KR102220462B1 - Alkali metal liquid nano-composite-silicate-based permeable waterproofing agent and concrete structure penetration waterproofing method - Google Patents
Alkali metal liquid nano-composite-silicate-based permeable waterproofing agent and concrete structure penetration waterproofing method Download PDFInfo
- Publication number
- KR102220462B1 KR102220462B1 KR1020200090911A KR20200090911A KR102220462B1 KR 102220462 B1 KR102220462 B1 KR 102220462B1 KR 1020200090911 A KR1020200090911 A KR 1020200090911A KR 20200090911 A KR20200090911 A KR 20200090911A KR 102220462 B1 KR102220462 B1 KR 102220462B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- silicate
- concrete
- oxide
- Prior art date
Links
- 238000004078 waterproofing Methods 0.000 title claims abstract description 69
- 239000003795 chemical substances by application Substances 0.000 title claims abstract description 43
- 238000000034 method Methods 0.000 title claims abstract description 32
- 239000007788 liquid Substances 0.000 title claims abstract description 24
- 229910052783 alkali metal Inorganic materials 0.000 title claims abstract description 19
- 150000001340 alkali metals Chemical class 0.000 title claims abstract description 19
- 239000004567 concrete Substances 0.000 title abstract description 99
- 230000035515 penetration Effects 0.000 title abstract description 17
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000002114 nanocomposite Substances 0.000 claims abstract description 50
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 37
- 239000002131 composite material Substances 0.000 claims abstract description 27
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 26
- 235000012239 silicon dioxide Nutrition 0.000 claims abstract description 23
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 29
- 239000000377 silicon dioxide Substances 0.000 claims description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 22
- 239000007787 solid Substances 0.000 claims description 21
- 239000002245 particle Substances 0.000 claims description 16
- -1 aluminum ions Chemical class 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 9
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims description 8
- 229910001947 lithium oxide Inorganic materials 0.000 claims description 8
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 claims description 8
- 229910001950 potassium oxide Inorganic materials 0.000 claims description 8
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 8
- 229910001948 sodium oxide Inorganic materials 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 239000000203 mixture Substances 0.000 claims description 7
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 5
- 229910001414 potassium ion Inorganic materials 0.000 claims description 5
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- VSYLGGHSEIWGJV-UHFFFAOYSA-N diethyl(dimethoxy)silane Chemical compound CC[Si](CC)(OC)OC VSYLGGHSEIWGJV-UHFFFAOYSA-N 0.000 claims description 3
- JJQZDUKDJDQPMQ-UHFFFAOYSA-N dimethoxy(dimethyl)silane Chemical compound CO[Si](C)(C)OC JJQZDUKDJDQPMQ-UHFFFAOYSA-N 0.000 claims description 3
- POPACFLNWGUDSR-UHFFFAOYSA-N methoxy(trimethyl)silane Chemical compound CO[Si](C)(C)C POPACFLNWGUDSR-UHFFFAOYSA-N 0.000 claims description 3
- INJVFBCDVXYHGQ-UHFFFAOYSA-N n'-(3-triethoxysilylpropyl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CCCNCCN INJVFBCDVXYHGQ-UHFFFAOYSA-N 0.000 claims description 3
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical group CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- HUZZQXYTKNNCOU-UHFFFAOYSA-N triethyl(methoxy)silane Chemical compound CC[Si](CC)(CC)OC HUZZQXYTKNNCOU-UHFFFAOYSA-N 0.000 claims description 3
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims 1
- 229910052710 silicon Inorganic materials 0.000 claims 1
- 239000010703 silicon Substances 0.000 claims 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 abstract description 21
- 239000004115 Sodium Silicate Substances 0.000 abstract description 19
- 229910052911 sodium silicate Inorganic materials 0.000 abstract description 19
- 235000019353 potassium silicate Nutrition 0.000 abstract description 16
- 239000004111 Potassium silicate Substances 0.000 abstract description 15
- NNHHDJVEYQHLHG-UHFFFAOYSA-N potassium silicate Chemical compound [K+].[K+].[O-][Si]([O-])=O NNHHDJVEYQHLHG-UHFFFAOYSA-N 0.000 abstract description 15
- 229910052913 potassium silicate Inorganic materials 0.000 abstract description 15
- PAZHGORSDKKUPI-UHFFFAOYSA-N lithium metasilicate Chemical compound [Li+].[Li+].[O-][Si]([O-])=O PAZHGORSDKKUPI-UHFFFAOYSA-N 0.000 abstract description 14
- 229910052912 lithium silicate Inorganic materials 0.000 abstract description 14
- 150000001875 compounds Chemical class 0.000 abstract description 10
- 239000006229 carbon black Substances 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 229910021645 metal ion Inorganic materials 0.000 abstract description 6
- 239000011148 porous material Substances 0.000 abstract description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 abstract description 5
- 229910052910 alkali metal silicate Inorganic materials 0.000 abstract description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 abstract description 3
- 239000000654 additive Substances 0.000 abstract description 3
- 230000000996 additive effect Effects 0.000 abstract description 3
- 229910000077 silane Inorganic materials 0.000 abstract description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract description 3
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 20
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 19
- 230000000052 comparative effect Effects 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 13
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 230000003014 reinforcing effect Effects 0.000 description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 10
- 235000010216 calcium carbonate Nutrition 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 9
- 239000003513 alkali Substances 0.000 description 9
- 229910000019 calcium carbonate Inorganic materials 0.000 description 9
- 239000000543 intermediate Substances 0.000 description 9
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 7
- 239000001569 carbon dioxide Substances 0.000 description 7
- 229910002092 carbon dioxide Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 239000000920 calcium hydroxide Substances 0.000 description 6
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 6
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 229910004762 CaSiO Inorganic materials 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000000378 calcium silicate Substances 0.000 description 4
- 229910052918 calcium silicate Inorganic materials 0.000 description 4
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 4
- 239000004568 cement Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000004408 titanium dioxide Substances 0.000 description 4
- 238000011041 water permeability test Methods 0.000 description 4
- 230000000536 complexating effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011372 high-strength concrete Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 238000003916 acid precipitation Methods 0.000 description 2
- 239000005456 alcohol based solvent Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 238000007589 penetration resistance test Methods 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 229910052815 sulfur oxide Inorganic materials 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 239000012855 volatile organic compound Substances 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical compound O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- NKWPZUCBCARRDP-UHFFFAOYSA-L calcium bicarbonate Chemical compound [Ca+2].OC([O-])=O.OC([O-])=O NKWPZUCBCARRDP-UHFFFAOYSA-L 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000012412 chemical coupling Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000004574 high-performance concrete Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 150000002500 ions Chemical group 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052914 metal silicate Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000036314 physical performance Effects 0.000 description 1
- LVTJOONKWUXEFR-FZRMHRINSA-N protoneodioscin Natural products O(C[C@@H](CC[C@]1(O)[C@H](C)[C@@H]2[C@]3(C)[C@H]([C@H]4[C@@H]([C@]5(C)C(=CC4)C[C@@H](O[C@@H]4[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@@H](O)[C@H](O[C@H]6[C@@H](O)[C@@H](O)[C@@H](O)[C@H](C)O6)[C@H](CO)O4)CC5)CC3)C[C@@H]2O1)C)[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@H](CO)O1 LVTJOONKWUXEFR-FZRMHRINSA-N 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5024—Silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/32—Alkali metal silicates
- C01B33/325—After-treatment, e.g. purification or stabilisation of solutions, granulation; Dissolution; Obtaining solid silicate, e.g. from a solution by spray-drying, flashing off water or adding a coagulant
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/46—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
- C04B41/49—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
- C04B41/4905—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
- C04B41/4922—Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as monomers, i.e. as organosilanes RnSiX4-n, e.g. alkyltrialkoxysilane, dialkyldialkoxysilane
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5001—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5007—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing
- C04B41/501—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with salts or salty compositions, e.g. for salt glazing containing carbon in the anion, e.g. carbonates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5031—Alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5025—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
- C04B41/5041—Titanium oxide or titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5053—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
- C04B41/5057—Carbides
- C04B41/5059—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/50—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
- C04B41/5072—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with oxides or hydroxides not covered by C04B41/5025
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/60—Agents for protection against chemical, physical or biological attack
- C04B2103/65—Water proofers or repellants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/27—Water resistance, i.e. waterproof or water-repellent materials
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
Abstract
Description
본 발명은 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제 및 콘크리트 구조물 구체 침투 방수공법에 관한 것으로, 더욱 상세하게는 다종의 알칼리금속-실리케이트 화합물을 복합화하여 제조됨에 따라, 콘크리트 내의 유리금속이온과 반응하여 불용성의 규산염 금속 수화물 및 규산을 동시에 생성하며, 콘크리트의 미세공극을 셀프힐링 (자기 보수)할 수 있는 복합 실리케이트계 침투방수제 및 이를 이용한 콘크리트 구체 침투방수 공법에 관한 것이다.The present invention relates to an alkali metal liquid nanocomposite silicate-based permeable waterproofing agent and a concrete structure spherical permeation waterproofing method, and more particularly, as it is manufactured by complexing various kinds of alkali metal-silicate compounds, it reacts with free metal ions in concrete and is insoluble. A composite silicate-based penetration waterproofing agent capable of generating silicate metal hydrate and silicic acid simultaneously and self-healing (self-repairing) micropores of concrete, and a concrete concrete penetration waterproofing method using the same.
콘크리트는 물, 시멘트, 모래, 자갈 등의 골재 등을 구성성분으로 하며, 시멘트와 물이 반응하여 굳어지는 수화반응을 이용하여 건물, 교량, 터널 등의 건축 구조물을 형성하는데 이용된다.Concrete is composed of aggregates such as water, cement, sand, and gravel, and is used to form building structures such as buildings, bridges, and tunnels by using a hydration reaction in which cement and water react and harden.
콘크리트 구조물은 땅속에 묻히는 지하층, 공기에 노출되는 표층부로 나누어 지는데, 지하층은 항상 수분에 접하여 있고 온도의 변화에 따른 수축 및 팽창이 반복되면서 내구성이 저하될 수 있다. 콘크리트의 내구성 저하는 특히 수분에 의한 영향을 많이 받으며, 물은 콘크리트를 열화시키는 매개체 역할을 하며 용존되어 있는 황산염, 질산염, 탄산염, 산성비 등은 콘크리트 구조물의 손상을 가속화할 수 있다.Concrete structures are divided into a basement layer buried in the ground and a surface layer exposed to the air. The basement layer is always in contact with moisture, and durability may decrease as contraction and expansion are repeated according to temperature changes. Deterioration of the durability of concrete is particularly affected by moisture, and water acts as a medium to deteriorate concrete, and dissolved sulfate, nitrate, carbonate, acid rain, etc. can accelerate damage to the concrete structure.
이러한 수분에 의한 손상을 방지하기 위하여 다양한 방수재가 연구되고 사용되고 있으며, 오늘날 세계적인 환경보호 추세와 더불어 중금속이나 휘발성 유기화합물의 방출이 없는 친환경적인 방수재의 개발에 많은 연구가 진행되어 오고 있는 실정이다. 종래의 유기 방수재는 경화시 휘발성 유기 화합물의 방출과 경화 후의 다양한 환경요소, 특히 산성비, 자동차 배기가스에 의한 질소산화물, 황산화물, 그을음, 해수의 비례 염분에 의한 염소이온 등에 의해 코팅막이 열화 되며, 자외선에 의한 황변현상, 갈라짐, 부풀어 오름 현상에 의해 사용수명이 빠르게 떨어져 내구성의 확보에 어려움이 심각하게 대두되고 있다.In order to prevent such moisture damage, various waterproofing materials have been researched and used, and a lot of research has been conducted on the development of eco-friendly waterproofing materials without emission of heavy metals or volatile organic compounds along with the global environmental protection trend today. Conventional organic waterproofing materials are deteriorated by the release of volatile organic compounds during curing and various environmental factors after curing, especially acid rain, nitrogen oxides, sulfur oxides, soot, and chlorine ions due to proportional salts of seawater. Due to the yellowing phenomenon, cracking, and swelling caused by ultraviolet rays, the service life is quickly reduced, and the difficulty of securing durability is seriously raised.
특히, 콘크리트가 공기 중에 노출되면 시멘트 수화물인 수산화칼슘 (Ca(OH)2)이 공기 중의 이산화탄소(CO2)와 반응하여 탄산염(탄산칼슘, 탄산수소칼슘)을 생성하게 되며, 이러한 작용으로 알칼리성인 콘크리트가 중성화되어 콘크리트가 열화 되는데 콘크리트의 열화는 표면에서 내부를 향하여 진행되며, 열화가 진행됨에 따라 콘크리트의 알칼리성(PH 12.5~13)인 pH가 8.5~10 정도로 중성화되며, 강알칼리성에서 철근이 부동태 막을 형성하고 있던 것이 이의 영향으로 파괴되어 철근의 부식을 가속화 시키며, 철근이 부식되면 체적이 팽창하게 되는데, 콘크리트 속에서 구속되어 있던 철근의 체적팽창은 콘크리트 구조물의 응력을 가속화시켜 균열을 유발시키고 철근 부착강도 저하, 피복 콘크리트의 박리, 철근의 강도저하 등 철근 콘크리트 구조물의 물리적 성능을 떨어뜨리는바, 종국적으로는 구조물 전체의 위기를 초래한다.In particular, when concrete is exposed to the air, calcium hydroxide (Ca(OH) 2 ), which is a cement hydrate, reacts with carbon dioxide (CO 2 ) in the air to produce carbonates (calcium carbonate, calcium hydrogen carbonate), and by this action, alkaline concrete As the deterioration proceeds from the surface to the inside, the concrete's alkalinity (PH 12.5~13) is neutralized to about 8.5~10, and the reinforcing bar blocks the passivation film in strong alkalinity. What was formed is destroyed under the influence of this, accelerating the corrosion of the reinforcing bar, and when the reinforcing bar is corroded, the volume expands, and the volume expansion of the reinforcing bar confined in the concrete accelerates the stress of the concrete structure, causing cracks and attaching the reinforcing bar. It degrades the physical performance of reinforced concrete structures such as decrease in strength, peeling of coated concrete, and decrease in strength of reinforcing bars, resulting in a crisis in the entire structure.
또한 콘크리트가 경화되는 과정인 수화반응에서 콘크리트 내부에 공극이 형성되는 것은 필연적인데, 이러한 내부 공극은 콘크리트 구조물에 수분이 침투하는 경로가 된다. 내부 공극을 통하여 수분이 침투하면 미세균열을 발생시킬 수 있고, 이는 콘크리트의 방수성능을 저하시키는 동시에 철근 등을 부식시키면서 콘크리트 구조물의 수명에 도 큰 영향을 미칠 수 있다.In addition, it is inevitable that voids are formed in the concrete during the hydration reaction, which is the process of curing concrete, and these internal voids become a path for moisture to penetrate into the concrete structure. When moisture penetrates through the internal voids, microcracks can occur, which can degrade the waterproof performance of concrete and at the same time corrode reinforcing bars, etc., and significantly affect the life of concrete structures.
콘크리트에 방수성을 부여하는 방법으로는 콘크리트 표면에 방수막을 형성하는 방법, 일정 깊이까지 방수제를 침투시키는 방법, 콘크리트 구조체 내부 공극과 크랙 발생을 방지하여 콘크리트 구조물 자체를 방수체 구조물로 만드는 방법 등이 있는데, 세 번째 경우와 같이 콘크리트 자체에 방수성을 부여하는 방법을 구체방수라고 부른다. 구체 방수는 물의 혼합량을 감소시켜 내부 공극의 발생을 억제하는 방법, 내부 공극을 미세한 입자로 메우는 방법, 발수성을 가지는 물질을 혼합하여 수분의 내부침투를 방지하는 방법 등에 의하여 구현된다.Methods of imparting waterproofness to concrete include a method of forming a waterproofing membrane on the concrete surface, a method of infiltrating a waterproofing agent to a certain depth, and a method of making the concrete structure itself a waterproof structure by preventing the occurrence of voids and cracks inside the concrete structure. As in the third case, concrete waterproofing is called concrete waterproofing. The spherical waterproofing is implemented by a method of suppressing the occurrence of internal voids by reducing the mixing amount of water, a method of filling the internal voids with fine particles, and a method of preventing internal penetration of moisture by mixing a material having water repellency.
기존에 사용되는 구체 방수제의 경우 대부분 발수성분에 의한 방수 성능에만 의존하고 있으므로 방수 성능의 개선 효과에 한계를 가지고 있으며, 내부 공극 저감과 크랙의 발생에 관해서는 고려되고 있지 않아 다양한 메커니즘에 의하여 방수 성능이 발현되면서도 공극과 크랙을 셀프힐링(자기보수)할 수 있는 새로운 액상 구체 방수제의 개발 필요성이 매우 크다.In the case of conventional waterproofing agents, most of them rely only on the waterproofing performance by water-repellent components, so there is a limit to the effect of improving the waterproofing performance, and the reduction of internal voids and the occurrence of cracks are not considered. There is a great need to develop a new liquid spherical waterproofing agent capable of self-healing (self-repairing) pores and cracks while this appears.
전술한 문제를 해결하기 위하여, 본 발명은 다종의 알칼리금속-실리케이트 화합물을 복합화하여 제조됨에 따라, 콘크리트 내의 유리금속이온과 반응하여 불용성의 규산염 금속 수화물 및 규산을 동시에 생성하며, 콘크리트의 미세공극을 셀프힐링 (자기 보수)할 수 있는 복합 실리케이트 방수제 및 이를 이용한 콘크리트 구체 침투방수 공법을 제공하고자 한다.In order to solve the above-described problem, the present invention is prepared by complexing a variety of alkali metal-silicate compounds, thereby simultaneously generating insoluble silicate metal hydrate and silicic acid by reacting with free metal ions in concrete, and creating micropores in concrete. We intend to provide a composite silicate waterproofing agent capable of self-healing (self-repairing) and a concrete concrete penetration waterproofing method using the same.
상술한 문제를 해결하기 위해, 본 발명은 규산나트륨, 규산리튬 및 규산칼륨으로 구성되는 나노 복합 실리케이트 졸; 실란계 화합물; 및 실리콘 카바이드, 금속산화물, 카본블랙을 포함하는 첨가제를 포함하는 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제를 제공한다.In order to solve the above problems, the present invention is a nanocomposite silicate sol composed of sodium silicate, lithium silicate, and potassium silicate; Silane compounds; And it provides an alkali metal liquid nanocomposite silicate-based permeable waterproofing agent comprising an additive including silicon carbide, metal oxide, and carbon black.
일 실시예에 있어서, 상기 나노 복합 실리케이트 졸은 규산나트륨 40~80중량부, 규산리튬 10~30중량부 및 규산칼륨 30~50중량부를 포함할 수 있다.In one embodiment, the nanocomposite silicate sol may include 40 to 80 parts by weight of sodium silicate, 10 to 30 parts by weight of lithium silicate, and 30 to 50 parts by weight of potassium silicate.
일 실시예에 있어서, 상기 나노 복합 실리케이트 졸은 이산화규소 고형분 함량이 30~35중량부, 산화나트륨, 산화리튬 및 산화칼륨으로 구성되는 금속산화물 함량이 25~30중량부이며, pH 3~6일 수 있다.In one embodiment, the nanocomposite silicate sol has a silicon dioxide solid content of 30 to 35 parts by weight, a metal oxide content of 25 to 30 parts by weight consisting of sodium oxide, lithium oxide and potassium oxide, and a pH of 3 to 6 days. I can.
일 실시예에 있어서, 상기 나노 복합 실리케이트 졸은 규산나트륨, 규산리튬 및 규산칼륨으로 구성되는 수성 콜로이드 상의 나노 복합 실리케이트가 알코올계 용매에 분산되어 있을 수 있다.In one embodiment, the nanocomposite silicate sol may include an aqueous colloidal nanocomposite silicate composed of sodium silicate, lithium silicate, and potassium silicate is dispersed in an alcohol-based solvent.
일 실시예에 있어서, 상기 실란계 화합물은 올가노 알콕시실란 또는 올가노 아미노실란을 포함할 수 있다.In one embodiment, the silane-based compound may include organo alkoxysilane or organo aminosilane.
일 실시예에 있어서, 상기 올가노 알콕시실란은 테트라메톡시실란, 메틸트리메톡시실란, 트리메틸메톡시실란, 디메틸디메톡시실란, 트리에틸메톡시실란, 에틸트리메톡시실란, 디에틸디메톡시실란 중에서 어느 하나이며, 상기 올가노 아미노실란은 N-2-(아미노에틸)-3-아미노프로필-트리메톡시실란, 아미노에틸아미노프로필트리에톡시실란, N-2-(벤질아미노)-에틸-3-아미노프로필-트리메톡시실란, N-2-(비닐벤질아미노)-에틸-3-아미노프로필-트리메톡시실란 중에서 어느 하나일 수 있다.In one embodiment, the organo alkoxysilane is tetramethoxysilane, methyltrimethoxysilane, trimethylmethoxysilane, dimethyldimethoxysilane, triethylmethoxysilane, ethyltrimethoxysilane, diethyldimethoxysilane In any one of, the organo aminosilane is N-2-(aminoethyl)-3-aminopropyl-trimethoxysilane, aminoethylaminopropyltriethoxysilane, N-2-(benzylamino)-ethyl- It may be any one of 3-aminopropyl-trimethoxysilane and N-2-(vinylbenzylamino)-ethyl-3-aminopropyl-trimethoxysilane.
일 실시예에 있어서, 상기 나노 복합 실리케이트 졸 100중량부에 대하여 산화알루미늄 5~15중량부, 탄산칼슘 5~10중량부, 이산화티타늄 1~5중량부, 카본블랙 0.1~1중량부를 더 포함할 수 있다.In one embodiment, based on 100 parts by weight of the nanocomposite silicate sol, 5 to 15 parts by weight of aluminum oxide, 5 to 10 parts by weight of calcium carbonate, 1 to 5 parts by weight of titanium dioxide, and 0.1 to 1 parts by weight of carbon black I can.
본 발명은 또한 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화나트륨 함량은 25~30중량부이며 pH9.0~10.5인 수성 콜로이드상의 나노금속산화물 A 20~40중량부, 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화리튬 함량은 25~30중량부이며 pH 8.5~9.0인 수성 콜로이드상의 나노금속산화물 B 10~15중량부 및 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화칼륨 함량은 25~35중량부이며 pH 9.0~10.0인 수성 콜로이드상의 나노금속산화물 C 15~25중량부를 혼합 교반하여 제조된 복합물에 수산화칼륨과 에탄올로 이루어진 희석액(수산화칼륨:에탄올=1:4 중량비)을 첨가하여 전체 복합액의 pH가 12~13, 금속산화물 함량이 25~35 중량부가 되도록 호모믹스를 이용하여 복합콜로이드상의 나노금속산화물졸을 제조하는 제1단계; 상기 제1단계의 복합콜로이드상의 나노금속산화물졸 80중량부에 대하여 순수 15~25중량부, 수산화칼륨 10~18중량부 및 수산화알루미늄 0.2~0.6중량부를 첨가하여 교반하여 상기 복합콜로이드상의 나노금속산화물졸의 나노입자의 기능성기에 알루미늄 이온과 칼륨 이온을 치환시켜 화학적 구조상 안정한 pH 12~13의 중간체를 제조하는 제2단계; 상기 제2단계의 중간체 100중량부에 대하여 올가노알콕시실란 3~7중량부와 올가노 아미노실란 3~7중량부를 첨가하여 10~100분간 반응시키는 제3단계를 포함하는 것을 특징으로 하는 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 제조방법을 제공한다.The present invention also has a silicon dioxide solid content of 30 to 35 parts by weight, a particle size of 10 to 20 nm, a sodium oxide content of 25 to 30 parts by weight, and an aqueous colloidal nanometal oxide A 20 to 40 with a pH of 9.0 to 10.5. Part by weight, silicon dioxide solid content is 30 to 35 parts by weight, particle size is 10 to 20 nm, lithium oxide content is 25 to 30 parts by weight, pH 8.5 to 9.0 aqueous colloidal nanometal oxide B 10 to 15 parts by weight And silicon dioxide solid content is 30 to 35 parts by weight, particle size is 10 to 20 nm, potassium oxide content is 25 to 35 parts by weight, and 15 to 25 parts by weight of aqueous colloidal nanometal oxide C having a pH of 9.0 to 10.0 is mixed and stirred. Add a diluted solution consisting of potassium hydroxide and ethanol (potassium hydroxide: ethanol = 1:4 weight ratio) to the prepared composite so that the total pH of the composite solution is 12 to 13 and the metal oxide content is 25 to 35 parts by weight. A first step of preparing a composite colloidal nanometal oxide sol; With respect to 80 parts by weight of the composite colloidal nanometal oxide sol of the first step, 15 to 25 parts by weight of pure water, 10 to 18 parts by weight of potassium hydroxide, and 0.2 to 0.6 parts by weight of aluminum hydroxide are added and stirred, A second step of preparing an intermediate having a stable pH of 12 to 13 in terms of chemical structure by replacing aluminum ions and potassium ions with functional groups of nanoparticles of the sol; Alkali metal comprising a third step of reacting for 10 to 100 minutes by adding 3 to 7 parts by weight of organoalkoxysilane and 3 to 7 parts by weight of organoaminosilane to 100 parts by weight of the intermediate of the second step It provides a method of preparing a liquid nanocomposite silicate-based waterproofing agent.
본 발명은 또한 상기 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제 100중량부에 대하여 산화알루미늄 10~15중량부, 탄산칼슘 7~10중량부, 이산화티타늄 3~5중량부, 카본블랙 0.5~1중량부를 첨가하여 균일한 방수액을 제조한 후 콘크리트 표면에 도포하는 것을 특징으로 하는 콘크리트 구조물구체 침투 방수공법을 제공한다.The present invention also provides 10 to 15 parts by weight of aluminum oxide, 7 to 10 parts by weight of calcium carbonate, 3 to 5 parts by weight of titanium dioxide, 0.5 to 1 parts by weight of carbon black based on 100 parts by weight of the alkali metal liquid nanocomposite silicate-based permeable waterproofing agent. It provides a concrete structure concrete penetration waterproofing method, characterized in that after preparing a uniform waterproofing solution by adding it to the concrete surface.
본 발명에 의한 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제 및 콘크리트 구조물 구체 침투 방수공법은 다종의 알칼리금속-실리케이트 화합물을 복합화 하여 제조됨에 따라, 콘크리트중의 유리금속이온과 반응하여 불용성의 규산염 금속 수화물 및 규산을 동시에 형성하여 겔화되며 이들은 콘크리트 내부의 공극 및 열화된 기공을 채워 방수성과 강도를 향상시키며, 콘크리트의 pH를 유지하는 역할을 수행할 수 있다.The alkali metal liquid nanocomposite silicate-based permeable waterproofing agent and concrete structure spherical penetration waterproofing method according to the present invention are manufactured by complexing a variety of alkali metal-silicate compounds, and react with free metal ions in concrete to react with insoluble silicate metal hydrates and Silicic acid is simultaneously formed and gelled, and they fill the voids and deteriorated pores inside the concrete to improve waterproofness and strength, and can play a role in maintaining the pH of the concrete.
이하에서는 본 발명의 바람직한 실시예를 상세하게 설명한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐리게 할 수 있다고 판단되는 경우 그 상세한 설명을 생략하기로 한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.Hereinafter, a preferred embodiment of the present invention will be described in detail. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted. Throughout the specification, when a part "includes" a certain component, it means that other components may be further included rather than excluding other components, unless otherwise stated.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예를 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention is intended to illustrate specific embodiments and to be described in detail in the detailed description, since various transformations can be applied and various embodiments can be provided. However, this is not intended to limit the present invention to a specific embodiment, it should be understood to include all conversions, equivalents, or substitutes included in the spirit and scope of the present invention.
본 명세서에 개시된 기술은 여기서 설명되는 구현예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 단지, 여기서 소개되는 구현예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 기술의 기술적 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면에서 각 장치의 구성요소를 명확하게 표현하기 위하여 상기 구성요소의 폭이나 두께 등의 크기를 다소 확대하여 나타내었다. 전체적으로 도면 설명시 관찰자 시점에서 설명하였고, 일 요소가 다른 요소 위에 위치하는 것으로 언급되는 경우, 이는 상기 일 요소가 다른 요소 위에 바로 위치하거나 또는 그들 요소들 사이에 추가적인 요소가 개재될 수 있다는 의미를 모두 포함한다. 또한, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명의 사상을 다양한 다른 형태로 구현할 수 있을 것이다. 그리고 복수의 도면들 상에서 동일 부호는 실질적으로 서로 동일한 요소를 지칭한다.The technology disclosed in the present specification is not limited to the embodiments described herein and may be embodied in other forms. However, the embodiments introduced herein are provided so that the disclosed content may be thorough and complete, and the technical idea of the present technology may be sufficiently transmitted to those skilled in the art. In the drawings, in order to clearly express the constituent elements of each device, the size of the constituent elements, such as width or thickness, is slightly enlarged. Overall, it was described at the observer's point of view when explaining the drawings, and if one element is referred to as being positioned on another element, this means that the one element is positioned directly on another element or that an additional element may be interposed between them. Include. In addition, those of ordinary skill in the relevant field will be able to implement the spirit of the present invention in various other forms without departing from the technical spirit of the present invention. In addition, the same reference numerals in the plurality of drawings refer to substantially the same elements.
발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present invention are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, terms such as include or have are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination of them described in the specification, and one or more other features, numbers, and steps. It is to be understood that it does not preclude the possibility of the presence or addition of, operations, components, parts, or combinations thereof.
한편, 본 명세서에서 서술되는 용어의 의미는 다음과 같이 이해되어야 할 것이다. “제1 ” 또는“제2 ” 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하기 위한 것으로 이들 용어들에 의해 권리범위가 한정되어서는 아니 된다. 예를 들어, 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Meanwhile, the meaning of terms described in the present specification should be understood as follows. Terms such as “first” or “second” are used to distinguish one component from other components, and the scope of the rights is not limited by these terms. For example, a first component may be referred to as a second component, and similarly, a second component may be referred to as a first component.
또, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한 복수의 표현을 포함하는 것으로 이해되어야 하고, “포함하다” 또는 “가지다”등의 용어는 기술되는 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또, 방법 또는 제조 방법을 수행함에 있어서, 상기 방법을 이루는 각 과정들은 문맥상 명백하게 특정 순서를 기재하지 않은 이상 명기된 순서와 다르게 일어날 수 있다. 즉, 각 과정들은 명기된 순서와 동일하게 일어날 수도 있고 실질적으로 동시에 수행될 수도 있으며 반대의 순서대로 수행될 수도 있다.In addition, expressions in the singular should be understood as including plural expressions unless clearly defined otherwise in the context, and terms such as “include” or “have” are described features, numbers, steps, actions, components, and parts. It is to be understood that it is intended to designate the existence of a combination of these and not to preclude the possibility of the presence or addition of one or more other features or numbers, steps, actions, components, parts, or combinations thereof. In addition, in performing the method or manufacturing method, each of the processes constituting the method may occur differently from the specified order unless a specific order is clearly stated in the context. That is, each process may occur in the same order as the specified order, may be performed substantially simultaneously, or may be performed in the reverse order.
본 발명은 규산나트륨, 규산리튬 및 규산칼륨으로 구성되는 나노 복합 실리케이트 졸; 실란계 화합물; 및 실리콘 카바이드, 금속산화물, 카본블랙을 포함하는 첨가제를 포함하는 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제에 관한 것이다.The present invention is a nano-composite silicate sol consisting of sodium silicate, lithium silicate and potassium silicate; Silane compounds; And it relates to an alkali metal liquid nano-composite silicate-based permeable waterproofing agent comprising an additive including silicon carbide, metal oxide, and carbon black.
상기 나노 복합 실리케이트 졸은 규산나트륨, 규산리튬 및 규산칼륨으로 구성될 수 있다. 기존의 실리케이트 졸을 이용한 방수액의 경우 규산나트륨만을 포함하고 있거나 규산나트륨에 규산리튬 또는 규산칼륨을 포함하는 2성분계 실리케이트를 사용하였다. 이는 3성분계 실리케이트의 경우 주성분이 되는 규산나트륨을 제외한 규산리튬 및 규산칼륨의 효과를 보기위해서는 규산나트륨의 함량이 낮아질 수 있으며, 이에 따라 가격이 높아지고 성능이 떨어지는 현상을 보이고 있었다. 하지만 규산나트륨만으로는 다양한 양상으로 발생하는 콘크리트 누수에 복합적으로 대응하기 어려우며, 콘크리트 내의 pH회복을 위해서는 다양한 금속이온을 공급하는 것이 더욱 바람직하다. 따라서 본 발명에서는 규산나트륨, 규산리튬 및 규산칼륨을 최적의 성분비로 조합하여 규산나트륨의 감소에 의한 부작용을 최소화함과 동시에 다양한 누수에 대응할 수 있으며, 콘크리트 pH 회복에 최적화된 나노 복합 실리케이트계 방수제를 제공한다. 이때 상기 규산나트륨, 규산리튬 및 규산칼륨은 규산나트륨 40~80중량부, 규산리튬 10~30중량부 및 규산칼륨 30~50중량부를 포함하는 것이 바람직하다. 상기 범위내에서 본 발명의 나노 복합 실리케이트계 방수제는 최적의 효과를 가질 수 있으며, 상기 범위 미만으로 포함되는 성분이 있는 경우 나노 복합 실리케이트계 방수제가 원하는 방수특성 또는 콘크리트 셀프힐링(자기보수성능)이 나타나지 않을 수 있다. 또한 상기범위를 초과하는 성분이 있는 경우 가격이 높아질 수 있으며, 콘크리트 보수시 금속염이 석출되어 방수특성이 저하될 수 있다.The nanocomposite silicate sol may be composed of sodium silicate, lithium silicate, and potassium silicate. In the case of a waterproofing solution using a conventional silicate sol, a two-component silicate containing only sodium silicate or lithium silicate or potassium silicate in sodium silicate was used. In the case of the three-component silicate, the content of sodium silicate may be lowered in order to see the effects of lithium silicate and potassium silicate, excluding sodium silicate, which are the main components, thereby increasing the price and decreasing the performance. However, with only sodium silicate, it is difficult to cope with concrete leaks in various ways, and it is more preferable to supply various metal ions for pH recovery in concrete. Therefore, in the present invention, by combining sodium silicate, lithium silicate, and potassium silicate in an optimal component ratio, side effects caused by the reduction of sodium silicate can be minimized, and at the same time, it is possible to cope with various leaks. to provide. At this time, the sodium silicate, lithium silicate, and potassium silicate preferably contain 40 to 80 parts by weight of sodium silicate, 10 to 30 parts by weight of lithium silicate, and 30 to 50 parts by weight of potassium silicate. Within the above range, the nano-composite silicate-based waterproofing agent of the present invention may have an optimal effect, and if there are components included below the above range, the nano-composite silicate-based waterproofing agent has desired waterproofing properties or concrete self-healing (self-healing performance). May not appear. In addition, if there are components exceeding the above range, the price may increase, and metal salts may precipitate during concrete repair, resulting in deterioration of waterproof properties.
상기 규산나트륨, 규산리튬 및 규산칼륨은 나노 복합 실리케이트계 방수제에 포함되어 사용되며 나노 복합 실리케이트계 방수제의 사용시 콘크리트 내에 존재하는 수산화칼슘과 반응하여 칼슘실리케이트 겔 및 금속 수산화물을 형성하며, 이때 수화물 형성 화학 메커니즘은 하기의 화학식 1과 같다.The sodium silicate, lithium silicate, and potassium silicate are included in the nanocomposite silicate waterproofing agent, and when the nanocomposite silicate waterproofing agent is used, it reacts with calcium hydroxide present in concrete to form calcium silicate gel and metal hydroxide, at which time the chemical mechanism of hydrate formation Is the same as in Chemical Formula 1 below.
[화학식 1][Formula 1]
Na2SiO3·nH2O + Ca(OH)2 + nH2O -> CaSiO·nH2O +2NaOHNa 2 SiO 3 nH 2 O + Ca(OH) 2 + nH 2 O -> CaSiO nH 2 O +2NaOH
Li2SiO3·nH2O + Ca(OH)2 + nH2O -> CaSiO·nH2O +2LiOHLi 2 SiO 3 nH 2 O + Ca(OH) 2 + nH 2 O -> CaSiO nH 2 O +2LiOH
K2SiO3·nH2O + Ca(OH)2 + nH2O -> CaSiO·nH2O +2KOHK 2 SiO 3 nH 2 O + Ca(OH) 2 + nH 2 O -> CaSiO nH 2 O +2KOH
콘크리트 내에 존재하는 수산화칼슘은 콘크리트 원료 중 석회석의 탄산칼슘에서 유래하고 있으며, 콘크리트의 pH를 11이상으로 유지시켜 콘크리트에 포함되는 철근의 부식을 방지하는 역할을 한다. 하지만 상기 수산화칼슘은 공기중의 이산화탄소와 결합되어 탄산칼슘을 형성하며, 이는 콘크리트 내의 pH를 떨어뜨림(콘크리트탄산화)과 더불어 공극을 증가시켜 콘크리트의 강도저하, 철근부식, 균열발생 등의 원인으로 작용한다. Calcium hydroxide present in concrete is derived from calcium carbonate in limestone among concrete raw materials, and plays a role of preventing corrosion of reinforcing bars contained in concrete by maintaining the pH of concrete above 11. However, the calcium hydroxide is combined with carbon dioxide in the air to form calcium carbonate, which decreases the pH in the concrete (concrete carbonation) and increases the voids, thereby reducing the strength of concrete, corrosion of reinforcing bars, and causing cracks. .
본 발명의 규산나트륨, 규산리튬 및 규산칼륨은 상기 화학식 1에 나타난 바와 같이 수산화칼슘과 결합하여 규산칼슘 겔을 형성하며, 규산칼슘 겔은 콘크리트의 공극을 채워줄 수 있다. 아울러 부차적으로 생성되는 금속 수산화물(NaOH, LiOH, KOH)은 콘크리트 내의 pH를 유지 및 회복시키는(알칼리유지, 회복) 역할을 수행하여 철근의 부식을 방지할 수 있다. Sodium silicate, lithium silicate, and potassium silicate of the present invention are combined with calcium hydroxide to form calcium silicate gel, as shown in Chemical Formula 1, and the calcium silicate gel can fill the voids of concrete. In addition, secondary metal hydroxides (NaOH, LiOH, KOH) can prevent corrosion of reinforcing bars by maintaining and recovering (alkali maintenance, recovery) pH in concrete.
상기 화학식 1에서 물(nH2O)은 나노 복합 실리케이트계 방수제에 포함되어 있는 물이거나 외부에서 침투한 물일 수 있다. 나노 복합 실리케이트계 방수제는 시공의 편의를 위하여 물 또는 알코올계 용재와 혼합하여 시공하게 된다. 특히 이때 포함되는 물은 상기 방수제의 이동 매개물로서 작용하여 상기 방수제가 콘크리트 내부로의 침투를 용이하게 할 수 있다. 따라서 상기 나노 복합 실리케이트계 방수제를 건축물 표면에 적용하는 경우 상기 용재로서 사용된 물을 이용하여 상기 화학식 1의 반응을 수행할 수 있으며, 이에 따라 기 발생된 공극을 매움과 동시에 pH를 회복할 수 있다. 또한 일반적으로 나노 복합 실리케이트계 방수제를 방수성의 지속을 위하여 과량도포하게 되므로 상기 방수제는 콘크리트 내부에 침투하여 미반응물로 존재하게 되며, 이는 수분의 침투시 화학식 1과 같은 반응을 수행할 수 있으므로, 지속적인 콘크리트 자기보수 및 pH의 유지, 회복(알칼리유지, 회복)이 가능하다.In Formula 1, water (nH 2 O) may be water contained in the nanocomposite silicate waterproofing agent or water that has penetrated from the outside. The nanocomposite silicate waterproofing agent is applied by mixing with water or alcohol-based solvent for convenience of construction. Particularly, the water contained at this time acts as a moving medium for the waterproofing agent, so that the waterproofing agent can easily penetrate into the concrete. Therefore, when the nanocomposite silicate waterproofing agent is applied to the surface of a building, the reaction of Formula 1 can be performed using water used as the solvent, thereby filling the previously generated pores and simultaneously recovering the pH. . In addition, since an excessive amount of the nanocomposite silicate waterproofing agent is generally applied in order to maintain waterproofness, the waterproofing agent penetrates into the concrete and exists as an unreacted material, which can carry out a reaction as shown in Formula 1 upon penetration of moisture. Concrete self-repair and pH maintenance and recovery (alkali maintenance, recovery) are possible.
[화학식 2][Formula 2]
2Na2SiO3 + nH2O -> Na2SiO2O5·nH2O + 2NaOH2Na 2 SiO 3 + nH 2 O -> Na 2 SiO 2 O 5 nH 2 O + 2NaOH
Na2SiO2O5·nH2O -> Na2SiO3·nH2O + SiO·H2ONa 2 SiO 2 O 5 nH 2 O -> Na 2 SiO 3 nH 2 O + SiO H 2 O
이를 상세하게 살펴보면 상기 화학식 2에 나타난 바와 같이, 방수제에 포함된 규산나트륨(Na2SiO3)은 물과 결합하고 가수분해되어 Na2SiO2O5·nH2O를 형성함과 동시에 수산화나트륨을 발생시킨다. 이때 상기 수산화나트륨은 강염기로 작용하여 콘크리트 내부의 pH를 회복하는 역할을 수행할 수 있다. 또한 Na2SiO2O5·nH2O는 자연분해를 통하여 규산나트륨으로 전환되며, 산화규소를 형성한다. 상기 Na2SiO2O5·nH2O에서 발생된 산화규소는 그 자체로 모래 또는 유리의 주성분이며, 고체이므로 콘크리트의 공극을 메울 수 있을 뿐만 아니라 콘크리트 내부에 존재하는 칼슘이온 또는 수산화칼슘과 반응하여 규산칼슘(CaSiO·nH2O)을 생성하는 것으로 더욱 강력하게 콘크리트 내부의 공극 또는 균열을 보수할 수 있다. 이러한 규산나트륨의 반응은 규산리튬 및 규산칼륨에도 동시에 적용가능하며, 본 발명의 금속 규산염은 콘크리트 내의 pH를 회복할 수 있는 염기성 물질을 방출함과 동시에 산화규소 또는 규산칼륨을 발생시켜 공극 또는 균열을 지속적으로 셀프힐링(자기보수)할 수 있다.Looking at this in detail, as shown in Chemical Formula 2, sodium silicate (Na 2 SiO 3 ) contained in the waterproofing agent is combined with water and hydrolyzed to form Na 2 SiO 2 O 5 ·nH 2 O, while simultaneously forming sodium hydroxide. Occurs. At this time, the sodium hydroxide may act as a strong base to restore the pH inside the concrete. In addition, Na 2 SiO 2 O 5 ·nH 2 O is converted to sodium silicate through natural decomposition, forming silicon oxide. Silicon oxide generated from the Na 2 SiO 2 O 5 ·nH 2 O is itself a main component of sand or glass, and it is a solid, so it can not only fill the voids of concrete, but also react with calcium ions or calcium hydroxide present inside the concrete. By generating calcium silicate (CaSiO·nH 2 O), it is possible to repair voids or cracks inside concrete more strongly. The reaction of sodium silicate can be applied to lithium silicate and potassium silicate at the same time, and the metal silicate of the present invention releases a basic substance capable of recovering the pH in concrete and simultaneously generates silicon oxide or potassium silicate, thereby causing voids or cracks. You can continuously self-healing (self-repair).
또한 콘크리트 시공시 사용된 전기 발청철근 방청 환원재는 액상 또는 고상으로부터 기상으로 변화하여 포화하면 금속표면에 흡착하여 방청 피막을 만드는 아민을 주성분으로 하는 저농도의 수용성 아질산(nitrous acid, HNO2)과, 철근부식이 생기면 이미 주변부 콘크리트의 중성(탄산)화와 다공질화도 진행되고 있으므로, 상기와 같이 나노 복합 실리케이트계 방수제가 콘크리트 내부로 침투하는 경우 이를 보완, 즉, 철근 부식을 억제하는 pH 11 이상의 알칼리 영역에서 생기는 부동태 피막을 재생시킬 수 있다. In addition, the rust-preventing rebar used in concrete construction is a low-concentration water-soluble nitrous acid (HNO 2 ) mainly composed of amines that change from liquid or solid to gaseous phase, and when saturated, adsorb to the metal surface to form a rust-preventing film, and rebar. When corrosion occurs, neutralization (carbonic acid) and porosity of the surrounding concrete are already in progress, so if the nanocomposite silicate waterproofing agent penetrates into the concrete as described above, it is compensated, that is, in the alkaline region of pH 11 or higher that inhibits rebar corrosion. The resulting passive film can be regenerated.
상기 나노 복합 실리케이트 졸은 이산화규소 고형분 함량이 30~35중량부, 산화나트륨, 산화리튬 및 산화칼륨으로 구성되는 금속산화물 함량이 25~30중량부이며, pH 3~6일 수 있다. 상기 나노 복합 실리케이트 졸은 이산화규소 및 금속산화물로 분리되어 그 함량이 측정될 수 있다. 이때 상기 이산화규소 고형분은 30~50중량부가 포함되는 것이 바람직하다. 30중량부 미만으로 포함되는 경우 이산화규소에 의한 공극 또는 균열 자기보수능력이 저하될 수 있으며, 35중량부를 초과하는 경우 실리카가 석출되어 방수특성이 저하될 수 있다. 상기 금속산화물은 산화나트륨, 산화리튬, 산화칼륨의 혼합물 형태로 측정되는 것으로 상기 나노 복합 실리케이트 졸 내에 25~30중량부가 포함될 수 있다. 이때 상기 금속산화물이 25중량부 미만으로 포함되는 경우 pH가 낮아져 콘크리트 내의 pH 회복(알칼리 회복)이 어려우며. 30중량부를 초과하는 경우 금속 산화물과 실리카가 반응하는 부반응이 발생하므로 공극이나 균열 셀프힐링(자기보수) 능력이 떨어질 수 있다. 또한 상기 나노 복합 실리케이트 졸은 pH가 3~6일 수 있다. 상기 나노 복합 실리케이트 졸은 물유리와 같은 실리카 화합물로서 pH의 변화에 따라 액체와 고체로 상전이 될 수 있다. 상기 나노 복합 실리케이트 졸의 pH가 3미만인 경우 포함되는 실리카졸의 응집으로 실리케이트 나노졸의 결정이 성장하여 석출되므로 졸의 형성이 어려우며, pH가 6을 초과하는 경우 실리카가 액상으로 변화하여 나노 복합 실리케이트 액체가 형성되므로 방수특성을 기대하기 어렵다.The nanocomposite silicate sol may have a silicon dioxide solid content of 30 to 35 parts by weight, a metal oxide content of 25 to 30 parts by weight of sodium oxide, lithium oxide, and potassium oxide, and a pH of 3 to 6. The nanocomposite silicate sol may be separated into silicon dioxide and metal oxide, and the content thereof may be measured. At this time, the silicon dioxide solid content is preferably 30 to 50 parts by weight included. If it is contained in an amount of less than 30 parts by weight, the self-repairing ability of voids or cracks due to silicon dioxide may be deteriorated, and if it exceeds 35 parts by weight, silica may precipitate, thereby deteriorating waterproofing properties. The metal oxide is measured in the form of a mixture of sodium oxide, lithium oxide, and potassium oxide, and may be included in 25 to 30 parts by weight in the nanocomposite silicate sol. At this time, when the metal oxide is contained in an amount of less than 25 parts by weight, the pH is lowered, making it difficult to recover the pH (alkali recovery) in the concrete. If it exceeds 30 parts by weight, side reactions in which metal oxides and silica react, may result in poor self-healing (self-healing) ability for voids or cracks. In addition, the nanocomposite silicate sol may have a pH of 3-6. The nanocomposite silicate sol is a silica compound such as water glass and may be converted into a liquid and a solid according to a change in pH. When the pH of the nanocomposite silicate sol is less than 3, the formation of the sol is difficult because crystals of the silicate nanosol are grown and precipitated due to the aggregation of the silica sol contained, and when the pH exceeds 6, the silica changes to a liquid phase and thus nanocomposite silicate Since liquid is formed, it is difficult to expect waterproof properties.
상기 실란계 화합물은 상기 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 경도를 높이며 소수성 배향막을 형성하여 내수성을 높이기 위하여 첨가되는 것으로 올가노 알콕시실란 또는 올가노 아미노실란을 포함할 수 있다.The silane-based compound is added to increase the hardness of the alkali metal liquid nanocomposite silicate-based permeable waterproofing agent and to increase water resistance by forming a hydrophobic alignment layer and may include organo alkoxysilane or organo aminosilane.
상기 올가노 알콕시실란은 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 고경도화 및 내열성 있는 도막형성을 위해서 메틸기(Methyl group) 도입의 필요성에 따라 테트라메톡시실란(Tetramethoxysilan; Si(OCH3)4), 메틸트리메톡시실란(methyltrimethoxysilan; CH3Si(OCH3)3), 트리메틸메톡시실란(Trimethylmethoxysilan; (CH3)3SiOCH3), 디메틸디메톡시실란 (Dimethyldimethoxysilane; (CH3)2Si(OCH3)2), 트리에틸메톡시실란(Triethylmethoxysilan; (C2H5)3SiOCH3), 에틸트리메톡시실란(Ethyltrimethoxysilan; C2H5Si(OCH3)3), 디에틸디메톡시실란(Diethylmethoxysilan; (C2H5)2Si(OCH3)2) 등으로 이루어진 군에서 사용하는 것이 바람직하다. The organo alkoxysilane is tetramethoxysilan (Tetramethoxysilan; Si(OCH 3 ) 4 ), in accordance with the necessity of introducing a methyl group in order to increase the hardness of the alkali metal liquid nanocomposite silicate-based permeable waterproofing agent and form a heat-resistant coating film. Methyltrimethoxysilan (CH 3 Si(OCH 3 ) 3 ), trimethylmethoxysilan ((CH 3 ) 3 SiOCH 3 ), dimethyldimethoxysilane (CH 3 ) 2 Si(OCH 3 ) 2 ), triethylmethoxysilan (C 2 H 5 ) 3 SiOCH 3 ), ethyltrimethoxysilan (Ethyltrimethoxysilan; C 2 H 5 Si(OCH 3 ) 3 ), diethyldimethoxysilan ; (C 2 H 5 ) 2 Si(OCH 3 ) 2 ) It is preferable to use in the group consisting of.
올가노 아미노실란은 콘크리트 표면에 도막을 형성하는 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 내수성을 높이기 위해 소수성 배향막과 콘크리트 기재와 도막의 화학적 커플링을 향상시키기 위하여 사용되는 것으로서 N-2-(아미노에틸)-3-아미노프로필-트리메톡시실란(CH3O)SiCH2CH2CH2NHCH2CH2NH2, 아미노에틸아미노프로필트리에톡시실란 NH2(CH2)2NHC3H6Si(OCH2CH3)3, N-2-(벤질아미노)-에틸-3-아미노프로필-트리메톡시실란 (CH3O)3Si(CH2)3NHCH2NH2, N-2-(비닐벤질아미노)-에틸-3-아미노프로필-트리메톡시실란 (CH3O)3Si(CH2)3NH(CH2)2NHCH2 중에서 사용하는 것이 바람직하며Organo Aminosilane is used to improve the chemical coupling between the hydrophobic alignment film and the concrete substrate and the coating film in order to increase the water resistance of the alkali metal liquid nanocomposite silicate-based permeable waterproofing agent that forms a coating film on the concrete surface. Ethyl)-3-aminopropyl-trimethoxysilane (CH 3 O) SiCH 2 CH 2 CH 2 NHCH 2 CH 2 NH 2 , Aminoethylaminopropyltriethoxysilane NH 2 (CH 2 ) 2 NHC 3 H 6 Si (OCH 2 CH 3 ) 3 , N-2-(benzylamino)-ethyl-3-aminopropyl-trimethoxysilane (CH 3 O) 3 Si(CH 2 ) 3 NHCH 2 NH 2 , N-2-( Vinylbenzylamino)-ethyl-3-aminopropyl-trimethoxysilane (CH 3 O) 3 Si(CH 2 ) 3 NH(CH 2 ) 2 It is preferable to use in NHCH 2
알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제는 콘크리트 구조물의 내구성 향상을 위하여 상기 나노 복합 실리케이트 졸 100중량부에 대하여 산화알루미늄 5~15중량부, 탄산칼슘 5~10중량부, 이산화티타늄 1~5중량부, 카본블랙 0.1~1중량부를 더 포함할 수 있다.Alkali metal liquid nanocomposite silicate-based waterproofing agent is aluminum oxide 5 to 15 parts by weight, calcium carbonate 5 to 10 parts by weight, titanium dioxide 1 to 5 parts by weight based on 100 parts by weight of the nanocomposite silicate sol to improve the durability of concrete structures. , 0.1 to 1 part by weight of carbon black may be further included.
상기 산화알루미늄(Al2O3)은 기재(예: 콘크리트)에 대한 방수제 도막의 밀착성 향상과 상도성(탑코팅 시공성)향상, 도막형성 후 도막이 양전하가 되기 때문에 정전기 방지막으로서의 기능을 도입할 목적으로 첨가하는 것으로 나노 복합 실리케이트 졸 100중량부에 대하여 5 중량부 미만 및 15중량부 초과 범위에서는 도막강도가 강하되는 문제가 있어 5~15중량부로 첨가하는 것이 바람직하며, 탄산칼슘(CaCO3)은 체질안료로서 필러(filler)역할을 위해 첨가하는 것으로 나노 복합 실리케이트 졸 100중량부에 대하여 5중량부 미만 및 10중량부 초과 범위에서는 체질안료로서 초과시 도막강도가 저하되는 문제가 있어 5~10중량부로 첨가하는 것이 바람직하고, 이산화티타늄(TiO2)은 콘크리트 바탕에 대한 은폐력을 부여하기 위해 첨가하는 것으로 나노 복합 실리케이트 졸 100중량부에 대하여 1중량부 미만인 경우에는 콘크리트 바탕에 대한 은폐력이 떨어지고 및 5중량부 초과 범위에서는 콘크리트 바탕에 대한 은폐력 향상의 효과가 미미하여 1~5중량부로 첨가하는 것이 바람직하며, 카본블랙(Carbon black)은 도막의 조색작용을 위해 첨가하는 것으로 나노 복합 실리케이트 졸 100중량부에 대하여 0.1중량부 미만인 경우에는 조색작용이 미미하며 1중량부 초과 범위에서는 전체 도막색상이 퇴색되는 현상이 발생하여 0.1~1중량부로 첨가하는 것이 바람직하다.The aluminum oxide (Al 2 O 3 ) is for the purpose of introducing a function as an antistatic film because it improves the adhesion of the waterproofing coating film to the substrate (e.g., concrete) and improves the top coat property (top coating workability), and the coating film becomes positively charged after the film is formed. As an addition, in the range of less than 5 parts by weight and more than 15 parts by weight per 100 parts by weight of the nanocomposite silicate sol, there is a problem that the film strength decreases, so it is preferable to add 5 to 15 parts by weight, and calcium carbonate (CaCO 3 ) is sieving As a pigment, it is added for the role of a filler, and in the range of less than 5 parts by weight and more than 10 parts by weight per 100 parts by weight of the nanocomposite silicate sol, there is a problem that the film strength decreases when it is exceeded as an extender pigment. It is preferable to do, and titanium dioxide (TiO 2 ) is added to impart hiding power to the concrete base.If it is less than 1 part by weight based on 100 parts by weight of the nanocomposite silicate sol, the hiding power for the concrete base decreases and 5 parts by weight In the excess range, the effect of improving the hiding power on the concrete base is insignificant, so it is preferable to add 1 to 5 parts by weight, and carbon black is added for the toning effect of the coating film and is 0.1 per 100 parts by weight of the nanocomposite silicate sol. If it is less than part by weight, the toning effect is insignificant, and in the range of more than 1 part by weight, the phenomenon of fading the entire color of the coating film occurs, and it is preferable to add 0.1 to 1 part by weight.
이하 본 발명을 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 제조방법에 따라 상세하게 설명한다.Hereinafter, the present invention will be described in detail according to a method of manufacturing an alkali metal liquid nanocomposite silicate-based permeable waterproofing agent.
본 발명은 The present invention
i) 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화나트륨 함량은 25~30중량부이며 pH9.0~10.5인 수성 콜로이드상의 나노금속산화물 A 20~40중량부;i) Silicon dioxide solid content is 30 to 35 parts by weight, particle size is 10 to 20 nm, sodium oxide content is 25 to 30 parts by weight, pH 9.0 to 10.5 aqueous colloidal nanometal oxide A 20 to 40 parts by weight ;
ii) 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화리튬 함량은 25~30중량부이며 pH 8.5~9.0인 수성 콜로이드상의 나노금속산화물 B 10~15중량부; 및 ii) 10 to 15 parts by weight of an aqueous colloidal nanometal oxide B having a silicon dioxide solid content of 30 to 35 parts by weight, a particle size of 10 to 20 nm, a lithium oxide content of 25 to 30 parts by weight, and a pH of 8.5 to 9.0; And
iii) 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화칼륨 함량은 25~35중량부이며 pH 9.0~10.0인 수성 콜로이드상의 나노금속산화물 C 15~14중량부;를 혼합 교반하여 제조된 복합물에 수산화칼륨과 에탄올로 이루어진 희석액(수산화칼륨:에탄올=1:4 중량비)을 첨가하여 전체 복합액의 pH가 12~13, 금속산화물 함량이 25~35 중량부가 되도록 호모믹스를 이용하여 복합콜로이드상의 나노금속산화물졸을 제조하는 제1단계; iii) 15 to 14 parts by weight of aqueous colloidal nanometal oxide C having a silicon dioxide solid content of 30 to 35 parts by weight, a particle size of 10 to 20 nm, a potassium oxide content of 25 to 35 parts by weight, and a pH of 9.0 to 10.0; A mixture of potassium hydroxide and ethanol (potassium hydroxide: ethanol = 1:4 weight ratio) was added to the prepared composite, so that the total pH of the composite solution was 12 to 13 and the metal oxide content was 25 to 35 parts by weight. A first step of preparing a composite colloidal nano-metal oxide sol using a mix;
상기 제1단계의 복합콜로이드상의 나노금속산화물졸 80중량부에 대하여 순수 15~25중량부, 수산화칼륨 10~18중량부 및 수산화알루미늄 0.2~0.6중량부를 첨가하여 교반하여 상기 복합콜로이드상의 나노금속산화물졸의 나노입자의 기능성기에 알루미늄 이온과 칼륨 이온을 치환시켜 화학적 구조상 안정한 pH 12~13의 중간체를 제조하는 제2단계; With respect to 80 parts by weight of the composite colloidal nanometal oxide sol of the first step, 15 to 25 parts by weight of pure water, 10 to 18 parts by weight of potassium hydroxide, and 0.2 to 0.6 parts by weight of aluminum hydroxide are added and stirred, A second step of preparing an intermediate having a stable pH of 12 to 13 in terms of chemical structure by replacing aluminum ions and potassium ions with functional groups of nanoparticles of the sol;
상기 제2단계의 중간체 100중량부에 대하여 올가노알콕시실란 3~7중량부와 올가노 아미노실란 3~7중량부를 첨가하여 10~100분간 반응시키는 제3단계를 포함하는 것을 특징으로 하는 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 제조방법을 제공한다.Alkali metal comprising a third step of reacting for 10 to 100 minutes by adding 3 to 7 parts by weight of organoalkoxysilane and 3 to 7 parts by weight of organoaminosilane to 100 parts by weight of the intermediate of the second step It provides a method of preparing a liquid nanocomposite silicate-based waterproofing agent.
제1단계Step 1
i) 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화나트륨 함량은 25~30중량부이며 pH9.0~10.5인 수성 콜로이드상의 나노금속산화물 A 20~40중량부;i) Silicon dioxide solid content is 30 to 35 parts by weight, particle size is 10 to 20 nm, sodium oxide content is 25 to 30 parts by weight, pH 9.0 to 10.5 aqueous colloidal nanometal oxide A 20 to 40 parts by weight ;
ii) 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화리튬 함량은 25~30중량부이며 pH 8.5~9.0인 수성 콜로이드상의 나노금속산화물 B 10~15중량부; 및 ii) 10 to 15 parts by weight of an aqueous colloidal nanometal oxide B having a silicon dioxide solid content of 30 to 35 parts by weight, a particle size of 10 to 20 nm, a lithium oxide content of 25 to 30 parts by weight, and a pH of 8.5 to 9.0; And
iii) 이산화규소 고형분 함량이 30~35중량부이고, 입도크기는 10~20㎚, 산화칼륨 함량은 25~35중량부이며 pH 9.0~10.0인 수성 콜로이드상의 나노금속산화물 C 15~25중량부;를 혼합 교반한다.iii) 15 to 25 parts by weight of an aqueous colloidal nanometal oxide C having a silicon dioxide solid content of 30 to 35 parts by weight, a particle size of 10 to 20 nm, a potassium oxide content of 25 to 35 parts by weight, and a pH of 9.0 to 10.0; Mix and stir.
이렇게 제조된 상기 복합물에 수산화칼륨(KOH))과 에탄올(ethanol;(C2 H3OH)로 이루어진 희석액(수산화칼륨:에탄올=1:4 중량비)을 첨가하여 전체 복합액의 pH가 12~13, 금속산화물 함량이 25~30중량부가 되도록 호모믹스를 이용하여 복합콜로이드상의 나노금속산화물졸(복합알카리졸)을 제조한다.A diluted solution (potassium hydroxide: ethanol = 1:4 by weight) consisting of potassium hydroxide (KOH)) and ethanol (ethanol; (C 2 H 3 OH)) was added to the thus prepared complex, so that the pH of the total complex solution was 12 to 13 , To prepare a composite colloidal nano-metal oxide sol (composite alkali sol) using a homomix so that the content of the metal oxide is 25 to 30 parts by weight.
상기 수성 콜로이드상의 나노금속산화물 A, B, C 중 한 종류만 사용할 경우에는 방수제의 저장안정성이 떨어져 도막의 상태가 거칠어지며 내수성도 떨어지므로 수성 콜로이드상의 나노 금속산화물 A, B, C 세종류를 모두 사용하는 것이 바람직하다.If only one of the above aqueous colloidal nanometal oxides A, B, C is used, the storage stability of the waterproofing agent is poor and the coating film becomes rough and the water resistance is also poor. Therefore, all three types of aqueous colloidal nanometal oxides A, B, and C are used. It is preferable to use.
여기서 복합콜로이드상의 나노금속산화물졸(복합알카리졸)의 pH가 12~13, 금속산화물 함량이 25~30중량부가 되도록 하기 위하여 상기의 수성 콜로이드상의 나노금속산화물 A의 함량은 20~40중량부 B의 함량은 10~15중량부로 하는 것이 바람직하다. 가장 바람직하기로는 수성 콜로이드상의 나노금속산화물 A의 함량이 30중량부와 B의 함량이 13중량부일 수 있다.Here, in order to ensure that the pH of the composite colloidal nanometal oxide sol (compound alkali sol) is 12 to 13 and the metal oxide content is 25 to 30 parts by weight, the content of the aqueous colloidal nano metal oxide A is 20 to 40 parts by weight B The content of is preferably 10 to 15 parts by weight. Most preferably, the content of the aqueous colloidal nanometal oxide A may be 30 parts by weight and the content of B may be 13 parts by weight.
마찬가지로, 상기의 수성 콜로이드상의 나노금속산화물 C의 함량도 15~25 중량부로 하는 것이 바람직하다. 가장 바람직하기로는 수성 콜로이드상의 나노금속산화물 C의 함량이 20중량부일 수 있다.Likewise, the content of the aqueous colloidal nanometal oxide C is preferably 15 to 25 parts by weight. Most preferably, the content of the aqueous colloidal nanometal oxide C may be 20 parts by weight.
제2단계Step 2
상기 제1단계의 복합콜로이드상의 나노금속산화물 졸 80중량부에 대하여 순수(pure water) 15~25중량부, 수산화칼륨(KOH) 10~18중량부 및 수산화알루미늄(Al(OH)3) 0.2~0.6중량부를 첨가하여 충분히 교반하여 상기 복합콜로이드상의 나노금속산화물졸의 나노입자의 기능성기에 알루미늄 이온(Al3+)과 칼륨 이온(k+)을 치환시켜 화학적 구조상 안정한 pH 12~13의 중간체를 제조한다.15 to 25 parts by weight of pure water, 10 to 18 parts by weight of potassium hydroxide (KOH) and aluminum hydroxide (Al(OH) 3 ) 0.2 to 80 parts by weight of the composite colloidal nanometal oxide sol of the first step By adding 0.6 parts by weight and stirring sufficiently, aluminum ions (Al 3+ ) and potassium ions (k + ) are substituted with the functional groups of the nanoparticles of the composite colloidal nanometal oxide sol to prepare an intermediate having a stable pH of 12 to 13 in terms of chemical structure. do.
상기 복합알카리졸의 실리케이트 나노입자에 칼륨과 알루미늄의 금속이온을 치환시킨 콜로이드상의 입자는 10~20㎚사이즈로 pH는 12~13 되도록 하여 나노 복합 실리케이트계 침투성 방수제 원료로 사용한다.Colloidal particles obtained by substituting metal ions of potassium and aluminum into the silicate nanoparticles of the composite alkali sol are 10 to 20 nm in size and have a pH of 12 to 13 to be used as a raw material for a nanocomposite silicate-based permeable waterproofing agent.
여기서 상기 중간체의 pH가 12~13이 되도록 하고 알루미늄 이온과 칼륨 이온의 치환이 용이하게 하기 위하여 상기 순수의 함량은 상기 제1단계의 복합콜로이드상의 나노금속산화물졸 80중량부에 대하여 15~25중량부인 것이 바람직하다. 가장 바람직하기로는 순수의 함량이 40중량부일 수 있다.Here, in order to ensure that the pH of the intermediate is 12 to 13 and to facilitate substitution of aluminum and potassium ions, the content of pure water is 15 to 25 parts by weight based on 80 parts by weight of the composite colloidal nanometal oxide sol of the first step. It is desirable to disclaim it. Most preferably, the content of pure water may be 40 parts by weight.
마찬가지로, 상기 수산화칼륨의 함량도 상기 제1단계의 복합콜로이드상의 나노금속산화물졸 80중량부에 대하여 10~18중량부인 것이 바람직하다. 가장 바람직하기로는 수산화칼륨의 함량이 14중량부일 수 있다.Likewise, the content of the potassium hydroxide is preferably 10 to 18 parts by weight based on 80 parts by weight of the composite colloidal nano-metal oxide sol in the first step. Most preferably, the content of potassium hydroxide may be 14 parts by weight.
마찬가지로, 상기 수산화알루미늄의 함량도 상기 제1단계의 복합콜로이드상의 나노금속산화물졸 80중량부에 대하여 0.2~0.6중량부인 것이 바람직하다. 가장 바람직하기로는 수산화알루미늄의 함량이 0.4중량부일 수 있다.Likewise, the content of the aluminum hydroxide is preferably 0.2 to 0.6 parts by weight based on 80 parts by weight of the composite colloidal nano-metal oxide sol in the first step. Most preferably, the content of aluminum hydroxide may be 0.4 parts by weight.
제3단계Step 3
상기 제2단계의 중간체 100중량부에 대하여 올가노알콕시실란 3~7중량부와 올가노 아미노실란 3~7중량부를 첨가하여 80℃에서 3000rpm으로 10~100분간 반응시켜 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제를 제조한다.Alkali metal liquid nanocomposite silicate system by adding 3 to 7 parts by weight of organoalkoxysilane and 3 to 7 parts by weight of organoaminosilane to 100 parts by weight of the intermediate of the second step and reacting at 80°C for 10 to 100 minutes at 3000 rpm Prepare a permeable waterproofing agent.
본 발명은 또한 상기 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제 100중량부에 대하여 산화알루미늄 10~15중량부, 탄산칼슘 7~10중량부, 이산화티타늄 3~5중량부, 카본블랙 0.5~1중량부를 첨가하여 균일한 방수액을 제조한 후 콘크리트 표면에 도포하는 것을 특징으로 하는 콘크리트 구조물구체 침투 방수공법을 제공한다.The present invention also provides 10 to 15 parts by weight of aluminum oxide, 7 to 10 parts by weight of calcium carbonate, 3 to 5 parts by weight of titanium dioxide, 0.5 to 1 parts by weight of carbon black based on 100 parts by weight of the alkali metal liquid nanocomposite silicate-based permeable waterproofing agent. It provides a concrete structure concrete penetration waterproofing method, characterized in that after preparing a uniform waterproofing solution by adding it to the concrete surface.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 당해 분야의 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 설명하기로 한다. 또한, 본 발명을 설명함에 있어 관련된 공지의 기능 또는 공지의 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 도면에 제시된 어떤 특징들은 설명의 용이함을 위해 확대 또는 축소 또는 단순화된 것이고, 도면 및 그 구성요소들이 반드시 적절한 비율로 도시되어 있지는 않다. 그러나 당업자라면 이러한 상세 사항들을 쉽게 이해할 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings so that those of ordinary skill in the art can easily implement them. In addition, in describing the present invention, when it is determined that a detailed description of a related known function or a known configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, certain features presented in the drawings are enlarged or reduced or simplified for ease of description, and the drawings and their components are not necessarily drawn to scale. However, those skilled in the art will readily understand these details.
실시예 1Example 1
제1단계Step 1
i) 이산화규소 고형분 함량이 32중량부이고, 입도크기는 10㎚, 산화나트륨 함량은 28중량부이며 pH10인 수성 콜로이드상의 나노금속산화물 A 30중량부;i) 30 parts by weight of an aqueous colloidal nanometal oxide A having a silicon dioxide solid content of 32 parts by weight, a particle size of 10 nm, a sodium oxide content of 28 parts by weight, and a pH of 10;
ii) 이산화규소 고형분 함량이 32중량부이고, 입도크기는 10㎚, 산화리튬 함량은 28중량부이며 pH 8.3인 수성 콜로이드상의 나노금속산화물 B 13중량부; 및 ii) 13 parts by weight of an aqueous colloidal nano-metal oxide B having a silicon dioxide solid content of 32 parts by weight, a particle size of 10 nm, a lithium oxide content of 28 parts by weight, and a pH of 8.3; And
iii) 이산화규소 고형분 함량이 33중량부이고, 입도크기는 10㎚, 산화칼륨 함량은 30중량부이며 pH 9.5인 수성 콜로이드상의 나노금속산화물 C 20중량부의 비율로 혼합 교반한 다음, 수산화칼륨과 에탄올로 이루어진 희석액(수산화칼륨:에탄올=1:4)을 첨가하여 전체 복합물의 pH를 12~13이 되도록 조절하고 호모믹스를 이용하여 복합콜로이드상의 나노금속산화물졸(복합알카리졸) 100g을 제조하였다. 이때 전체 복합콜로이드상의 나노금속산화물졸(복합알카리졸) 중에 포함된 금속산화물 함량이 28중량부가 되도록 하였다.iii) The silicon dioxide solid content is 33 parts by weight, the particle size is 10 nm, the potassium oxide content is 30 parts by weight, and the mixture is stirred in a ratio of 20 parts by weight of the aqueous colloidal nanometal oxide C having a pH of 9.5, followed by potassium hydroxide and ethanol. A diluted solution consisting of (potassium hydroxide: ethanol = 1:4) was added to adjust the pH of the entire composite to be 12 to 13, and 100 g of a composite colloidal nano-metal oxide sol (composite alkali sol) was prepared using a homomix. At this time, the content of the metal oxide contained in the total composite colloidal nanometal oxide sol (composite alkali sol) was made to be 28 parts by weight.
제2단계Step 2
상기 제1단계의 복합콜로이드상의 나노 금속산화물졸 80g에 대하여 순수20g, 수산화칼륨 14g 및 수산화알루미늄 0.4g을 첨가하여 충분히 교반하여 상기 복합콜로이드상의 나노금속산화물졸의 나노입자의 기능성기에 알루미늄이온과 칼륨 이온을 치환시켜 화학적 구조상 안정한 pH 12~13의 중간체 114g을 제조하였다.With respect to 80 g of the complex colloidal nano-metal oxide sol of the first step, 20 g of pure water, 14 g of potassium hydroxide and 0.4 g of aluminum hydroxide are added and sufficiently stirred to obtain aluminum ions and potassium in the functional groups of the nanoparticles of the complex colloidal nano-metal oxide sol. By substituting ions, 114 g of intermediates having a stable pH of 12 to 13 were prepared.
제3단계Step 3
상기 제2단계의 중간체 100g에 대하여 메틸트리메톡시실란 5g과 N-2-(아미노에틸)-3-아미노프로필-트리메톡시실란 5g을 첨가하여 80℃에서 3000rpm 으로 1시간 반응시켜 최종적으로 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제를 제조하였다.To 100 g of the intermediate in the second step, 5 g of methyltrimethoxysilane and 5 g of N-2-(aminoethyl)-3-aminopropyl-trimethoxysilane were added and reacted at 80° C. at 3000 rpm for 1 hour to finally make an alkali. A metal liquid nanocomposite silicate-based waterproofing agent was prepared.
실시예 2Example 2
상기 실시예 1에서 상기 나노금속산화물A를 20중량부, 나노금속산화물 B를 5중량부, 상기 나노금속산화물 C를 15중량부를 사용한 것을 제외하고 동일하게 실시하였다.In Example 1, 20 parts by weight of the nano metal oxide A, 5 parts by weight of the nano metal oxide B, and 15 parts by weight of the nano metal oxide C were used in the same manner.
실시예 3 Example 3
상기 실시예 1에서 상기 나노금속산화물A를 40중량부, 나노금속산화물 B를 5중량부, 상기 나노금속산화물 C를 15중량부를 사용한 것을 제외하고 동일하게 실시하였다.In Example 1, 40 parts by weight of the nano metal oxide A, 5 parts by weight of the nano metal oxide B, and 15 parts by weight of the nano metal oxide C were used in the same manner.
실시예 4Example 4
상기 나노금속산화물A를 20중량부, 나노금속산화물 B를 15중량부, 상기 나노금속산화물 C를 15중량부를 사용한 것을 제외하고 동일하게 실시하였다.The same procedure was performed except that 20 parts by weight of the nano metal oxide A, 15 parts by weight of the nano metal oxide B, and 15 parts by weight of the nano metal oxide C were used.
실시예 5Example 5
상기 나노금속산화물A를 20중량부, 나노금속산화물 B를 5중량부, 상기 나노금속산화물 C를 25중량부를 사용한 것을 제외하고 동일하게 실시하였다.The same procedure was performed except that 20 parts by weight of the nano-metal oxide A, 5 parts by weight of the nano-metal oxide B, and 25 parts by weight of the nano-metal oxide C were used.
비교예 1Comparative Example 1
상기 실시예 1에서 나노금속화합물 B를 사용하지 않은 것을 제외하고 동일하게 실시하였다.Except that the nano-metal compound B was not used in Example 1, it was carried out in the same manner.
비교예 2Comparative Example 2
상기 실시예 1에서 나노금속화합물 C를 사용하지 않은 것을 제외하고 동일하게 실시하였다.In Example 1, except that the nanometal compound C was not used, it was carried out in the same manner.
시험예 1Test Example 1
본 발명의 공법에 따라 형성된 실험체의 시간 경과에 따른 염화이온 침투 저항을 KSF-4930에 의해 측정하였다. 콘크리트 구조물은 염화이온에 의해 급격히 열화 되므로 염화이온에 대한 콘크리트 침투 저항성 시험은 내구성 향상 및 콘크리트 구조물의 열화방지 성능을 측정하는 척도로 활용되며, 이에 염화이온 침투에 대한 저항성이 우수 할수록 내구성이 우수하다고 할 수 있다.Chloride ion penetration resistance over time of the specimen formed according to the method of the present invention was measured by KSF-4930. Since concrete structures are rapidly deteriorated by chloride ions, the concrete penetration resistance test against chloride ions is used as a measure to improve durability and prevent deterioration of concrete structures.Therefore, the better resistance to chloride penetration, the better the durability. can do.
KSF-4930 기준에는 염화이온 침투저항성능을 3.0㎜ 이하로 규정하고 있다.The KSF-4930 standard stipulates that the chloride ion penetration resistance is less than 3.0㎜.
더욱 가혹한 조건인 KSD-9502에 의한 염수분무 시험 3000시간 후에서도 도막의 열화에는 이상이 없음을 알 수 있었으며, 염화물 침투 저항에 대한 정량적 데이터를 구하기 위해 KSF-4936에 대한 통전 시험을 실시하였다.It was found that there was no abnormality in the deterioration of the coating film even after 3000 hours of the salt spray test by KSD-9502, which is a more severe condition, and an energization test was performed on KSF-4936 to obtain quantitative data on chloride penetration resistance.
그 결과를 표 1에 나타내었다.The results are shown in Table 1.
표 1에 나타난 바와 같이 본 발명의 실시예 1의 경우 염화이온에 완전한 침투저항성을 가지고 있을 뿐만 아니라 시험체의 부식이 나타나지 않아 콘크리트의 내구성을 향상시킬 수 있는 것으로 나타났다. 나노금속 화합물의 함량을 최소화한 실시예2 및 각 나노금속 화합물중 일부만을 과량으로 사용한 실시예 3~5의 경우에는 약간의 염화이온 침투가 발생하는 것으로 나타났지만 시험기준 미만으로 나타나 사용상에는 문제가 없는 것으로 나타났다. 하지만 나노금속화합물 B 또는 C를 사용하지 않은 비교예 1 및 2의 경우 염화이온이 기준치에 가깝게 침투하는 것을 확인하였으며, 이에 따라 시험체의 일부가 부식되는 것을 확인할 수 있었다.As shown in Table 1, in the case of Example 1 of the present invention, it was found that not only had complete penetration resistance to chloride ions, but also did not show corrosion of the test specimen, thereby improving the durability of concrete. In the case of Example 2 in which the content of the nanometal compound was minimized and Examples 3 to 5 in which only a portion of each nanometal compound was used in an excessive amount, it was found that some chloride ion penetration occurred, but it was less than the test standard, so there was a problem in use. Appeared to be missing. However, in the case of Comparative Examples 1 and 2 in which the nanometal compound B or C was not used, it was confirmed that chloride ions penetrated close to the reference value, and accordingly, it was confirmed that a part of the test specimen was corroded.
시험예 2Test Example 2
KSF-4930에 따라 내투수성 시험을 측정하였고, KSF-4919에 따라 흡수량을 측정하였다.The water permeability test was measured according to KSF-4930, and the amount of absorption was measured according to KSF-4919.
내투수성 시험체는 KSF-4930, KSF-4919에 의한 시험체와 KSF-4009에 의한 콘크리트 (28일 양생) 시험체의 강도는 40.4 N/㎟, 도장 두께는 100㎛이하로 하였다.As for the water-permeable test specimen, the strength of the test specimen of KSF-4930, KSF-4919 and the concrete (28-day curing) specimen of KSF-4009 was 40.4 N/㎟, and the coating thickness was 100㎛ or less.
내투수성 시험을 하는 목적은 콘크리트 구조물을 열화시키는 인자(산성비, 염수, CO2, 공기 중 질소산화물, 황산화물 등)가 물을 매개로 하여 용해되어 침투 될 때 구조물의 내구성을 저하시키기 때문에 열화매개 인자인 물의 투수 저항성을 측정하기 위함이다.The purpose of the water permeability test is to reduce the durability of the structure when factors that deteriorate the concrete structure (acid ratio, salt water, CO 2 , nitrogen oxides in the air, sulfur oxides, etc.) are dissolved through water and penetrated. This is to measure the permeability resistance of water, which is a mediating factor.
그 결과를 표 2에 나타내었다.The results are shown in Table 2.
투수비KSF-4930
Pitching ratio
흡수량KSF-4919
Absorption
내 투수성KSF-4919
Water permeability
표 2에 나타난 바와 같이 본 발명에 의산 실시예 1의 경우 열화매개 인자인 물의 침투를 차단하여 내구성을 높일 수 있는 것을 확인할 수 있었다. 실시예 2~5 및 비교예 1, 2의 경우에도 KSF-4919의 내 투수성 시험방법에 따라 시험한 결과 투수가 확인되지는 않았지만, KSF-4930 및 KSF-4919의 흡수량에 따른 실험에서는 약간의 수분을 흡수하는 것으로 나타났으며, 특히 일부 나노금속 화합물을 사용하지 않은 비교예 1 및 2의 경우 흡수량 및 투수비가 기준치를 넘어 방수제로서의 역할을 수행하기 어려운 것으로 나타났다.As shown in Table 2, in the case of Example 1 of the present invention, it was confirmed that durability could be improved by blocking the penetration of water, which is a deterioration medium. In the case of Examples 2 to 5 and Comparative Examples 1 and 2, the water permeability was not confirmed as a result of testing according to the water permeability test method of KSF-4919, but in the experiment according to the absorption amount of KSF-4930 and KSF-4919, some It was found to absorb moisture, and in particular, in the case of Comparative Examples 1 and 2 in which some nanometal compounds were not used, the absorption amount and the water permeability ratio were found to be difficult to perform as a waterproofing agent beyond the reference value.
시험예 3Test Example 3
KSF-2584 콘크리트 촉진 탄산화 시험방법과 KSF 2596 콘크리트 탄산화 깊이 측정방법을 이용하여 탄산화 깊이를 측정하였다.Carbonation depth was measured using the KSF-2584 concrete accelerated carbonation test method and the KSF 2596 concrete carbonation depth measurement method.
콘크리트 구조물은 공기 중의 이산화탄소를 흡수하여 시멘트 수화물인 수산화칼슘과 반응 Ca(OH)2+ CO2→ CaCO3+H2O 하여 탄산칼슘이 되어 중성화되며 이로 인한 백화가 형성되어 콘크리트 구조물을 열화시킨다. 따라서 이산화탄소에 대한 투과 저항성이 있는 도막을 형성함으로써 콘크리트의 열화를 억제하며 내구성을 증진시킬 수 있다.The concrete structure absorbs carbon dioxide in the air and reacts with calcium hydroxide, which is a cement hydrate, Ca(OH) 2 + CO 2 → CaCO 3 +H 2 O, becomes calcium carbonate, and is neutralized, resulting in whitening and deteriorating the concrete structure. Therefore, by forming a coating film having permeation resistance to carbon dioxide, deterioration of concrete can be suppressed and durability can be improved.
따라서, 본 촉진탄산화시험에서는 콘크리트가 탄산화되어 콘크리트의 pH를 떨어뜨림으로서 콘크리트 구조물속에 있는 철근의 부식을 막아주고, 철근 부식으로 인한 구조물의 균열 발생의 근원을 차단하기 위한 시험이다.Therefore, this accelerated carbonation test is a test to prevent corrosion of reinforcing bars in concrete structures by reducing the pH of concrete due to carbonation of concrete, and to block the source of cracks in structures due to corrosion of reinforcing bars.
실험은 방수도막 두께 100㎛이하, 온도 20±2℃, 상대습도 50±5%, 이산화탄소농도 5±0.2%의 조건에서 실시하였다.The experiment was conducted under conditions of a waterproof coating thickness of 100 μm or less, a temperature of 20±2° C., a relative humidity of 50±5%, and a carbon dioxide concentration of 5±0.2%.
그 결과를 표 3에 나타내었다.The results are shown in Table 3.
표 3에 나타난 바와 같이 미도포된 콘크리트의 경우 10.3mm의 깊이까지 탄산화가 진행된 것을 확인할 수 있는 것에 반하여 본 발명의 실시예 1의 경우 탄산화가 나타나지 않은 것을 확인할 수 있었다. 이는 본 발명의 방수제에 포함된 나노금속화합물이 pH를 회복시켜 탄산화를 막는 과정이 정상적으로 수행되고 있는 것을 의미하며, 실시예 2~5의 경우에도 약간의 탄산화가 발생하였지만, 기준치에 비하여 매우 낮은 수준의 탄산화만 발생하고 있어 pH의 회복이 수행되고 있는 것을 확인할 수 있었다. 따라서 본 발명에 의한 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제를 사용하는 경우 이산화탄소에 대한 투과저항성이 아주 우수하며, 일부 투과된 이산화탄소에 의한 탄산화가 발생하더라도 나노금속화합물에 의한 pH회복 현상이 나타나며 탄산화를 최소화 할 수 있는 것을 확인할 수 있었다.As shown in Table 3, in the case of uncoated concrete, it was confirmed that carbonation proceeded to a depth of 10.3 mm, whereas in the case of Example 1 of the present invention, carbonation did not appear. This means that the process of preventing carbonation by restoring the pH of the nanometallic compound included in the waterproofing agent of the present invention is being performed normally, and although some carbonation occurred in Examples 2 to 5, it was at a very low level compared to the reference value. It was confirmed that only carbonation was occurring and the pH was being restored. Therefore, when the alkali metal liquid nanocomposite silicate-based permeable waterproofing agent according to the present invention is used, the permeation resistance to carbon dioxide is very excellent, and even if carbonation by some permeated carbon dioxide occurs, the pH recovery phenomenon by the nanometal compound appears and carbonation is prevented. I could see what can be minimized.
시험예 4Test Example 4
실시예 1~5 및 비교예 1, 2의 방법으로 제작된 침투성 방수제를 보통 콘크리트 시편(10cmX10cmX10cm)에 적용한 다음, 이를 48시간 건조하였다. 이때 실시예1~5와 비교예1~2에 사용한 보통콘크리트 배합 호칭강도는 180, 평균공극률(%)은 13.9% 인 것을 사용하였다. 이후 상기 시편을 4~5mm의 크기로 절단한 다음, 미국 Micromeritics사의 Auto Pore IV 9520를 이용하여 최고 압력 60,000 psi까지 공극률을 측정하였다. The permeable waterproofing agent produced by the method of Examples 1 to 5 and Comparative Examples 1 and 2 was applied to a concrete specimen (10cmX10cmX10cm), and then dried for 48 hours. At this time, the common concrete formulation used in Examples 1 to 5 and Comparative Examples 1 to 2 had a nominal strength of 180 and an average porosity (%) of 13.9%. Thereafter, the specimen was cut into a size of 4 to 5 mm, and then the porosity was measured up to a maximum pressure of 60,000 psi using Auto Pore IV 9520 of Micromeritics, USA.
