KR102226201B1 - Method for enhancing growth of crops by sound wave - Google Patents
Method for enhancing growth of crops by sound wave Download PDFInfo
- Publication number
- KR102226201B1 KR102226201B1 KR1020180103188A KR20180103188A KR102226201B1 KR 102226201 B1 KR102226201 B1 KR 102226201B1 KR 1020180103188 A KR1020180103188 A KR 1020180103188A KR 20180103188 A KR20180103188 A KR 20180103188A KR 102226201 B1 KR102226201 B1 KR 102226201B1
- Authority
- KR
- South Korea
- Prior art keywords
- khz
- sound wave
- growth
- plant
- sound waves
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/04—Electric or magnetic or acoustic treatment of plants for promoting growth
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
- A01G7/06—Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P60/00—Technologies relating to agriculture, livestock or agroalimentary industries
- Y02P60/14—Measures for saving energy, e.g. in green houses
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Botany (AREA)
- Environmental Sciences (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Cultivation Of Plants (AREA)
- Catching Or Destruction (AREA)
Abstract
본 발명은 음파를 이용한 작물의 생장 촉진 방법에 관한 것으로, 상세하게는, 특정 음역대의 단일음파를 1차 및 2차 처리함에 따른 복합음파를 이용하여 작물의 생장을 촉진시키는 방법에 관한 것이다.
본 발명에 따르면, 작물의 생육 기간을 단축시킴과 동시에 생산량을 증대시킬 수 있으며, 화학 비료 사용 절감으로 농가 소득 보전 및 환경친화적 농업을 구현할 수 있다.The present invention relates to a method for promoting the growth of crops using sound waves, and more particularly, to a method for promoting the growth of crops using complex sound waves obtained by first and second treatment of single sound waves in a specific sound range.
According to the present invention, it is possible to shorten the growth period of crops and increase the amount of production at the same time, and by reducing the use of chemical fertilizers, it is possible to conserve farm income and implement environment-friendly agriculture.
Description
본 발명은 음파를 이용한 작물의 생장 촉진 방법에 관한 것으로, 상세하게는, 특정 음역대의 단일음파를 1차 및 2차 처리함에 따른 복합음파를 이용하여 작물의 생장을 촉진시키는 방법에 관한 것이다.The present invention relates to a method for accelerating the growth of crops using sound waves, and more particularly, to a method for promoting the growth of crops using complex sound waves obtained by first and second treatment of single sound waves in a specific sound range.
국제연합식량농업기구(Food and Agriculture Organization of the United Nations, FAO)는 2050년에는 세계 인구가 약 90억 명에 이를 것으로 예상하고 있으며, 증가하는 많은 인구에 안정적으로 식량을 공급하기 위해서는 식량 생산량이 현재보다 약 70%가량 늘어나야 할 것으로 전망하고 있다. 현재까지는 작물의 생육 기간 단축과 생산량 증대를 위해 화학 비료와 합성 농약이 많이 사용되어 왔으며, 이로 인해 환경 오염 등의 문제가 지적되고 있다. 특히, 시설 재배지에서 화학 비료와 농약의 과도한 사용으로 인한 염류 장해로 인한 경제적 손실이 매우 크다. 또한, 질소 비료 과잉 투입으로 인해 농업 생산비는 증가하고 있는 반면, 작물의 생산량과 병해충에 대한 저항성이 감소되는 부작용이 발생하고 있는 실정이다. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will reach about 9 billion by 2050. Food production is expected to provide a stable supply of food to a large growing population. It is predicted that it should increase by about 70% from the present. Until now, chemical fertilizers and synthetic pesticides have been widely used to shorten the growth period of crops and increase production, and problems such as environmental pollution have been pointed out. In particular, the economic loss due to salt disturbance due to excessive use of chemical fertilizers and pesticides in the facility cultivation area is very large. In addition, while the agricultural production cost is increasing due to excessive nitrogen fertilizer input, there is a side effect of reducing the production amount of crops and resistance to pests.
한편, 음파를 이용하여 식물의 성장 및 활력을 증진시키고자 하는 연구가 1860년경 진화론을 주장한 찰스 다윈 때부터 시도되고 있으며, 음파를 이용하여 식물의 병해충 발생을 억제하는 방법에 대한 연구도 최근에 시도되고 있다. 음파를 식물에 적용한 공지 기술로는 대한민국 등록특허 제10-0027825호에 식물을 지베렐린 수용액으로 처리하는 동안 음파를 적용시켜 식물의 성장속도를 증진시키는 방법이 개시되어 있으며, 대한민국 등록특허 제10-0131133호에는 주파수 2000Hz 이하의 음악을 이용한 식물의 생육 촉진 방법이 개시되어 있다. 또한, 대한민국 등록특허 제10-0325311호에는 주파수 2 내지 20kHz 음역대의 음파를 대상 작물에 들려주어 병해충 발생을 억제하는 방법이 개시되어 있다.On the other hand, research to improve the growth and vitality of plants using sound waves has been attempted since Charles Darwin, who insisted on the theory of evolution around 1860, and studies on the method of suppressing the occurrence of plant diseases and pests using sound waves have also recently been attempted. Has become. As a known technique in which sound waves are applied to plants, Korean Patent Registration No. 10-0027825 discloses a method of increasing the growth rate of plants by applying sound waves while treating plants with an aqueous solution of gibberellin. The issue discloses a method for promoting plant growth using music with a frequency of 2000 Hz or less. In addition, Korean Patent Registration No. 10-0325311 discloses a method of suppressing the occurrence of pests by playing sound waves in a frequency range of 2 to 20 kHz to a target crop.
상기 대한민국 등록특허 제10-0027825호에 음파를 적용시켜 식물의 성장속도를 증진시키는 방법이 개시되어 있으나, 성장 촉진 조성물인 지베렐린을 처리하는 동안 음파를 적용하는 방법으로서, 음파 처리만으로는 적절히 성장이 촉진되지 않는 단점이 있고, 상기 대한민국 등록특허 제10-0131133호에 음파를 이용한 식물 생육 촉진 방법이 개시되어 있으나, 악기를 사용한 연주음에 자연에서 녹취한 음향을 조화시켜 주파수 2,000Hz 이하에 주대역을 지닌 음악을 들려주는 방식으로서, 악기를 사용한 연주음에 자연에서 녹취한 음향을 조화시켜야 하는 번거로움이 있다.The Korean Patent Registration No. 10-0027825 discloses a method of increasing the growth rate of plants by applying sound waves, but it is a method of applying sound waves while processing the growth promoting composition gibberellin. There is a disadvantage of not being able to do so, and the Korean Patent Registration No. 10-0131133 discloses a method for promoting plant growth using sound waves, but the main band is reduced to a frequency of 2,000 Hz or less by harmonizing the sound recorded in nature with the playing sound using a musical instrument. As a way of listening to music possessed, there is a hassle of having to harmonize the sound recorded in nature with the sound played by the instrument.
음파를 이용한 식물 생장 증진과 관련된 실험은 오랫동안 수행되어 왔으나 효과적인 음역대와 처리시간과 같은 적정조건을 구명하기 까다로워 음파를 이용하여 작물의 생장을 특이적으로 증진시키는 방법은 시도되지 못하고 있다. Experiments related to plant growth enhancement using sound waves have been carried out for a long time, but it is difficult to ascertain appropriate conditions such as effective pitch range and treatment time, so a method of specifically enhancing crop growth using sound waves has not been attempted.
이러한 배경하에서, 본 발명자들은 작물의 생장을 촉진 시키기 위해 과도하게 사용되는 화학 비료와 합성 농약으로 인해 유발되는 환경오염 등의 문제점을 해결함과 동시에 작물의 생장을 친환경적으로 촉진하기 위한 기술을 개발하고자 예의 노력한 결과, 모델 식물인 애기장대의 종자와 유묘에 특정 음역대의 각 단일음파를 1차 및 2차에 걸쳐 처리한 복합음파에 의해 뿌리의 신장 및 생체중이 증가하고, 유묘 생장시 꽃대 형성 시기가 빨라지는 등의 생육 촉진 효과를 확인함으로써, 본 발명의 복합음파를 이용한 작물 생장 촉진 방법을 완성하게 되었다. Under this background, the present inventors seek to solve problems such as environmental pollution caused by chemical fertilizers and synthetic pesticides that are excessively used to promote the growth of crops, and at the same time develop a technology to promote the growth of crops in an environment-friendly manner. As a result of diligence, the elongation and fresh weight of the roots increased by the complex sound waves in which each single sound wave of a specific pitch range was processed in the first and second stages on the seeds and seedlings of Arabidopsis, a model plant, and the period of formation of flower stalks during seedling growth By confirming the effect of promoting growth such as speeding up, the method of promoting crop growth using the composite sound wave of the present invention was completed.
본 발명의 목적은 복합음파를 이용한 작물의 생장 촉진 방법을 제공하기 위한 것이다. An object of the present invention is to provide a method for promoting the growth of crops using a composite sound wave.
상기 목적을 달성하기 위하여, 본 발명은 a) 식물체에 주파수 6 내지 9kHz의 음역대 중에서 선택된 단일음파를 1차 처리하는 단계; 및 b) 상기 a) 단계의 단일음파가 1차 처리된 식물체에 주파수 9 내지 13kHz의 음역대 중에서 선택된 단일음파를 2차 처리하는 단계를 포함하는, 복합음파를 이용한 작물의 생장 촉진 방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of: a) first processing a single sound wave selected from a sound range of 6 to 9 kHz in a plant body; And b) secondary treatment of a single sound wave selected from a frequency range of 9 to 13 kHz on the plant in which the single sound wave of the step a) is first treated.
본 발명에 따르면, 작물의 생육 기간을 단축시킴과 동시에 생산량을 증대시킬 수 있으며, 화학 비료 사용 절감으로 농가 소득 보전 및 환경친화적 농업을 구현할 수 있다.According to the present invention, it is possible to shorten the growth period of crops and increase the amount of production at the same time, and by reducing the use of chemical fertilizers, it is possible to conserve farm income and implement environment-friendly agriculture.
도 1은 본 발명에 따른 복합음파(9kHz의 1차 음파, 9kHz, 10kHz, 및 13kHz의 2차 음파) 처리 5일 후, 애기장대 유묘의 음역별 뿌리 신장(root growth) 정도를 확인한 사진(A)과, 이를 정량화하여 뿌리 길이(root length) 비교 결과를 나타낸 그래프(B)이다.
도 2는 본 발명에 따른 복합음파(9kHz의 1차 음파, 9kHz, 10kHz, 및 13kHz의 2차 음파) 처리 7일 후, 애기장대 유묘의 음역별 뿌리 신장 정도를 확인한 사진(A)과, 이를 정량화하여 뿌리 길이 비교 결과를 나타낸 그래프(B)이다.
도 3은 본 발명에 따른 복합음파(9kHz의 1차 음파, 6kHz, 7kHz, 8kHz, 11kHz, 및 12kHz의 2차 음파) 처리 7일 후, 애기장대 유묘의 음역별 뿌리 신장 정도를 확인한 사진(A)과, 이를 정량화하여 뿌리 길이 비교 결과를 나타낸 그래프(B)이다.
도 4는 본 발명에 따른 복합음파(9kHz의 1차 음파, 13kHz의 2차 음파) 처리 10일 후, 애기장대의 뿌리 정단부를 촬영한 현미경 사진이다.
도 5는 본 발명에 따른 복합음파(9kHz의 1차 음파, 9kHz, 10kHz, 및 13kHz의 2차 음파) 처리 10일 후, 애기장대 유묘의 음역별 뿌리 신장 정도를 확인한 사진(A)과 이를 정량화하여 뿌리 길이 비교 결과를 나타낸 그래프(B), 및 상기 애기장대 유묘의 음역별 뿌리 생체중 비교 결과를 나타낸 그래프(C)이다.
도 6은 본 발명에 따른 단일음파(9kHz, 10kHz, 및 13kHz) 처리 10일 후, 애기장대 유묘의 음역별 뿌리 신장 정도를 확인한 사진(A)과, 이를 정량화하여 뿌리 길이 비교 결과를 나타낸 그래프(B)이다.
도 7은 본 발명에 따른 복합음파를 처리한 애기장대의 토양 이식 21일 후 음역별 생육 정도를 비교 확인한 사진이다.
도 8은 본 발명에 따른 복합음파를 처리한 애기장대의 토양 이식 25일 후 음역별 생육 정도를 비교 확인한 사진이다.
도 9는 본 발명에 따른 복합음파를 처리한 애기장대의 토양 이식 32일 후 음역별 생육 정도를 비교 확인한 사진이다.FIG. 1 is a photograph showing the degree of root growth of Arabidopsis seedlings for each sound region after 5 days of treatment with a composite sound wave (a first sound wave of 9 kHz, a second sound wave of 9 kHz, 10 kHz, and 13 kHz) according to the present invention (A ), and a graph (B) showing the result of comparing the root length by quantifying it.
Figure 2 is a photograph (A) confirming the degree of root elongation of Arabidopsis seedlings for each sound region after 7 days of treatment with a composite sound wave (a first sound wave of 9 kHz, a second sound wave of 9 kHz, 10 kHz, and 13 kHz) according to the present invention. It is a graph (B) showing the result of comparing the root length by quantification.
FIG. 3 is a photograph showing the degree of root elongation of Arabidopsis seedlings for each sound region after 7 days of processing the composite sound wave (first order sound wave of 9 kHz, 6 kHz, 7 kHz, 8 kHz, 11 kHz, and 12 kHz) according to the present invention (A ), and a graph (B) showing the result of comparing the root length by quantifying it.
4 is a photomicrograph of a root apical part of Arabidopsis thaliana after 10 days of treatment with a compound sound wave (a first sound wave of 9 kHz, a second sound wave of 13 kHz) according to the present invention.
Figure 5 is a photograph (A) and quantification of the degree of root elongation of Arabidopsis seedlings after 10 days of treatment with a compound sound wave (first sound wave of 9 kHz, second sound wave of 9 kHz, 10 kHz, and 13 kHz) according to the present invention. Thus, a graph (B) showing the result of comparing the root length, and a graph (C) showing the result of comparing the root live weight by tone range of the Arabidopsis seedling.
6 is a photograph (A) confirming the degree of root elongation of Arabidopsis thaliana seedlings after 10 days of single sound wave (9 kHz, 10 kHz, and 13 kHz) treatment according to the present invention, and a graph showing the result of comparing root length by quantifying it ( B).
7 is a photograph showing a comparison and confirmation of the growth degree of each sound region after 21 days of soil transplantation of Arabidopsis thaliana treated with a composite sound wave according to the present invention.
8 is a photograph comparing and confirming the growth degree of each sound region after 25 days of soil transplantation of Arabidopsis thaliana treated with the composite sound wave according to the present invention.
9 is a photograph comparing and confirming the growth degree of each sound range after 32 days of soil transplantation of Arabidopsis thaliana treated with the composite sound wave according to the present invention.
본 발명은 음파를 이용한 작물의 생장 촉진 방법에 관한 것으로, 상세하게는, 특정 음역대의 단일음파를 1차 및 2차 처리함에 따른 복합음파를 이용하여 작물의 생장을 촉진시키는 방법에 관한 것이다.The present invention relates to a method for accelerating the growth of crops using sound waves, and more particularly, to a method for promoting the growth of crops using complex sound waves obtained by first and second treatment of single sound waves in a specific sound range.
하나의 양태로서, 본 발명은 a) 식물체에 주파수 6 내지 9kHz의 음역대 중에서 선택된 단일음파를 1차 처리하는 단계; 및 b) 상기 a) 단계의 단일음파가 1차 처리된 식물체에 주파수 9 내지 13kHz의 음역대 중에서 선택된 단일음파를 2차 처리하는 단계를 포함하는, 복합음파를 이용한 작물의 생장 촉진 방법을 제공한다.In one aspect, the present invention comprises the steps of: a) primary processing a single sound wave selected from a range of frequencies of 6 to 9 kHz on a plant; And b) secondary treatment of a single sound wave selected from a frequency range of 9 to 13 kHz on the plant in which the single sound wave of the step a) is first treated.
..
본 발명에서 용어 "음파(sound wave)"란 공기 분자의 밀도 변화 즉 기압의 변화는 인접한 공기 분자에 똑같은 변화를 주면서 공기 속으로 전달되어 가는데 이러한 현상을 말한다. 음파가 발생하는 에너지를 감지함으로써 소리를 느끼게 되는 것이다. 음파는 소리로서 느껴지는 파동으로 매질 속을 전파하는 탄성파이며, 보통 사람이 들을 수 있는 음파의 가청 주파수는 약 20~20,000Hz이다. 상기 가청 주파수 이상의 음파, 즉, 20,000Hz 이상의 음파를 초음파(ultrasonics)라 하고, 가청 주파수 이하의 음파, 즉, 20Hz 이하의 음파를 초저주파(infrasonics)라 하며, 이들 모두를 넓은 의미로 음파라고 한다. In the present invention, the term "sound wave" refers to a change in the density of air molecules, that is, a change in atmospheric pressure, which is transmitted into the air while giving the same change to adjacent air molecules. By sensing the energy generated by sound waves, you feel the sound. A sound wave is an acoustic wave that propagates through a medium as a wave felt as sound, and the audible frequency of sound waves that can be heard by ordinary people is about 20 to 20,000 Hz. Sound waves of the audible frequency or more, that is, sound waves of 20,000 Hz or more, are called ultrasonics, and sound waves of the audible frequency or less, that is, sound waves of 20 Hz or less, are called infrasonics, and all of these are called sound waves in a broad sense. .
본 발명에서는 특정 음역대의 '단일음파(single sound wave)'를 1차 처리 및 2차 처리하는 방식의 '복합음파(complex sound wave)'를 이용하였으며, 특정 음파 처리는 Adoba Audition 30 software(Adobe System Company) 프로그램을 이용하여 원하는 음파를 만들어서 무소음 생장상(soundless growth chamber) 내에 장착된 스피커를 통해 특정 단일음파를 1차 및 2차에 걸쳐 식물체에 복합음파로서 처리하였다.In the present invention, a'complex sound wave' of a method of first processing and second processing'single sound wave' in a specific sound range was used, and the specific sound wave processing was performed by Adoba Audition 30 software (Adobe System Company) program was used to create the desired sound wave, and a specific single sound wave was processed as a compound sound wave on the plant in the first and second order through the speaker mounted in the soundless growth chamber.
구체적으로, 상기 복합음파 처리는 식물체에 주파수 6 내지 9kHz의 음역대 중에서 선택된 단일음파를 1차 처리하고, 상기 단일음파가 1차 처리된 식물체에 주파수 9 내지 13kHz의 음역대 중에서 선택된 단일음파를 2차 처리하여 이루어질 수 있으나, 이에 제한되지는 않는다.Specifically, in the complex sound wave processing, a single sound wave selected from a frequency range of 6 to 9 kHz is first processed on a plant, and a single sound wave selected from a sound range of a frequency of 9 to 13 kHz is secondarily processed on the plant where the single sound wave is first processed. However, it is not limited thereto.
상기 복합음파 처리에 있어서, 단일음파의 1차 처리는 주파수 6 내지 9kHz로, 7 내지 9kHz로, 또는 8 내지 9kHz로 처리될 수 있고, 바람직하게는 9kHz로 처리될 수 있으나, 이에 제한되지는 않는다.In the complex sound wave processing, the primary processing of the single sound wave may be performed at a frequency of 6 to 9 kHz, 7 to 9 kHz, or 8 to 9 kHz, and may be preferably processed at 9 kHz, but is not limited thereto. .
상기 복합음파 처리에 있어서, 단일음파의 2차 처리는 주파수 9 내지 13kHz로, 10 내지 13kHz로, 또는 11 내지 13kHz로 처리될 수 있고, 바람직하게는 13kHz로 처리될 수 있으나, 이에 제한되지는 않는다.In the complex sound wave processing, the secondary processing of the single sound wave may be performed at a frequency of 9 to 13 kHz, 10 to 13 kHz, or 11 to 13 kHz, and may be preferably processed at 13 kHz, but is not limited thereto. .
상기 복합음파 처리에 있어서, 단일음파는 24시간당 1 내지 3시간 동안 50 내지 100 데시벨(dB) 음량으로 식물체에 처리될 수 있고, 바람직하게는 24시간당 2시간 동안 80 데시벨 음량으로 식물체에 처리될 수 있으나, 이에 제한되지는 않는다.In the complex sound wave treatment, a single sound wave may be treated on the plant at a volume of 50 to 100 decibels (dB) for 1 to 3 hours per 24 hours, and preferably can be treated on the plant at a volume of 80 decibels for 2 hours per 24 hours. However, it is not limited thereto.
또한, 상기 복합음파 처리에 있어서, 식물체에 단일음파를 1차 및 2차 처리시 각각 1 내지 6일 처리할 수 있고, 바람직하게는 각각 4 내지 6일 처리할 수 있으나, 이에 제한되지는 않는다.In addition, in the complex sound wave treatment, the first and second treatment of a single sound wave to the plant may be treated for 1 to 6 days, preferably for 4 to 6 days, but is not limited thereto.
상기 복합음파 처리에 있어서, 단일음파는 식물체의 종자 또는 유묘에 적용될 수 있으나, 이에 제한되지는 않는다.In the complex sound wave treatment, a single sound wave may be applied to seeds or seedlings of a plant, but is not limited thereto.
본 발명의 용어 "식물체"란 식물이 지닌 유형의 몸으로, 총칭적으로 '식물' 또는 '작물'과 혼용하여 사용될 수 있으며, 식물의 전체, 식물의 일부, 종자 또는 식물 세포를 포함할 수 있다. The term "plant" of the present invention refers to a body of a type possessed by a plant, and may collectively be used interchangeably with'plant' or'crop', and may include the whole plant, part of the plant, seeds or plant cells. .
상기 식물체는 이에 제한되지는 않으나, 벼, 밀, 보리, 옥수수, 콩, 감자, 팥, 귀리 및 수수를 포함하는 식량작물류; 애기장대, 배추, 무, 고추, 딸기, 토마토, 수박, 오이, 양배추, 참외, 호박, 파, 양파 및 당근을 포함하는 채소작물류; 인삼, 담배, 목화, 참깨, 사탕수수, 사탕무우, 들깨, 땅콩 및 유채를 포함하는 특용작물류; 사과나무, 배나무, 대추나무, 복숭아, 양다래, 포도, 감귤, 감, 자두, 살구 및 바나나를 포함하는 과수류; 장미, 글라디올러스, 거베라, 카네이션, 국화, 백합 및 튤립을 포함하는 화훼류; 및 라이그라스, 레드클로버, 오차드그라스, 알파알파, 톨페스큐 및 페레니얼라이그라스를 포함하는 사료작물류로 구성된 군으로부터 선택되는 것일 수 있다.The plant is not limited thereto, but food crops including rice, wheat, barley, corn, beans, potatoes, red beans, oats and sorghum; Vegetable crops including Arabidopsis daikon, Chinese cabbage, radish, pepper, strawberry, tomato, watermelon, cucumber, cabbage, melon, pumpkin, green onion, onion and carrot; Specialty crops including ginseng, tobacco, cotton, sesame, sugar cane, sugar beet, perilla, peanut and rapeseed; Fruit trees including apple tree, pear tree, jujube tree, peach, parsley, grapes, tangerines, persimmons, plums, apricots and bananas; Flowers including roses, gladiolus, gerberas, carnations, chrysanthemums, lilies and tulips; And it may be selected from the group consisting of feed crops including ryegrass, red clover, orchardgrass, alpha alpha, tolpescue, and perennial ryegrass.
본 발명에서 "작물의 생장 촉진"은 이에 제한되는 것은 아니나, 식물 종자의 발아 촉진, 식물의 유근 생장 촉진, 식물체의 길이 생장, 부피 생장의 촉진, 과실의 착과의 촉진, 과실의 숙성의 촉진, 잎 활성의 향상, 식물 뿌리의 생장 촉진, 식물의 지상부 생장 촉진, 과실의 착색 촉진 등을 모두 포함하는 가장 포괄적인 개념이다.In the present invention, "promoting the growth of crops" is not limited thereto, but promoting the germination of plant seeds, promoting the growth of rhizomes of plants, promoting the growth of the length of the plant, promoting the growth of the bulk, promoting the fruiting of the fruit, promoting the ripening of the fruit, It is the most comprehensive concept that includes all of the enhancement of leaf activity, promotion of plant root growth, promotion of plant growth, and promotion of fruit coloring.
본 발명에 있어서, 상기 복합음파에 의해 식물의 지상부 생장이 촉진될 수 있다. 상기 식물의 지상부는 물이 토양 밖으로 노출된 모든 부위를 의미할 수 있으며, 잎, 줄기, 뿌리, 꽃, 열매 등을 모두 포함한다.In the present invention, the above-ground growth of plants may be promoted by the composite sound wave. The above-ground part of the plant may refer to all areas where water is exposed to the outside of the soil, and includes all of leaves, stems, roots, flowers, fruits, and the like.
본 발명의 일 실시예에서, 모델 식물인 애기장대의 종자와 유묘에 1일당 2시간씩 5일간 9kHz의 단일음파를 1차 처리하고, 상기 단일음파가 1차 처리된 애기장대의 종자와 유묘에 1일당 2시간씩 5일 또는 7일간 9kHz, 10kHz, 11kHz, 12kHz 및 13kHz의 단일음파를 2차 처리하여, 즉, 복합음파를 처리하여 애기장대의 생육 상태를 분석해 본 결과, 음파 무처리군, 즉 대조군에 비해 뿌리의 신장 및 생체중이 증가하는 등 뿌리의 생장이 촉진됨을 확인하였다(도 1 내지 도 5).In one embodiment of the present invention, a single sound wave of 9 kHz is first treated for 5 days for 5 days for 2 hours per day on the seeds and seedlings of Arabidopsis as a model plant, and the single sound waves are applied to the seeds and seedlings of Arabidopsis As a result of analyzing the growth state of Arabidopsis by processing a single sound wave of 9 kHz, 10 kHz, 11 kHz, 12 kHz and 13 kHz for 5 or 7 days for 2 hours per day, that is, complex sound waves, the result of analyzing the growth state of Arabidopsis thaliana, the sound wave untreated group, That is, it was confirmed that the growth of the root was promoted by increasing the elongation and fresh weight of the root compared to the control group (FIGS. 1 to 5).
본 발명의 일 실시예에서, 상기와 같은 동일 조건의 복합음파 처리(1차 처리: 9kHz의 단일음파, 1일당 2시간씩 5일; 2차 처리: 9kHz, 10kHz 및 13kHz의 단일음파, 1일당 2시간씩 5일)가 완료된 애기장대 유묘를 토양으로 이식하여 지상부의 생육 상태를 분석해 본 결과, 대조군(음파 무처리군)에 비해 애기장대 식물의 키가 크고, 잎도 매우 풍성하며, 꽃대 형성 시기도 빨라지는 등 식물 지상부의 생육이 촉진됨을 확인하였다(도 7 내지 도 9).In an embodiment of the present invention, the complex sound wave treatment under the same conditions as described above (primary treatment: 9 kHz single sound wave, 2 hours per day for 5 days; Secondary treatment: 9 kHz, 10 kHz and 13 kHz single sound wave, per day As a result of analyzing the growth state of the above-ground part by transplanting the Arabidopsis seedlings completed (2 hours each, 5 days) into the soil, the Arabidopsis plant is taller than the control group (no sound wave treatment group), the leaves are very rich, and the flower stalk is formed. It was confirmed that the growth of the above-ground part of the plant was promoted, such as speeding up the timing (FIGS. 7 to 9).
이하, 실시예를 통하여 본 발명의 구성 및 효과를 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들 실시예에 의해 한정되는 것은 아니다.Hereinafter, the configuration and effects of the present invention will be described in more detail through examples. These examples are for illustrative purposes only, and the scope of the present invention is not limited by these examples.
실시예Example 1: 공시 작물 준비 1: Preparation of publicly available crops
애기장대(Arabidopsis thaliana) 종자(ecotype Col-0)는 Arabidopsis Biological Resource Center(미국 Ohio State Univ. 소재)에서 분양 받아 사용하였다. Arabidopsis thaliana seeds (ecotype Col-0) were sold and used at the Arabidopsis Biological Resource Center (Ohio State Univ., USA).
실시예Example 2: 음파 처리 및 2: sound wave processing and 생장상Growth Prize 내에서의 애기장대 생육 상태 분석 Analysis of the growth status of Arabidopsis thaliana within
5g의 애기장대 종자를 담은 플라스틱 페트리 디쉬(Petri Dish)를 스피커가 설치된 무소음 생장상(Soundless Growth Chamber; ㈜한국과기산업 제조) 내에 적절히 배치한 후 음파를 처리하였다. 상기 생장상 내의 환경 조건은 16시간 명처리와 8시간의 암처리로 조절한 장일처리(long day treatment) 조건이고, 온도는 23±1℃, 습도는 50∼80%가 유지되도록 하였다. A plastic Petri dish containing 5g of Arabidopsis seeds was properly placed in a soundless growth chamber (manufactured by Korea Science and Technology Industry Co., Ltd.) and then treated with sound waves. The environmental conditions in the growth bed were a long day treatment condition controlled by 16 hours light treatment and 8 hours dark treatment, and the temperature was 23±1°C, and the humidity was maintained at 50-80%.
구체적으로, 1차 음파 처리는 종자에 처리하였으며, 9kHz의 음파를 하루에 2시간씩(2시간/일) 5일 동안 처리한 후 10℃에서 2일 동안 춘화처리(vernalization) 하였다. 춘화처리가 완료된 종자는 표면살균 한 후 MS배지에 치상하였다. 페트리 디쉬당 20개의 종자를 일렬로 파종하고 2차 음파 처리하였다. 음파 처리는 무처리, 6kHz, 7kHz, 8kHz, 9kHz, 10kHz, 11kHz, 12kHz, 및 13kHz의 총 8종류의 음파를 하루에 2시간씩(2시간/일) 5일 동안 처리하였다. 이때 소리의 크기(데시벨, dB)는 80dB로 고정하였다. Specifically, the first sonic treatment was performed on seeds, and 9 kHz sonic waves were treated for 5 days at 2 hours a day (2 hours/day), and then vernalization was performed at 10° C. for 2 days. Seeds that had been subjected to anabolic treatment were surface sterilized and placed on MS medium. Twenty seeds per petri dish were sown in a row and subjected to secondary sonication. The sound wave treatment was untreated, 6kHz, 7kHz, 8kHz, 9kHz, 10kHz, 11kHz, 12kHz, and 13kHz total 8 kinds of sound waves were treated for 2 hours a day (2 hours/day) for 5 days. At this time, the loudness (decibel, dB) was fixed at 80dB.
종자에 9kHz의 음파를 1차로 처리하고, 이후 파종한 종자에 상기 총 8종류의 음파를 각각 2차로 처리, 즉 복합음파 처리가 완료된 애기장대 유묘를 생장상에서 성장시키면서 생육 상태를 확인하였고, 사진 촬영하여 관찰하였다. 본 실험은 4회 반복 실험을 실시하였다. The seed was treated with 9 kHz sound waves first, and then the total of eight types of sound waves were treated secondly to the seed that was sown, that is, the growth status of Arabidopsis seedlings completed with complex sound wave treatment was grown on the growth bed, and the growth state was confirmed, taking a photo. And observed. This experiment was repeated four times.
실시예Example 3: 복합음파 처리에 의한 애기장대의 뿌리 생장 촉진 효과 검증 3: Verification of the effect of promoting root growth of Arabidopsis thaliana by complex sound wave treatment
작물의 생육 촉진을 위한 최적의 음역대를 선발하고자, 모델 식물인 애기장대의 종자와 유묘에 9kHz의 음파를 1차로 처리하고, 6kHz, 7kHz, 8kHz, 9kHz, 10kHz, 11kHz, 12kHz, 및 13kHz의 총 8종류의 음파를 각각 2차로 처리, 즉, 음역대가 각각 다른 단일 음파를 혼합한 복합음파를 처리하여 애기장대의 뿌리 생장 촉진 정도를 확인하였다. In order to select the optimal range for promoting the growth of crops, 9 kHz sound waves were first processed on the seeds and seedlings of Arabidopsis, a model plant, and a total of 6 kHz, 7 kHz, 8 kHz, 9 kHz, 10 kHz, 11 kHz, 12 kHz, and 13 kHz. Each of the eight types of sound waves was treated as a second order, that is, the degree of acceleration of root growth of Arabidopsis thaliana was confirmed by processing a compound sound wave in which single sound waves having different sound bands were mixed.
구체적으로, 음파 처리는 상기 실시예 2의 음파 처리 방법에 따라, 스피커가 설치된 무소음 생장상 내에서 수행하였고, 9kHz의 1차 음파 처리 및 상기 총 8종류의 음파를 1일 2시간씩 처리하고 처리 완료 후에는 음파 없이 생장상 내에서 생육시키는 과정으로 진행하였다. 이때, 상기 실험군은 모두 동일 생장상 내에서 음파 처리하고 키우는 과정으로 진행되었다. Specifically, the sound wave processing was performed in a noiseless growth bed in which a speaker was installed according to the sound wave processing method of Example 2, and the primary sound wave treatment of 9 kHz and the total eight types of sound waves were processed and processed for 2 hours a day. After completion, it proceeded to the process of growing in the growth bed without sound waves. At this time, all of the experimental groups were subjected to sound wave treatment and growing in the same growth bed.
상기 1차 및 2차 음파 처리, 즉, 복합음파 처리가 완료된 애기장대 유묘 뿌리를 5일과 7일 후에 신장(growth) 정도를 조사한 결과, 도 1 및 도 2에 나타낸 바와 같이, 음파 무처리군, 즉 대조군(control) 대비 9kHz, 10kHz 및 13kHz의 2차 음파가 처리된 실험군에서 뿌리 신장이 증가됨을 확인하였다. 구체적으로, 무처리군과 비교하여 5일 및 7일 후 뿌리의 신장이 9kHz 처리시 각각 13% 및 17%, 10kHz 처리시 각각 32% 및 27%, 13kHz 처리시 각각 27% 및 24% 가량 더 성장한 것을 확인하였다. As a result of examining the degree of growth after 5 and 7 days of the roots of Arabidopsis thaliana having completed the first and second sonic treatment, that is, complex sonic treatment, as shown in Figs. 1 and 2, the sonic non-treatment group, That is, it was confirmed that the root elongation was increased in the experimental group treated with the secondary sound waves of 9 kHz, 10 kHz and 13 kHz compared to the control group. Specifically, compared to the untreated group, the elongation of the roots after 5 and 7 days was 13% and 17% respectively at 9 kHz treatment, 32% and 27% at 10 kHz treatment, and 27% and 24% at 13 kHz treatment, respectively. It was confirmed that it had grown.
또한, 도 3에 나타낸 바와 같이, 9kHz, 10kHz 및 13kHz의 2차 음파가 처리된 실험군과 마찬가지로 11kHz 및 12kHz의 2차 음파가 처리된 실험군 역시 대조군(control) 대비 뿌리 신장이 증가됨을 확인하였다. 이에 반해, 6kHz, 7kHz, 및 8kHz의 2차 음파가 처리된 실험군의 경우에는, 대조군과 비교하여 뿌리 신장에 유의한 차이가 없는 것으로 확인되었다. In addition, as shown in Figure 3, as in the experimental group treated with the secondary sound waves of 9 kHz, 10 kHz and 13 kHz, the experimental group treated with the secondary sound waves of 11 kHz and 12 kHz was also confirmed that the root elongation was increased compared to the control (control). In contrast, in the case of the experimental group treated with the secondary sound waves of 6 kHz, 7 kHz, and 8 kHz, it was confirmed that there was no significant difference in root elongation compared to the control group.
상기 결과를 통해, 음파 무처리군 대비 복합음파 처리, 구체적으로 2차 음파로서 9kHz 이상의 음파를 처리한 애기장대의 뿌리가 길어진 현상이 관찰됨을 알 수 있었다. 이에, 음파 무처리군과 1차 및 2차에 걸쳐 복합음파를 처리한 뿌리에서의 차이점을 확인하고자, 뿌리 정단부(root tip)를 해부 현미경으로 관찰하였다. Through the above results, it was found that the roots of Arabidopsis thaliana, which processed sound waves of 9 kHz or more as secondary sound waves, were observed compared to the non-sound wave treatment group. Accordingly, in order to confirm the difference in the roots treated with the complex sound waves in the first and second phases from the untreated group, the root tip was observed with a dissecting microscope.
하기 도 4에 나타낸 바와 같이, 음파 무처리군의 경우 뿌리가 약간 성글게 자라 있음을 확인하였고, 뿌리 정단부도 복합음파를 처리한 뿌리보다 짧은 것으로 관찰되었다. 반면, 복합음파(1차 음파; 9kHz, 2차 음파; 13kHz)를 10일 처리한 애기장대 뿌리의 정단부(도 4에서 막대(bar)로 표시된 부분)는 음파 무처리군보다 길었으며, 전체적으로 뿌리털의 숫자도 많고, 촘촘하게 잘 자라 있음을 확인하였다. 즉, 복합음파 처리에 의해 애기장대 유묘 뿌리의 생육을 촉진함을 확인하였다.As shown in FIG. 4, in the case of the sonic non-treatment group, it was confirmed that the roots grew slightly sparse, and the root apex was also observed to be shorter than the roots treated with the complex sound wave. On the other hand, the apical end of the Arabidopsis root treated with the complex sound wave (first sound wave; 9 kHz, second sound wave; 13 kHz) for 10 days (the part marked with bar in Fig. 4) was longer than that of the untreated group, and overall root hair It was confirmed that the number of is also large, and that it grows well densely. In other words, it was confirmed that the growth of Arabidopsis seedling roots was promoted by the complex sonic treatment.
상기 결과를 통해, 복합음파 처리가 뿌리의 생육에 영향을 줌을 알 수 있었으며, 이는 작물이 생육 중에 배지에 포함된 영양분의 흡수를 용이하게 할 수 있으며, 최종적으로 작물의 생육 촉진을 유도할 수 있음을 알 수 있었다.Through the above results, it was found that the complex sonic treatment has an effect on the growth of the root, which can facilitate the absorption of nutrients contained in the medium during the growth of the crop, and ultimately induce the growth of the crop. I could see that there was.
이후, 상기 결과를 재검증하고자 애기장대의 종자량을 늘려 애기장대의 뿌리 생장 정도를 재확인하여 보았다. 이때, 음파는 상기와 동일하게 뿌리 길이가 길어진 음역대인 9kHz, 10kHz, 11kHz, 12kHz 및 13kHz 조건으로 처리하여 진행하였으며, 애기장대 뿌리 신장에 차이가 없었던 6kHz, 7kHz 및 8kHz의 음역대 조건은 제외하였다. 수 회에 걸쳐 반복 실험을 진행하면서 생장 촉진 효과가 미미한 상기 6kHz, 7kHz 및 8kHz 음역대는 제외하였으며, 생장 촉진에 우수한 최적의 음역대를 선발해 내는 과정을 반복하여 최종적으로 2차 음파 처리 조건으로서 9kHz, 10kHz 및 13kHz 조건을 확립하고, 상기 조건에 집중하여 재검증하였다. Thereafter, in order to re-verify the above results, the amount of seeds of Arabidopsis was increased and the degree of root growth of Arabidopsis was reconfirmed. At this time, the sound waves were processed under conditions of 9 kHz, 10 kHz, 11 kHz, 12 kHz, and 13 kHz, which are the sound bands of the longer root length, as described above, and the conditions of the 6 kHz, 7 kHz and 8 kHz sound bands where there was no difference in the height of Arabidopsis roots were excluded. The 6kHz, 7kHz, and 8kHz sound bands, which had insignificant growth promotion effects, were excluded by repeating the experiment several times, and the process of selecting the optimal sound range excellent for growth promotion was repeated, and finally, as a secondary sound wave processing condition, 9kHz, 10 kHz and 13 kHz conditions were established, and re-verified focusing on the above conditions.
상기 최적의 2차 음파 조건에 따른 복합음파의 처리가 완료된 애기장대 유묘의 뿌리를 발아시키고, 발아 10일 후 뿌리 생장 정도 및 생체중을 확인해 본 결과, 도 5에 나타낸 바와 같이, 음파 무처리군, 즉 대조군(control) 대비 9kHz, 10kHz 및 13kHz의 조건으로 복합음파가 처리된 각 실험군에서 뿌리의 신장 및 생체중이 각각 증가된 것을 확인하였다. 구체적으로, 무처리군과 비교하여 뿌리의 신장 및 생체중이 9kHz 처리시 각각 20% 및 15%, 10kHz 처리시 각각 22% 및 17%, 13kHz 처리시 28% 및 21% 증가함을 확인하였으며, 특히, 13kHz 처리시 뿌리 신장 및 생체중 증가가 가장 우수함을 알 수 있었다.As a result of germinating the roots of Arabidopsis seedlings that have been treated with complex sound waves according to the optimal secondary sound wave condition, and checking the root growth degree and
한편, 1차 및 2차에 걸친 복합음파 처리에 따른 애기장대의 뿌리 생장 촉진 효과인지, 단순히 음파 처리에 따른 뿌리 생장 촉진 효과인지를 재입증하고자, 상기 뿌리 신장 및 생체중 증가가 확인된 9kHz, 10kHz 및 13kHz의 조건으로 1차 음파 처리, 즉 단일음파를 처리하여 애기장대의 뿌리 생장 정도를 확인해 보았다.On the other hand, in order to re-verify whether the root growth promoting effect of Arabidopsis thaliana according to the first and second complex sound wave treatment, or simply the effect of promoting root growth according to the sound wave treatment, the root elongation and the increase in live weight were confirmed at 9 kHz, 10 kHz And the first sound wave treatment, that is, the single sound wave was processed under the condition of 13 kHz to check the degree of root growth of Arabidopsis thaliana.
그 결과, 도 6에 나타낸 바와 같이, 단일음파 처리시에도 무처리군과 비교하여 뿌리 신장이 증가 되기는 하나, 1차 및 2차에 걸쳐 복합음파를 처리한 실험군(도 5)의 경우에 뿌리 생장 촉진 효과가 더 우수함을 확인하였다.As a result, as shown in Fig. 6, root growth is increased compared to the untreated group even when single sound wave treatment is performed, but in the case of the experimental group (Fig. 5) treated with complex sound waves in the first and second steps It was confirmed that the promoting effect was more excellent.
즉, 단일음파 처리에 비해서도 1차 및 2차에 걸친 복합음파를 처리하였을 시, 애기장대 유묘의 뿌리 생장이 더 우수하게 촉진됨을 알 수 있었다. That is, compared to the single sound wave treatment, it was found that when the complex sound waves were processed over the first and second orders, the root growth of Arabidopsis seedlings was more excellently promoted.
실시예Example 4: 토양에서의 애기장대 생육 상태 분석 4: Analysis of growth status of Arabidopsis thaliana in soil
상기 실시예 3에서 복합음파 처리가 완료된 애기장대 유묘는 발아 후 초기에 무처리군 대비 뿌리의 길이와 생체중이 증가됨을 확인하였다. 이에, 뿌리 생육이 양호했던 현상이 애기장대 생육 촉진 결과를 유도하는지의 연관성을 분석하고자, 음파처리 완료 후 생장상에서 발아 10일 후까지 키운 애기장대 유묘를 토양이 있는 폿트(pot)에 이식하고 32일 후까지 키우면서 지상부의 생육 상태를 확인하였다. 본 실험은 4회 반복 실험을 수행하였다. In Example 3 above, it was confirmed that the root length and fresh weight of the Arabidopsis seedlings completed with the complex sonication treatment were increased compared to the untreated group at the initial stage after germination. Therefore, to analyze the relationship between whether the phenomenon that the root growth was good induces the results of promoting Arabidopsis growth, Arabidopsis seedlings grown up to 10 days after germination on the growth bed after completion of sonic treatment were transplanted into a pot with soil. While growing until after 1 day, the growth state of the above-ground part was confirmed. This experiment was repeated four times.
실시예Example 5: 음파 처리한 애기장대 5: sonicated Arabidopsis thaliana 유묘의Seedling 토양에서의 생장 촉진 효과 검증 Verification of the effect of promoting growth in soil
상기 실시예 2 및 실시예 3을 토대로 하여, MS배지에서 복합음파 처리 결과 뿌리의 생육이 증진되었던 애기장대를 토양이 있는 폿트에 이식하고 온실에서 키우면서 21일, 25일, 및 32일 후의 생육 상태를 확인하였다. Based on the above Examples 2 and 3, the growth state after 21, 25, and 32 days while transplanting Arabidopsis thaliana, whose root growth was improved as a result of complex sonic treatment in MS medium, into a pot with soil and growing in a greenhouse. Was confirmed.
그 결과, 21일 후에 대조군(control; 음파 무처리군)에 비해 복합음파를 처리한 애기장대의 잎의 넓이가 훨씬 넓고, 전체 신장도 길며, 꽃대도 일부 형성된 것을 확인하였다(도 7). 또한, 25일 후에도 21일 후와 동일한 패턴이 유지되고 있음을 확인하였으며, 그 중 2차 음파 조건으로서 10kHz를 처리한 애기장대는 대조군과, 9kHz 및 13kHz 음역대 조건의 실험군에 비해 꽃대 형성이 빠르게 진행되고 있음을 확인하였다. 한편, 2차 음파 조건으로서 13kHz의 음파가 처리된 애기장대는 잎이 매우 풍성하고 상대적으로 크기도 큼을 확인하였다(도 8). 32일 후에는 2차 음파 조건으로서 10kHz 및 13kHz를 각각 처리한 실험군에서 애기장대 식물의 키가 가장 컸고, 잎도 매우 풍성하고 꽃대 형성 상태도 양호함을 확인하였다. 반면, 9kHz를 처리한 실험군은 무처리군과의 차이가 미미하였다(도 9). As a result, it was confirmed that after 21 days, the width of the leaves of Arabidopsis thaliana treated with the composite sound wave was much wider, the overall height was long, and part of the flower stalk was formed compared to the control group (control; non-sound treatment group) (FIG. 7). In addition, it was confirmed that the same pattern as after 21 days was maintained even after 25 days, among which Arabidopsis was treated with 10 kHz as the secondary sound wave condition, and flower stalk formation proceeded faster than the control group and the experimental group in the 9 kHz and 13 kHz sound band conditions. It was confirmed that it is becoming. On the other hand, it was confirmed that the leaves of Arabidopsis thaliana treated with a sound wave of 13 kHz as a secondary sound wave condition were very rich and relatively large in size (FIG. 8). After 32 days, it was confirmed that the height of the Arabidopsis plant was the largest in the experimental group treated with 10 kHz and 13 kHz as the secondary sound wave conditions, and the leaves were very rich and the flower stalk formation was also good. On the other hand, the experimental group treated with 9 kHz had insignificant difference from the untreated group (FIG. 9).
음파 처리한 애기장대의 생육 상태는 처리한 복합음파의 음역별로 차이를 보였고, 토양으로 이식한 지 25일 후까지는 2차 음파 조건으로서 10kHz가 가장 우수한 경향을 보였으나, 32일 후에는 오히려 13kHz의 2차 음파를 처리한 실험군의 신장이 더 큰 것을 확인하였다. The growth state of Arabidopsis thaliana after sonication was different according to the sound range of the treated complex sound waves, and 10 kHz as the secondary sound wave condition showed the best tendency until 25 days after transplanting into soil, but rather 13 kHz after 32 days. It was confirmed that the height of the experimental group treated with the secondary sound wave was larger.
상기 결과를 종합해 보면, 애기장대 종자에 1차 단일음파 조건으로서 9kHz를 처리한 다음 파종 후에는 10kHz 및 13kHz의 2차 단일음파를 처리했을 때, 지상부의 생육 상태가 양호하고, 꽃대 형성 시기도 빨라지는 등의 생육 촉진 현상이 가장 뚜렷하게 나타남을 알 수 있었다.In summary, when the Arabidopsis seeds were treated with 9 kHz as the first single sound wave condition and then treated with the second single sound waves of 10 kHz and 13 kHz after sowing, the growth state of the above-ground part was good, and the time of formation of the flower stalk was also It was found that the growth promotion phenomena such as rapid growth were most pronounced.
한편, 상기 일련의 결과들을 통하여 특정 음역대의 음파를 이용하여 작물의 생리 및 생육 대사와 관련 있는 유전자 발현의 인위적 조절이 가능함을 유추할 수 있고, 상기 선발된 본 발명에 따른 최적의 특정 음역대의 음파 처리를 통해 관련 유전자의 발현 조절을 유도하고 그로 인한 작물의 생육 조절을 통하여 최종적으로 작물의 생육 촉진을 유도할 수 있음을 알 수 있다.On the other hand, through the series of results, it can be inferred that it is possible to artificially control gene expression related to physiology and growth metabolism of crops by using sound waves in a specific sound range, and the selected sound waves in a specific sound range according to the present invention. It can be seen that the treatment can induce the regulation of the expression of related genes, and finally promote the growth of the crop through the control of the growth of the crop.
Claims (5)
b) 상기 a) 단계의 단일음파가 1차 처리된 식물체의 종자를 춘화처리하는 단계; 및
c) 상기 b) 단계의 춘화처리가 완료된 식물체의 종자에 주파수 9 내지 13kHz의 음역대 중에서 선택된 단일음파를 2차 처리하는 단계를 포함하며,
상기 단일음파를 24시간당 1 내지 3시간 동안 50 내지 100 데시벨(dB) 음량으로 식물체에 처리하는, 복합음파를 이용한 작물의 생장 촉진 방법.
a) first processing a single sound wave selected from a frequency range of 6 to 9 kHz to the seeds of the plant;
b) a step of annealing the seeds of the plant that has been subjected to the primary treatment of the single sound waves of step a); And
c) secondary treatment of a single sound wave selected from a frequency range of 9 to 13 kHz on the seeds of the plant, which has been subjected to the pornography process in step b),
A method for promoting the growth of crops using complex sound waves, wherein the single sound waves are treated on the plants at a volume of 50 to 100 decibels (dB) for 1 to 3 hours per 24 hours.
The method of claim 1, wherein the plant is treated with a single sound wave for 1 to 6 days.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180103188A KR102226201B1 (en) | 2018-08-31 | 2018-08-31 | Method for enhancing growth of crops by sound wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180103188A KR102226201B1 (en) | 2018-08-31 | 2018-08-31 | Method for enhancing growth of crops by sound wave |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20200025589A KR20200025589A (en) | 2020-03-10 |
KR102226201B1 true KR102226201B1 (en) | 2021-03-10 |
Family
ID=69800500
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180103188A KR102226201B1 (en) | 2018-08-31 | 2018-08-31 | Method for enhancing growth of crops by sound wave |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102226201B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102446572B1 (en) * | 2020-03-11 | 2022-09-23 | (주)투비시스템 | An IoT Based System for Monitering a Smart Farm |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100325311B1 (en) | 1998-12-10 | 2004-12-23 | 대한민국(관리청:특허청장. 승계청:농촌진흥청장) | Crop growth promotion and agricultural pest suppression technology using sound waves |
KR101290589B1 (en) | 2011-11-04 | 2013-07-30 | 그린테코 주식회사 | Method and Apparatus for growing plants using sound waves loaded onto ultrasonic waves |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100971702B1 (en) * | 2008-02-20 | 2010-07-22 | 대한민국(농촌진흥청장) | Method for growing plants using sonic and ultrasonic waves and Apparatus thereof |
KR101250491B1 (en) * | 2009-09-09 | 2013-04-03 | 그린테코 주식회사 | Method for growing plants |
-
2018
- 2018-08-31 KR KR1020180103188A patent/KR102226201B1/en active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100325311B1 (en) | 1998-12-10 | 2004-12-23 | 대한민국(관리청:특허청장. 승계청:농촌진흥청장) | Crop growth promotion and agricultural pest suppression technology using sound waves |
KR101290589B1 (en) | 2011-11-04 | 2013-07-30 | 그린테코 주식회사 | Method and Apparatus for growing plants using sound waves loaded onto ultrasonic waves |
Also Published As
Publication number | Publication date |
---|---|
KR20200025589A (en) | 2020-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Thakur et al. | A review on advances in pruning to vegetable crops | |
CN104186190B (en) | Fruit tree hybrid seed sprouting and rooting method | |
CN108370737B (en) | Scion regeneration cultivation method suitable for grafting solanaceous vegetables | |
CN108967018A (en) | A kind of fast breeding method of citrus fruit seedling | |
Kumar et al. | Grafting in Brinjal (Solanum melongena L.) for growth, yield and quality attributes | |
CN112400397B (en) | Rhizome-based polygonatum cyrtonema seedling culture method | |
Gotur et al. | Performance of wedge grafting in guava (Psidium guajava L.) under different growing conditions | |
CN102405775A (en) | Bitter gourd seedling lateral bud grafting method | |
Syamal et al. | Effect of methods and time of propagation in bael under different growing conditions | |
CN105165525A (en) | Planting method for juicy peaches | |
Seran et al. | Root and shoot growth of dragon fruit (Hylocereus undatus) stem cutting as influenced by indole butyric acid | |
KR102226201B1 (en) | Method for enhancing growth of crops by sound wave | |
CN105766361A (en) | Method for interplanting asparagus and peppers in greenhouse | |
Kumar et al. | Progress in pruning to vegetable crops: A review | |
Mayavel et al. | Optimization of grafting season on cleft grafting for deploying commercial propagation of tamarind (Tamarindus indica) in Tamil Nadu | |
Pawar et al. | Advances in Propagation Techniques of Pomegranate | |
Oteng-Darko et al. | Growing seed yams in the air: The agronomic performance of two aeroponics systems developed in Ghana | |
Agyeman et al. | Evaluation of tomato (Solanum lycopersicum'Pectomech') grafts against root-knot nematode Meloidogyne incognita | |
RU2810554C1 (en) | Method of accelerated propagation of potato tubers ex vivo | |
Tripathi et al. | standardization of propagation methods in minor wild fruit crops | |
Mirzaeva et al. | Getting Sprouts from Mulberry Trees in invitro conditions | |
HS et al. | Studies on seed viability and its effects on germination, growth and graft-take in medicinal fruit plant of Jamun | |
Suitor et al. | The impact of flower density and irrigation on capsule and seed set in Eucalyptus globulus seed orchards | |
Luna Tonina et al. | Enhancing Germination and Graftability of Magnolia Jackfruit (Artocarpus heterophyllus L.) | |
Sharma et al. | OPTIMIZATION OF DIFFERENT PROPAGATING TECHNIQUE AND TIME PERIOD TO ENHANCE HIGHER SUCCESS RATE IN PROPAGATION OF LOW CHILL PEACH CV. SHAN-E-PUNJAB |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |