KR20180018353A - SiC 웨이퍼의 생성 방법 - Google Patents
SiC 웨이퍼의 생성 방법 Download PDFInfo
- Publication number
- KR20180018353A KR20180018353A KR1020170098853A KR20170098853A KR20180018353A KR 20180018353 A KR20180018353 A KR 20180018353A KR 1020170098853 A KR1020170098853 A KR 1020170098853A KR 20170098853 A KR20170098853 A KR 20170098853A KR 20180018353 A KR20180018353 A KR 20180018353A
- Authority
- KR
- South Korea
- Prior art keywords
- separation layer
- laser beam
- layer
- sic
- ingot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0823—Devices involving rotation of the workpiece
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/0006—Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/03—Observing, e.g. monitoring, the workpiece
- B23K26/032—Observing, e.g. monitoring, the workpiece using optical means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
- B23K26/0853—Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/0005—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
- B28D5/0011—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28D—WORKING STONE OR STONE-LIKE MATERIALS
- B28D5/00—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
- B28D5/04—Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by tools other than rotary type, e.g. reciprocating tools
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02587—Structure
- H01L21/0259—Microstructure
- H01L21/02598—Microstructure monocrystalline
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/56—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Laser Beam Processing (AREA)
Abstract
본 발명은 생산성의 향상을 도모할 수 있는 SiC 웨이퍼 생성 방법을 제공하는 것을 목적으로 한다.
단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼의 생성 방법으로서, SiC 잉곳의 내부에 개질층과, 개질층으로부터 c면을 따라 신장되는 크랙으로 이루어지는 분리층을 복수 형성하여 박리면을 생성하는 박리면 생성 공정과, 박리면을 계면으로 해서 잉곳의 일부를 박리하여 SiC 웨이퍼를 생성하는 웨이퍼 생성 공정을 포함한다. 박리면 생성 공정에 있어서, 펄스 레이저 광선의 에너지 밀도는, 전에 형성된 분리층에 중복되어 조사되는 펄스 레이저 광선이, 분리층에서 반사되어 분리층의 상방에 손상층을 형성하는 일이 없고, 또는 분리층을 투과하여 분리층의 하방에 손상층을 형성하는 일이 없는 에너지 밀도로 설정된다.
단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼의 생성 방법으로서, SiC 잉곳의 내부에 개질층과, 개질층으로부터 c면을 따라 신장되는 크랙으로 이루어지는 분리층을 복수 형성하여 박리면을 생성하는 박리면 생성 공정과, 박리면을 계면으로 해서 잉곳의 일부를 박리하여 SiC 웨이퍼를 생성하는 웨이퍼 생성 공정을 포함한다. 박리면 생성 공정에 있어서, 펄스 레이저 광선의 에너지 밀도는, 전에 형성된 분리층에 중복되어 조사되는 펄스 레이저 광선이, 분리층에서 반사되어 분리층의 상방에 손상층을 형성하는 일이 없고, 또는 분리층을 투과하여 분리층의 하방에 손상층을 형성하는 일이 없는 에너지 밀도로 설정된다.
Description
본 발명은 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼의 생성 방법에 관한 것이다.
IC나 LSI, LED 등의 디바이스는, Si(실리콘)나 Al2O3(사파이어) 등을 소재로 한 웨이퍼의 표면에 기능층이 적층되고 분할 예정 라인에 의해 구획되어 형성된다. 또한, 파워 디바이스나 LED 등은 단결정 SiC(탄화규소)를 소재로 한 웨이퍼의 표면에 기능층이 적층되고 분할 예정 라인에 의해 구획되어 형성된다. 디바이스가 형성된 웨이퍼는, 절삭 장치나 레이저 가공 장치에 의해 분할 예정 라인에 가공이 실시되어 개개의 디바이스 칩으로 분할된다. 분할된 각 디바이스 칩은 휴대 전화나 퍼스널 컴퓨터 등의 전기 기기에 이용되고 있다.
디바이스가 형성되는 웨이퍼는, 일반적으로 원기둥 형상의 잉곳을 와이어 소(wire saw)로 얇게 절단함으로써 생성된다. 절단된 웨이퍼의 표면 및 이면은, 연마함으로써 경면으로 마무리된다(특허문헌 1 참조). 그러나, 잉곳을 와이어 소로 절단하고, 절단한 웨이퍼의 표면 및 이면을 연마하면, 잉곳의 대부분(70%∼80%)이 버려지게 되어 비경제적이라고 하는 문제가 있다. 특히 단결정 SiC 잉곳에 있어서는, 경도가 높아 와이어 소로의 절단이 곤란하며 상당한 시간을 요하기 때문에 생산성이 나쁘고, 잉곳의 단가가 높아 효율적으로 웨이퍼를 생성하는 것에 과제를 갖고 있다.
그래서, SiC에 대해 투과성을 갖는 파장의 레이저 광선의 집광점을 SiC 잉곳의 내부에 위치시켜 SiC 잉곳에 레이저 광선을 조사함으로써 절단 예정면에 개질층을 형성하고, 개질층이 형성된 절단 예정면을 절단하여 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 기술이 제안되어 있다(특허문헌 2 참조.). 그러나, SiC 잉곳으로부터 SiC 웨이퍼를 생성하기 위해서는 개질층을 10 ㎛ 정도의 간격을 두고 조밀하게 형성하지 않으면 안 되어 생산성이 나쁘다고 하는 문제가 있다.
상기 사실을 감안하여 이루어진 본 발명의 과제는, 생산성의 향상을 도모할 수 있는 SiC 웨이퍼 생성 방법을 제공하는 것이다.
본 발명에 의하면, 제1 면과, 상기 제1 면과 반대측의 제2 면과, 상기 제1 면으로부터 상기 제2 면에 이르고 상기 제1 면의 수선(垂線)에 대해 경사져 있는 c축과, 상기 c축에 직교하는 c면을 갖고, 상기 c면과 상기 제1 면으로 오프각을 형성하는 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼의 생성 방법으로서, SiC에 대해 투과성을 갖는 파장의 펄스 레이저 광선의 집광점을 상기 제1 면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 위치시키고 상기 오프각이 형성되는 제2 방향과 직교하는 제1 방향으로 상기 단결정 SiC 잉곳과 상기 집광점을 상대적으로 가공 이송하면서 상기 단결정 SiC 잉곳에 펄스 레이저 광선을 조사함으로써, SiC가 Si와 C로 분리되며 다음에 조사되는 펄스 레이저 광선이 전에 형성된 C에 흡수되어 연쇄적으로 SiC가 Si와 C로 분리되어 형성되는 개질층과, 상기 개질층으로부터 c면을 따라 연장되는 크랙으로 이루어지는 분리층을 형성하는 분리층 형성 공정과, 상기 제2 방향으로 상기 단결정 SiC 잉곳과 상기 집광점을 상대적으로 인덱스 이송해서 상기 분리층 형성 공정을 복수 회 실시하여 복수의 분리층으로 이루어지는 박리면을 생성하는 박리면 생성 공정과, 상기 박리면을 계면으로 해서 상기 단결정 SiC 잉곳의 일부를 박리하여 SiC 웨이퍼를 생성하는 웨이퍼 생성 공정을 포함하고, 상기 박리면 생성 공정에 있어서, 펄스 레이저 광선의 에너지 밀도는, 전에 형성된 분리층에 중복되어 조사되는 펄스 레이저 광선이, 분리층에서 반사되어 분리층의 상방에 손상층을 형성하는 일이 없고, 또는 분리층을 투과하여 분리층의 하방에 손상층을 형성하는 일이 없는 에너지 밀도로 설정되는 웨이퍼 생성 방법이 제공된다.
상기 박리면 생성 공정에 있어서
1펄스당 에너지 밀도를 E(J/㎠)로 하고,
가공 이송 속도를 V(㎜/s)로 한 경우,
0<V≤600
0.184≤E
를 조건으로
-0.35+0.0042×(V-100)≤E≤0.737+0.0024×(V-100)으로 설정되는 것이 바람직하다.
본 발명의 SiC 웨이퍼의 생성 방법에 의하면, 박리면 생성 공정에 있어서, 펄스 레이저 광선의 에너지 밀도는, 전에 형성된 분리층에 중복되어 조사되는 펄스 레이저 광선이, 분리층에서 반사되어 분리층의 상방에 손상층을 형성하지 않고, 또는 분리층을 투과하여 분리층의 하방에 손상층을 형성하지 않는 에너지 밀도로 설정되기 때문에, 분리층의 상방 또는 하방에 손상층이 없는 양호한 분리층이 형성된다. 따라서 본 발명의 SiC 웨이퍼의 생성 방법에서는, 분리층의 상방 또는 하방에 손상층이 형성되지 않기 때문에 웨이퍼의 품질이 저하되는 일이 없고, 연삭에 의해 제거해야 할 잉곳의 양이 증가하여 생산성이 나빠지는 일도 없으며, 버려지는 소재량을 경감할 수 있어, 생산성의 향상을 도모할 수 있다.
도 1은 레이저 가공 장치의 사시도이다.
도 2는 단결정 SiC 잉곳의 평면도(a) 및 정면도(b)이다.
도 3은 박리면 생성 공정이 실시되고 있는 상태를 도시한 정면도(a) 및 사시도(b)이다.
도 4는 박리면이 생성된 단결정 SiC 잉곳의 평면도(a) 및 B-B선 단면도(b)이다.
도 5는 실험 결과를 나타낸 표이다.
도 6은 레이저 광선을 도시한 모식도이다.
도 7은 단결정 SiC 잉곳의 내부에 형성되는 개질층과, 개질층의 상방 및 하방에 형성되는 손상층을 도시한 모식도이다.
도 8은 가공 이송 속도와 에너지 밀도의 상관도이다.
도 9는 웨이퍼 생성 공정이 실시되고 있는 상태를 도시한 사시도이다.
도 2는 단결정 SiC 잉곳의 평면도(a) 및 정면도(b)이다.
도 3은 박리면 생성 공정이 실시되고 있는 상태를 도시한 정면도(a) 및 사시도(b)이다.
도 4는 박리면이 생성된 단결정 SiC 잉곳의 평면도(a) 및 B-B선 단면도(b)이다.
도 5는 실험 결과를 나타낸 표이다.
도 6은 레이저 광선을 도시한 모식도이다.
도 7은 단결정 SiC 잉곳의 내부에 형성되는 개질층과, 개질층의 상방 및 하방에 형성되는 손상층을 도시한 모식도이다.
도 8은 가공 이송 속도와 에너지 밀도의 상관도이다.
도 9는 웨이퍼 생성 공정이 실시되고 있는 상태를 도시한 사시도이다.
이하, 본 발명의 웨이퍼 생성 방법의 실시형태에 대해 도면을 참조하면서 설명한다.
도 1에 도시된 레이저 가공 장치(2)는, 베이스(4)와, 유지 수단(6)과, 유지 수단(6)을 이동시키는 이동 수단(8)과, 레이저 광선 조사 수단(10)과, 촬상 수단(12)과, 표시 수단(14)과, 박리 수단(16)을 구비한다.
유지 수단(6)은, X방향에 있어서 이동 가능하게 베이스(4)에 탑재된 직사각형 형상의 X방향 가동판(18)과, Y방향에 있어서 이동 가능하게 X방향 가동판(18)에 탑재된 직사각형 형상의 Y방향 가동판(20)과, Y방향 가동판(20)의 상면에 회전 가능하게 탑재된 원통 형상의 척 테이블(22)을 포함한다. 한편, X방향은 도 1에 화살표 X로 나타낸 방향이고, Y방향은 도 1에 화살표 Y로 나타낸 방향이며 X방향에 직교하는 방향이다. X방향 및 Y방향이 규정하는 XY 평면은 실질적으로 수평이다.
이동 수단(8)은, X방향 이동 수단(24)과, Y방향 이동 수단(26)과, 회전 수단(도시하고 있지 않음)을 포함한다. X방향 이동 수단(24)은, 베이스(4) 상에 있어서 X방향으로 연장되는 볼 나사(28)와, 볼 나사(28)의 한쪽 단부에 연결된 모터(30)를 갖는다. 볼 나사(28)의 너트부(도시하고 있지 않음)는, X방향 가동판(18)의 하면에 고정되어 있다. 그리고 X방향 이동 수단(24)은, 볼 나사(28)에 의해 모터(30)의 회전 운동을 직선 운동으로 변환하여 X방향 가동판(18)에 전달하고, 베이스(4) 상의 안내 레일(4a)을 따라 X방향 가동판(18)을 X방향으로 진퇴시킨다. Y방향 이동 수단(26)은, X방향 가동판(18) 상에 있어서 Y방향으로 연장되는 볼 나사(32)와, 볼 나사(32)의 한쪽 단부에 연결된 모터(34)를 갖는다. 볼 나사(32)의 너트부(도시하고 있지 않음)는, Y방향 가동판(20)의 하면에 고정되어 있다. 그리고 Y방향 이동 수단(26)은, 볼 나사(32)에 의해 모터(34)의 회전 운동을 직선 운동으로 변환하여 Y방향 가동판(20)에 전달하고, X방향 가동판(18) 상의 안내 레일(18a)을 따라 Y방향 가동판(20)을 Y방향으로 진퇴시킨다. 회전 수단은, 척 테이블(22)에 내장된 모터(도시하고 있지 않음)를 갖고, Y방향 가동판(20)에 대해 척 테이블(22)을 회전시킨다.