표 4에 나타난 바와 같이 본 발명의 실시예1~5의 침투성 방수재를 처리한 시편의 경우 그 공극률이 고강도 콘크리트 수준으로 감소되는 것을 확인하였다. 일반적으로 보통 콘크리트의 공극률은 10~20%, 고강도 콘크리트의 공극률은 5~8%이며, 고성능 콘크리트의 공극률은 3%이하이다. 본원 발명의 침투성 방수재를 적용한 경우 보통의 콘크리트를 사용하는 경우에도 그 공극률이 크게 감소하여 고강도 콘크리트에 근접하는 공극률을 가지는 것을 확인하였다. 다만 비교예 1 및 2의 경우 공극률 감소가 두드러지지 않았으며, 다만 보통콘크리트 수준의 공극률을 가지는 것으로 확인되었다.As shown in Table 4, in the case of the specimens treated with the permeable waterproofing material of Examples 1 to 5 of the present invention, it was confirmed that the porosity was reduced to the level of high-strength concrete. In general, the porosity of ordinary concrete is 10-20%, the porosity of high-strength concrete is 5-8%, and the porosity of high-performance concrete is 3% or less. In the case of applying the permeable waterproofing material of the present invention, it was confirmed that the porosity was greatly reduced even when ordinary concrete was used, and thus it had a porosity close to that of high strength concrete. However, in the case of Comparative Examples 1 and 2, the reduction in porosity was not noticeable, but it was confirmed to have a porosity comparable to that of ordinary concrete.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it will be apparent to those of ordinary skill in the art that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereby. will be. Accordingly, it will be said that the substantial scope of the present invention is defined by the appended claims and their equivalents.
Claims (9)
상기 제1단계의 복합콜로이드상의 나노금속산화물졸 80중량부에 대하여 순수 15~25중량부, 수산화칼륨 10~18중량부 및 수산화알루미늄 0.2~0.6중량부를 첨가하여 교반하여 상기 복합콜로이드상의 나노금속산화물졸의 나노입자의 기능성기에 알루미늄 이온과 칼륨 이온을 치환시켜 화학적 구조상 안정한 pH 12~13의 중간체를 제조하는 제2단계;
상기 제2단계의 중간체 100중량부에 대하여 올가노알콕시실란 3~7중량부와 올가노 아미노실란 3~7중량부를 첨가하여 10~100분간 반응시키는 제3단계를 포함하는 것을 특징으로 하는 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 제조방법.
Silicon dioxide solid content is 30 to 35 parts by weight, particle size is 10 to 20 nm, sodium oxide content is 25 to 30 parts by weight, pH 9.0 to 10.5 aqueous colloidal nanometal oxide A 20 to 40 parts by weight, dioxide Silicon solid content is 30 to 35 parts by weight, particle size size is 10 to 20 nm, lithium oxide content is 25 to 30 parts by weight, pH 8.5 to 9.0 aqueous colloidal nanometal oxide B 10 to 15 parts by weight and silicon dioxide solid content A composite prepared by mixing and stirring 15 to 25 parts by weight of an aqueous colloidal nanometal oxide C with a content of 30 to 35 parts by weight, a particle size of 10 to 20 nm, a potassium oxide content of 25 to 35 parts by weight, and a pH of 9.0 to 10.0 A diluted solution consisting of potassium hydroxide and ethanol (potassium hydroxide: ethanol = 1:4 weight ratio) is added to the mixture so that the pH of the total complex solution is 12 to 13 and the metal oxide content is 25 to 35 parts by weight. A first step of preparing a nano metal oxide sol;
With respect to 80 parts by weight of the composite colloidal nanometal oxide sol of the first step, 15 to 25 parts by weight of pure water, 10 to 18 parts by weight of potassium hydroxide, and 0.2 to 0.6 parts by weight of aluminum hydroxide are added and stirred, A second step of preparing an intermediate having a stable pH of 12 to 13 in terms of chemical structure by replacing aluminum ions and potassium ions with functional groups of nanoparticles of the sol;
Alkali metal comprising a third step of reacting for 10 to 100 minutes by adding 3 to 7 parts by weight of organoalkoxysilane and 3 to 7 parts by weight of organoaminosilane to 100 parts by weight of the intermediate of the second step Method for producing a liquid nanocomposite silicate-based waterproofing agent.
상기 올가노알콕시실란은 테트라메톡시실란, 메틸트리메톡시실란, 트리메틸메톡시실란, 디메틸디메톡시실란, 트리에틸메톡시실란, 에틸트리메톡시실란, 디에틸디메톡시실란 중에서 어느 하나이며,
상기 올가노 아미노실란은 N-2-(아미노에틸)-3-아미노프로필-트리메톡시실란, 아미노에틸아미노프로필트리에톡시실란, N-2-(벤질아미노)-에틸-3-아미노프로필-트리메톡시실란, N-2-(비닐벤질아미노)-에틸-3-아미노프로필-트리메톡시실란 중에서 어느 하나인 것을 특징으로 하는 알칼리금속 액상 나노 복합 실리케이트계 침투성 방수제의 제조방법.The method of claim 8,
The organoalkoxysilane is any one of tetramethoxysilane, methyltrimethoxysilane, trimethylmethoxysilane, dimethyldimethoxysilane, triethylmethoxysilane, ethyltrimethoxysilane, and diethyldimethoxysilane,
The organo aminosilane is N-2-(aminoethyl)-3-aminopropyl-trimethoxysilane, aminoethylaminopropyltriethoxysilane, N-2-(benzylamino)-ethyl-3-aminopropyl- Trimethoxysilane, N-2-(vinylbenzylamino)-ethyl-3-aminopropyl-trimethoxysilane, characterized in that any one of the alkali metal liquid nanocomposite silicate-based permeable waterproofing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200090911A KR102220462B1 (en) | 2020-07-22 | 2020-07-22 | Alkali metal liquid nano-composite-silicate-based permeable waterproofing agent and concrete structure penetration waterproofing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200090911A KR102220462B1 (en) | 2020-07-22 | 2020-07-22 | Alkali metal liquid nano-composite-silicate-based permeable waterproofing agent and concrete structure penetration waterproofing method |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102220462B1 true KR102220462B1 (en) | 2021-02-25 |
Family
ID=74731266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200090911A KR102220462B1 (en) | 2020-07-22 | 2020-07-22 | Alkali metal liquid nano-composite-silicate-based permeable waterproofing agent and concrete structure penetration waterproofing method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102220462B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114031418A (en) * | 2021-11-10 | 2022-02-11 | 广州市鲁班建筑科技集团股份有限公司 | Permeable solidification type waterproof agent and construction method thereof |
CN114088609A (en) * | 2021-10-12 | 2022-02-25 | 天津城建大学 | Experimental device and experimental method for simulating microbial corrosion of concrete in seawater environment |
KR102665343B1 (en) * | 2023-04-26 | 2024-05-14 | 주식회사 스페이스인코 | Waterproof sheet |
KR102717959B1 (en) * | 2024-05-24 | 2024-10-16 | 롯데건설 주식회사 | Preparation method of permeable liquid waterproofing agent for improvement of concrete durability |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090100885A (en) | 2008-03-21 | 2009-09-24 | 동일건설(주) | Liquid concrete-waterproof admixture |
KR101137972B1 (en) * | 2011-10-07 | 2012-05-03 | 주식회사 이지엠 | Surface treating agent composition for concrete |
KR101579804B1 (en) | 2015-04-16 | 2015-12-24 | (주)피엠씨 | Manufacturing methode of liquid self waterproofing admixture, composition and methode of construction using the same |
KR101699490B1 (en) * | 2016-04-28 | 2017-01-25 | 에스알이엔지 주식회사 | Environmentally-friendly surface treatment construction method of concrete or steel reinforcement structure |
KR102063011B1 (en) * | 2019-08-05 | 2020-01-06 | 송상훈 | Mortar for reparing cross section of concrete structure and construction method for reparing cross section of concrete structure using the same |
JP2020500235A (en) * | 2016-10-20 | 2020-01-09 | ジェネラル・ケーブル・テクノロジーズ・コーポレーション | Durable coating compositions and coatings formed therefrom |
-
2020
- 2020-07-22 KR KR1020200090911A patent/KR102220462B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090100885A (en) | 2008-03-21 | 2009-09-24 | 동일건설(주) | Liquid concrete-waterproof admixture |
KR101137972B1 (en) * | 2011-10-07 | 2012-05-03 | 주식회사 이지엠 | Surface treating agent composition for concrete |
KR101579804B1 (en) | 2015-04-16 | 2015-12-24 | (주)피엠씨 | Manufacturing methode of liquid self waterproofing admixture, composition and methode of construction using the same |
KR101699490B1 (en) * | 2016-04-28 | 2017-01-25 | 에스알이엔지 주식회사 | Environmentally-friendly surface treatment construction method of concrete or steel reinforcement structure |
JP2020500235A (en) * | 2016-10-20 | 2020-01-09 | ジェネラル・ケーブル・テクノロジーズ・コーポレーション | Durable coating compositions and coatings formed therefrom |
KR102063011B1 (en) * | 2019-08-05 | 2020-01-06 | 송상훈 | Mortar for reparing cross section of concrete structure and construction method for reparing cross section of concrete structure using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114088609A (en) * | 2021-10-12 | 2022-02-25 | 天津城建大学 | Experimental device and experimental method for simulating microbial corrosion of concrete in seawater environment |
CN114031418A (en) * | 2021-11-10 | 2022-02-11 | 广州市鲁班建筑科技集团股份有限公司 | Permeable solidification type waterproof agent and construction method thereof |
KR102665343B1 (en) * | 2023-04-26 | 2024-05-14 | 주식회사 스페이스인코 | Waterproof sheet |
KR102717959B1 (en) * | 2024-05-24 | 2024-10-16 | 롯데건설 주식회사 | Preparation method of permeable liquid waterproofing agent for improvement of concrete durability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102220462B1 (en) | Alkali metal liquid nano-composite-silicate-based permeable waterproofing agent and concrete structure penetration waterproofing method | |
KR102222895B1 (en) | Floor finishing method by concrete polishing using concrete permeable surface strengthening agent and penetration prevention agent | |
CN114478064B (en) | Concrete curing agent, curing coating and preparation method thereof | |
CN105272065B (en) | A kind of cementitious capillary waterproofing material for building | |
KR100852392B1 (en) | The membrane technique with ceramic liquid binder for enhancing durability performance of concrete and steel structures | |
CN107540304A (en) | A kind of composite cement base osmotic crystalline waterproof material | |
KR100982229B1 (en) | High permeable amphiprotic agent for surface treatment of concrete and process for the preparation thereof | |
KR100954450B1 (en) | Coating composition of ultra-polymer smart ceramic and method of surface treatment for concrete structure or steel structure | |
CN112266638A (en) | Water repellent based on inorganic silicate and preparation method and application thereof | |
CN101580356B (en) | Water-emulsion organic silicon waterproof agent | |
CN109369137A (en) | A kind of acid and alkali-resistance concrete | |
KR102093646B1 (en) | Eco-friendly inorganic penetrative waterproof and anti-corrosive composition and waterproof and anti-corrosive construction method for concrete structure therewith | |
JP2002505996A (en) | Conductive microcapillary composite matrix and method of making the same | |
CN110723986B (en) | Cement surface permeable crystallization plugging type rigid waterproof agent | |
KR101685001B1 (en) | Method for manufacturing penetrating coating materials for protecting surface of concrete structure and penetrating coating materials for protecting surface of concrete structure using the same | |
CN112679228B (en) | Concrete sealing curing agent and preparation method thereof | |
KR102337977B1 (en) | Grouting Chemical Liquid Composition for Water Leakage and Reinforcement of Ground and Constructing Methods Using Thereof | |
CN111205025B (en) | Waterproof mortar | |
KR101836660B1 (en) | Inorganic Based Composition For Reinforcing To Concrete Surface | |
CN114634327B (en) | Pure lithium-based sealing curing agent and preparation method thereof | |
CN115948084B (en) | Self-cleaning organic-inorganic hybrid waterproof coating for concrete and preparation method thereof | |
CN114656284B (en) | Nanoclay calcium hydroxide composite material for repairing and reinforcing as well as preparation and application thereof | |
KR102549054B1 (en) | Composite waterproofing method using waterproofing membrane coating | |
KR100502278B1 (en) | Coating compositions that manufactured by organic-inorganic crosslinked polymer for the protection of concrete structure and its manufacture method | |
JP2004315343A (en) | Silica-dispersed liquid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |