KR102145746B1 - Rf 집적형 전력 조절 커패시터 - Google Patents
Rf 집적형 전력 조절 커패시터 Download PDFInfo
- Publication number
- KR102145746B1 KR102145746B1 KR1020197026546A KR20197026546A KR102145746B1 KR 102145746 B1 KR102145746 B1 KR 102145746B1 KR 1020197026546 A KR1020197026546 A KR 1020197026546A KR 20197026546 A KR20197026546 A KR 20197026546A KR 102145746 B1 KR102145746 B1 KR 102145746B1
- Authority
- KR
- South Korea
- Prior art keywords
- photosensitive glass
- dielectric layer
- glass substrate
- capacitor
- layer
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 52
- 230000003750 conditioning effect Effects 0.000 title abstract description 4
- 238000000034 method Methods 0.000 claims abstract description 58
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 239000006089 photosensitive glass Substances 0.000 claims description 79
- 239000000758 substrate Substances 0.000 claims description 63
- 229910052751 metal Inorganic materials 0.000 claims description 53
- 239000002184 metal Substances 0.000 claims description 53
- 239000011521 glass Substances 0.000 claims description 39
- 239000011248 coating agent Substances 0.000 claims description 20
- 238000000576 coating method Methods 0.000 claims description 20
- 238000005530 etching Methods 0.000 claims description 17
- 238000000151 deposition Methods 0.000 claims description 16
- 239000000919 ceramic Substances 0.000 claims description 14
- 239000002241 glass-ceramic Substances 0.000 claims description 13
- 239000010409 thin film Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000009713 electroplating Methods 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 8
- 230000009477 glass transition Effects 0.000 claims description 6
- 238000005498 polishing Methods 0.000 claims description 6
- 238000010345 tape casting Methods 0.000 claims description 6
- 230000033228 biological regulation Effects 0.000 claims description 5
- 239000002178 crystalline material Substances 0.000 claims description 5
- 230000003213 activating effect Effects 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 230000000873 masking effect Effects 0.000 claims description 4
- 239000010949 copper Substances 0.000 description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 17
- 229910052802 copper Inorganic materials 0.000 description 17
- 230000008569 process Effects 0.000 description 17
- 239000000463 material Substances 0.000 description 14
- 239000000203 mixture Substances 0.000 description 12
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 11
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 239000003989 dielectric material Substances 0.000 description 7
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 238000000231 atomic layer deposition Methods 0.000 description 6
- 239000010931 gold Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical group [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910000420 cerium oxide Inorganic materials 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 2
- -1 Silver ions Chemical class 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000006112 glass ceramic composition Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000006090 Foturan Substances 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000011222 crystalline ceramic Substances 0.000 description 1
- 229910002106 crystalline ceramic Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000003504 photosensitizing agent Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/75—Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0017—Etching of the substrate by chemical or physical means
- H05K3/0023—Etching of the substrate by chemical or physical means by exposure and development of a photosensitive insulating layer
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
- G03F7/2045—Exposure; Apparatus therefor using originals with apertures, e.g. stencil exposure masks
- G03F7/2047—Exposure with radiation other than visible light or UV light, e.g. shadow printing, proximity printing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/012—Form of non-self-supporting electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/129—Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
- H01G4/2325—Terminals electrically connecting two or more layers of a stacked or rolled capacitor characterised by the material of the terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/33—Thin- or thick-film capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/35—Feed-through capacitors or anti-noise capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/033—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
- H01L21/0334—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
- H01L21/0337—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
- H01L21/288—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
- H01L21/2885—Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/30604—Chemical etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/82—Electrodes with an enlarged surface, e.g. formed by texturisation
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0094—Filling or covering plated through-holes or blind plated vias, e.g. for masking or for mechanical reinforcement
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/04—Compositions for glass with special properties for photosensitive glass
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0137—Materials
- H05K2201/017—Glass ceramic coating, e.g. formed on inorganic substrate
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/02—Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/107—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by filling grooves in the support with conductive material
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Ceramic Capacitors (AREA)
- Semiconductor Integrated Circuits (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
본 발명은 1 nf 이상 및 1 ㎟ 미만의 정전용량을 갖는 집적형 RF 전력 조절 커패시터를 제조하는 방법 및 상기 방법에 의해 제조된 장치를 포함한다.
Description
본 발명은 집적형 RF 전력 조절(power condition) 커패시터를 제조하는 것에 관한 것이다.
본 발명의 범위를 한정하지 않으면서, 전력 조절 커패시터와 관련한 배경기술에 대해 기술한다.
RF 장치는 점점 더 높은 전력을 사용하고 있다. 이러한 부류의 RF 장치는 10 V 초과의 전압 및 2 암페어 초과의 전류에서 펄스를 생성한다. 이러한 수준의 전류와 전압으로 신호를 스위치 온 및 오프(on/off)시키면 상당량의 고조파 신호를 생성하게 된다. 이러한 고조파 신호는 회로의 작동을 방해할 수 있다. 대용량 집적형 규소계 커패시터는 필요 정전용량을 달성하지 못하고 유전 파괴(dielectric breakdown) 현상을 겪게 된다.
본 발명자들은 자외선 노출과 열처리의 조합을 통해 유리상으로부터 세라믹상으로 전환될 수 있는 집적형 감광성 유리-세라믹을 개발하였다. 포토마스크 또는 섀도 마스크를 이용한 자외선 노출의 선택적 적용은 감광성 유리에 세라믹 물질의 영역을 생성시킨다. 본 발명은 표면적이 큰 구조의 유전 물질을 갖는 감광성 유리 기판을 제조하는 단계 및 하나 이상의 금속으로 코팅하는 단계에 의해 하나 이상의 2차원 또는 3차원 정전용량 장치를 구비한 기판을 제조하는 방법을 포함한다.
본 발명의 한 실시양태에서, 감광성 유리 상에 전력 조절을 위한 소형 폼팩터(form factor)로 집적된 대용량 커패시터를 제조하는 방법은 하기의 단계를 포함한다: 감광성 유리 내에 하나 이상의 비아 개구(via opening)를 형성하도록 가공처리된 감광성 유리 상에 전도성 씨드층을 증착시키는 단계; 상기 감광성 유리 기판과 금속화된 씨드층 전기도금용 금속을 함께 배치하여 감광성 유리 기판의 하나 이상의 개구를 충전시켜 비아를 형성하는 단계; 상기 감광성 유리 기판의 전면 및 후면을 화학적-기계적으로 연마하여 충전된 비아만을 남기는 단계; 2개의 인접한 충전된 비아 주위에 감광성 유리 기판의 적어도 하나의 직사각형 부분을 노출시켜 변환시키는 단계; 적어도 하나의 인접한 충전된 비아쌍을 노출하고 있는 직사각형 부분을 에칭하여 금속 포스트(metal post)를 형성시키는 단계; 제1 전극을 형성하는 금속 포스트에 비산화성 층을 플래시 코팅하는 단계; 상기 포스트들 상에 또는 그 주위에 유전층을 증착시키는 단계; 상기 유전층을 금속 코팅하여 제2 전극을 형성하는 단계; 제1 금속층을 모든 제1 전극들에 병렬로 연결하여 커패시터용 단일 전극을 형성하는 단계; 및 제2 금속층을 모든 제2 전극들에 병렬로 연결하여 커패시터용 제2 전극을 형성하는 단계. 한 양태에서, 상기 유전층은 0.5 nm 내지 1,000 nm 두께의 박막이다. 다른 양태에서, 상기 유전층은 0.05 ㎛ 내지 100 ㎛ 두께의 소결 페이스트이다. 다른 양태에서, 상기 유전층의 전기 유전율은 10 내지 10,000이다. 다른 양태에서, 상기 유전층의 전기 유전율은 2 내지 100이다. 다른 양태에서, 상기 유전층은 ALD에 의해 증착된다. 다른 양태에서, 상기 유전층은 닥터 블레이딩(doctor blading)에 의해 증착된다. 다른 양태에서, 상기 커패시터의 정전용량 밀도는 1,000 pf/㎟ 초과이다.
본 발명의 다른 실시양태에서, 감광성 유리 상에 전력 조절을 위한 소형 폼팩터로 집적된 대용량 커패시터를 제조하는 방법은 하기의 단계를 포함한다: 감광성 유리 기판 상에 원형 패턴을 마스킹하는 단계; 상기 감광성 유리 기판의 적어도 일부분을 활성화 UV 에너지원에 노출시키는 단계; 상기 감광성 유리 기판을 그의 유리 전이 온도 이상으로 적어도 10분의 가열 단계로 가열하는 단계; 상기 감광성 유리 기판을 냉각시켜 상기 노출된 유리의 적어도 일부를 결정성 물질로 변환하여 유리-세라믹 결정질 기판을 형성하는 단계; 에칭액으로 상기 감광성 유리 기판의 세라믹상을 부분적으로 에칭하여 제거하는 단계; 상기 감광성 유리 상에 전도성 씨드층을 증착시키는 단계; 상기 감광성 유리 기판과 금속화된 씨드층 전기도금용 금속을 함께 배치하여 감광성 유리 기판의 하나 이상의 개구를 충전시켜 비아를 형성하는 단계; 상기 감광성 유리 기판의 전면 및 후면을 화학적-기계적으로 연마하여 충전된 비아만을 남기는 단계; 2개의 인접한 충전된 비아 주위에 감광성 유리 기판의 적어도 하나의 직사각형 부분을 노출시켜 변환시키는 단계; 적어도 하나의 인접한 충전된 비아쌍을 노출하고 있는 직사각형 부분을 에칭하여 금속 포스트를 형성시키는 단계; 제1 전극을 형성하는 금속 포스트에 비산화성 층을 플래시 코팅하는 단계; 상기 포스트들 상에 또는 그 주위에 유전층을 증착시키는 단계; 상기 유전층을 금속 코팅하여 제2 전극을 형성하는 단계; 제1 금속층을 모든 제1 전극들에 병렬로 연결하여 커패시터용 단일 전극을 형성하는 단계; 및 제2 금속층을 모든 제2 전극들에 병렬로 연결하여 커패시터용 제2 전극을 형성하는 단계. 한 양태에서, 상기 유전층은 0.5 nm 내지 1,000 nm 두께의 박막이다. 다른 양태에서, 상기 유전층은 0.05 ㎛ 내지 100 ㎛ 두께의 소결 페이스트이다. 다른 양태에서, 상기 유전층의 전기 유전율은 10 내지 10,000이다. 다른 양태에서, 상기 유전층의 전기 유전율은 2 내지 100이다. 다른 양태에서, 상기 유전층은 ALD에 의해 증착된다. 다른 양태에서, 상기 유전층은 닥터 블레이딩에 의해 증착된다. 다른 양태에서, 상기 커패시터의 정전용량 밀도는 1,000 pf/㎟ 초과이다.
본 발명의 또 다른 실시양태는, 하기의 단계를 포함하는 방법으로 제조된 집적형 커패시터를 포함한다: 감광성 유리 기판 상에 원형 패턴을 마스킹하는 단계; 상기 감광성 유리 기판의 적어도 일부분을 활성화 UV 에너지원에 노출시키는 단계; 상기 감광성 유리 기판을 그의 유리 전이 온도 이상으로 적어도 10분의 가열 단계로 가열하는 단계; 상기 감광성 유리 기판을 냉각시켜 상기 노출된 유리의 적어도 일부를 결정성 물질로 변환하여 유리-세라믹 결정질 기판을 형성하는 단계; 에칭액으로 상기 감광성 유리 기판의 세라믹상을 부분적으로 에칭하여 제거하는 단계; 상기 감광성 유리 상에 전도성 씨드층을 증착시키는 단계; 상기 감광성 유리 기판과 금속화된 씨드층 전기도금용 금속을 함께 배치하여 감광성 유리 기판의 하나 이상의 개구를 충전시켜 비아를 형성하는 단계; 상기 감광성 유리 기판의 전면 및 후면을 화학적-기계적으로 연마하여 충전된 비아만을 남기는 단계; 2개의 인접한 충전된 비아 주위에 감광성 유리 기판의 적어도 하나의 직사각형 부분을 노출시켜 변환시키는 단계; 적어도 하나의 인접한 충전된 비아쌍을 노출하고 있는 직사각형 부분을 에칭하여 금속 포스트를 형성시키는 단계; 제1 전극을 형성하는 금속 포스트에 비산화성 층을 플래시 코팅하는 단계; 상기 포스트들 상에 또는 그 주위에 유전층을 증착시키는 단계; 상기 유전층을 금속 코팅하여 제2 전극을 형성하는 단계; 제1 금속층을 모든 제1 전극들에 병렬로 연결하여 커패시터용 단일 전극을 형성하는 단계; 및 제2 금속층을 모든 제2 전극들에 병렬로 연결하여 커패시터용 제2 전극을 형성하는 단계. 한 양태에서, 상기 유전층은 0.5 nm 내지 1,000 nm 두께의 박막이다. 다른 양태에서, 상기 유전층은 0.05 ㎛ 내지 100 ㎛ 두께의 소결 페이스트이다. 다른 양태에서, 상기 유전 물질의 전기 유전율은 10 내지 10,000이다. 다른 양태에서, 상기 유전 박막의 전기 유전율은 2 내지 100이다. 다른 양태에서, 상기 유전 박막 물질은 ALD에 의해 증착된다. 다른 양태에서, 상기 유전 박막 물질은 닥터 블레이딩에 의해 증착된다. 다른 양태에서, 상기 커패시터의 정전용량 밀도는 1,000 pf/㎟ 초과이다.
본 발명의 특징과 장점들을 보다 완전하게 이해하기 위해, 첨부하는 도면들과 함께 본 발명의 상세한 설명을 참조한다:
도 1은 씨드층으로 구리 전기도금된, 충전된 스루 홀(through hole) 비아의 이미지를 나타낸 것이다.
도 2A는 유전 물질이 HfO2인, RF 전력 조절 커패시터의 단면과 주재료들을 나타낸 것이다.
도 2B는 RF 전력 조절 커패시터의 상면도(top view)를 나타낸 것이다.
도 3은 BaTiO3 기반의 집적형 전력 조절 커패시터를 나타낸 것이다.
도 4는 직경이 65 ㎛이고, 중심간 피치(center-to-center pitch)가 72 ㎛인 스루 홀 비아를 나타낸 것이다.
도 1은 씨드층으로 구리 전기도금된, 충전된 스루 홀(through hole) 비아의 이미지를 나타낸 것이다.
도 2A는 유전 물질이 HfO2인, RF 전력 조절 커패시터의 단면과 주재료들을 나타낸 것이다.
도 2B는 RF 전력 조절 커패시터의 상면도(top view)를 나타낸 것이다.
도 3은 BaTiO3 기반의 집적형 전력 조절 커패시터를 나타낸 것이다.
도 4는 직경이 65 ㎛이고, 중심간 피치(center-to-center pitch)가 72 ㎛인 스루 홀 비아를 나타낸 것이다.
본 발명의 다양한 실시양태들을 만들어 사용하는 것에 대해 아래에 상세히 설명하지만, 본 발명이 광범위하게 다양한 구체적인 상황들에 구현될 수 있는 여러가지로 응용가능한 독창적인 개념을 제공하고 있다는 점을 이해해야 할 것이다. 본원에 거론된 구체적인 실시양태들은 본 발명을 만들어 사용하는 구체적인 방법들을 예시하는 것일 뿐이지 본 발명의 범위를 한정하는 것은 아니다.
본 발명을 쉽게 이해하기 위해, 다수의 용어들을 하기에 정의한다. 본원에 정의되는 용어들은 본 발명과 관련된 분야의 통상의 숙련가들이 통상적으로 이해하는 의미를 지닌다. 단수형 용어("a", "an" 및 "the"를 사용하는 용어)는 단수의 실체만을 지칭하는 것은 아니고, 예시를 위해 구체예를 사용할 수 있는 일반적인 부류도 포함한다. 본원에서의 용어는 본 발명의 구체적인 실시양태들을 설명하는데 사용되지만, 청구범위에 기재된 것을 제외하고 이들의 사용이 본 발명을 한정하지는 않는다.
감광성 유리 재료는 간단한 3단계 공정으로 1세대 반도체 장비를 사용하여 가공처리되며, 여기서 최종 재료는 유리, 세라믹으로 형성되거나, 또는 유리와 세라믹 양자 모두의 영역을 포함하여 형성될 수 있다. 감광성 유리는 광범위한 마이크로시스템 구성요소들, 칩상의 시스템 및 패키지의 시스템을 제조하는데 있어서 여러가지 장점을 지닌다. 마이크로구조물 및 전자 부품들은 종래의 반도체 및 인쇄 회로 기판 (PCB) 가공처리 장비를 사용하여 이러한 유형의 유리로 비교적 저렴하게 제조되어 왔다. 일반적으로, 유리는 고온 안정성, 양호한 기계적 특성과 전기적 특성 및 플라스틱과 여러 종류의 금속보다 우수한 내화학성을 가진다.
산화세륨의 흡수대역 내의 UV광에 노출시, 상기 산화세륨은 광자를 흡수하고 전자를 잃어버림으로써 감광제로 작용한다. 상기 반응은, 이웃하는 산화은을 환원시켜 은 원자를 형성하는데, 예를 들면 다음과 같다:
은 이온들은 열처리 공정 동안 은 나노클러스터로 합쳐져, 주변 유리의 결정성 세라믹상의 형성을 위한 핵형성 자리를 유도한다. 상기 열처리는 유리 전이 온도 부근의 온도에서 수행해야 한다. 세라믹 결정상은 노출되지 않은 유리질의 비정질성 영역에 비해 불화수소산(HF)과 같은 에칭제에 더 가용성이다. 특히, FOTURAN®의 결정성 [세라믹] 영역은 10%의 HF에서 비정질 영역보다 약 20배 더 빠르게 에칭되어, 노출된 영역 제거시 약 20:1의 벽 경사비(wall slope ratio)를 갖는 마이크로구조물을 형성할 수 있다. 문헌 [T. R. Dietrich et al., "Fabrication technologies for microsystems utilizing photoetchable glass," Microelectronic Engineering 30, 497 (1996)]을 참조하며, 본 문헌은 본원에 참조로 포함된다. 다른 감광성 유리 조성물들은 서로 다른 속도로 에칭될 것이다.
실리카, 산화리튬, 산화알루미늄 및 산화세륨으로 이루어진 감광성 유리 기판을 이용하여 금속 장치를 제조하는 한 방법은, 감광성 유리 기판 내에 적어도 하나의 2차원 또는 3차원 세라믹상 영역을 갖는 패턴을 생성하기 위한 마스크 및 UV 광의 사용을 수반한다.
바람직하게는, 상기 성형된 유리 구조는 적어도 하나 이상의 2차원 또는 3차원 유도 장치를 포함한다. 정전용량 장치는 전력 조절을 위한 고표면적 커패시터를 형성하기 위해 다수의 연결 구조를 만듦으로써 제조된다. 상기 구조는 직사각형, 원형, 타원형, 프랙털형(fractal)이거나, 또는 정전용량을 발생시키는 패턴을 생성하는 기타 형태일 수 있다. APEX™ 유리의 패턴화된 영역들은 도금 또는 기상 증착을 비롯한 다양한 방법들에 의해, 금속, 합금, 복합재, 유리 또는 기타 자성 매체로 충전될 수 있다. 해당 매체의 전기 유전율은 치수, 고표면적 및 장치 내의 구조들의 수와 결부되어서 해당 장치들의 유도용량을 제공한다. 가동의 빈도수에 따라, 유도 장치의 설계는 상이한 자기 유전율의 재료를 필요로 할 것이고, 이에 따라 더 높은 가동 빈도수에서는 구리와 같은 재료 또는 기타 유사한 재료가 유도 장치를 위한 선택 매체이다. 일단 정전용량 장치가 제조되면, 지지하고 있는 APEX™ 유리는 그 자리에 잔류시키거나 또는 제거하여 직렬 또는 병렬로 부착될 수 있는 정전용량 구조의 어레이를 만들 수 있다.
상기 공정은 1 nf/㎟ 이상의 값인 집적형 전력 조절 정전용량 밀도에 대한 소정의 기술적 요건을 초과하게 될 큰 표면적의 커패시터를 제조하는데 사용될 수 있다. 사용된 상대 유전율과 해당 유전 물질에 바람직한 증착 기법을 바탕으로 서로 다른 장치 구조물들이 존재한다. 본 발명은 각 유전 물질에 대한 장치 구조물을 제조하는 방법을 제공한다.
일반적으로, 유리 세라믹 재료는 성능, 균일성, 이용가능성 및 입수 용이성 문제로 골머리를 앓고 있는 마이크로구조물 제조과정에서의 성공은 제한적이었다. 과거의 유리-세라믹 재료는 약 15:1의 에칭 종횡비를 수득했던 반면, APEX® 글래스는 50:1 초과의 평균 에칭 종횡비를 가진다. 이로써 사용자는 보다 작고 깊은 배선(feature)을 생성할 수 있다. 또한, 본 발명의 제조 공정은 90% 초과의 생성물 수율을 달성할 수 있다 (기존 유리의 수율은 50%에 근접함). 마지막으로, 기존 유리 세라믹에서, 상기 유리의 약 30%만이 세라믹상으로 변환되는 반면, APEX® 글래스 세라믹을 사용하면 상기 변환율은 70%에 근접한다.
APEX® 조성물은 그 향상된 성능을 위한 세가지 주요 메커니즘을 제공한다: (1) 은의 양이 많을수록, 입계에서 보다 신속하게 에칭되는 작은 세라믹 결정의 형성을 유도하고, (2) 실리카 (HF 산으로 에칭되는 주성분) 함량의 감소는 노출되지 않은 재료의 원치않는 에칭을 감소시키고, (3) 알칼리 금속 및 산화붕소의 총 중량%가 높아질수록, 제조 공정 동안 훨씬 더 균질한 유리를 생성한다.
상기 유리의 세라믹화는 전체 유리 기판을 약 20 J/㎠의 310 nm 광에 노출시킴으로써 달성된다. 상기 세라믹 내에 유리 공간(glass space)을 만들고자 하는 경우, 사용자는 상기 유리가 유리로 잔류할 곳을 제외하고는 상기 모든 재료를 노출시킨다. 한 실시양태에서, 본 발명은 서로 다른 직경의 다양한 동심원들을 포함하는 석영/크롬 마스크를 제공한다.
본 발명자들에 의해 입증된 이보다 앞선 고표면적의 커패시터는 CVD 공정을 이용하는 박막 금속화 비아를 사용한다. 다음으로, 상기 금속화된 비아를 ALD 공정을 사용하여 20 nm의 Al2O3 층과 같은 유전 물질의 박막으로 코팅한 후, 상부 금속배선기법(top metallization)을 적용하여 비아(들)의 유효 표면적과 유전체의 초박막 코팅 덕택으로 정전용량을 대용량으로 만들었다.
본 발명은, 전기 마이크로파 및 고주파를 적용하여, 유리 세라믹 구조물 내에 또는 유리 세라믹 구조물 상에 유도 장치를 제작하는 방법을 포함한다. 상기 유리 세라믹 기판은, 아래의 것들을 포함하지만 여기에 제한되지는 않는, 광범위한 가짓수의 조성 변화를 갖는 감광성 유리 기판일 수 있다: 60-76 중량%의 실리카; 적어도 3 중량%의 K2O 및, 6-16 중량%의 K2O와 Na2O의 조합물; 0.003-1 중량%의, Ag2O 및 Au2O로 이루어진 군으로부터 선택된 적어도 하나의 산화물; 0.003-2 중량%의 Cu2O; 0.75-7 중량%의 B2O3 및 6-7 중량%의 Al2O3; 13 중량%를 초과하지 않는 B2O3와 Al2O3의 조합물; 8-15 중량%의 Li2O; 및 0.001-0.1 중량%의 CeO2. 상기 조성물 및 기타 변형된 이의 조성물들을 일반적으로 APEX® 유리로 지칭한다.
상기 유리 중 노출된 부분은, 유리 기판을 유리 전이 온도 부근의 온도로 가열함으로써 결정성 재료로 변형시킬 수 있다. 불화수소산과 같은 에칭제 중에서 유리 기판을 에칭할 때, 노출된 부분 대 노출되지 않은 부분의 비등방성 에칭비는, 유리를 넓은 스펙트럼의 중자외선(약 308-312 nm) 투광 램프(flood lamp)에 노출시키는 경우 적어도 30:1이 되어, 적어도 30:1의 종횡비를 갖는 성형된 유리 구조물을 제공하고 유도 구조물을 생성하게 된다. 노출용 마스크는 노출에 대해 연속적인 그레이 스케일을 제공하여 유도 구조물/장치를 제조하기 위한 곡선형 구조물을 형성하는 하프톤 마스크(halftone mask)일 수 있다. 디지털 마스크는 투광 노출(flood exposure)과 함께 사용할 수도 있으며, 유도 구조물/장치를 제조하기 위해 사용할 수 있다. 다음으로, 상기 노출된 유리를 통상 2단계 공정으로 베이킹시킨다. 은 이온들을 은 나노입자로 합치기 위해 420℃-520℃의 온도 범위로 10분 내지 2시간 동안 가열하고, 산화리튬이 상기 은 나노입자들 주위에 형성될 수 있도록 520℃-620℃의 온도 범위로 10분 내지 2시간 동안 가열한다. 이후, 상기 유리 플레이트를 에칭한다. 상기 유리 플레이트는 통상적으로 5 부피% 내지 10 부피%의 HF 용액의 에칭제로 에칭되며, 여기서, 노출된 부분 대 노출되지 않은 부분의 에칭비는, 넓은 스펙트럼의 중자외선 투광 램프에 노출되는 경우 적어도 30:1이고, 레이저에 노출되는 경우 30:1 초과가 되어, 적어도 30:1의 비등방성 에칭비를 갖는 성형된 유리 구조물을 제공하게 된다. 도 1은 씨드층으로 구리 전기도금된, 충전된 스루 홀 비아의 이미지를 나타낸 것이다.
본 발명은 유리-세라믹 기판 내에 다수의 금속 포스트들로 생성된 정전용량 구조물을 포함하며, 이러한 공정은 적어도 하나 이상의 2차원 또는 3차원 커패시터 장치를 포함하는 웨이퍼 내에 감광성 유리 구조물을 사용한다. 상기 감광성 유리 웨이퍼는 50 ㎛ 내지 1,000 ㎛ 범위일 수 있으며, 본 발명의 경우 바람직하게는 250 ㎛이다. 다음으로, 상기 감광성 유리를 원형 패턴으로 패턴화하고 상기 유리를 전반적으로 에칭시킨다. 상기 원형 패턴은 직경이 5 ㎛ 내지 250 ㎛ 범위일 수 있지만, 바람직하게는 직경이 30 ㎛이다. 균일한 티타늄 씨드층을 CVD 공정에 의해 비아들을 포함하는 웨이퍼 전반에 증착시킨다. 상기 씨드층 두께는 50 nm 내지 1,000 nm 범위일 수 있지만, 바람직하게는 두께가 150 nm이다. 이후, 상기 웨이퍼를 전기도금용 조에 넣는데, 여기서 구리 (Cu)가 씨드층에 증착된다. 상기 구리층은 비아를 충전시키기에 충분해야 하며, 이 경우 25 ㎛이다. 웨이퍼의 전면과 후면은 상기 감광성 유리에 대해서는 래핑(lapping)되고 폴리싱(polishing)된 뒷면이다. 이는 도 2A에서 볼 수 있다. 직사각형 패턴은 앞서 기술한 공정을 사용하여 상기 감광성 유리 내에 형성되어 유리의 10% 내지 90%, 바람직하게는 상기 감광성 유리 부피의 80%를 변환시킨다. 비아는 희석된 HF와 같은 에칭제와 함께 추가의 저농축 린스를 수용할 수도 있다. 상기 희석된 HF는 상기 비아의 세라믹 벽을 패턴화하거나 또는 텍스처링하게 될 것이다. 상기 세라믹 벽의 텍스처링은 해당 구조물의 표면적을 크게 증가시켜고, 이는 해당 장치의 정전용량을 직접적으로 증가시키게 된다. 노출된 구리가 금속화된 폴리이미드를 함유하는 감광성 유리는 웨이퍼의 후면 상의 구리 충전된 비아와 물리적/전기적 접촉이 되도록 배치된다. 노출된 구리 컬럼을 갖는 감광성 유리와 접촉된 상기 금속화된 폴리이미드를 전기도금용 조에 배치하여, 여기서 비산화성 금속의 플래시 코팅이 이루어지거나, 또는 반도체 산화물 또는 전도성 산화물을 형성하는 금속이 금속 포스트의 표면 상에 도금된다. 상기 금속은 바람직하게는 금 (Au)이다. 상기 박막 플래시 코팅은 유전 매체/물질의 증착이 이루어지는 동안 구리 포스트의 산화를 방지한다. 유전체는 원자층 증착 (ALD) 공정을 사용하여 증착되는데, 산화될 수 있는 금속을 증착시키거나, 또는 Ta2O5, Al2O3, 또는 Al2O3을 포함하나 이에 제한되지 않는 기타 기상 유전체의 유전층의 산화물 재료를 예컨대 10Å로 직접 증착시킨다. 380℃에서 TMA와 O3을 사용하여 Al2O3 - 주기 시간: 3.5초. 이후, Al2O3 층을 산소 분위기 하에 300℃로 5분간 가열하여 상기 유전층을 완전히 산화시킨다. 상기 유전층의 두께는 5 nm 내지 1,000 nm 범위일 수 있다. 본 발명에서 바람직한 두께는 도 2A에서 볼 수 있는 바와 같이 5 nm 두께이다. 다음으로, 구리의 RLD를 증착시켜 직사각형 구멍을 채운다. 상기 RLD는 바람직하게는 실크 스크리닝 공정에 의해 증착된 구리 페이스트이다. 이후, 상기 웨이퍼를 화로(furnace)에 넣어 불활성 기체 또는 진공 환경 하에 450℃ 내지 700℃로 5분 내지 60분간 가열한다. 본 발명에서 바람직한 온도와 시간은 아르곤 기체 하에 600℃로 20분 동안이다. 마지막 단계는 RLD 구리와 접촉시켜 다이의 전면을 행으로, 웨이퍼의 후면을 열로 만드는 것이다. 전면의 모든 행들을 병렬로 함께 묶어 표면적이 큰 집적형 커패시터용 전극을 제조한다. 이와 유사하게, 다이 후면 상의 모든 열들을 병렬로 함께 묶어 표면적이 큰 집적형 커패시터용 하부 전극을 제조한다. 도 2B는 RF 전력 조절 커패시터의 상면도를 나타낸 것이다.
제2 실시양태는 도 3에서 볼 수 있다. 본 발명은 유리-세라믹 기판 내에 다수의 금속 포스트들로 생성된 정전용량 구조물을 포함하며, 이러한 공정은 적어도 하나 이상의 2차원 또는 3차원 커패시터 장치를 포함하는 웨이퍼 내에 감광성 유리 구조물을 사용한다. 상기 감광성 유리 웨이퍼는 50 ㎛ 내지 1,000 ㎛ 범위일 수 있으며, 본 발명의 경우 바람직하게는 250 ㎛이다. 다음으로, 상기 감광성 유리를 원형 패턴으로 패턴화하고 상기 유리를 전반적으로 에칭시킨다. 상기 원형 패턴은 직경이 5 ㎛ 내지 250 ㎛ 범위일 수 있지만, 바람직하게는 직경이 30 ㎛이다. 균일한 티타늄 씨드층을 CVD 공정에 의해 비아들을 포함하는 웨이퍼 전반에 증착시킨다. 상기 씨드층 두께는 50 nm 내지 1,000 nm 범위일 수 있지만, 바람직하게는 두께가 150 nm이다. 이후, 상기 웨이퍼를 전기도금용 조에 넣는데, 여기서 구리 (Cu)가 씨드층에 증착된다. 상기 구리층은 비아를 충전시키기에 충분해야 하며, 이 경우 25 ㎛이다. 웨이퍼의 전면과 후면은 상기 감광성 유리에 대해서는 래핑되고 폴리싱된 뒷면이다. 이는 도 3에서 볼 수 있다. 직사각형 패턴은 앞서 기술한 공정을 사용하여 상기 감광성 유리 내에 형성되어 유리의 10% 내지 90%, 바람직하게는 상기 감광성 유리 부피의 80%를 변환시킨다. 비아는 희석된 HF와 같은 에칭제와 함께 추가의 저농축 린스를 수용할 수도 있다. 노출된 구리 컬럼을 갖는 감광성 유리와 접촉된 상기 금속화된 폴리이미드를 전기도금용 조에 배치하여, 여기서 비산화성 금속의 플래시 코팅이 이루어지거나, 또는 반도체 산화물 또는 전도성 산화물을 형성하는 금속이 금속 포스트의 표면 상에 도금된다. 상기 금속은 바람직하게는 금 (Au)이다. 상기 박막 플래시 코팅은 유전 매체/물질의 증착이 이루어지는 동안 구리 포스트의 산화를 방지한다. 이후, 직사각형 웰로 실크 스크리닝된 시판되는 BaTiO3 페이스트를 사용하여 유전 영역을 만든다. 다음으로, 상기 웨이퍼를 화로에 넣어 산소 분위기 하에 450℃ 내지 700℃로 5분 내지 60분간 가열한다. 바람직한 온도와 시간은 산소 분위기 하에 600℃로 30분 동안이다. 마지막 단계는 RLD 구리와 접촉시켜 다이의 전면을 행으로, 웨이퍼의 후면을 상부 전극과 평행하게 위치된 열로 만드는 것이다. 전면의 모든 행들을 병렬로 함께 묶어 표면적이 큰 집적형 커패시터용 전극을 제조한다. 이와 유사하게, 다이 후면 상의 모든 행들을 병렬로 함께 묶어 표면적이 큰 집적형 커패시터용 하부 전극을 제조한다.
도 4는 직경이 65 ㎛이고, 중심간 피치가 72 ㎛인 스루 홀 비아를 나타낸 것이다.
본 발명과 그 장점을 상세하게 설명하였으나, 첨부된 청구항들에 의해 정의된 본 발명의 개념과 범위를 벗어나지 않으면서 다양한 변경, 대체 및 변형을 본원에서 수행할 수 있다는 점을 이해해야 할 것이다. 본 출원의 범위는 본 명세서에 기재되는 공정, 기계, 제조, 물질의 조성물, 수단, 방법들 및 단계들의 특정 실시형태에 한정하려는 것은 아니다. 당해 분야의 통상의 기술자는 본 발명의 개시 내용으로부터 용이하게 알 수 있는 것과 같이, 본원에 기재된 해당 실시양태들과 실질적으로 동일한 기능을 수행하거나, 또는 실질적으로 동일한 결과를 달성하는 현재 존재하거나 차후에 개발될 공정, 기계, 제조물, 물질의 조성물, 수단, 방법 또는 단계들 역시 본 발명에 따라 이용할 수 있다. 따라서, 첨부된 청구항들은 이러한 공정, 기계, 제조물, 물질의 조성물, 수단, 방법 또는 단계들을 청구범위 내에 포함시키고자 한다.
본 발명은 비용 효율적인 유리 세라믹 3차원 커패시터 구조물 또는 3차원 커패시터 어레이 장치를 제조한다. 본 발명에서는, 유리 세라믹 기판은 수직면 및 수평면 모두를 개별적으로 또는 동시에 가공하여 상기 구조물을 형성하여 2차원 또는 3차원 정전용량 장치를 제조할 수 있는 역량을 입증하였다.
본 발명은, 비아 또는 포스트를 갖는 감광성 유리 기판을 제조하는 단계, 및 추가로, 통상적으로 금속인 하나 이상의 전도층, 유전 매체 및 통상적으로 금속인 상부 전도층으로 코팅 또는 충전하는 단계에 의해, 하나 이상의 2차원 또는 3차원 커패시터 장치를 지니는 기판을 제조하는 방법을 포함한다.
본 발명의 다양한 실시양태들을 만들어 사용하는 것에 대해 아래에 상세히 설명하지만, 본 발명이 광범위하게 다양한 구체적인 상황들에 구현될 수 있는 여러가지로 응용가능한 독창적인 개념을 제공하고 있다는 점을 이해해야 할 것이다. 본원에 거론된 구체적인 실시양태들은 본 발명을 만들어 사용하는 구체적인 방법들을 예시하는 것일 뿐이지 본 발명의 범위를 한정하는 것은 아니다.
본 명세서에서 논의된 임의의 실시양태는 본 발명의 임의의 방법, 키트, 시약 또는 조성물에 대하여 실시할 수 있으며, 그 반대도 가능하다. 또한, 본 발명의 조성물은 본 발명의 방법을 달성하는데 사용될 수 있다.
본원에 기술한 구체적인 실시양태들은 예시로서 나타낸 것이지 본 발명의 제한하는 것은 아니다. 본 발명의 주요 특징들은 본 발명의 범위를 벗어나지 않으면서 다양한 실시양태로 사용될 수 있다. 당업계의 숙련자라면 단지 일상적인 실험만을 이용하여 본원에 기술된 특정 절차들에 대한 다양한 균등물을 인식할 수 있을 것이거나, 또는 확인할 수 있을 것이다. 이러한 균등물들은 본 발명의 범위 내에 속하는 것으로 간주되며, 특허청구범위에 포함된다.
본 명세서에 언급된 모든 간행물 및 특허 출원들은 본 발명이 속한 업계에서 숙련자들의 기술 수준을 나타낸다. 모든 간행물 및 특허 출원은 각각의 개별 간행물 또는 특허 출원이 구체적으로 그리고 개별적으로 참고로 포함되었던 것과 동일한 정도로 본원에 참고로 포함된다.
특허청구범위 및/또는 명세서에서 "포함하는"이라는 용어와 함께 사용되는 단수형 명사("a" 또는 "an")는 "하나"를 의미할 수 있으나, "하나 이상," "적어도 하나," 및 "하나 또는 하나 이상"이라는 의미와 같을 수도 있다. 청구항에서 "또는" 이라는 용어의 사용은, 그것이 명시적으로 대안만을 언급하지 않는 한 또는 명세서가 대안 및 "및/또는"만을 언급하는 정의를 뒷받침하고 있더라도 그 대안이 상호 배타적이지 않는 한 "및/또는"을 의미하는 것으로 사용된다. 본 출원 전반에 걸쳐, "약" 이라는 용어는 어떠한 값이 해당 장치, 그 값을 측정하는데 사용되는 방법에 대한 고유한 오차 변화, 또는 해당 연구 대상들 간에 존재하는 변화를 포함함을 나타내는데 사용된다.
본 명세서 및 특허청구범위에서, "포함하는(comprising)" (및 "포함하고" 및 "포함하며"와 같은 "포함하는"의 임의의 형태), "갖는(having)" (및 "가지고" 및 "가지며"와 같은 "갖는"의 임의의 형태), "비롯한(including)" (및 "비롯하여" 및 "비롯해"와 같은 "비롯한"의 임의의 형태) 또는 "함유하는(containing)" (및 "함유하고" 및 "함유하며"와 같은 "함유하는"의 임의의 형태)은 포괄적 또는 개방형 의미로서, 언급하지 않은 추가의 구성요소 또는 방법 단계를 배제하지 않는다. 본원에 제공된 임의의 조성물 및 방법의 실시양태에서, "포함하는"은 "본질적으로 ~ 이루어진" 또는 "~로 이루어진"으로 대체될 수 있다. 본 명세서에서, "본질적으로 ~ 이루어진"이라는 어구는, 특정된 정수 또는 단계뿐만 아니라 청구된 발명의 특징 또는 기능에 실질적으로 영향을 미치지 않는 것도 필요로 한다. 본원에서, "~로 이루어진"이라는 용어는 언급된 정수 (예컨대, 특징, 구성요소, 특성, 속성, 방법/공정 단계 또는 한계) 또는 정수들의 그룹 (예를 들어, 특징(들), 구성요소(들), 특성(들), 속성(들), 방법/공정 단계들 또는 한계(들)만 존재하는 것을 나타내는데 사용된다.
본원에서 사용된 "또는 이들의 조합"이라는 용어는 해당 용어에 선행하여 열거된 항목들의 모든 순열과 조합을 가리킨다. 예를 들어, "A, B, C, 또는 이들의 조합"은 A, B, C, AB, AC, BC 또는 ABC 중 적어도 하나, 특정 맥락에서 순서가 중요한 경우에는, BA, CA, CB, CBA, BCA, ACB, BAC 또는 CAB도 포함하려는 것이다. 상기 예를 계속하여, BB, AAA, AB, BBC, AAABCCCC, CBBAAA, CABABB 등과 같은 하나 이상의 항목 또는 용어의 반복을 포함하는 조합도 명백히 포함된다. 당업계의 숙련자라면, 문맥상 명백하게 달리 언급하지 않은 한, 일반적으로 임의의 조합으로 해당 항목 또는 용어들의 수에는 제한이 없다는 것을 알 수 있을 것이다.
본 명세서에서, "약", "실질적인" 또는 "실질적으로" (반드시 이 용어들에만 한정되지 않음)와 같은 근사치를 나타내는 단어들은, 그에 의해 수식되는 경우, 반드시 절대적이거나 완벽할 필요는 없지만 당업계의 숙련자에게는 충분히 근접한 것으로 간주되어 존재하는 것으로 명시될 수 있는 조건을 지칭한다. 상세한 설명이 변화될 수 있는 정도는, 얼마나 큰 변화가 도입될 것인가의 여부에 따라 따를 것이지만, 그래도 당업계의 숙련자라면 상기 변화된 특징이 이전의 변화되지 않은 특징의 필요 특성과 역량을 여전히 지니고 있는 것으로 인식할 것이다. 일반적으로, 그러나 전술한 논의에 따라, "약"과 같은 근사치를 나타내는 단어에 수식되는 본원의 수치는 언급된 값과 적어도 ±1, 2, 3, 4, 5, 6, 7, 10, 12 또는 15%만큼 달라질 수 있다.
본원에 개시되고 청구된 모든 조성물 및/또는 방법들은 본 명세서의 내용을 고려하여 과도한 실험없이도 고안하여 실시할 수 있다. 본 발명의 조성물 및 방법은 바람직한 실시양태의 관점에서 기술되었지만, 본 발명의 개념, 사상 및 범위를 벗어나지 않으면서 본원에 기술된 조성물 및/또는 방법들과 상기 방법의 단계들 또는 상기 방법 단계들의 순서에 적용할 수 있다는 점은 당업계의 숙련자들에게는 명백할 것이다. 당업계의 숙련자들에게 자명한 이러한 모든 유사한 대체물과 변형물은 첨부된 특허청구범위에 정의된 본 발명의 개념, 범위 및 사상에 속하는 것으로 간주한다.
여기에 첨부된 특허청구범위를 해석하는데 있어서 특허청 및 본 출원에 부여된 특허에 대한 임의의 독자들에 도움을 주기 위해, 출원인은, "~를 위한 수단" 또는 "~를 위한 단계"라는 말이 특정 청구항에 명시적으로 사용되지 않는 한, 첨부된 임의의 청구항들이 본 출원의 출원일에 시행되고 있는 35 U.S.C. §112의 여섯번째 문단인 U.S.C. §112 (f) 단락, 또는 이와 균등한 내용을 환기시키려고 하는 것이 아니다라는 점을 주지시키고자 한다.
각 청구항에 있어서, 각각의 종속항은, 선행 청구항이 해당 청구항 용어 또는 구성요소에 대해 적절한 선행사를 제공하기만 한다면, 독립항과 각각의 모든 청구항에 대한 선행 종속항 모두에 종속될 수 있다.
Claims (24)
- 하기의 단계를 포함하는, 감광성(photodefinable) 유리 상에 전력 조절을 위한 소형 폼팩터(form factor)로 집적된 대용량 커패시터를 제조하는 방법:
상기 감광성 유리 내에 하나 이상의 비아 개구(via opening)를 형성하도록 가공처리된 상기 감광성 유리 상에 전도성 씨드층을 증착시키는 단계;
상기 감광성 유리 기판과 금속화된 씨드층 전기도금용 금속을 함께 배치하여 감광성 유리 기판의 하나 이상의 개구를 충전시켜 비아를 형성하는 단계;
상기 감광성 유리 기판의 전면 및 후면을 화학적-기계적으로 연마하여 충전된 비아만을 남기는 단계;
2개의 인접한 충전된 비아 주위에 감광성 유리 기판의 적어도 하나의 직사각형 부분을 노출시켜 변환시키는 단계;
적어도 하나의 인접한 충전된 비아쌍을 노출하고 있는 상기 직사각형 부분을 에칭하여 금속 포스트(metal post)를 형성시키는 단계;
제1 전극을 형성하는 상기 금속 포스트에 비산화성 층을 플래시 코팅하는 단계;
상기 포스트들 상에 또는 그 주위에 유전층을 증착시키는 단계;
상기 유전층을 금속 코팅하여 제2 전극을 형성하는 단계;
제1 금속층을 모든 제1 전극들에 병렬로 연결하여 커패시터용 단일 전극을 형성하는 단계; 및
제2 금속층을 모든 제2 전극들에 병렬로 연결하여 커패시터용 제2 전극을 형성하는 단계. - 제1항에 있어서, 상기 유전층이 0.5 nm 내지 1,000 nm 두께의 박막인 것인, 방법.
- 제1항에 있어서, 상기 유전층이 0.05 ㎛ 내지 100 ㎛ 두께의 소결 페이스트(sintered paste)인 것인, 방법.
- 제1항에 있어서, 상기 유전층의 전기 유전율(electric permittivity)이 10 내지 10,000인 것인, 방법.
- 제1항에 있어서, 상기 유전층의 전기 유전율이 2 내지 100인 것인, 방법.
- 제1항에 있어서, 상기 유전층이 ALD에 의해 증착되는 것인, 방법.
- 제1항에 있어서, 상기 유전층이 닥터 블레이딩(doctor blading)에 의해 증착되는 것인, 방법.
- 제1항에 있어서, 상기 커패시터의 정전용량 밀도가 1,000 pf/㎟ 초과인 것인, 방법.
- 하기의 단계를 포함하는, 감광성 유리 기판 상에 전력 조절을 위한 소형 폼팩터로 집적된 대용량 커패시터를 제조하는 방법:
상기 감광성 유리 기판 상에 원형 패턴을 마스킹하는 단계;
상기 감광성 유리 기판의 적어도 일부분을 활성화 UV 에너지원에 노출시키는 단계;
상기 감광성 유리 기판을 그의 유리 전이 온도 이상으로 적어도 10분의 가열 단계로 가열하는 단계;
상기 감광성 유리 기판을 냉각시켜 상기 노출된 유리의 적어도 일부를 결정성 물질로 변환하여 유리-세라믹 결정질 기판을 형성하는 단계;
에칭액으로 상기 감광성 유리 기판의 세라믹상을 부분적으로 에칭하여 제거하는 단계;
상기 감광성 유리 상에 전도성 씨드층을 증착시키는 단계;
상기 감광성 유리 기판과 금속화된 씨드층 전기도금용 금속을 함께 배치하여 감광성 유리 기판의 하나 이상의 개구를 충전시켜 비아를 형성하는 단계;
상기 감광성 유리 기판의 전면 및 후면을 화학적-기계적으로 연마하여 충전된 비아만을 남기는 단계;
2개의 인접한 충전된 비아 주위에 감광성 유리 기판의 적어도 하나의 직사각형 부분을 노출시켜 변환시키는 단계;
적어도 하나의 인접한 충전된 비아쌍을 노출하고 있는 상기 직사각형 부분을 에칭하여 금속 포스트를 형성시키는 단계;
제1 전극을 형성하는 상기 금속 포스트에 비산화성 층을 플래시 코팅하는 단계;
상기 포스트들 상에 또는 그 주위에 유전층을 증착시키는 단계;
상기 유전층을 금속 코팅하여 제2 전극을 형성하는 단계;
제1 금속층을 모든 제1 전극들에 병렬로 연결하여 커패시터용 단일 전극을 형성하는 단계; 및
제2 금속층을 모든 제2 전극들에 병렬로 연결하여 커패시터용 제2 전극을 형성하는 단계. - 제9항에 있어서, 상기 유전층이 0.5 nm 내지 1,000 nm 두께의 박막인 것인, 방법.
- 제9항에 있어서, 상기 유전층이 0.05 ㎛ 내지 100 ㎛ 두께의 소결 페이스트인 것인, 방법.
- 제9항에 있어서, 상기 유전층의 전기 유전율이 10 내지 10,000인 것인, 방법.
- 제9항에 있어서, 상기 유전층의 전기 유전율이 2 내지 100인 것인, 방법.
- 제9항에 있어서, 상기 유전층이 ALD에 의해 증착되는 것인, 방법.
- 제9항에 있어서, 상기 유전층이 닥터 블레이딩에 의해 증착되는 것인, 방법.
- 제9항에 있어서, 상기 커패시터의 정전용량 밀도가 1,000 pf/㎟ 초과인 것인, 방법.
- 하기의 단계를 포함하는 방법에 의해 제조되는 집적형 커패시터:
감광성 유리 기판 상에 원형 패턴을 마스킹하는 단계;
상기 감광성 유리 기판의 적어도 일부분을 활성화 UV 에너지원에 노출시키는 단계;
상기 감광성 유리 기판을 그의 유리 전이 온도 이상으로 적어도 10분의 가열 단계로 가열하는 단계;
상기 감광성 유리 기판을 냉각시켜 상기 노출된 유리의 적어도 일부를 결정성 물질로 변환하여 유리-세라믹 결정질 기판을 형성하는 단계;
에칭액으로 상기 감광성 유리 기판의 세라믹상을 부분적으로 에칭하여 제거하는 단계;
상기 감광성 유리 상에 전도성 씨드층을 증착시키는 단계;
상기 감광성 유리 기판과 금속화된 씨드층 전기도금용 금속을 함께 배치하여 감광성 유리 기판의 하나 이상의 개구를 충전시켜 비아를 형성하는 단계;
상기 감광성 유리 기판의 전면 및 후면을 화학적-기계적으로 연마하여 충전된 비아만을 남기는 단계;
2개의 인접한 충전된 비아 주위에 상기 감광성 유리 기판의 적어도 하나의 직사각형 부분을 노출시켜 변환시키는 단계;
적어도 하나의 인접한 충전된 비아쌍을 노출하고 있는 상기 직사각형 부분을 에칭하여 금속 포스트를 형성시키는 단계;
제1 전극을 형성하는 상기 금속 포스트에 비산화성 층을 플래시 코팅하는 단계;
상기 포스트들 상에 또는 그 주위에 유전층을 증착시키는 단계;
상기 유전층을 금속 코팅하여 제2 전극을 형성하는 단계;
제1 금속층을 모든 제1 전극들에 병렬로 연결하여 커패시터용 단일 전극을 형성하는 단계; 및
제2 금속층을 모든 제2 전극들에 병렬로 연결하여 커패시터용 제2 전극을 형성하는 단계. - 제17항에 있어서, 상기 유전층이 0.5 nm 내지 1,000 nm 두께의 박막인 것인, 커패시터.
- 제17항에 있어서, 상기 유전층이 0.05 ㎛ 내지 100 ㎛ 두께의 소결 페이스트인 것인, 커패시터.
- 제17항에 있어서, 상기 유전층의 전기 유전율이 10 내지 10,000인 것인, 커패시터.
- 제17항에 있어서, 상기 유전층의 전기 유전율이 2 내지 100인 것인, 커패시터.
- 제17항에 있어서, 상기 유전층이 ALD에 의해 증착되는 것인, 커패시터.
- 제17항에 있어서, 상기 유전층이 닥터 블레이딩에 의해 증착되는 것인, 커패시터.
- 제17항에 있어서, 상기 커패시터의 정전용량 밀도가 1,000 pf/㎟ 초과인 것인, 커패시터.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207020394A KR102626372B1 (ko) | 2018-04-10 | 2019-03-28 | Rf 집적형 전력 조절 커패시터 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862655618P | 2018-04-10 | 2018-04-10 | |
US62/655,618 | 2018-04-10 | ||
PCT/US2019/024496 WO2019199470A1 (en) | 2018-04-10 | 2019-03-28 | Rf integrated power condition capacitor |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207020394A Division KR102626372B1 (ko) | 2018-04-10 | 2019-03-28 | Rf 집적형 전력 조절 커패시터 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190119609A KR20190119609A (ko) | 2019-10-22 |
KR102145746B1 true KR102145746B1 (ko) | 2020-08-19 |
Family
ID=68163292
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020197026546A KR102145746B1 (ko) | 2018-04-10 | 2019-03-28 | Rf 집적형 전력 조절 커패시터 |
KR1020207020394A KR102626372B1 (ko) | 2018-04-10 | 2019-03-28 | Rf 집적형 전력 조절 커패시터 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020207020394A KR102626372B1 (ko) | 2018-04-10 | 2019-03-28 | Rf 집적형 전력 조절 커패시터 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11076489B2 (ko) |
EP (1) | EP3643148A4 (ko) |
JP (2) | JP6888105B2 (ko) |
KR (2) | KR102145746B1 (ko) |
WO (1) | WO2019199470A1 (ko) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101940981B1 (ko) | 2014-05-05 | 2019-01-23 | 3디 글래스 솔루션즈 인코포레이티드 | 2d 및 3d 인덕터 안테나 및 변압기 제작 광 활성 기판 |
JP6995891B2 (ja) | 2017-07-07 | 2022-01-17 | スリーディー グラス ソリューションズ,インク | パッケージ光活性ガラス基板内のrfシステムのための2d及び3dのrf集中素子デバイス |
WO2019118761A1 (en) | 2017-12-15 | 2019-06-20 | 3D Glass Solutions, Inc. | Coupled transmission line resonate rf filter |
AU2018399638B2 (en) | 2018-01-04 | 2021-09-02 | 3D Glass Solutions, Inc. | Impedance matching conductive structure for high efficiency RF circuits |
WO2019231947A1 (en) | 2018-05-29 | 2019-12-05 | 3D Glass Solutions, Inc. | Low insertion loss rf transmission line |
KR102322938B1 (ko) | 2018-09-17 | 2021-11-09 | 3디 글래스 솔루션즈 인코포레이티드 | 접지면을 갖는 고효율 컴팩트형 슬롯 안테나 |
KR102493538B1 (ko) | 2018-12-28 | 2023-02-06 | 3디 글래스 솔루션즈 인코포레이티드 | 광활성 유리 기판들에서 rf, 마이크로파, 및 mm 파 시스템들을 위한 이종 통합 |
AU2019416327B2 (en) | 2018-12-28 | 2021-12-09 | 3D Glass Solutions, Inc. | Annular capacitor RF, microwave and MM wave systems |
CA3135975C (en) | 2019-04-05 | 2022-11-22 | 3D Glass Solutions, Inc. | Glass based empty substrate integrated waveguide devices |
KR102687037B1 (ko) * | 2020-03-11 | 2024-07-24 | 3디 글래스 솔루션즈 인코포레이티드 | 초고표면적 집적 커패시터 |
KR20220164800A (ko) | 2020-04-17 | 2022-12-13 | 3디 글래스 솔루션즈 인코포레이티드 | 광대역 인덕터 |
JP7322838B2 (ja) * | 2020-09-03 | 2023-08-08 | 株式会社村田製作所 | 電子部品および電子部品モジュール |
WO2022265783A1 (en) * | 2021-06-15 | 2022-12-22 | 3D Glass Solutions, Inc. | Radio frequency (rf) integrated power-conditioning capacitor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179564A (ja) | 2004-12-21 | 2006-07-06 | Nec Corp | 半導体接続基板、半導体装置、半導体デバイス及び半導体基板並びに半導体接続基板の製造方法 |
KR101167691B1 (ko) | 2011-08-09 | 2012-07-20 | 주식회사 비티엔아이티솔루션스 | 감광성 유리 기판을 구비한 적층형 캐패시터, 이의 제조방법 및 이의 용도 |
US20140035935A1 (en) | 2012-08-03 | 2014-02-06 | Qualcomm Mems Technologies, Inc. | Passives via bar |
WO2017147511A1 (en) * | 2016-02-25 | 2017-08-31 | 3D Glass Solutions, Inc. | 3d capacitor and capacitor array fabricating photoactive substrates |
JP2019114723A (ja) | 2017-12-25 | 2019-07-11 | 凸版印刷株式会社 | キャパシタ内蔵ガラス回路基板及びキャパシタ内蔵ガラス回路基板の製造方法 |
Family Cites Families (208)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2515941A (en) | 1946-09-09 | 1950-07-18 | Corning Glass Works | Photosensitive opal glass |
BE478714A (ko) | 1946-09-09 | |||
BE513836A (ko) | 1951-08-30 | |||
US2628160A (en) | 1951-08-30 | 1953-02-10 | Corning Glass Works | Sculpturing glass |
US2971853A (en) | 1953-03-05 | 1961-02-14 | Corning Glass Works | Ceramic body and method of making it |
JPS5321827B2 (ko) | 1973-02-12 | 1978-07-05 | ||
US3993401A (en) | 1975-02-10 | 1976-11-23 | Minnesota Mining And Manufacturing Company | Retroreflective material including geometric fresnel zone plates |
US3985531A (en) | 1975-03-19 | 1976-10-12 | Corning Glass Works | Spontaneously-formed fluormica glass-ceramics |
US4029605A (en) | 1975-12-08 | 1977-06-14 | Hercules Incorporated | Metallizing compositions |
US4131516A (en) | 1977-07-21 | 1978-12-26 | International Business Machines Corporation | Method of making metal filled via holes in ceramic circuit boards |
US4413061A (en) | 1978-02-06 | 1983-11-01 | International Business Machines Corporation | Glass-ceramic structures and sintered multilayer substrates thereof with circuit patterns of gold, silver or copper |
JPS56155587A (en) * | 1980-05-02 | 1981-12-01 | Fujitsu Ltd | Printed circuit board |
US4537612A (en) | 1982-04-01 | 1985-08-27 | Corning Glass Works | Colored photochromic glasses and method |
US4647940A (en) | 1982-09-27 | 1987-03-03 | Rogers Corporation | Parallel plate waveguide antenna |
US5078771A (en) | 1989-02-07 | 1992-01-07 | Canyon Materials, Inc. | Method of making high energy beam sensitive glasses |
US4514053A (en) | 1983-08-04 | 1985-04-30 | Corning Glass Works | Integral photosensitive optical device and method |
JPS61231529A (ja) | 1985-04-08 | 1986-10-15 | Agency Of Ind Science & Technol | 光制御型光スイツチ装置 |
US4692015A (en) | 1986-03-14 | 1987-09-08 | Xerox Corporation | Short focal lens array with multi-magnification properties |
JPS63128699A (ja) | 1986-11-19 | 1988-06-01 | 株式会社日立製作所 | 感光性ガラス−セラミツク多層配線基板 |
CA1320507C (en) | 1987-10-07 | 1993-07-20 | Elizabeth A. Boylan | Thermal writing on glass or glass-ceramic substrates and copper-exuding glasses |
US4788165A (en) | 1987-10-07 | 1988-11-29 | Corning Glass Works | Copper-exuding, boroaluminosilicate glasses |
US4942076A (en) | 1988-11-03 | 1990-07-17 | Micro Substrates, Inc. | Ceramic substrate with metal filled via holes for hybrid microcircuits and method of making the same |
JP2737292B2 (ja) | 1989-09-01 | 1998-04-08 | 富士通株式会社 | 銅ペースト及びそれを用いたメタライズ方法 |
US5147740A (en) | 1990-08-09 | 1992-09-15 | Rockwell International Corporation | Structure and process for fabricating conductive patterns having sub-half micron dimensions |
US5215610A (en) | 1991-04-04 | 1993-06-01 | International Business Machines Corporation | Method for fabricating superconductor packages |
BE1004844A7 (fr) | 1991-04-12 | 1993-02-09 | Laude Lucien Diego | Methodes de metallisation de surfaces a l'aide de poudres metalliques. |
US5212120A (en) | 1991-06-10 | 1993-05-18 | Corning Incorporated | Photosensitive glass |
US5395498A (en) | 1991-11-06 | 1995-03-07 | Gombinsky; Moshe | Method for separating biological macromolecules and means therfor |
JPH05139787A (ja) | 1991-11-19 | 1993-06-08 | Seikosha Co Ltd | 感光性ガラスの加工方法 |
US5374291A (en) | 1991-12-10 | 1994-12-20 | Director-General Of Agency Of Industrial Science And Technology | Method of processing photosensitive glass |
US5371466A (en) | 1992-07-29 | 1994-12-06 | The Regents Of The University Of California | MRI RF ground breaker assembly |
US6258497B1 (en) | 1992-07-29 | 2001-07-10 | International Business Machines Corporation | Precise endpoint detection for etching processes |
US6017681A (en) | 1992-11-09 | 2000-01-25 | Fujitsu Limited | Method of coupling optical parts and method of forming a mirror |
JPH0826767A (ja) | 1994-07-13 | 1996-01-30 | Nippon Glass Kk | ソーダ石灰シリカ系感光性ガラス及びその製造方法 |
JPH08179155A (ja) | 1994-12-26 | 1996-07-12 | Ricoh Co Ltd | レンズと光ファイバとの結合方法及びレンズ基板の作成方法 |
JP3438383B2 (ja) | 1995-03-03 | 2003-08-18 | ソニー株式会社 | 研磨方法およびこれに用いる研磨装置 |
EP2280268B1 (en) | 1995-03-10 | 2014-09-03 | Meso Scale Technologies, LLC. | Multi-array, multi-specific electrochemiluminescence testing |
US5919607A (en) | 1995-10-26 | 1999-07-06 | Brown University Research Foundation | Photo-encoded selective etching for glass based microtechnology applications |
US5733370A (en) | 1996-01-16 | 1998-03-31 | Seagate Technology, Inc. | Method of manufacturing a bicrystal cluster magnetic recording medium |
JPH107435A (ja) | 1996-06-26 | 1998-01-13 | Ngk Spark Plug Co Ltd | ガラスセラミック配線基板およびその製造方法 |
EP1677331B1 (en) | 1996-09-26 | 2009-12-30 | Asahi Glass Company, Limited | Protective plate for a plasma display and a method for producing the same |
US6562523B1 (en) | 1996-10-31 | 2003-05-13 | Canyon Materials, Inc. | Direct write all-glass photomask blanks |
JPH10199728A (ja) | 1997-01-07 | 1998-07-31 | Murata Mfg Co Ltd | 薄膜型コイル部品及びその製造方法 |
US5850623A (en) | 1997-03-14 | 1998-12-15 | Eastman Chemical Company | Method for standardizing raman spectrometers to obtain stable and transferable calibrations |
WO1998049698A2 (en) | 1997-04-25 | 1998-11-05 | Koninklijke Philips Electronics N.V. | Method of manufacturing an enveloped multilayer capacitor and an envelope multilayer capacitor |
US5998224A (en) | 1997-05-16 | 1999-12-07 | Abbott Laboratories | Magnetically assisted binding assays utilizing a magnetically responsive reagent |
US6287965B1 (en) | 1997-07-28 | 2001-09-11 | Samsung Electronics Co, Ltd. | Method of forming metal layer using atomic layer deposition and semiconductor device having the metal layer as barrier metal layer or upper or lower electrode of capacitor |
JPH11176815A (ja) | 1997-12-15 | 1999-07-02 | Ricoh Co Ltd | ドライエッチングの終点判定方法およびドライエッチング装置 |
US6598291B2 (en) | 1998-03-20 | 2003-07-29 | Viasystems, Inc. | Via connector and method of making same |
US6115521A (en) | 1998-05-07 | 2000-09-05 | Trw Inc. | Fiber/waveguide-mirror-lens alignment device |
US6686824B1 (en) | 1998-05-29 | 2004-02-03 | Nissha Printing Co., Ltd. | Toroidal printed coil |
US6171886B1 (en) | 1998-06-30 | 2001-01-09 | Eastman Kodak Company | Method of making integrated hybrid silicon-based micro-actuator devices |
JP2000199827A (ja) | 1998-10-27 | 2000-07-18 | Sony Corp | 光導波装置およびその製造方法 |
US6136210A (en) | 1998-11-02 | 2000-10-24 | Xerox Corporation | Photoetching of acoustic lenses for acoustic ink printing |
JP2000228615A (ja) | 1999-02-05 | 2000-08-15 | Tokin Corp | Lcバンドパスフィルタ |
JP3360065B2 (ja) | 1999-03-24 | 2002-12-24 | エルジー電子株式会社 | 感光性ガラス基板を利用したマイクロ構造物の製造方法 |
US6485690B1 (en) | 1999-05-27 | 2002-11-26 | Orchid Biosciences, Inc. | Multiple fluid sample processor and system |
JP3756041B2 (ja) | 1999-05-27 | 2006-03-15 | Hoya株式会社 | 多層プリント配線板の製造方法 |
FR2795745B1 (fr) | 1999-06-30 | 2001-08-03 | Saint Gobain Vitrage | Procede de depot d'une couche a base de tungstene et/ou de molybdene sur un substrat verrier, ceramique ou vitroceramique, et substrat ainsi revetu |
JP2001033664A (ja) | 1999-07-21 | 2001-02-09 | Hitachi Cable Ltd | 光ファイバブロック |
US6278352B1 (en) | 1999-07-26 | 2001-08-21 | Taiwan Semiconductor Manufacturing Company | High efficiency thin film inductor |
US7179638B2 (en) | 1999-07-30 | 2007-02-20 | Large Scale Biology Corporation | Microarrays and their manufacture by slicing |
US6538775B1 (en) | 1999-09-16 | 2003-03-25 | Reveo, Inc. | Holographically-formed polymer dispersed liquid crystals with multiple gratings |
US6403286B1 (en) | 1999-11-04 | 2002-06-11 | Corning Incorporated | High aspect ratio patterning of glass film |
JP2001206735A (ja) | 2000-01-25 | 2001-07-31 | Central Glass Co Ltd | めっき方法 |
US6579817B2 (en) | 2000-04-26 | 2003-06-17 | Matsushita Electric Industrial Co., Ltd. | Dielectric ceramic composition and method for producing the same, and device for communication apparatus using the same |
US6329702B1 (en) | 2000-07-06 | 2001-12-11 | Tyco Electronics Corporation | High frequency carrier |
US6510264B2 (en) | 2000-07-31 | 2003-01-21 | Corning Incorporated | Bulk internal bragg gratings and optical devices |
US7829348B2 (en) | 2000-09-22 | 2010-11-09 | Iowa State University Research Foundation, Inc. | Raman-active reagents and the use thereof |
JP4361271B2 (ja) | 2000-10-10 | 2009-11-11 | バイオトローブ・インコーポレイテツド | アッセイ、合成、および保存用の器具、ならびに、その作製、使用、および操作の方法 |
US7033821B2 (en) | 2000-11-08 | 2006-04-25 | Surface Logix, Inc. | Device for monitoring cell motility in real-time |
KR100392956B1 (ko) | 2000-12-30 | 2003-07-28 | 엘지전자 주식회사 | 플라즈마 디스플레이 패널의 격벽 제조방법 |
US6932933B2 (en) | 2001-03-30 | 2005-08-23 | The Aerospace Corporation | Ultraviolet method of embedding structures in photocerams |
US6824974B2 (en) | 2001-06-11 | 2004-11-30 | Genorx, Inc. | Electronic detection of biological molecules using thin layers |
DK1412725T3 (en) | 2001-06-29 | 2019-03-25 | Meso Scale Technologies Llc | Multi-well plates for LUMINESCENSE TEST MEASUREMENTS |
CN1630946A (zh) | 2001-07-12 | 2005-06-22 | 株式会社日立制作所 | 电子电路部件 |
US6843902B1 (en) | 2001-07-20 | 2005-01-18 | The Regents Of The University Of California | Methods for fabricating metal nanowires |
US20030025227A1 (en) | 2001-08-02 | 2003-02-06 | Zograph, Llc | Reproduction of relief patterns |
CA2500453A1 (en) | 2001-09-28 | 2003-04-03 | Biovalve Technologies, Inc. | Microneedle with membrane |
KR100814806B1 (ko) | 2001-10-15 | 2008-03-19 | 삼성에스디아이 주식회사 | 스페이서 제조 방법 및 이 스페이서를 갖는 평판 표시 소자 |
US20040171076A1 (en) | 2001-12-20 | 2004-09-02 | Dejneka Matthew J. | Detectable micro to nano sized structures, methods of manufacture and use |
US7064103B2 (en) | 2002-01-04 | 2006-06-20 | Becton, Dickinson And Company | Binding protein as biosensors |
US7470518B2 (en) | 2002-02-12 | 2008-12-30 | Cellectricon Ab | Systems and method for rapidly changing the solution environment around sensors |
US20030156819A1 (en) | 2002-02-15 | 2003-08-21 | Mark Pruss | Optical waveguide |
AU2003220148A1 (en) | 2002-03-14 | 2003-09-29 | Corning Incorporated | Fiber array and methods of fabrication |
AU2003221788A1 (en) | 2002-04-30 | 2003-11-17 | University Of Maryland, Baltimore | Fluorescence sensing |
JP2003329877A (ja) | 2002-05-14 | 2003-11-19 | Nippon Sheet Glass Co Ltd | 光モジュール |
US6580054B1 (en) | 2002-06-10 | 2003-06-17 | New Wave Research | Scribing sapphire substrates with a solid state UV laser |
US7407768B2 (en) | 2002-09-11 | 2008-08-05 | Synamem Corporation | Membrane-based assays |
US6875544B1 (en) | 2002-10-03 | 2005-04-05 | Sandia Corporation | Method for the fabrication of three-dimensional microstructures by deep X-ray lithography |
US20040184705A1 (en) | 2003-01-08 | 2004-09-23 | Mikihiro Shimada | Optical waveguide component and method of manufacturing the same |
US6783920B2 (en) | 2003-01-15 | 2004-08-31 | The Aerospace Corporation | Photosensitive glass variable laser exposure patterning method |
DE10304606B3 (de) | 2003-02-05 | 2004-06-03 | Magnet-Physik Dr. Steingroever Gmbh | Transformator zur Erzeugung hoher elektrischer Ströme |
US7601491B2 (en) | 2003-02-06 | 2009-10-13 | Becton, Dickinson And Company | Pretreatment method for extraction of nucleic acid from biological samples and kits therefor |
US7150569B2 (en) | 2003-02-24 | 2006-12-19 | Nor Spark Plug Co., Ltd. | Optical device mounted substrate assembly |
US20040198582A1 (en) | 2003-04-01 | 2004-10-07 | Borrelli Nicholas F. | Optical elements and methods of making optical elements |
US6909137B2 (en) | 2003-04-07 | 2005-06-21 | International Business Machines Corporation | Method of creating deep trench capacitor using a P+ metal electrode |
US7579077B2 (en) | 2003-05-05 | 2009-08-25 | Nanosys, Inc. | Nanofiber surfaces for use in enhanced surface area applications |
US7335972B2 (en) | 2003-11-13 | 2008-02-26 | Sandia Corporation | Heterogeneously integrated microsystem-on-a-chip |
US20050170670A1 (en) | 2003-11-17 | 2005-08-04 | King William P. | Patterning of sacrificial materials |
US7316063B2 (en) | 2004-01-12 | 2008-01-08 | Micron Technology, Inc. | Methods of fabricating substrates including at least one conductive via |
JP4153442B2 (ja) | 2004-02-02 | 2008-09-24 | シャープ株式会社 | 光モジュールの製造方法 |
CN1262500C (zh) | 2004-04-16 | 2006-07-05 | 武汉理工大学 | 制备纳米孔微晶玻璃/玻璃载体材料的方法 |
US7176152B2 (en) | 2004-06-09 | 2007-02-13 | Ferro Corporation | Lead-free and cadmium-free conductive copper thick film pastes |
DE102004059252A1 (de) | 2004-06-09 | 2006-01-19 | Schott Ag | Aufbau diffraktiver Optiken durch strukturierte Glasbeschichtung |
JP4622359B2 (ja) | 2004-07-22 | 2011-02-02 | コニカミノルタホールディングス株式会社 | インクジェットヘッドの製造方法 |
US7132054B1 (en) | 2004-09-08 | 2006-11-07 | Sandia Corporation | Method to fabricate hollow microneedle arrays |
US20060147344A1 (en) | 2004-09-30 | 2006-07-06 | The University Of Cincinnati | Fully packed capillary electrophoretic separation microchips with self-assembled silica colloidal particles in microchannels and their preparation methods |
JP4795677B2 (ja) | 2004-12-02 | 2011-10-19 | ルネサスエレクトロニクス株式会社 | 半導体装置およびそれを用いた半導体モジュール、ならびに半導体装置の製造方法 |
DE102005003594B4 (de) | 2004-12-31 | 2016-02-18 | Schott Ag | Verfahren zur Herstellung eines optischen Bauteils, verfahrensgemäß hergestelltes Bauteil sowie derartige Bauteile umfassende Einrichtung |
US7714688B2 (en) | 2005-01-20 | 2010-05-11 | Avx Corporation | High Q planar inductors and IPD applications |
KR100682919B1 (ko) | 2005-01-20 | 2007-02-15 | 삼성전자주식회사 | 미세 금속 박막 패턴 형성 방법, 이를 채용한 생체물질고정용 기판 및 바이오칩 |
US7964380B2 (en) | 2005-01-21 | 2011-06-21 | Argylia Technologies | Nanoparticles for manipulation of biopolymers and methods of thereof |
JP2006236516A (ja) | 2005-02-28 | 2006-09-07 | Hitachi Ltd | 光へッド、光情報再生装置及びその製造方法 |
CN101160733B (zh) | 2005-04-18 | 2011-10-05 | 株式会社村田制作所 | 高频模块 |
US7355704B2 (en) | 2005-06-13 | 2008-04-08 | Solaris Nanosciences, Inc. | Chemical and biological sensing using metallic particles in amplifying and absorbing media |
JP2006352750A (ja) | 2005-06-20 | 2006-12-28 | Denso Corp | アンテナコイル、それを用いた共振アンテナ及びカード型無線機 |
DE102005039323B4 (de) | 2005-08-19 | 2009-09-03 | Infineon Technologies Ag | Leitbahnanordnung sowie zugehöriges Herstellungsverfahren |
US7410763B2 (en) | 2005-09-01 | 2008-08-12 | Intel Corporation | Multiplex data collection and analysis in bioanalyte detection |
TW200721064A (en) | 2005-11-29 | 2007-06-01 | Novatek Microelectronics Corp | Timing controller chip |
US8003408B2 (en) | 2005-12-29 | 2011-08-23 | Intel Corporation | Modification of metal nanoparticles for improved analyte detection by surface enhanced Raman spectroscopy (SERS) |
GB2434913A (en) | 2006-02-02 | 2007-08-08 | Xsil Technology Ltd | Support for wafer singulation |
US7812416B2 (en) | 2006-05-22 | 2010-10-12 | Cardiomems, Inc. | Methods and apparatus having an integrated circuit attached to fused silica |
JP2007318002A (ja) | 2006-05-29 | 2007-12-06 | Matsushita Electric Ind Co Ltd | 固体撮像装置及びその製造方法 |
EP2044485B1 (en) | 2006-06-28 | 2013-06-05 | Northwestern University | Etching hole arrays |
US8061017B2 (en) | 2006-08-28 | 2011-11-22 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | Methods of making coil transducers |
US7847669B2 (en) | 2006-12-06 | 2010-12-07 | Georgia Tech Research Corporation | Micro-electromechanical switched tunable inductor |
US7556440B2 (en) | 2006-12-22 | 2009-07-07 | Lightwire Inc. | Dual-lensed unitary optical receiver assembly |
KR100849791B1 (ko) | 2007-03-12 | 2008-07-31 | 삼성전기주식회사 | 캐패시터 내장형 인쇄회로기판 |
JP2008225339A (ja) | 2007-03-15 | 2008-09-25 | Hitachi Cable Ltd | 光学系接続構造、光学部材及び光伝送モジュール |
US8096147B2 (en) | 2007-03-28 | 2012-01-17 | Life Bioscience, Inc. | Methods to fabricate a photoactive substrate suitable for shaped glass structures |
JP4458296B2 (ja) | 2007-03-30 | 2010-04-28 | Tdk株式会社 | 誘電体共振器、誘電体フィルタ及びその特性調整方法 |
US8143431B2 (en) | 2007-06-05 | 2012-03-27 | Air Products And Chemicals, Inc. | Low temperature thermal conductive inks |
WO2008154931A1 (en) | 2007-06-18 | 2008-12-24 | Danmarks Tekniske Universitet (Technical University Of Denmark) | Adsorbent beads suitable for use in separation of biological molecules |
TW200905703A (en) | 2007-07-27 | 2009-02-01 | Delta Electronics Inc | Magnetic device and manufacturing method thereof |
US8492315B2 (en) | 2007-08-28 | 2013-07-23 | Life Bioscience, Inc. | Method of providing a pattern of biological-binding areas for biological testing |
US8211625B2 (en) | 2007-11-07 | 2012-07-03 | Massachusetts Institute Of Technology | Method of forming a locally periodic 3D structure with larger-scale variation in periodic properties and applications thereof |
JP5133047B2 (ja) * | 2007-12-28 | 2013-01-30 | 太陽誘電株式会社 | 電子部品の製造方法 |
US7792823B2 (en) | 2008-01-15 | 2010-09-07 | International Business Machines Corporation | Maintained symbol table only index |
WO2009111583A1 (en) | 2008-03-04 | 2009-09-11 | The Regents Of The University Of California | Microlens arrays for enhanced light concentration |
CN101970228A (zh) | 2008-03-12 | 2011-02-09 | 大日本印刷株式会社 | 三维加工用装饰片材 |
US8076162B2 (en) | 2008-04-07 | 2011-12-13 | Life Bioscience, Inc. | Method of providing particles having biological-binding areas for biological applications |
US7948342B2 (en) | 2008-07-24 | 2011-05-24 | Cutt-A-Watt Enterprises, Llc | Electromotive rectification system |
US20100022416A1 (en) | 2008-07-25 | 2010-01-28 | Life Bioscience, Inc. | Assay plates, methods and systems having one or more etched features |
US20100237462A1 (en) | 2009-03-18 | 2010-09-23 | Benjamin Beker | Package Level Tuning Techniques for Propagation Channels of High-Speed Signals |
WO2010114654A1 (en) | 2009-04-03 | 2010-10-07 | Research Triangle Institute | Cantilever-based mems optical scanning apparatus, system, and method |
KR100941691B1 (ko) | 2009-04-10 | 2010-02-12 | (주)제이스 | 감광성 유리 기판, 이의 제조 방법 및 반도체 프로브 칩 |
US7989248B2 (en) | 2009-07-02 | 2011-08-02 | Advanced Microfab, LLC | Method of forming monolithic CMOS-MEMS hybrid integrated, packaged structures |
JP5460155B2 (ja) * | 2009-07-14 | 2014-04-02 | 新光電気工業株式会社 | キャパシタ及び配線基板 |
CA2768963C (en) | 2009-07-24 | 2019-11-26 | Amazentis Sa | Compounds, compositions and methods for protecting brain health in neurodegenerative disorders |
TWI410380B (zh) | 2009-11-11 | 2013-10-01 | Ind Tech Res Inst | 光敏玻璃微結構之製造方法及用以製造該微結構之系統 |
US8479375B2 (en) | 2010-01-13 | 2013-07-09 | The Aerospace Corporation | Method of making an embedded electromagnetic device |
US20110217657A1 (en) | 2010-02-10 | 2011-09-08 | Life Bioscience, Inc. | Methods to fabricate a photoactive substrate suitable for microfabrication |
US8709702B2 (en) | 2010-02-10 | 2014-04-29 | 3D Glass Solutions | Methods to fabricate a photoactive substrate suitable for microfabrication |
US9275934B2 (en) | 2010-03-03 | 2016-03-01 | Georgia Tech Research Corporation | Through-package-via (TPV) structures on inorganic interposer and methods for fabricating same |
US8411459B2 (en) | 2010-06-10 | 2013-04-02 | Taiwan Semiconductor Manufacturing Company, Ltd | Interposer-on-glass package structures |
US9564320B2 (en) | 2010-06-18 | 2017-02-07 | Soraa, Inc. | Large area nitride crystal and method for making it |
US8492818B2 (en) * | 2010-09-14 | 2013-07-23 | International Business Machines Corporation | High capacitance trench capacitor |
JP5644340B2 (ja) | 2010-10-04 | 2014-12-24 | 株式会社デンソー | キャパシタ構造体およびその製造方法 |
US8502340B2 (en) * | 2010-12-09 | 2013-08-06 | Tessera, Inc. | High density three-dimensional integrated capacitors |
US8835217B2 (en) | 2010-12-22 | 2014-09-16 | Intel Corporation | Device packaging with substrates having embedded lines and metal defined pads |
JP2012194455A (ja) | 2011-03-17 | 2012-10-11 | Enplas Corp | レンズアレイ |
US9287614B2 (en) | 2011-08-31 | 2016-03-15 | The Regents Of The University Of Michigan | Micromachined millimeter-wave frequency scanning array |
JP2013062473A (ja) | 2011-09-15 | 2013-04-04 | Toppan Printing Co Ltd | 配線基板およびその製造方法 |
JP5541425B2 (ja) | 2012-01-16 | 2014-07-09 | 株式会社村田製作所 | Rf信号用遮断装置 |
JP6011958B2 (ja) | 2012-03-28 | 2016-10-25 | 株式会社エンプラス | 光レセプタクルおよびこれを備えた光モジュール |
JP2013217989A (ja) | 2012-04-04 | 2013-10-24 | Hitachi Chemical Co Ltd | 光ファイバコネクタ |
US8896521B2 (en) | 2012-04-24 | 2014-11-25 | Qualcomm Mems Technologies, Inc. | Metal-insulator-metal capacitors on glass substrates |
US8815638B2 (en) | 2012-06-19 | 2014-08-26 | E I Du Pont De Nemours And Company | Method of manufacturing thick-film electrode |
US10115671B2 (en) | 2012-08-03 | 2018-10-30 | Snaptrack, Inc. | Incorporation of passives and fine pitch through via for package on package |
US9446590B2 (en) | 2012-08-16 | 2016-09-20 | Hewlett-Packard Development Company, L.P. | Diagonal openings in photodefinable glass |
US8872349B2 (en) | 2012-09-11 | 2014-10-28 | Intel Corporation | Bridge interconnect with air gap in package assembly |
US20150277047A1 (en) | 2012-09-12 | 2015-10-01 | Life Bioscience, Inc. | Methods of fabricating photoactive substrates suitable for electromagnetic transmission and filtering applications |
US20140104284A1 (en) | 2012-10-16 | 2014-04-17 | Qualcomm Mems Technologies, Inc. | Through substrate via inductors |
CN104884243B (zh) | 2012-10-19 | 2017-07-18 | 新泽西鲁特格斯州立大学 | 制备石墨烯补强的聚合物基质复合材料的原位剥离法 |
US20140144681A1 (en) | 2012-11-27 | 2014-05-29 | Qualcomm Mems Technologies, Inc. | Adhesive metal nitride on glass and related methods |
US9035457B2 (en) | 2012-11-29 | 2015-05-19 | United Microelectronics Corp. | Substrate with integrated passive devices and method of manufacturing the same |
TWI565989B (zh) | 2012-12-14 | 2017-01-11 | 鴻海精密工業股份有限公司 | 光纖連接器 |
US20140247269A1 (en) | 2013-03-04 | 2014-09-04 | Qualcomm Mems Technologies, Inc. | High density, low loss 3-d through-glass inductor with magnetic core |
US9598787B2 (en) * | 2013-03-14 | 2017-03-21 | Rohm And Haas Electronic Materials Llc | Method of filling through-holes |
US20140272688A1 (en) | 2013-03-15 | 2014-09-18 | Photronics, Inc. | Grayscale lithography of photo definable glass |
JP6015567B2 (ja) | 2013-06-12 | 2016-10-26 | 株式会社デンソー | 貫通型コンデンサ |
US9202888B2 (en) | 2013-06-18 | 2015-12-01 | Stephen P. Barlow | Trench high electron mobility transistor device |
US9093975B2 (en) | 2013-08-19 | 2015-07-28 | Harris Corporation | Microelectromechanical systems comprising differential inductors and methods for making the same |
US9449753B2 (en) | 2013-08-30 | 2016-09-20 | Qualcomm Incorporated | Varying thickness inductor |
WO2015032062A1 (zh) * | 2013-09-06 | 2015-03-12 | Chang Yu-Chun | 液态玻璃的应用 |
KR20160036666A (ko) | 2013-09-27 | 2016-04-04 | 인텔 코포레이션 | 수동 부품용 중첩체 기판을 구비한 다이 패키지 |
KR20160067940A (ko) | 2013-10-07 | 2016-06-14 | 코닌클리케 필립스 엔.브이. | 페라이트 막대들을 제조하기 위한 정밀 배치 생성 방법 |
EP3084491B1 (en) | 2013-12-19 | 2019-09-25 | 3M Innovative Properties Company | Multimode optical connector |
KR101519760B1 (ko) * | 2013-12-27 | 2015-05-12 | 전자부품연구원 | 금속 배선의 형성 방법 및 이에 의해 제조된 금속 배선 기판 |
US20150201495A1 (en) | 2014-01-14 | 2015-07-16 | Qualcomm Incorporated | Stacked conductive interconnect inductor |
WO2015112903A1 (en) | 2014-01-24 | 2015-07-30 | 3D Glass Solutions, Inc | Methods of fabricating photoactive substrates for micro-lenses and arrays |
KR101940981B1 (ko) | 2014-05-05 | 2019-01-23 | 3디 글래스 솔루션즈 인코포레이티드 | 2d 및 3d 인덕터 안테나 및 변압기 제작 광 활성 기판 |
KR102233579B1 (ko) | 2014-08-12 | 2021-03-30 | 삼성전자주식회사 | 극자외선 리소그래피용 펠리클 |
US9647306B2 (en) | 2015-03-04 | 2017-05-09 | Skyworks Solutions, Inc. | RF filter comprising N coaxial resonators arranged in a specified interdigitation pattern |
US20160265974A1 (en) | 2015-03-09 | 2016-09-15 | Corning Incorporated | Glass waveguide spectrophotometer |
US9913405B2 (en) * | 2015-03-25 | 2018-03-06 | Globalfoundries Inc. | Glass interposer with embedded thermoelectric devices |
US9385083B1 (en) | 2015-05-22 | 2016-07-05 | Hrl Laboratories, Llc | Wafer-level die to package and die to die interconnects suspended over integrated heat sinks |
US9853624B2 (en) | 2015-06-26 | 2017-12-26 | Qorvo Us, Inc. | SAW resonator with resonant cavities |
US9712131B2 (en) | 2015-09-15 | 2017-07-18 | Karl L. Thorup | High isolation power combiner/splitter and coupler |
US10070533B2 (en) | 2015-09-30 | 2018-09-04 | 3D Glass Solutions, Inc. | Photo-definable glass with integrated electronics and ground plane |
WO2017127197A1 (en) | 2016-01-21 | 2017-07-27 | Applied Materials, Inc. | Process and chemistry of plating of through silicon vias |
WO2017132280A2 (en) | 2016-01-31 | 2017-08-03 | 3D Glass Solutions, Inc. | Multi-layer photo definable glass with integrated devices |
US11161773B2 (en) | 2016-04-08 | 2021-11-02 | 3D Glass Solutions, Inc. | Methods of fabricating photosensitive substrates suitable for optical coupler |
US9635757B1 (en) | 2016-08-11 | 2017-04-25 | Unimicron Technology Corp. | Circuit board and manufacturing method thereof |
US10367243B2 (en) | 2017-05-02 | 2019-07-30 | Bae Systems Information And Electronic Systems Integration Inc. | Miniature LTCC coupled stripline resonator filters for digital receivers |
JP7083600B2 (ja) | 2017-05-25 | 2022-06-13 | 凸版印刷株式会社 | キャパシタ内蔵ガラス回路基板及びその製造方法 |
JP2019106429A (ja) * | 2017-12-11 | 2019-06-27 | 凸版印刷株式会社 | ガラス配線基板、その製造方法及び半導体装置 |
-
2019
- 2019-03-28 KR KR1020197026546A patent/KR102145746B1/ko active IP Right Grant
- 2019-03-28 EP EP19784673.6A patent/EP3643148A4/en active Pending
- 2019-03-28 WO PCT/US2019/024496 patent/WO2019199470A1/en unknown
- 2019-03-28 US US16/482,889 patent/US11076489B2/en active Active
- 2019-03-28 JP JP2019543860A patent/JP6888105B2/ja active Active
- 2019-03-28 KR KR1020207020394A patent/KR102626372B1/ko active IP Right Grant
-
2021
- 2021-05-19 JP JP2021084312A patent/JP7245547B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006179564A (ja) | 2004-12-21 | 2006-07-06 | Nec Corp | 半導体接続基板、半導体装置、半導体デバイス及び半導体基板並びに半導体接続基板の製造方法 |
KR101167691B1 (ko) | 2011-08-09 | 2012-07-20 | 주식회사 비티엔아이티솔루션스 | 감광성 유리 기판을 구비한 적층형 캐패시터, 이의 제조방법 및 이의 용도 |
US20140035935A1 (en) | 2012-08-03 | 2014-02-06 | Qualcomm Mems Technologies, Inc. | Passives via bar |
WO2017147511A1 (en) * | 2016-02-25 | 2017-08-31 | 3D Glass Solutions, Inc. | 3d capacitor and capacitor array fabricating photoactive substrates |
JP2019114723A (ja) | 2017-12-25 | 2019-07-11 | 凸版印刷株式会社 | キャパシタ内蔵ガラス回路基板及びキャパシタ内蔵ガラス回路基板の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20190119609A (ko) | 2019-10-22 |
KR20200130678A (ko) | 2020-11-19 |
US11076489B2 (en) | 2021-07-27 |
JP6888105B2 (ja) | 2021-06-16 |
JP2020520550A (ja) | 2020-07-09 |
WO2019199470A1 (en) | 2019-10-17 |
US20200383209A1 (en) | 2020-12-03 |
KR102626372B1 (ko) | 2024-01-16 |
JP7245547B2 (ja) | 2023-03-24 |
EP3643148A4 (en) | 2021-03-31 |
JP2021145131A (ja) | 2021-09-24 |
EP3643148A1 (en) | 2020-04-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102145746B1 (ko) | Rf 집적형 전력 조절 커패시터 | |
US11929199B2 (en) | 2D and 3D inductors fabricating photoactive substrates | |
US11264167B2 (en) | 3D capacitor and capacitor array fabricating photoactive substrates | |
KR20200035154A (ko) | 저 삽입 손실 rf 전송 라인 | |
CA3107810C (en) | Heterogenous integration for rf, microwave and mm wave systems in photoactive glass substrates | |
KR102687037B1 (ko) | 초고표면적 집적 커패시터 | |
US20210313417A1 (en) | Radio frequency (RF) integrated power-conditioning capacitor | |
US20190093233A1 (en) | Non-Seed Layer Electroless Plating of Ceramic | |
WO2022265783A1 (en) | Radio frequency (rf) integrated power-conditioning capacitor | |
CA3051140A1 (en) | Rf integrated power condition capacitor | |
US20220157524A1 (en) | 3D Capacitor and Capacitor Array Fabricating Photoactive Substrates | |
WO2023146729A1 (en) | 3d capacitor and capacitor array fabricating photoactive substrates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
A302 | Request for accelerated examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
A107 | Divisional application of patent | ||
GRNT | Written decision to grant |