레이저 광선 조사 수단(10)은, 베이스(4)의 상면으로부터 상방으로 연장되고 계속해서 실질적으로 수평으로 연장되는 프레임(36)과, 프레임(36)에 내장된 발진 수단(도시하고 있지 않음)과, 프레임(36)의 선단 하면에 배치된 집광기(38)와, 집광점 위치 조정 수단(도시하고 있지 않음)을 포함한다. 발진 수단은, 펄스 레이저 광선(LB)을 발진하는 발진기와, 발진기가 발진하는 펄스 레이저 광선(LB)의 반복 주파수(F)를 설정하는 설정기와, 발진기가 발진한 펄스 레이저 광선(LB)의 출력을 조정하는 조정기를 갖는다(모두 도시하고 있지 않음). 집광기(38)는, 발진기가 발진한 펄스 레이저 광선(LB)을 집광하는 집광 렌즈(도시하고 있지 않음)를 갖는다. 또한, 촬상 수단(12)은, 집광기(38)와 X방향으로 간격을 두고 프레임(36)의 선단 하면에 부설되어 있다. 촬상 수단(12)에 의해 촬상된 화상을 표시하는 표시 수단(14)은, 프레임(36)의 선단 상면에 탑재되어 있다.
박리 수단(16)은, 베이스(4) 상의 안내 레일(4a)의 종단부로부터 상방으로 연장되는 직육면체 형상의 케이싱(40)과, 케이싱(40)에 승강 가능하게 지지된 기단으로부터 X방향으로 연장되는 아암(42)을 포함한다. 케이싱(40)에는, 아암(42)을 승강시키는 승강 수단(도시하고 있지 않음)이 내장되어 있다. 아암(42)의 선단에는 모터(44)가 부설되고, 모터(44)의 하면에는, 상하 방향으로 연장되는 축선을 중심으로 하여 회전 가능하게 원반 형상의 흡착편(46)이 연결되어 있다. 하면에 복수의 흡인 구멍(도시하고 있지 않음)이 형성되어 있는 흡착편(46)은, 유로에 의해 흡인 수단(도시하고 있지 않음)에 접속되어 있다. 또한 흡착편(46)에는, 흡착편(46)의 하면에 대해 초음파 진동을 부여하는 초음파 진동 부여 수단(도시하고 있지 않음)이 내장되어 있다.
도 2에 도시된 전체로서 원기둥 형상의 육방정 단결정 SiC 잉곳(50)(이하 「잉곳(50)」이라고 함)은, 원형 형상의 제1 면(52)과, 제1 면(52)과 반대측의 원형 형상의 제2 면(54)과, 제1 면(52) 및 제2 면(54) 사이에 위치하는 원통 형상의 둘레면(56)과, 제1 면(52)으로부터 제2 면(54)에 이르는 c축(<0001> 방향)과, c축에 직교하는 c면({0001}면)을 갖는다. 잉곳(50)에 있어서는, 제1 면(52)의 수선(58)에 대해 c축이 기울어져 있고, c면과 제1 면(52)으로 오프각(α)(예컨대 α=4도)이 형성되어 있다[오프각(α)이 형성되는 방향을 도 2에 화살표 A로 나타냄]. 또한 잉곳(50)의 둘레면(56)에는, 결정 방위를 나타내는 직사각형 형상의 제1 오리엔테이션 플랫(60) 및 제2 오리엔테이션 플랫(62)이 형성되어 있다. 제1 오리엔테이션 플랫(60)은, 오프각(α)이 형성되는 방향(A)에 평행하고, 제2 오리엔테이션 플랫(62)은, 오프각(α)이 형성되는 방향(A)에 직교하고 있다. 도 2의 (a)에 도시된 바와 같이, 수선(58)의 방향에서 보아, 제2 오리엔테이션 플랫(62)의 길이(L2)는, 제1 오리엔테이션 플랫(60)의 길이(L1)보다 짧다(L2<L1).
레이저 가공 장치(2)를 이용한 웨이퍼의 생성 방법에서는, 먼저, 잉곳(50)의 제2 면(54)과 레이저 가공 장치(2)의 척 테이블(22)의 상면 사이에 접착제(예컨대 에폭시 수지계 접착제)를 개재시키고, 도 1에 도시된 바와 같이, 잉곳(50)을 척 테이블(22)에 고정한다. 한편, 척 테이블(22)의 상면에 복수의 흡인 구멍이 형성되어 있어, 척 테이블(22)의 상면에 흡인력을 생성하여 잉곳(50)을 유지해도 좋다. 계속해서, 이동 수단(8)에 의해 척 테이블(22)을 촬상 수단(12)의 하방으로 이동시키고, 촬상 수단(12)에 의해 잉곳(50)을 촬상한다.
계속해서, 박리면 생성 공정을 실시한다. 박리면 생성 공정에서는, 먼저, 촬상 수단(12)에 의해 촬상된 잉곳(50)의 화상에 기초하여, 이동 수단(8)에 의해 척 테이블(22)을 이동 및 회전시킴으로써, 잉곳(50)의 방향을 소정의 방향으로 조정하고, 잉곳(50)과 집광기(38)의 XY 평면에 있어서의 위치를 조정한다. 잉곳(50)의 방향을 소정의 방향으로 조정할 때에는, 도 3의 (b)에 도시된 바와 같이, 제1 오리엔테이션 플랫(60)을 Y방향에 정합시키고, 제2 오리엔테이션 플랫(62)을 X방향에 정합시킴으로써, 오프각(α)이 형성되는 방향(A)을 Y방향에 정합시키고, 오프각(α)이 형성되는 방향(A)과 직교하는 방향을 X방향에 정합시킨다. 계속해서, 집광점 위치 조정 수단에 의해 집광기(38)를 승강시켜, 제1 면(52)으로부터 생성해야 할 웨이퍼의 두께에 상당하는 깊이의 위치에 집광점(FP)을 위치시킨다. 계속해서, 도 3에 도시된 바와 같이, 집광점(FP)에 대해 척 테이블(22)을 소정의 가공 이송 속도(V)로 X방향 이동 수단(24)에 의해 X방향[즉, 오프각(α)이 형성되는 방향(A)과 직교하는 방향]으로 가공 이송하면서, SiC에 대해 투과성을 갖는 파장의 펄스 레이저 광선(LB)을 집광기(38)로부터 잉곳(50)에 조사하여 분리층(64)을 형성하는 분리층 형성 가공을 행한다. 분리층 형성 가공을 행하면, 먼저, 최초의 펄스 레이저 광선(LB)의 조사에 의해 SiC가 Si(실리콘)와 C(탄소)로 분리되고 다음에 조사되는 펄스 레이저 광선(LB)이 전에 형성된 C에 흡수되어 연쇄적으로 SiC가 Si와 C로 분리되어 형성되는 개질층(66)과, 개질층(66)으로부터 c면을 따라 개질층(66)의 양측으로 연장되는 크랙(68)으로 이루어지는 분리층(64)이 형성된다. 도 4의 (b)에 도시된 바와 같이, 오프각(α)이 형성되는 방향(A)과 직교하는 방향으로 연장되는 개질층(66)은, 동일 c면 상에 위치하고 c면을 따라 편평하게 형성되며, 또한 공극을 갖는다. 또한, c면을 따라 개질층(66)의 한쪽 편으로 연장되는 크랙(68)의 길이(Lc)는 예컨대 250 ㎛ 정도이다. 한편, 분리층 형성 가공에서는, 개질층(66)이 형성되는 깊이에 있어서 인접하는 스폿이 서로 중복되도록 척 테이블(22)을 X방향으로 가공 이송하면서 펄스 레이저 광선(LB)을 잉곳(50)에 조사하여, Si와 C로 분리된 개질층(66)에 재차 펄스 레이저 광선(LB)이 조사되도록 한다. 인접하는 스폿이 서로 중복되기 위해서는, 펄스 레이저 광선(LB)의 반복 주파수[F(㎑)]와, 척 테이블(22)의 가공 이송 속도[V(㎜/s)]와, 스폿의 직경[D(㎛)]으로 규정되는 G=(V/F)-D가 G<0인 것을 요한다. 또한, 인접하는 스폿의 중복률은 |G|/D로 규정된다.
박리면 생성 공정에서는, 집광점(FP)에 대해 척 테이블(22)을 Y방향 이동 수단(26)에 의해 Y방향[즉, 오프각(α)이 형성되는 방향(A)]으로 소정 인덱스량(Li)(예컨대 250 ㎛)만큼 인덱스 이송해서 분리층 형성 가공을 복수 회 행하고, 도 4에 도시된 바와 같이, 분리층(64)을 복수 형성하여 박리면(70)을 생성한다.
박리면 생성 공정에서는, 펄스 레이저 광선(LB)의 에너지 밀도는, 전에 형성된 분리층(64)에 중복되어 조사되는 펄스 레이저 광선(LB)이, 분리층(64)에서 반사되어 분리층(64)의 상방에 손상층을 형성하는 일이 없고, 또는 분리층(64)을 투과하여 분리층(64)의 하방에 손상층을 형성하는 일이 없는 에너지 밀도로 설정되는 것이 중요하다. 본 실시형태에서는, 1펄스당 에너지 밀도를 E(J/㎠)로 하고, 가공 이송 속도를 V(㎜/s)로 한 경우,
0<V≤600 (식 1)
0.184≤E (식 2)
를 조건으로
-0.35+0.0042×(V-100)≤E≤0.737+0.0024×(V-100) (식 3)
으로 설정된다. 한편, 에너지 밀도[E(J/㎠)]는, 평균 출력[P(W)]과, 개질층(66)이 형성되는 위치에 있어서의 스폿의 면적[S=πD2/4(㎠)]과, 반복 주파수[F(㎑)]로 규정된다[E=P/(S·F)].
여기서, 1펄스당 에너지 밀도[E(J/㎠)]와 가공 이송 속도[V(㎜/s)]의 관계가 상기 식 1 내지 3으로 규정되는 범위로 설정되는 이유에 대해, 하기의 실험 조건하에서 본 발명자가 행한 실험의 결과를 도시한 도 5를 참조하면서 설명한다.
[실험 조건]
펄스 레이저 광선의 파장
: 1064 nm
반복 주파수
: 30 ㎑
평균 출력
: 0.2 W∼5.0 W
집광점의 직경
: 1 ㎛
집광 렌즈의 개구수(NA)
: 0.65
집광점의 위치
: 집광점을 잉곳의 상면에 위치시킨 상태
로부터 집광기를 120 ㎛ 내린 위치
SiC의 굴절률
: 2.65
인덱스량
: 250 ㎛
가공 이송 속도
: 100 ㎜/s∼800 ㎜/s
[실험 1]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 100 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 1의 결과]
(1) 평균 출력 0.2 W에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 0.4 W∼1.6 W의 범위에서는, 양호한 분리층이 형성되었으나, 분리층의 상방 또는 하방에 손상층은 형성되지 않았다.
(3) 평균 출력 1.8 W∼2.8 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층에 반사된 레이저 광선에 의해 분리층의 상방에 손상층이 형성되었다.
(4) 평균 출력 3.0 W∼5.0 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층에 반사된 레이저 광선에 의해 분리층의 상방에 손상층이 형성되고, 전에 형성된 분리층을 투과한 레이저 광선에 의해 분리층의 하방에 손상층이 형성되었다.
한편, 도 5에 있어서, 양호한 분리층이 형성되고, 분리층의 상방 또는 하방에 손상층이 형성되지 않은 조건에는 「●」표를 붙이고, 분리층이 형성되지 않은 조건에는 「×」를 붙이며, 분리층의 상방에만 손상층이 형성된 조건에는 「△」를 붙이고, 분리층의 상방 및 하방에 손상층이 형성된 조건에는 「□」를 붙이며, 분리층의 하방에만 손상층이 형성된 조건에는 「◇」를 붙이고, 분리층이 형성되지 않고 손상층만이 형성된 조건에는 「+」를 붙이고 있다. 또한, 후술하는 도 8에 있어서도, 상기와 마찬가지로 「●」, 「×」, 「△」, 「□」, 「◇」, 「+」를 붙이고 있다.
[실험 1에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 100 ㎜/s인 경우, 양호한 분리층을 형성하기 위해서는, 평균 출력이 0.4 W∼1.6 W의 범위에서 펄스 레이저 광선의 에너지를 설정한다.
[실험 2]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 200 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 2의 결과]
(1) 평균 출력 0.2 W∼0.4 W의 범위에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 0.6 W∼2.0 W의 범위에서는, 양호한 분리층이 형성되었으나, 분리층의 상방 또는 하방에 손상층은 형성되지 않았다.
(3) 평균 출력 2.2 W∼2.8 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층에 반사된 레이저 광선에 의해 분리층의 상방에 손상층이 형성되었다.
(4) 평균 출력 3.0 W∼5.0 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층에 반사된 레이저 광선에 의해 분리층의 상방에 손상층이 형성되고, 전에 형성된 분리층을 투과한 레이저 광선에 의해 분리층의 하방에 손상층이 형성되는 경우와, 분리층의 하방에만 손상층이 형성되는 경우가 혼재하였다.
[실험 2에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 200 ㎜/s인 경우, 양호한 분리층을 형성하기 위해서는, 평균 출력이 0.6 W∼2.0 W의 범위에서 펄스 레이저 광선의 에너지를 설정한다.
[실험 3]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 300 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 3의 결과]
(1) 평균 출력 0.2 W∼0.8 W의 범위에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 1.0 W∼2.8 W의 범위에서는, 양호한 분리층이 형성되었으나, 분리층의 상방 또는 하방에 손상층은 형성되지 않았다.
(3) 평균 출력 3.0 W에서는, 분리층은 형성되었으나, 전에 형성된 분리층에 반사된 레이저 광선에 의해 분리층의 상방에 손상층이 형성되었다.
(4) 평균 출력 3.2 W∼4.8 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층에 반사된 레이저 광선에 의해 분리층의 상방에 손상층이 형성되고, 전에 형성된 분리층을 투과한 레이저 광선에 의해 분리층의 하방에 손상층이 형성되었다.
(5) 평균 출력 5.0 W에서는, 분리층은 형성되었으나, 전에 형성된 분리층을 투과한 레이저 광선에 의해 분리층의 하방에 손상층이 형성되었다.
[실험 3에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 300 ㎜/s인 경우, 양호한 분리층을 형성하기 위해서는, 평균 출력이 1.0 W∼2.8 W의 범위에서 펄스 레이저 광선의 에너지를 설정한다.
[실험 4]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 400 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 4의 결과]
(1) 평균 출력 0.2 W∼1.8 W의 범위에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 2.0 W∼3.2 W의 범위에서는, 양호한 분리층이 형성되었으나, 분리층의 상방 또는 하방에 손상층은 형성되지 않았다.
(3) 평균 출력 3.4 W∼5.0 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층을 투과한 레이저 광선에 의해 분리층의 하방에 손상층이 형성되었다.
[실험 4에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 400 ㎜/s인 경우, 양호한 분리층을 형성하기 위해서는, 평균 출력이 2.0 W∼3.2 W의 범위에서 펄스 레이저 광선의 에너지를 설정한다.
[실험 5]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 500 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 5의 결과]
(1) 평균 출력 0.2 W∼2.8 W의 범위에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 3.0 W∼3.6 W의 범위에서는, 양호한 분리층이 형성되었으나, 분리층의 상방 또는 하방에 손상층은 형성되지 않았다.
(3) 평균 출력 3.8 W∼5.0 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층을 투과한 레이저 광선에 의해 분리층의 하방에 손상층이 형성되었다.
[실험 5에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 500 ㎜/s인 경우, 양호한 분리층을 형성하기 위해서는, 평균 출력이 3.0 W∼3.6 W의 범위에서 펄스 레이저 광선의 에너지를 설정한다.
[실험 6]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 600 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 6의 결과]
(1) 평균 출력 0.2 W∼3.6 W의 범위에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 3.8 W∼4.0 W의 범위에서는, 양호한 분리층이 형성되었으나, 분리층의 상방 또는 하방에 손상층은 형성되지 않았다.
(3) 평균 출력 4.2 W∼5.0 W의 범위에서는, 분리층은 형성되었으나, 전에 형성된 분리층을 투과한 레이저 광선에 의해 분리층의 하방에 손상층이 형성되었다.
[실험 6에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 600 ㎜/s인 경우, 양호한 분리층을 형성하기 위해서는, 평균 출력이 3.8 W∼4.0 W의 범위에서 펄스 레이저 광선의 에너지를 설정한다.
[실험 7]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 700 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 7의 결과]
(1) 평균 출력 0.2 W∼1.0 W의 범위에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 1.2 W∼5.0 W의 범위에서는, 분리층이 형성되지 않는 한편, 출력을 상승시킬 때마다 큰 손상층이 형성되었다.
[실험 7에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 700 ㎜/s인 경우, 분리층은 형성되지 않는다.
[실험 8]
두께 1 ㎜의 단결정 SiC 잉곳을 척 테이블(22)에 유지시키고, 오프각이 형성되는 방향과 직교하는 방향으로 800 ㎜/s의 가공 이송 속도로 척 테이블(22)을 가공 이송하며, 펄스 레이저 광선의 평균 출력을 0.2 W 간격으로 0.2 W로부터 5.0 W까지 상승시켜 단결정 SiC 잉곳에 펄스 레이저 광선을 조사하였다.
[실험 8의 결과]
(1) 평균 출력 0.2 W∼1.0 W의 범위에서는, 분리층은 형성되지 않았다.
(2) 평균 출력 1.2 W∼5.0 W의 범위에서는, 분리층은 형성되지 않는 한편, 출력을 상승시킬 때마다 큰 손상층이 형성되었다.
[실험 8에 기초한 결론]
상기 실험 조건하에 있어서 가공 이송 속도가 800 ㎜/s인 경우, 분리층은 형성되지 않는다.
도 6 및 도 7을 참조하여, 펄스 레이저 광선(LB)의 집광점(FP)의 깊이(Z)와, 잉곳(50)에 형성되는 개질층(66) 및 손상층(72, 74)에 대해 설명한다. 집광 렌즈의 개구수(NA)와, 개구각(θ)과, 굴절률(n)의 관계는, NA=n·sinθ인 바, 상기 실험 조건에서는 집광 렌즈의 개구수(NA)가 0.65이기 때문에, 공기 중(굴절률≒1)에 있어서 집광 렌즈를 투과한 펄스 레이저 광선(LB)의 개구각(θ)은,
θ=sin-1(0.65)
=40.5
가 된다. 그러면, 잉곳(50)의 상면[예컨대 제1 면(52)]으로부터 집광기를 120 ㎛ 내린 경우에, 잉곳(50)의 상면에 있어서의 펄스 레이저 광선(LB)의 스폿의 반경(r)은,
r=120×tan(40.5)
=120×0.854
=102.5(㎛)
가 된다. 또한, SiC의 굴절률이 2.65이기 때문에, 잉곳(50)의 내부에 있어서의 펄스 레이저 광선(LB)의 개구각(θ')은,
θ'=sin-1(0.65/2.65)
=sin-1(0.245)
=14.2
가 된다. 그리고 집광점(FP)의 깊이(Z)는, 잉곳(50)의 상면에 있어서의 펄스 레이저 광선(LB)의 스폿의 반경(r)과, 잉곳(50)의 내부에 있어서의 개구각(θ')의 관계로부터,
Z=r/tanθ'
=102.5/tan(14.2)
=102.5/0.253
=406(㎛)
이 된다. 상기 실험 1 내지 6에 있어서 형성된 개질층(66)의 위치를 실측한 결과, 잉곳(50)의 상면으로부터의 깊이가 216 ㎛의 위치이며, 집광점(FP)의 깊이로부터 190 ㎛ 상방이었다. 이와 같이 집광점(FP)으로부터 떨어진 위치에 개질층(66) 및 크랙(68)으로 이루어지는 분리층(64)이 형성되는 것에 기인하여, 전에 형성된 분리층(64)에 중복해서 펄스 레이저 광선(LB)을 조사하면, 분리층(64)에서 반사된 펄스 레이저 광선(LB1)에 의해 분리층(64)으로부터 190 ㎛ 정도 상방의 위치에 손상층(72)이 형성되고, 또는/및, 분리층(64)을 투과한 펄스 레이저 광선(LB2)에 의해 분리층(64)으로부터 190 ㎛ 정도 하방의 위치[거의 집광점(FP)의 위치]에 손상층(74)이 형성되는 경우가 있다. 그리고, 잉곳(50)에 손상층(72, 74)이 형성되면, 생성해야 할 웨이퍼의 품질이 저하되고, 연삭에 의해 제거해야 할 잉곳(50)의 양이 증가하여 생산성이 나빠진다.
실험 1 내지 8의 결과로부터, 가공 이송 속도[V(㎜/s)]에 따라 양호한 분리층(64)이 형성되는 최대의 평균 출력은, 도 5에 도시된 바와 같이, 100 ㎜/s에서는 1.6 W, 200 ㎜/s에서는 2.0 W, 300 ㎜/s에서는 2.8 W, 400 ㎜/s에서는 3.2 W, 500 ㎜/s에서는 3.6 W, 600 ㎜/s에서는 4.0 W, 700 ㎜/s에서는 불명, 800 ㎜/s에서는 불명이고, 1펄스당 에너지 밀도[E(J/㎠)]로 변환하면, 100 ㎜/s에서는 0.737 J/㎠, 200 ㎜/s에서는 0.922 J/㎠, 300 ㎜/s에서는 1.29 J/㎠, 400 ㎜/s에서는 1.474 J/㎠, 500 ㎜/s에서는 1.65 J/㎠, 600 ㎜/s에서는 1.84 J/㎠가 된다. 한편, 상기한 바와 같이, 에너지 밀도[E(J/㎠)]는, 평균 출력[P(W)]과, 개질층(66)이 형성되는 위치에 있어서의 스폿의 면적[S=πD2/4(㎠)]과, 반복 주파수[F(㎑)]로 규정된다[E=P/(S·F)]. 상기 실험 1 내지 8에서는, 개질층(66)이 형성되는 위치에 있어서의 스폿의 직경(D)은, 잉곳(50)의 상면에 있어서의 스폿의 반경(r)(102.5 ㎛)과, 집광점(FP)의 깊이(Z)(406 ㎛)와, 개질층(66)의 깊이(190 ㎛)의 관계로부터, 102.5 ㎛×(190 ㎛/406 ㎛)×2=φ96 ㎛, 즉 φ0.0096 ㎝이다.
또한, 실험 1 내지 8의 결과로부터, 가공 이송 속도[V(㎜/s)]에 따라 양호한 분리층(64)이 형성되는 최소의 평균 출력은, 도 5에 도시된 바와 같이, 100 ㎜/s에서는 0.4 W, 200 ㎜/s에서는 0.6 W, 300 ㎜/s에서는 1.0 W, 400 ㎜/s에서는 2.0 W, 500 ㎜/s에서는 3.0 W, 600 ㎜/s에서는 3.8 W, 700 ㎜/s에서는 불명, 800 ㎜/s에서는 불명이고, 1펄스당 에너지 밀도[E(J/㎠)]로 변환하면, 100 ㎜/s에서는 0.184 J/㎠, 200 ㎜/s에서는 0.276 J/㎠, 300 ㎜/s에서는 0.461 J/㎠, 400 ㎜/s에서는 0.921 J/㎠, 500 ㎜/s에서는 1.382 J/㎠, 600 ㎜/s에서는 1.75 J/㎠가 된다.
실험 1 내지 8에 있어서, 가공 이송 속도[V(㎜/s)]마다의, 분리층(64)이 형성되는 위치에 있어서의 인접하는 스폿의 중복률은, 100 ㎜/s에서는 96%, 200 ㎜/s에서는 93%, 300 ㎜/s에서는 89%, 400 ㎜/s에서는 86%, 500 ㎜/s에서는 83%, 600 ㎜/s에서는 80%, 700 ㎜/s에서는 76%, 800 ㎜/s에서는 73%로 감소하기 때문에, 양호한 분리층(64)이 형성되는 최대값의 에너지 밀도(E)는 가공 이송 속도(V)에 따라 변화한다. 그러나, 중복률이 80% 미만이 되면 분리층(64)은 형성되지 않는다.
가공 이송 속도[V(㎜/s)]를 횡축으로 하고, 1펄스당 에너지 밀도[E(J/㎠)]를 종축으로 하여, 양호한 분리층(64)이 형성되는 최대의 1펄스당 에너지 밀도(E)의 점을 가공 이송 속도(V)마다 플롯하여 직선 근사를 구하면, 도 8에 도시된 바와 같이, E=0.737+0.0024×(V-100)이 유도되고, 양호한 분리층(64)이 형성되는 최소의 1펄스당 에너지 밀도(E)의 점을 가공 이송 속도(V)마다 플롯하여 직선 근사를 구하면, E=-0.35+0.0042×(V-100)이 유도된다. 또한, 가공 이송 속도(V)가 100 ㎜∼600 ㎜/s에서는 양호한 분리층(64)이 형성되었으나, 가공 이송 속도(V)가 700 ㎜/s 및 800 ㎜/s에서는 양호한 분리층(64)이 형성되지 않았기 때문에, 0<V≤600의 조건이 설정되고, 실험 1 내지 8을 통해 양호한 분리층(64)이 형성되는 최소의 1펄스당 에너지 밀도(E)는 0.184 J/㎠[가공 이송 속도(V)가 100 ㎜/s이고, 평균 출력이 0.2 W인 경우]였기 때문에, 0.184≤E의 조건이 설정된다. 따라서, 양호한 분리층(64)을 형성하고, 분리층(64)의 상방 또는/및 하방에 손상층(72, 74)을 형성하지 않도록 하기 위해서, 본 실시형태에서는 1펄스당 에너지 밀도[E(J/㎠)]와 가공 이송 속도[V(㎜/s)]의 관계가
0<V≤600 (식 1)
0.184≤E (식 2)
를 조건으로 -0.35+0.0042×(V-100)≤E≤0.737+0.0024×(V-100) (식 3)
으로 설정된다. 도 8에 있어서는, 해칭으로 나타낸 범위가 상기 식 1 내지 3으로 규정되는 범위이다. 그리고, 1펄스당 에너지 밀도[E(J/㎠)]와 가공 이송 속도[V(㎜/s)]의 관계가 상기 식 1 내지 3으로 규정되는 범위로 설정됨으로써, 분리층(64)의 상방 또는 하방에 손상층(72, 74)이 형성되지 않기 때문에 웨이퍼의 품질이 저하되는 일이 없고, 연삭에 의해 제거해야 할 잉곳(50)의 양이 증가하여 생산성이 나빠지는 일도 없으며, 버려지는 소재량을 경감할 수 있어, 생산성의 향상을 도모할 수 있다.
그리고 본 발명의 SiC 웨이퍼의 생성 방법에서는, 박리면 생성 공정을 실시한 후, 박리면(70)을 계면으로 해서 잉곳(50)의 일부를 박리하여 웨이퍼를 생성하는 웨이퍼 생성 공정을 실시한다. 웨이퍼 생성 공정에서는, 먼저, 이동 수단(8)에 의해 척 테이블(22)을 흡착편(46)의 하방으로 이동시킨다. 계속해서, 승강 수단에 의해 아암(42)을 하강시켜, 도 9에 도시된 바와 같이, 흡착편(46)의 하면을 잉곳(50)의 제1 면(52)에 밀착시킨다. 계속해서, 흡인 수단을 작동시켜, 흡착편(46)의 하면을 잉곳(50)의 제1 면(52)에 흡착시킨다. 계속해서, 초음파 진동 부여 수단을 작동시켜, 흡착편(46)의 하면에 대해 초음파 진동을 부여하고, 모터(44)를 작동시켜 흡착편(46)을 회전시킨다. 이에 의해, 박리면(70)을 계면으로 해서 잉곳(50)의 일부를 박리할 수 있어, 원하는 두께의 웨이퍼(76)를 효율적으로 생성할 수 있다. 웨이퍼(76)를 생성한 후, 베이스(4) 상에 설치된 연마 수단(도시하고 있지 않음)에 의해 잉곳(50)의 박리면(70)을 연마하고, 박리면 생성 공정 및 웨이퍼 생성 공정을 순차 실시함으로써, 잉곳(50)으로부터 복수의 웨이퍼를 생성할 수 있다.
50: 단결정 SiC 잉곳
52: 제1 면
54: 제2 면 58: 수선
64: 분리층 66: 개질층
68: 크랙 70: 박리면
72: 분리층의 상방에 형성되는 손상층
74: 분리층의 하방에 형성되는 손상층
V: 가공 이송 속도 E: 에너지 밀도
α: 오프각
54: 제2 면 58: 수선
64: 분리층 66: 개질층
68: 크랙 70: 박리면
72: 분리층의 상방에 형성되는 손상층
74: 분리층의 하방에 형성되는 손상층
V: 가공 이송 속도 E: 에너지 밀도
α: 오프각
Claims (2)
- 제1 면과, 상기 제1 면과 반대측의 제2 면과, 상기 제1 면으로부터 상기 제2 면에 이르고 상기 제1 면의 수선(垂線)에 대해 경사져 있는 c축과, 상기 c축에 직교하는 c면을 갖고, 상기 c면과 상기 제1 면으로 오프각을 형성하는 단결정 SiC 잉곳으로부터 SiC 웨이퍼를 생성하는 SiC 웨이퍼의 생성 방법에 있어서,
SiC에 대해 투과성을 갖는 파장의 펄스 레이저 광선의 집광점을 상기 제1 면으로부터 생성해야 할 SiC 웨이퍼의 두께에 상당하는 깊이에 위치시키고 상기 오프각이 형성되는 제2 방향과 직교하는 제1 방향으로 상기 단결정 SiC 잉곳과 상기 집광점을 상대적으로 가공 이송하면서 상기 단결정 SiC 잉곳에 펄스 레이저 광선을 조사함으로써, SiC가 Si와 C로 분리되며 다음에 조사되는 펄스 레이저 광선이 전에 형성된 C에 흡수되어 연쇄적으로 SiC가 Si와 C로 분리되어 형성되는 개질층과, 상기 개질층으로부터 c면을 따라 연장되는 크랙으로 이루어지는 분리층을 형성하는 분리층 형성 공정과,
상기 제2 방향으로 상기 단결정 SiC 잉곳과 상기 집광점을 상대적으로 인덱스 이송해서 상기 분리층 형성 공정을 복수 회 실시하여 복수의 분리층으로 이루어지는 박리면을 생성하는 박리면 생성 공정과,
상기 박리면을 계면으로 해서 상기 단결정 SiC 잉곳의 일부를 박리하여 SiC 웨이퍼를 생성하는 웨이퍼 생성 공정
을 포함하고,
상기 박리면 생성 공정에서는,
펄스 레이저 광선의 에너지 밀도가, 전에 형성된 분리층에 중복되어 조사되는 펄스 레이저 광선이, 분리층에서 반사되어 분리층의 상방에 손상층을 형성하는 일이 없고, 또는 분리층을 투과하여 분리층의 하방에 손상층을 형성하는 일이 없는 에너지 밀도로 설정되는 SiC 웨이퍼의 생성 방법. - 제1항에 있어서, 상기 박리면 생성 공정에 있어서
1펄스당 에너지 밀도를 E(J/㎠)로 하고,
가공 이송 속도를 V(㎜/s)로 한 경우,
0<V≤600
0.184≤E
를 조건으로
-0.35+0.0042×(V-100)≤E≤0.737+0.0024×(V-100)으로 설정되는 SiC 웨이퍼의 생성 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016157879A JP6698468B2 (ja) | 2016-08-10 | 2016-08-10 | ウエーハ生成方法 |
JPJP-P-2016-157879 | 2016-08-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180018353A true KR20180018353A (ko) | 2018-02-21 |
KR102178776B1 KR102178776B1 (ko) | 2020-11-13 |
Family
ID=61018712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170098853A KR102178776B1 (ko) | 2016-08-10 | 2017-08-04 | SiC 웨이퍼의 생성 방법 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10112256B2 (ko) |
JP (1) | JP6698468B2 (ko) |
KR (1) | KR102178776B1 (ko) |
CN (1) | CN107717248B (ko) |
DE (1) | DE102017213670A1 (ko) |
TW (1) | TWI728140B (ko) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6429715B2 (ja) * | 2015-04-06 | 2018-11-28 | 株式会社ディスコ | ウエーハの生成方法 |
JP6698468B2 (ja) * | 2016-08-10 | 2020-05-27 | 株式会社ディスコ | ウエーハ生成方法 |
DE102017007586A1 (de) * | 2017-08-11 | 2019-02-14 | Siltectra Gmbh | Fertigungsanlage zum Abtrennen von Wafern von Spendersubstraten |
US10896815B2 (en) * | 2018-05-22 | 2021-01-19 | Semiconductor Components Industries, Llc | Semiconductor substrate singulation systems and related methods |
US10940611B2 (en) | 2018-07-26 | 2021-03-09 | Halo Industries, Inc. | Incident radiation induced subsurface damage for controlled crack propagation in material cleavage |
JP7164396B2 (ja) * | 2018-10-29 | 2022-11-01 | 株式会社ディスコ | ウエーハ生成装置 |
US11024501B2 (en) | 2018-12-29 | 2021-06-01 | Cree, Inc. | Carrier-assisted method for parting crystalline material along laser damage region |
US10576585B1 (en) | 2018-12-29 | 2020-03-03 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US10562130B1 (en) | 2018-12-29 | 2020-02-18 | Cree, Inc. | Laser-assisted method for parting crystalline material |
US10611052B1 (en) | 2019-05-17 | 2020-04-07 | Cree, Inc. | Silicon carbide wafers with relaxed positive bow and related methods |
JP7370879B2 (ja) * | 2020-01-22 | 2023-10-30 | 株式会社ディスコ | ウエーハ生成方法、及びウエーハ生成装置 |
EP4163046A1 (en) * | 2021-10-07 | 2023-04-12 | Denso Corporation | Method for manufacturing wafers |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000094221A (ja) | 1998-09-24 | 2000-04-04 | Toyo Advanced Technologies Co Ltd | 放電式ワイヤソー |
JP2005277136A (ja) * | 2004-03-25 | 2005-10-06 | Sharp Corp | 基板製造方法および基板製造装置 |
JP2013049161A (ja) | 2011-08-30 | 2013-03-14 | Hamamatsu Photonics Kk | 加工対象物切断方法 |
JP2013158778A (ja) * | 2012-02-01 | 2013-08-19 | Shin Etsu Polymer Co Ltd | 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法 |
JP2015123466A (ja) * | 2013-12-26 | 2015-07-06 | 信越ポリマー株式会社 | 基板加工装置及び基板加工方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2531453B2 (ja) * | 1993-10-28 | 1996-09-04 | 日本電気株式会社 | レ―ザ加工装置 |
JP4659300B2 (ja) * | 2000-09-13 | 2011-03-30 | 浜松ホトニクス株式会社 | レーザ加工方法及び半導体チップの製造方法 |
JP2009545177A (ja) * | 2006-07-27 | 2009-12-17 | エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド | タンデム光アンプ |
JP2011134955A (ja) * | 2009-12-25 | 2011-07-07 | Disco Abrasive Syst Ltd | 板状材料からのチップ状部品の生産方法 |
US9296066B2 (en) * | 2010-07-12 | 2016-03-29 | Rofin-Sinar Technologies Inc. | Method of material processing by laser filamentation |
JP6090998B2 (ja) * | 2013-01-31 | 2017-03-08 | 一般財団法人電力中央研究所 | 六方晶単結晶の製造方法、六方晶単結晶ウエハの製造方法 |
DE102015000449A1 (de) * | 2015-01-15 | 2016-07-21 | Siltectra Gmbh | Festkörperteilung mittels Stoffumwandlung |
EP3666445B1 (de) * | 2014-11-27 | 2022-10-19 | Siltectra GmbH | Festkörperteilung mittels stoffumwandlung |
JP6399914B2 (ja) * | 2014-12-04 | 2018-10-03 | 株式会社ディスコ | ウエーハの生成方法 |
JP6358940B2 (ja) * | 2014-12-04 | 2018-07-18 | 株式会社ディスコ | ウエーハの生成方法 |
JP6399913B2 (ja) * | 2014-12-04 | 2018-10-03 | 株式会社ディスコ | ウエーハの生成方法 |
JP6358941B2 (ja) * | 2014-12-04 | 2018-07-18 | 株式会社ディスコ | ウエーハの生成方法 |
JP6418927B2 (ja) * | 2014-12-04 | 2018-11-07 | 株式会社ディスコ | ウエーハの生成方法 |
JP5917677B1 (ja) * | 2014-12-26 | 2016-05-18 | エルシード株式会社 | SiC材料の加工方法 |
JP6395613B2 (ja) * | 2015-01-06 | 2018-09-26 | 株式会社ディスコ | ウエーハの生成方法 |
DE102015006971A1 (de) * | 2015-04-09 | 2016-10-13 | Siltectra Gmbh | Verfahren zum verlustarmen Herstellen von Mehrkomponentenwafern |
CN105150741B (zh) * | 2015-09-17 | 2017-12-05 | 青岛欣鑫数控精密机械有限公司 | 带负压吸附真空换向阀的双工位雕刻机 |
CN105436710B (zh) * | 2015-12-30 | 2019-03-05 | 大族激光科技产业集团股份有限公司 | 一种硅晶圆的激光剥离方法 |
JP6619685B2 (ja) * | 2016-04-19 | 2019-12-11 | 株式会社ディスコ | SiCウエーハの加工方法 |
JP6698468B2 (ja) * | 2016-08-10 | 2020-05-27 | 株式会社ディスコ | ウエーハ生成方法 |
JP6773506B2 (ja) * | 2016-09-29 | 2020-10-21 | 株式会社ディスコ | ウエーハ生成方法 |
-
2016
- 2016-08-10 JP JP2016157879A patent/JP6698468B2/ja active Active
-
2017
- 2017-06-28 TW TW106121543A patent/TWI728140B/zh active
- 2017-07-28 US US15/663,189 patent/US10112256B2/en active Active
- 2017-08-01 CN CN201710646236.6A patent/CN107717248B/zh active Active
- 2017-08-04 KR KR1020170098853A patent/KR102178776B1/ko active IP Right Grant
- 2017-08-07 DE DE102017213670.7A patent/DE102017213670A1/de active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000094221A (ja) | 1998-09-24 | 2000-04-04 | Toyo Advanced Technologies Co Ltd | 放電式ワイヤソー |
JP2005277136A (ja) * | 2004-03-25 | 2005-10-06 | Sharp Corp | 基板製造方法および基板製造装置 |
JP2013049161A (ja) | 2011-08-30 | 2013-03-14 | Hamamatsu Photonics Kk | 加工対象物切断方法 |
JP2013158778A (ja) * | 2012-02-01 | 2013-08-19 | Shin Etsu Polymer Co Ltd | 単結晶基板の製造方法、単結晶基板、および、内部改質層形成単結晶部材の製造方法 |
JP2015123466A (ja) * | 2013-12-26 | 2015-07-06 | 信越ポリマー株式会社 | 基板加工装置及び基板加工方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6698468B2 (ja) | 2020-05-27 |
TW201816867A (zh) | 2018-05-01 |
US10112256B2 (en) | 2018-10-30 |
JP2018026470A (ja) | 2018-02-15 |
KR102178776B1 (ko) | 2020-11-13 |
TWI728140B (zh) | 2021-05-21 |
CN107717248A (zh) | 2018-02-23 |
US20180043468A1 (en) | 2018-02-15 |
DE102017213670A1 (de) | 2018-02-15 |
CN107717248B (zh) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20180018353A (ko) | SiC 웨이퍼의 생성 방법 | |
TWI811325B (zh) | 晶圓的生成方法 | |
KR102368338B1 (ko) | 웨이퍼의 가공 방법 | |
KR102454030B1 (ko) | 웨이퍼의 생성 방법 | |
US10406635B2 (en) | Wafer producing method and processing feed direction detecting method | |
TWI706454B (zh) | 碳化矽(SiC)基板的分離方法 | |
KR102369760B1 (ko) | 웨이퍼의 가공 방법 | |
KR102260340B1 (ko) | SiC 웨이퍼의 생성 방법 | |
TWI714764B (zh) | 晶圓生成方法 | |
TWI732065B (zh) | SiC晶圓的生成方法 | |
US11446771B2 (en) | Method for producing wafers using ultrasound | |
KR20180035689A (ko) | SiC 웨이퍼의 생성 방법 | |
TW201829862A (zh) | SiC晶圓之製成方法 | |
TW201939599A (zh) | 晶圓之生成方法及晶圓之生成裝置 | |
KR20180119481A (ko) | SiC 웨이퍼의 생성 방법 | |
KR20200053410A (ko) | 패싯 영역의 검출 방법 및 검출 장치 및 웨이퍼의 생성 방법 및 레이저 가공 장치 | |
KR20160123224A (ko) | 박판의 분리 방법 | |
KR20200031515A (ko) | 웨이퍼의 생성 방법 및 레이저 가공 장치 | |
TW202117105A (zh) | SiC晶棒之加工方法以及雷射加工裝置 | |
CN114055645A (zh) | Si基板制造方法 | |
JP2020035821A (ja) | SiC基板の加工方法 | |
JP7210292B2 (ja) | ウエーハの生成方法 | |
JP2013219115A (ja) | ウェーハの分割方法 | |
JP2005177763A (ja) | レーザー加工された変質層の確認装置 | |
JP2023026921A (ja) | ウエーハの加工方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |