) 과, 아암 (34) 의 선단에 부설된 모터 (36) 를 구비한다. 모터 (36) 의 하면에는, 상하 방향으로 연장되는 축선을 중심으로 하여 자유롭게 회전할 수 있도록 원반상의 흡착편 (38) 이 연결되어 있다. 하면에 있어서 피가공물을 흡착하도록 구성되어 있는 흡착편 (38) 에는, 흡착편 (38) 의 하면에 대해 초음파 진동을 부여하는 초음파 진동 부여 수단 (도시하고 있지 않다) 이 내장되어 있다.
웨이퍼 생성 공정에서는, 먼저, 레이저 가공 장치 (16) 의 X 방향 이동 수단 및 Y 방향 이동 수단에 의해, 박리 장치 (32) 의 흡착편 (38) 의 하방으로 척 테이블 (18) 을 이동시킨다. 이어서, 박리 장치 (32) 의 승강 수단 (도시하고 있지 않다) 에 의해 아암 (34) 을 하강시키고, 도 4(a) 에 나타내는 바와 같이, 흡착편 (38) 의 하면을 잉곳 (2) 의 제 1 면 (4) 에 흡착시킨다. 이어서, 초음파 진동 부여 수단을 작동시켜, 흡착편 (38) 의 하면에 대해 초음파 진동을 부여함과 함께, 모터 (36) 를 작동시켜 흡착편 (38) 을 회전시킨다. 이로써, 박리면 (30) 을 계면으로 하여 잉곳 (2) 의 일부를 박리할 수 있고, 원하는 두께 (예를 들어 800 ∼ 1000 ㎛) 의 웨이퍼 (40) 를 생성할 수 있다. 생성된 웨이퍼 (40) 의 박리면 (42) 의 외주에는, 도 4(b) 에 나타내는 바와 같이, 박리면 형성 공정에 있어서 개질층 (22) 의 상승이 발생하는 것에서 기인하여, 박리면 (42) 으로부터의 돌출량이 30 ∼ 50 ㎛ 정도인 돌기상의 버 (44) 가 형성되어 있다.
웨이퍼 생성 공정을 실시한 후, 잉곳 (2) 으로부터 박리한 웨이퍼 (40) 의 외주에 모따기 가공을 실시하여 버 (44) 를 제거하는 모따기 가공 공정을 실시한다. 본 발명의 SiC 웨이퍼의 생성 방법에서는, 후술하는 연삭 공정을 실시하기 전에 모따기 가공 공정을 실시하는 것이 중요하다. 모따기 가공 공정은, 예를 들어 도 5(a) 에 그 일부를 나타내는 모따기 가공 장치 (46) 를 사용하여 실시할 수 있다. 모따기 가공 장치 (46) 는, 유지 수단 (48) 및 모따기 수단 (50) 을 구비한다. 유지 수단 (48) 은, 원 형상의 척 테이블 (52) 과, 상하 방향으로 연장되는 축선을 중심으로 하여 척 테이블 (52) 을 회전시키는 모터 (54) 를 포함한다. 웨이퍼 (40) 의 직경보다 작은 직경의 척 테이블 (52) 은, 상면에 있어서 피가공물을 흡착하도록 구성되어 있다. 모따기 수단 (50) 은, 연삭 지석 (56) 과, 상하 방향으로 연장되는 축선을 중심으로 하여 연삭 지석 (56) 을 회전시키는 모터 (58) 를 포함한다. 상하 방향의 중간부가 잘록하게 되어 있는 연삭 지석 (56) 은, 상방으로부터 하방을 향해 직경이 점차 작아지는 역 (逆) 원추대상부 (56a) 와, 역원추대상부 (56a) 의 하단측으로부터 하방을 향해 직경이 점차 커지는 원추대상부 (56b) 를 갖는다.
모따기 가공 공정에서는, 먼저, 척 테이블 (52) 의 회전 중심에 웨이퍼 (40) 의 중심을 정합시킨 상태에서, 척 테이블 (52) 의 상면에 웨이퍼 (40) 를 흡착시킨다. 이어서, 상방에서 보아 반시계 방향으로 소정의 회전 속도 (예를 들어 10 rpm) 로 척 테이블 (52) 을 모터 (54) 에 의해 회전시킨다. 또, 상방에서 보아 반시계 방향으로 소정의 회전 속도 (예를 들어 500 rpm) 로 연삭 지석 (56) 을 모터 (58) 에 의해 회전시킨다. 이어서, 모따기 가공 장치 (46) 의 이동 수단 (도시하고 있지 않다) 에 의해 유지 수단 (48) 을 향해 모따기 수단 (50) 을 이동시켜, 연삭 지석 (56) 의 역원추대상부 (56a) 및 원추대상부 (56b) 를 웨이퍼 (40) 의 외주에 접촉시킨다. 웨이퍼 (40) 의 외주에 연삭 지석 (56) 을 접촉시킨 후에는 소정의 이송 속도로 모따기 수단 (50) 을 이동시킨다. 이로써, 도 5(b) 에 나타내는 바와 같이, 웨이퍼 (40) 의 편면측 및 타면측에 동시에 모따기 가공을 실시하여 버 (44) 를 제거할 수 있다. 또한, 모따기 가공 공정에서는, 웨이퍼 (40) 의 편면측에 모따기 가공을 실시한 후에 웨이퍼 (40) 의 타면측에 모따기 가공을 실시해도 된다.
모따기 가공 공정을 실시한 후, 잉곳 (2) 으로부터 박리한 웨이퍼 (40) 의 박리면 (42) 을 연삭하여 평활면으로 마무리하는 연삭 공정을 실시한다. 연삭 공정은, 예를 들어 도 6 에 그 일부를 나타내는 연삭 장치 (60) 를 사용하여 실시할 수 있다. 연삭 장치 (60) 는, 척 테이블 (62) 및 연삭 수단 (64) 을 구비한다. 상면에 있어서 피가공물을 흡착하도록 구성되어 있는 척 테이블 (62) 은, 회전 수단 (도시하고 있지 않다) 에 의해 상하 방향으로 연장되는 축선을 중심으로 하여 회전된다. 연삭 수단 (64) 은, 모터 (도시하고 있지 않다) 에 연결되어 상하 방향으로 연장되는 원기둥상의 스핀들 (66) 과, 스핀들 (66) 의 하단에 고정된 원반상의 휠 마운트 (68) 를 포함한다. 휠 마운트 (68) 의 하면에는 볼트 (70) 에 의해 환상의 연삭 휠 (72) 이 고정되어 있다. 연삭 휠 (72) 의 하면의 외주 가장자리부에는, 둘레 방향으로 간격을 두고 환상으로 배치된 복수의 연삭 지석 (74) 이 고정되어 있다. 도 6 에 나타내는 바와 같이, 연삭 휠 (72) 의 회전 중심은 척 테이블 (62) 의 회전 중심에 대해 변위되어 있다.
연삭 공정에서는, 먼저, 웨이퍼 (40) 의 박리면 (42) 과 반대측의 면에 합성 수지제의 보호 부재 (76) 를 첩부한다. 이어서, 보호 부재 (76) 을 첩부한 면을 하측으로 하여 (즉, 박리면 (42) 를 상측으로 하여) 척 테이블 (62) 의 상면에 웨이퍼 (40) 를 흡착시킨다. 이어서, 상방에서 보아 반시계 방향으로 소정의 회전 속도 (예를 들어 500 rpm) 로 척 테이블 (62) 을 회전 수단에 의해 회전시킨다. 또, 상방에서 보아 반시계 방향으로 소정의 회전 속도 (예를 들어 3000 rpm) 로 스핀들 (66) 을 모터에 의해 회전시킨다. 이어서, 연삭 장치 (60) 의 승강 수단 (도시하고 있지 않다) 에 의해 스핀들 (66) 을 하강시키고, 웨이퍼 (40) 의 박리면 (42) 에 연삭 지석 (74) 을 접촉시킨다. 웨이퍼 (40) 의 박리면 (42) 에 연삭 지석 (74) 을 접촉시킨 후에는 소정의 연삭 이송 속도 (예를 들어 0.1 ㎛/s) 로 스핀들 (66) 을 하강시킨다. 이로써 웨이퍼 (40) 의 박리면 (42) 을 평활면으로 마무리할 수 있다.
이상과 같이, 본 발명의 SiC 웨이퍼의 생성 방법에서는, 복수의 개질층 (22) 및 크랙 (24) 으로 구성되는 박리면 (30) 을 계면으로 하여 잉곳 (2) 의 일부를 박리함으로써, 원하는 두께의 웨이퍼 (40) 를 용이하게 생성할 수 있고, 따라서 생산성의 향상이 충분히 도모됨과 함께, 버려지는 소재량을 충분히 경감시킬 수 있어 30 % 전후로 억제할 수 있다. 또, 본 발명의 SiC 웨이퍼의 생성 방법에서는, 연삭 공정을 실시하기 전에, 잉곳 (2) 으로부터 박리한 웨이퍼 (40) 의 외주에 모따기 가공을 실시하여 버 (44) 를 제거하는 모따기 가공 공정을 실시하므로, 웨이퍼 (40) 의 외주에 형성된 버 (44) 가 연삭 공정의 방해가 되지 않아, 연삭 공정을 원활하게 수행할 수 있고, 따라서 가공 품질이 안정적이며 생산성의 향상이 도모된다.
2 : 단결정 SiC 잉곳
4 : 제 1 면
6 : 제 2 면
10 : 수선
22 : 개질층
24 : 크랙
30 : 잉곳에 형성된 박리면
40 : 웨이퍼
42 : 웨이퍼의 박리면
44 : 버
α: 오프각
A : 오프각이 형성되는 방향
FP : 집광점
LB : 펄스 레이저 광선

Claims (1)

  1. 제 1 면과, 그 제 1 면과 반대측인 제 2 면과, 그 제 1 면으로부터 그 제 2 면에 도달하여 그 제 1 면의 수선에 대해 경사져 있는 c 축과, 그 c 축과 직교하는 c 면을 갖고, 그 c 면과 그 제 1 면 사이에 오프각이 형성되는 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼 생성 방법으로서,
    SiC 에 대해 투과성을 갖는 파장의 펄스 레이저 광선의 집광점을 그 제 1 면으로부터 생성해야 할 웨이퍼의 두께에 상당하는 깊이에 위치 결정함과 함께, 그 오프각이 형성되는 제 2 방향과 직교하는 제 1 방향으로 그 단결정 SiC 잉곳과 그 집광점을 상대적으로 가공 이송하면서 그 단결정 SiC 잉곳에 펄스 레이저 광선을 조사함으로써, SiC 가 Si 와 C 로 분리되고 다음으로 조사되는 펄스 레이저 광선이 이전에 형성된 C 에 흡수되어 연쇄적으로 SiC 가 Si 와 C 로 분리되어 형성되는 직선상의 개질층과, 그 개질층으로부터 그 c 면을 따라 전파되는 크랙을 형성하는 개질층 형성 가공을, 그 오프각이 형성되는 제 2 방향으로 그 단결정 SiC 잉곳과 그 집광점을 상대적으로 인덱스 이송하여 복수 회 실시하여 박리면을 형성하는 박리면 형성 공정과,
    그 박리면을 계면으로 하여 그 단결정 SiC 잉곳의 일부를 박리하여 SiC 웨이퍼를 생성하는 웨이퍼 생성 공정과,
    박리한 SiC 웨이퍼의 박리면을 연삭하여 평활면으로 마무리하는 연삭 공정을 포함하고,
    그 개질층 형성 가공에서는, 최초로 형성되는 개질층은 그 집광점에서 형성되고, 최초의 개질층에 계속해서 형성되는 개질층은 그 집광점보다 점차 얕은 위치에 형성되고, 펄스 레이저 광선의 조사가 개시되는 그 단결정 SiC 잉곳의 일방의 단부로부터 개질층의 상승이 발생하고, 그 단결정 SiC 잉곳의 내부에 있어서 펄스 레이저 광선의 파워 밀도가 소정 값이 되는 깊이에 개질층이 도달한 후, 파워 밀도가 그 소정 값이 되는 깊이에 개질층이 형성되고,
    그 연삭 공정을 실시하기 전에, 박리한 SiC 웨이퍼의 외주에 모따기 가공을 실시하고, 개질층의 상승에 기인하여 SiC 웨이퍼의 외주에 형성된 돌기상의 버를 제거하는 모따기 가공 공정을 실시하는, SiC 웨이퍼의 생성 방법.
KR1020170123451A 2016-09-29 2017-09-25 SiC 웨이퍼의 생성 방법 KR102260344B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2016-190952 2016-09-29
JP2016190952A JP6773506B2 (ja) 2016-09-29 2016-09-29 ウエーハ生成方法

Publications (2)

Publication Number Publication Date
KR20180035689A KR20180035689A (ko) 2018-04-06
KR102260344B1 true KR102260344B1 (ko) 2021-06-02

Family

ID=61564503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170123451A KR102260344B1 (ko) 2016-09-29 2017-09-25 SiC 웨이퍼의 생성 방법

Country Status (8)

Country Link
US (1) US10870176B2 (ko)
JP (1) JP6773506B2 (ko)
KR (1) KR102260344B1 (ko)
CN (1) CN107877011B (ko)
DE (1) DE102017216895B4 (ko)
MY (1) MY186677A (ko)
SG (1) SG10201707176SA (ko)
TW (1) TWI721206B (ko)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6698468B2 (ja) * 2016-08-10 2020-05-27 株式会社ディスコ ウエーハ生成方法
JP7027215B2 (ja) * 2018-03-27 2022-03-01 株式会社ディスコ ウエーハの生成方法およびウエーハの生成装置
EP3567138B1 (en) * 2018-05-11 2020-03-25 SiCrystal GmbH Chamfered silicon carbide substrate and method of chamfering
EP3567139B1 (en) 2018-05-11 2021-04-07 SiCrystal GmbH Chamfered silicon carbide substrate and method of chamfering
DE102018111450B4 (de) 2018-05-14 2024-06-20 Infineon Technologies Ag Verfahren zum Verarbeiten eines Breiter-Bandabstand-Halbleiterwafers, Verfahren zum Bilden einer Mehrzahl von dünnen Breiter-Bandabstand-Halbleiterwafern und Breiter-Bandabstand-Halbleiterwafer
US10896815B2 (en) * 2018-05-22 2021-01-19 Semiconductor Components Industries, Llc Semiconductor substrate singulation systems and related methods
JP7166794B2 (ja) * 2018-06-05 2022-11-08 株式会社ディスコ 面取り加工方法
CN112400217B (zh) * 2018-07-19 2024-08-13 东京毅力科创株式会社 基板处理系统和基板处理方法
US10940611B2 (en) 2018-07-26 2021-03-09 Halo Industries, Inc. Incident radiation induced subsurface damage for controlled crack propagation in material cleavage
KR102662765B1 (ko) * 2018-08-02 2024-05-02 삼성전자주식회사 기판과 이를 포함하는 집적회로 소자 및 그 제조 방법
JP7235456B2 (ja) * 2018-08-14 2023-03-08 株式会社ディスコ 半導体基板の加工方法
JP7187215B2 (ja) * 2018-08-28 2022-12-12 株式会社ディスコ SiC基板の加工方法
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
JP7309191B2 (ja) * 2019-11-06 2023-07-18 中村留精密工業株式会社 ウェハー分割装置
JP7259795B2 (ja) * 2020-03-31 2023-04-18 株式会社デンソー 炭化珪素ウェハの製造方法、半導体基板の製造方法および炭化珪素半導体装置の製造方法
US11482408B2 (en) * 2020-06-23 2022-10-25 Disco Corporation Method of processing wafer
CN112404735B (zh) * 2020-11-09 2022-03-04 松山湖材料实验室 晶锭剥离方法及晶锭剥离装置
US11848197B2 (en) 2020-11-30 2023-12-19 Thinsic Inc. Integrated method for low-cost wide band gap semiconductor device manufacturing
CN112620973B (zh) * 2020-12-18 2023-04-07 西安晟光硅研半导体科技有限公司 一种碳化硅晶片单向三层双向六级台阶切割工艺
CN114260811A (zh) * 2021-12-27 2022-04-01 江西兆驰半导体有限公司 一种蓝宝石晶棒的加工系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010124A (ja) 2011-06-29 2013-01-17 Disco Corp レーザ加工装置
JP2013049161A (ja) 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
JP2013161880A (ja) 2012-02-02 2013-08-19 Mitsubishi Electric Corp 炭化珪素単結晶基板の製造方法
JP2016111144A (ja) 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111143A (ja) 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016146448A (ja) 2015-02-09 2016-08-12 株式会社ディスコ ウエーハの生成方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094221A (ja) 1998-09-24 2000-04-04 Toyo Advanced Technologies Co Ltd 放電式ワイヤソー
JP2002184724A (ja) * 2000-12-13 2002-06-28 Komatsu Ltd シリコンインゴット切断装置、シリコンインゴットの切断方法、及びシリコンウェハ
CN102107391B (zh) * 2009-12-24 2014-01-15 北京天科合达蓝光半导体有限公司 一种SiC单晶晶片的加工方法
JP5569112B2 (ja) * 2010-04-09 2014-08-13 新日鐵住金株式会社 炭化珪素単結晶ウェハの製造方法及びこの方法で得られた炭化珪素単結晶ウェハ
JP5206733B2 (ja) 2010-05-25 2013-06-12 株式会社デンソー ウェハの加工方法およびそれに用いられる研磨装置、切断装置
JP2012124331A (ja) * 2010-12-08 2012-06-28 Sumco Corp 硬脆性ウェーハの平坦化加工方法
US9018639B2 (en) * 2012-10-26 2015-04-28 Dow Corning Corporation Flat SiC semiconductor substrate
JP6358941B2 (ja) 2014-12-04 2018-07-18 株式会社ディスコ ウエーハの生成方法
JP6395613B2 (ja) * 2015-01-06 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6391471B2 (ja) * 2015-01-06 2018-09-19 株式会社ディスコ ウエーハの生成方法
JP6395632B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395633B2 (ja) * 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6450637B2 (ja) * 2015-04-21 2019-01-09 株式会社ディスコ リフトオフ方法及び超音波ホーン
CN105751393B (zh) * 2016-03-21 2017-12-08 哈尔滨秋冠光电科技有限公司 高边缘质量蓝宝石晶片的加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010124A (ja) 2011-06-29 2013-01-17 Disco Corp レーザ加工装置
JP2013049161A (ja) 2011-08-30 2013-03-14 Hamamatsu Photonics Kk 加工対象物切断方法
JP2013161880A (ja) 2012-02-02 2013-08-19 Mitsubishi Electric Corp 炭化珪素単結晶基板の製造方法
JP2016111144A (ja) 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016111143A (ja) 2014-12-04 2016-06-20 株式会社ディスコ ウエーハの生成方法
JP2016146448A (ja) 2015-02-09 2016-08-12 株式会社ディスコ ウエーハの生成方法

Also Published As

Publication number Publication date
SG10201707176SA (en) 2018-04-27
DE102017216895A1 (de) 2018-03-29
JP6773506B2 (ja) 2020-10-21
KR20180035689A (ko) 2018-04-06
MY186677A (en) 2021-08-05
DE102017216895B4 (de) 2024-09-12
US10870176B2 (en) 2020-12-22
TW201819082A (zh) 2018-06-01
JP2018056347A (ja) 2018-04-05
TWI721206B (zh) 2021-03-11
CN107877011A (zh) 2018-04-06
CN107877011B (zh) 2021-04-23
US20180085851A1 (en) 2018-03-29

Similar Documents

Publication Publication Date Title
KR102260344B1 (ko) SiC 웨이퍼의 생성 방법
KR102287126B1 (ko) SiC 웨이퍼의 생성 방법
KR102350407B1 (ko) SiC 웨이퍼의 생성 방법
KR102450902B1 (ko) SiC 웨이퍼의 생성 방법
KR102368338B1 (ko) 웨이퍼의 가공 방법
KR102369760B1 (ko) 웨이퍼의 가공 방법
KR102419485B1 (ko) 웨이퍼의 박화 방법
TWI754631B (zh) SiC晶圓的加工方法
KR102384101B1 (ko) 웨이퍼의 박화 방법
KR102260340B1 (ko) SiC 웨이퍼의 생성 방법
KR102279621B1 (ko) SiC 웨이퍼의 생성 방법
KR20180063832A (ko) SiC 웨이퍼의 생성 방법
KR20120067929A (ko) 분할 방법
KR20180018353A (ko) SiC 웨이퍼의 생성 방법
JP2005086160A (ja) ウエーハの加工方法
KR20220014815A (ko) Si 기판 제조 방법
JP2020035821A (ja) SiC基板の加工方法
KR20200019566A (ko) 반도체 기판의 가공 방법
CN114535815A (zh) 晶片的生成方法
JP6957091B2 (ja) ウェーハの加工方法
JP2023026921A (ja) ウエーハの加工方法
WO2023106016A1 (ja) ウェハ製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant