KR102130484B1 - Cathode active material and manufacturing method thereof - Google Patents
Cathode active material and manufacturing method thereof Download PDFInfo
- Publication number
- KR102130484B1 KR102130484B1 KR1020180126427A KR20180126427A KR102130484B1 KR 102130484 B1 KR102130484 B1 KR 102130484B1 KR 1020180126427 A KR1020180126427 A KR 1020180126427A KR 20180126427 A KR20180126427 A KR 20180126427A KR 102130484 B1 KR102130484 B1 KR 102130484B1
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- positive electrode
- electrode active
- secondary battery
- particles
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/1242—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]-, e.g. LiMn2O4, Li[MxMn2-x]O4
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/12—Manganates manganites or permanganates
- C01G45/1221—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
- C01G45/125—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3
- C01G45/1257—Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type[MnO3]n-, e.g. Li2MnO3, Li2[MxMn1-xO3], (La,Sr)MnO3 containing lithium, e.g. Li2MnO3, Li2[MxMn1-xO3
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 이차전지용 양극 활물질 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 1차 입자가 응집된 2차 입자로 이루어진 리튬 복합 산화물에 있어서, 1차 입자의 주변부에 망간 산화물이 존재하고, 상기 1차 입자에서 Mn 산화물의 농도가 입자 중심으로부터 입자 표면까지 농도구배를 나타내고, 상기 2차 입자에서 Mn 산화물의 농도가 입자 중심으로부터 입자 표면까지 농도구배를 나타내며, 1차 입자 내에서 리튬 이온 이동 경로가 형성되는 것인 리튬 복합 산화물 및 이의 제조 방법에 관한 것이다.
본 발명에 의한 이차전지용 양극활물질을 포함하는 이차 전지는 고용량, 고출력을 나타내면서도 안전성이 높은 특징을 나타낸다.The present invention relates to a cathode active material for a secondary battery and a method for manufacturing the same, and more specifically, in a lithium composite oxide composed of secondary particles in which primary particles are aggregated, manganese oxide is present in the periphery of the primary particles, and the above 1 The concentration of Mn oxide in the secondary particles represents the concentration gradient from the particle center to the particle surface, and the concentration of Mn oxide in the secondary particles represents the concentration gradient from the particle center to the particle surface, and the lithium ion migration path in the primary particle is It relates to a lithium composite oxide to be formed and a method for manufacturing the same.
The secondary battery including the positive electrode active material for a secondary battery according to the present invention exhibits high capacity and high output, yet exhibits high safety characteristics.
Description
본 발명은 이차전지용 양극 활물질 및 이의 제조 방법에 관한 것으로서, 더욱 상세하게는 1차 입자가 응집된 2차 입자로 이루어진 리튬 복합 산화물에 있어서, 1차 입자의 주변부에 망간 산화물이 존재하고, Mn 산화물의 농도가 상기 1차 입자의 중심으로부터 입자 표면까지 농도구배를 나타내고, Mn 산화물의 농도가 상기 2차 입자에서 입자 표면에서 중심 방향으로 농도구배를 나타내며, 1차 입자 내에서 리튬 이온 이동 경로가 포함되는 것인 리튬 복합 산화물 및 이의 제조 방법에 관한 것이다.The present invention relates to a cathode active material for a secondary battery and a method for manufacturing the same, and more particularly, in a lithium composite oxide composed of secondary particles in which primary particles are aggregated, manganese oxide is present in the periphery of the primary particles, and Mn oxide The concentration of represents the concentration gradient from the center of the primary particle to the particle surface, the concentration of Mn oxide represents the concentration gradient from the secondary particle to the center of the particle surface, and the lithium ion migration path is included in the primary particle It relates to a lithium composite oxide and a method for manufacturing the same.
1990년대 초에 개발되어 지금까지 사용되고 있는 리튬 이차 전지는 가벼운 소형의 대용량 전지로서 휴대기기의 전원으로서 각광받고 있다. 리튬 이차 전지는, 수계 전해액을 사용하는 니켈-수소(Ni-MH), 니켈-카드뮴(Ni-Cd), 황산-납 전지 등과 같은 재래식 전지에 비해 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점이 있다. 특히 최근에는 내연기관과 리튬 이차 전지를 혼성화(hybrid)한 전기 자동차용 동력원에 관한 연구가 미국, 일본, 유럽 등에서 활발히 진행되고 있다.The lithium secondary battery, which was developed in the early 1990s and has been used so far, has been spotlighted as a power source for portable devices as a small, compact and large capacity battery. Lithium secondary batteries have an advantage of higher operating voltage and significantly higher energy density than conventional batteries such as nickel-hydrogen (Ni-MH), nickel-cadmium (Ni-Cd), and sulfuric acid-lead batteries using aqueous electrolytes. . In particular, recently, studies on power sources for electric vehicles that hybridize internal combustion engines and lithium secondary batteries have been actively conducted in the United States, Japan, and Europe.
리튬 이차 전지를 이용한 전기 자동차용 대형 전지의 제작이 에너지 밀도의 관점에서 고려되고 있으나, 아직까지는 안전성을 고려하여 니켈 수소 전지가 전기 자동차에 사용되고 있다. 리튬 이차 전지는 높은 가격과 안전성의 문제로 전기 자동차에 적용하기에는 한계가 있다. 특히, 현재 상용화된 LiCoO2나 LiNiO2를 양극활 물질로서 포함하는 리튬 이차 전지는 과충전 상태의 전지를 200 내지 270℃에서 가열하면 급격한 구조변화가 나타난다. 그 후, 이와 같은 구조변화에 의해 격자 내의 산소가 방출되어 충전시의 탈 리튬에 의해 불안정한 결정 구조를 보인다. 즉, 상용화된 리튬 이차 전지는 열에 매우 열악한 단점을 갖는다.Production of a large-sized battery for an electric vehicle using a lithium secondary battery is considered from the viewpoint of energy density, but a nickel-metal hydride battery is still used in electric vehicles in consideration of safety. Lithium secondary batteries are limited in application to electric vehicles due to high price and safety issues. In particular, a lithium secondary battery including LiCoO 2 or LiNiO 2 commercially available as a positive electrode active material exhibits a rapid structural change when a battery in an overcharged state is heated at 200 to 270°C. Thereafter, oxygen in the lattice is released due to such a structural change, resulting in an unstable crystal structure due to de-lithium during charging. That is, the commercialized lithium secondary battery has a very poor disadvantage to heat.
이를 개선하기 위해 니켈의 일부를 전이금속 원소로 치환하여 발열 시작온도를 더욱 높게 만들거나, 급격한 발열을 방지하는 등의 연구가 시도되고 있다. 니켈의 일부를 코발트로 치환한 LiNi1-xCoxO2(x=0.1 내지 0.3) 물질은 우수한 충방전 특성과 수명특성을 보이나, 열적 안전성 문제는 해결하지 못했다. 또한, 니켈 대신 망간을 일부 치환한 Li-Ni-Mn계 복합 산화물, 또는 니켈을 망간 및 코발트로 치환한 Li-Ni-Mn-Co계 복합 산화물과 이들의 제조에 관련된 기술도 다수 개발되었다. 이와 관련하여, 일본특허 제3890185호는 LiNiO2나 LiMnO2에 전이금속을 부분 치환하는 개념이 아니라 망간과 니켈 화합물을 원자레벨에서 균일하게 분산시켜 고용체를 만드는 새로운 개념의 양극 활물질을 개시하고 있다. 또한, 유럽특허 제0 918 041호 및 미국특허 제6,040,090호는 니켈을 망간 및 코발트로 치환한 Li-Ni-Mn-Co계 복합 산화물을 개시하고 있는데, 상기 문헌에서 개시된 복합 산화물이 니켈 및 코발트만으로 구성된 재료에 비해 열적 안정성은 향상되었으나, 니켈계 화합물의 열적 안정성을 완전히 해결하지는 못함을 보여준다.In order to improve this, studies have been attempted to replace some of the nickel with a transition metal element to make the starting temperature higher, or to prevent rapid heating. LiNi 1-x Co x O 2 (x=0.1 to 0.3) material in which part of nickel is substituted with cobalt shows excellent charge and discharge characteristics and life characteristics, but does not solve the thermal safety problem. In addition, Li-Ni-Mn-based composite oxides in which manganese is partially substituted instead of nickel, or Li-Ni-Mn-Co-based composite oxides in which nickel is replaced with manganese and cobalt, and a number of technologies related to their production have also been developed. In this regard, Japanese Patent No. 3890185 discloses a new concept of a positive electrode active material that disperses manganese and nickel compounds uniformly at the atomic level, rather than partially displacing a transition metal in LiNiO 2 or LiMnO 2 , to form a solid solution. In addition, European Patent Nos. 0 918 041 and U.S. Patent No. 6,040,090 disclose Li-Ni-Mn-Co-based composite oxides in which nickel is replaced with manganese and cobalt. It shows that the thermal stability is improved compared to the constructed material, but does not completely solve the thermal stability of the nickel-based compound.
이와 같은 문제를 해결하기 위해, 표면을 코팅하는 등의 방법을 이용하여 전해질과 접하는 양극 활물질의 표면 조성을 변화시키는 방법이 제안되었다. 양극 활물질을 코팅하는 코팅량은 일반적으로 양극 활물질 대비 1 내지 2 중량% 이하의 적은 양이다. 적은 양의 코팅물질은 수 나노미터 정도의 매우 얇은 박막층을 형성하여 전해액과의 부반응을 억제하거나, 코팅 후 고온에서의 열처리에 의해 입자의 표면에 고용체를 형성하여 입자 내부와 다른 금속 조성을 갖게 한다. 이때, 코팅 물질과 결합한 입자 표면층은 수십 나노미터 이하로 얇으며, 코팅 층과 입자 벌크 사이의 급격한 조성차이로, 전지를 수백 사이클로 장기 사용하면 그 효과가 감소한다. 또한, 코팅 층이 표면에 고루 분포되지 않은 불완전한 코팅에 의해서도 전지의 효과가 감소한다는 문제가 있다.To solve this problem, a method of changing the surface composition of the positive electrode active material in contact with the electrolyte using a method such as coating a surface has been proposed. The coating amount for coating the positive electrode active material is generally 1 to 2% by weight or less compared to the positive electrode active material. A small amount of the coating material forms a very thin thin film layer of about several nanometers to suppress side reactions with the electrolyte or to form a solid solution on the surface of the particle by heat treatment at high temperature after coating to have a metal composition different from the inside of the particle. At this time, the particle surface layer combined with the coating material is thin to several tens of nanometers or less, and due to the rapid compositional difference between the coating layer and the particle bulk, the effect is reduced when the battery is used for several hundred cycles for a long time. In addition, there is a problem that the effect of the battery is reduced even by an incomplete coating in which the coating layer is not evenly distributed on the surface.
이와 관련하여, 대한민국 특허공개 제10-2005-0083869호는 금속 조성의 농도구배를 갖는 리튬 전이금속 산화물을 개시하고 있다. 그러나, 상기 문헌에서 합성된 산화물은 내부 층과 외부 층의 금속 조성이 다르나, 생성된 양극 활물질에서 금속 조성이 점진적으로 변하지 않는다. 이는 열처리 과정을 통해 해결할 수 있으나, 850℃ 이상의 높은 온도에서는 금속 이온들의 열 확산에 의해 농도구배차가 거의 생기지 않는다.In this regard, Korean Patent Publication No. 10-2005-0083869 discloses a lithium transition metal oxide having a concentration gradient of a metal composition. However, the oxide synthesized in the above document has a different metal composition in the inner layer and the outer layer, but the metal composition in the produced positive electrode active material does not gradually change. This can be solved through a heat treatment process, but at a high temperature of 850° C. or higher, a concentration gradient rarely occurs due to thermal diffusion of metal ions.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 1차 입자 및 2차 입자 내에서 Mn 화합물이 농도 구배를 나타내는 새로운 화합물 및 이의 제조 방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a novel compound and a method for producing the Mn compound exhibiting a concentration gradient in the primary particles and the secondary particles in order to solve the problems of the prior art as described above.
본 발명은 상기와 같은 과제를 해결하기 위하여 복수의 1차 입자가 응집된 2차 입자를 포함하고, 상기 1차 입자의 표면부에 망간 산화물을 포함하는 이차전지용 양극 활물질을 제공한다.The present invention provides a positive electrode active material for a secondary battery including secondary particles in which a plurality of primary particles are aggregated, and manganese oxide on a surface portion of the primary particles to solve the above problems.
본 발명에 의한 이차전지용 양극 활물질은 상기 2차 입자 내부의 1차 입자 사이에 망간 산화물을 포함하는 것을 특징으로 한다. 본 발명에 의한 이차전지용 양극활물질은 2차 입자를 구성하는 1차 입자 사이의 경계면(boundary)에도 망간 산화물을 포함하는 것을 특징으로 한다. The positive electrode active material for a secondary battery according to the present invention is characterized in that it contains manganese oxide between the primary particles inside the secondary particles. The positive electrode active material for a secondary battery according to the present invention is characterized by including manganese oxide in a boundary between primary particles constituting secondary particles.
본 발명에 의한 이차전지용 양극 활물질은 상기 1차 입자의 표면부에서의 Mn 농도가 1차 입자 내부에서의 Mn 농도보다 높은 것을 특징으로 한다.The positive electrode active material for a secondary battery according to the present invention is characterized in that the Mn concentration in the surface portion of the primary particles is higher than the Mn concentration in the primary particles.
본 발명에 의한 이차전지용 양극 활물질에 있어서, 상기 1차 입자는 1차 입자의 중심부로부터 표면부까지 Mn 농도가 구배를 갖는 것을 특징으로 한다. In the positive electrode active material for a secondary battery according to the present invention, the primary particles are characterized by having a gradient of Mn concentration from the center to the surface of the primary particles.
본 발명에 의한 이차전지용 양극 활물질에 있어서, 상기 Mn 산화물은 Li2MnO3, LiMn2O4, MnO2, LiwMn2O4 (0<w<1), 및 Li2MnO3(1-v)LiMn2O4 (0<v<1)으로 이루어진 그룹에서 선택되는 것을 특징으로 한다. 본 발명에 의한 이차전지용 양극 활물질은 Mn을 포함하지 않는 활물질을 제조 후 망간이 포함된 용액으로 수세하는 과정에서 2차 입자 표면 및 2차 입자 내부, 구체적으로는 2차 입자 내의 1차 입자의 경계에 망간이 존재하게 되고, 이후 소성 과정에서 상기 망간이 산화되면서 망간 산화물이 형성된다. 본 발명에 의한 이차전지용 양극활물질은 망간과 산소와의 결합비에 의해 Li2MnO3, LiMn2O4, MnO2, LiwMn2O4 (0<w<1), 및 Li2MnO3(1-v)LiMn2O4 (0<v<1)으로 이루어진 그룹에서 선택되는 망간 산화물이 형성된다. In the positive electrode active material for a secondary battery according to the present invention, the Mn oxide is Li 2 MnO 3 , LiMn 2 O 4 , MnO 2 , Li w Mn 2 O 4 (0<w<1), and Li 2 MnO 3 (1- v)LiMn 2 O 4 (0<v<1). The positive electrode active material for a secondary battery according to the present invention prepares an active material that does not contain Mn and then washes it with a solution containing manganese in the secondary particle surface and inside the secondary particles, specifically the boundary between the primary particles in the secondary particles Manganese is present, and then manganese oxide is formed as the manganese is oxidized in the firing process. The positive electrode active material for a secondary battery according to the present invention is Li 2 MnO 3 , LiMn 2 O 4 , MnO 2 , Li w Mn 2 O 4 (0<w<1), and Li 2 MnO 3 according to a binding ratio between manganese and oxygen. Manganese oxide selected from the group consisting of (1-v)LiMn 2 O 4 (0<v<1) is formed.
본 발명에 의한 이차전지용 양극활물질에 있어서, 상기 양극활물질은 XRD 분석시 (020), (003), (101), (006), (102), (104), (005), (009), (107), (018), (110) 및 (113) 위치에서 피크를 나타내는 것을 특징으로 한다. In the positive electrode active material for a secondary battery according to the present invention, the positive electrode active material is (020), (003), (101), (006), (102), (104), (005), (009), during XRD analysis It is characterized by showing peaks at positions (107), (018), (110) and (113).
본 발명에 의한 이차전지용 양극활물질은 XRD 분석시 2θ = 20° 내지 21° 사이에서 Li2MnO3에 의한 (020) 피크가 나타나는 것을 특징으로 한다. The positive electrode active material for a secondary battery according to the present invention is characterized in that (020) peaks due to Li 2 MnO 3 appear between 2θ = 20° to 21° during XRD analysis.
본 발명에 의한 이차전지용 양극활물질은 XRD 분석시 2θ = 36 내지 38°, 44 내지 45° 및 65 내지 66° 사이에서 Li1-xMn2O4의 피크가 나타나는 것을 특징으로 한다. The positive electrode active material for a secondary battery according to the present invention is characterized in that peaks of Li 1-x Mn 2 O 4 appear between 2θ = 36 to 38°, 44 to 45°, and 65 to 66° during XRD analysis.
본 발명에 의한 이차전지용 양극활물질은 충전전 XRD 분석시에 대비하여 충전후 XRD 분석시 (104) 위치에서의 피크 강도 증가율이 3% 이하인 것을 특징으로 한다. The positive electrode active material for a secondary battery according to the present invention is characterized in that the peak intensity increase rate at the (104) position during XRD analysis after charging is 3% or less in comparison with the case of XRD analysis before charging.
본 발명에 의한 이차전지용 양극활물질은 1차 입자 내에 2차 입자의 중심 방향으로 배열되는 리튬 이온 이동 경로를 포함하는 것을 특징으로 한다. The positive electrode active material for a secondary battery according to the present invention is characterized in that it includes a lithium ion movement path arranged in the center direction of the secondary particles in the primary particles.
본 발명에 의한 이차전지용 양극활물질은 상기 Mn 산화물이 2차 입자 표면으로부터 1 ㎛ 이내에 나타나는 것을 특징으로 한다. The positive electrode active material for a secondary battery according to the present invention is characterized in that the Mn oxide appears within 1 μm from the surface of the secondary particles.
본 발명에 의한 이차전지용 양극활물질은 하기 화학식 1로 표시되는 것을 특징으로 한다. The positive electrode active material for a secondary battery according to the present invention is characterized by being represented by the following formula (1).
[화학식 1]Li1+aNi1-(x+y+z)CoxAlyMnzM1bO2 [Formula 1] Li 1+a Ni 1-(x+y+z) Co x Al y Mn z M1 b O 2
(상기 화학식 1에서 0≤x≤0.1, 0≤y≤0.02, 0≤z≤0.0006, 0≤a≤0.1, 0≤b≤0.1 이고,(In the
M1 은 Al, Ni, Mn, Cr, Fe, Mg, Sr, V, Zn, W, Zr, B, Ba, Sc, Cu, Ti, Co, 희토류 원소 및 이들의 조합에서 선택되는 하나 이상의 원소이다.)M1 is one or more elements selected from Al, Ni, Mn, Cr, Fe, Mg, Sr, V, Zn, W, Zr, B, Ba, Sc, Cu, Ti, Co, rare earth elements and combinations thereof. )
본 발명은 또한, 본 발명에 의한 이차전지용 양극 활물질을 포함하는 이차전지를 제공한다.The present invention also provides a secondary battery comprising the positive electrode active material for a secondary battery according to the present invention.
본 발명은 또한, The present invention also
니켈, 및 코발트를 포함하는 전구체를 제조하는 제1단계;A first step of preparing a precursor comprising nickel and cobalt;
상기 전구체에 리튬 화합물 및 알루미늄 화합물을 첨가하고 열처리하여 복합 금속 화합물을 제조하는 제2단계; 및A second step of preparing a composite metal compound by adding a lithium compound and an aluminum compound to the precursor and heat-treating it; And
상기 제조된 복합 금속 화합물을 망간을 포함하는 용액으로 수세하고 건조하는 제3단계;를 포함하는 이차전지용 양극 활물질의 제조방법을 제공한다.It provides a method for producing a positive electrode active material for a secondary battery comprising a; a third step of washing and drying the prepared composite metal compound with a solution containing manganese.
본 발명에 의한 이차전지용 양극 활물질은 1차 입자 주변부에 망간 산화물이 존재하고, 2차 입자의 내부에서 망간 산화물이 입자 중심으로부터 입자 표면으로 농도 구배를 나타내며, 본 발명에 의한 이차전지용 양극 활물질을 포함하는 이차 전지는 고용량, 고출력을 나타내면서도 안전성이 높은 특징을 나타낸다.The positive electrode active material for a secondary battery according to the present invention has manganese oxide in the periphery of the primary particles, and in the interior of the secondary particles, manganese oxide shows a concentration gradient from the center of the particle to the particle surface, and includes the positive electrode active material for a secondary battery according to the present invention The secondary battery exhibits high capacity, high output, and high safety.
도 1 및 도 2는 본 발명의 일 실시예에 따라 제조된 이차전지 양극 활물질의 금속 농도를 EDX 를 측정한 결과를 나타낸다.
도 3은 본 발명의 일 실시예에 의한 이차전지용 양극 활물질에 대해 입자 표면에서부터 중심방향으로 금속 농도를 측정한 결과를 나타낸다.
도 4는 본 발명의 일 실시예에 의한 이차전지용 양극 활물질에 대해 입자 표면에서부터 중심방향으로 금속 농도를 측정한 결과를 나타낸다.
도 5 및 도 6은 본 발명의 일 실시예에 의한 이차전지용 양극 활물질에 대해 2차 입자 표면에서 중심 방향, 1차 입자 사이의 경계에서 1차 입자 내부 방향으로 금속 농도를 측정한 결과를 나타낸다.
도 7 및 도 8은 본 발명의 일 실시예에 의한 이차전지용 양극 활물질에 대해 XRD 측정한 결과를 나타낸다.
도 9는 본 발명의 일 실시예에 의한 이차전지용 양극 활물질에 대해 1차 입자의 다양한 위치에 존재하는 리튬 이온의 확산 경로를 확인한 결과 도면이다.
도 10은 본 발명의 일 실시예에 의한 이차전지용 양극 활물질을 이용하여 제조된 전지의 초기 용량을 확인한 결과 그래프이다.
도 11은 본 발명의 일 실시예에 의한 이차전지용 양극 활물질을 이용하여 제조된 전지의 수명을 상온(25℃)(A) 또는 고온(45℃)(B)에서 확인한 결과 그래프이다.
도 12 및 도 13은 본 발명의 일 실시예에 의한 이차전지용 양극 활물질을 이용하여 제조된 전지의 상온(25℃)에서 1회(A) 또는 50회(B) 충방전한 뒤, 그 특성을 확인한 결과 그래프이다.
도 14는 본 발명의 일 실시예 및 비교예에 의한 이차전지용 양극 활물질의 50회 충방전 전후 XRD 를 측정한 결과를 나타낸다.
도 15는 층상형 이차전지에서 충방전에 의한 cation migration 이 발생하는 모식도를 나타낸다.
도 16은 본 발명의 일 실시예(A) 및 비교예(B)에 의한 이차전지용 양극 활물질을 포함하는 이차전지의 50회 충방전한 전후의 XPS를 확인한 결과 그래프이다.
도 17 은 본 발명의 일 실시예에 의한 이차전지용 양극 활물질의 50회 충방전 전후 입자 내의 Li-F 를 측정한 결과를 나타낸다.1 and 2 show the results of measuring EDX for the metal concentration of the secondary battery positive electrode active material prepared according to an embodiment of the present invention.
Figure 3 shows the results of measuring the metal concentration in the center direction from the particle surface for the positive electrode active material for a secondary battery according to an embodiment of the present invention.
Figure 4 shows the results of measuring the metal concentration in the center direction from the particle surface for the positive electrode active material for a secondary battery according to an embodiment of the present invention.
5 and 6 show the results of measuring the metal concentration in the inner direction of the primary particle at the boundary between the secondary particle surface and in the center direction and the primary particle surface for the positive electrode active material for a secondary battery according to an embodiment of the present invention.
7 and 8 show the results of XRD measurements on the positive electrode active material for a secondary battery according to an embodiment of the present invention.
9 is a view showing a result of confirming a diffusion path of lithium ions present at various positions of primary particles for a positive electrode active material for a secondary battery according to an embodiment of the present invention.
10 is a graph showing the result of confirming the initial capacity of a battery manufactured using a positive electrode active material for a secondary battery according to an embodiment of the present invention.
11 is a graph showing the results of checking the life of a battery manufactured using a positive electrode active material for a secondary battery according to an embodiment of the present invention at room temperature (25°C) (A) or high temperature (45°C) (B).
12 and 13 are charged and discharged once (A) or 50 times (B) at room temperature (25°C) of a battery manufactured using a positive electrode active material for a secondary battery according to an embodiment of the present invention, and the characteristics thereof It is a graph as a result of checking.
14 shows the results of measuring XRD before and after 50 charges and discharges of the positive electrode active material for a secondary battery according to an embodiment and a comparative example of the present invention.
15 shows a schematic diagram of cation migration due to charge and discharge in a layered secondary battery.
16 is a graph showing XPS before and after charging and discharging 50 times of a secondary battery including a positive electrode active material for a secondary battery according to an embodiment (A) and a comparative example (B) of the present invention.
17 shows the results of measuring Li-F in particles before and after 50 charges and discharges of the positive electrode active material for a secondary battery according to an embodiment of the present invention.
이하, 본 발명을 하기 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 이들에 의해 본 발명이 제한되는 것은 아니다. 본 발명의 청구범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 갖고 동일한 작용 효과를 이루는 것은 어떠한 것이라도 본 발명의 기술적 범위에 포함된다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited by them. Anything that has substantially the same configuration and the same working effect as the technical idea described in the claims of the present invention is included in the technical scope of the present invention.
실시예 1. 리튬 복합 산화물 제조Example 1. Preparation of lithium composite oxide
공침반응에 의하여 Ni0.98Co0.02(OH)2로 표시되는 전구체를 제조하였다. 제조된 전구체에 리튬 화합물로서 LiOH 및 알루미늄 화합물로서 Al2O3를 1.4몰 첨가하고 열처리하여 리튬 이차 전지용 양극활물질을 제조하였다.A precursor represented by Ni 0.98 Co 0.02 (OH) 2 was prepared by a co-precipitation reaction. To the prepared precursor, LiOH as an aluminum compound and Al 2 O 3 as an aluminum compound were added in an amount of 1.4 mol and heat-treated to prepare a positive electrode active material for a lithium secondary battery.
제조된 복합 금속 화합물을 0.01 mol%의 Mn을 포함하는 수세 용액을 이용하여 수세하고, 150℃, 400 mmHg의 조건하에서 5시간 동안 건조시켜 Li1.01Ni0.913Co0.07Al0.014Mn0.0001O2으로 표시되는 이차전지 양극 활물질을 제조하였다.The prepared composite metal compound was washed with a water washing solution containing 0.01 mol% of Mn, dried for 5 hours at 150° C. and 400 mmHg, and secondary represented by Li 1.01 Ni 0.913 Co 0.07 Al 0.014 Mn 0.0001O2 A battery positive electrode active material was prepared.
실시예 2.Example 2.
제조된 복합 금속 화합물을 0.02 mol%의 Mn을 포함하는 수세 용액을 이용하여 수세 하는 것을 제외하고는, 실시예 1과 동일한 조건 및 방법으로 Li1.01Ni0.912Co0.07Al0.014Mn0.0002O2의 화학식으로 표시되는 이차전지 양극 활물질을 제조하였다.Except for washing the prepared composite metal compound using a water-washing solution containing 0.02 mol% Mn, the same conditions and methods as in Example 1 are indicated by the formula of Li 1.01 Ni 0.912 Co 0.07 Al 0.014 Mn 0.0002O2 Secondary battery positive electrode active material was prepared.
실시예 3. Example 3.
제조된 복합 금속 화합물을 0.03 mol%의 Mn을 포함하는 수세 용액을 이용하여 수세 하는 것을 제외하고는, 실시예 1과 동일한 조건 및 방법으로 Li1.01Ni0.911Co0.07Al0.014Mn0.0003O2의 화학식으로 표시되는 이차전지 양극 활물질을 제조하였다.Except for washing the prepared composite metal compound using a water-washing solution containing 0.03 mol% Mn, the same conditions and methods as in Example 1 show the formula of Li 1.01 Ni 0.911 Co 0.07 Al 0.014 Mn 0.0003O2 Secondary battery positive electrode active material was prepared.
실시예 4.Example 4.
제조된 복합 금속 화합물을 0.04 mol%의 Mn을 포함하는 수세 용액을 이용하여 수세 하는 것을 제외하고는, 실시예 1과 동일한 조건 및 방법으로 Li1.01Ni0.91Co0.07Al0.014Mn0.0004O2의 화학식으로 표시되는 이차전지 양극 활물질을 제조하였다.Except for washing the prepared composite metal compound using a water-washing solution containing 0.04 mol% Mn, the same conditions and methods as in Example 1 are indicated by the formula of Li 1.01 Ni 0.91 Co 0.07 Al 0.014 Mn 0.0004O2 Secondary battery positive electrode active material was prepared.
실시예 5.Example 5.
제조된 복합 금속 화합물을 0.05 mol%의 Mn을 포함하는 수세 용액을 이용하여 수세 하는 것을 제외하고는, 실시예 1과 동일한 조건 및 방법으로 Li1.01Ni0.909Co0.07Al0.014Mn0.0005O2의 화학식으로 표시되는 이차전지 양극 활물질을 제조하였다.Except for washing the prepared composite metal compound using a water washing solution containing 0.05 mol% of Mn, it is represented by the formula of Li 1.01 Ni 0.909 Co 0.07 Al 0.014 Mn 0.0005O2 in the same conditions and methods as in Example 1. Secondary battery positive electrode active material was prepared.
실시예 6.Example 6.
제조된 복합 금속 화합물을 0.06 mol%의 Mn을 포함하는 수세 용액을 이용하여 수세 하는 것을 제외하고는, 실시예 1과 동일한 조건 및 방법으로 Li1.01Ni0.908Co0.07Al0.014Mn0.006O2의 화학식으로 표시되는 이차전지 양극 활물질을 제조하였다.Except for washing the prepared composite metal compound using a water-washing solution containing 0.06 mol% of Mn, the same conditions and methods as in Example 1 show the formula of Li 1.01 Ni 0.908 Co 0.07 Al 0.014 Mn 0.006O2 Secondary battery positive electrode active material was prepared.
비교예 1. 망간으로 수세하지 않은 리튬 복합 산화물의 제조Comparative Example 1. Preparation of lithium composite oxide not washed with manganese
망간 함유 용액에 침지하여 수세하는 것을 제외하고는, 실시예 1과 동일한 조건 및 방법으로 Li1.01Ni0.914Co0.07Al0.014O2의 화학식으로 표시되는 리튬 복합 산화물을 제조하였다.A lithium composite oxide represented by the formula of Li 1.01 Ni 0.914 Co 0.07 Al 0.014 O 2 was prepared in the same conditions and methods as in Example 1, except that it was immersed in a manganese-containing solution and washed with water.
<실험예> EDX 측정<Experimental Example> EDX measurement
상기 실시예에서 제조된 양극 활물질에 대해 측정 비율을 다르게 하여 EDX 를 측정하고 그 결과를 도 1 및 도 2에 나타내었다. EDX was measured by varying the measurement ratio for the positive electrode active material prepared in the above example, and the results are shown in FIGS. 1 and 2.
도 1에서 Mn 함유 용액에 의해 수세된 본 발명의 양극 활물질의 경우 Mn 이 2차 입자의 표면에 존재하며, 측정 비율을 확대하여 측정한 도 2에서 2차 입자 표면에 존재하는 1차 입자 사이의 경계에도 Mn 이 존재하는 것을 확인할 수 있다. In the case of the positive electrode active material of the present invention washed with Mn-containing solution in FIG. 1, Mn is present on the surface of the secondary particles, and between the primary particles present on the surface of the secondary particles in FIG. It can be seen that Mn is also present at the boundary.
<실험예> 입자 내부 금속 농도 측정<Experimental Example> Measurement of metal concentration inside particles
실시예 4의 이차전지 양극 활물질에서의 망간, 코발트, 니켈 및 알루미늄의 농도 변화를 TEM 측정 결과로부터 2차 입자의 표면에서부터 중심방향으로 확인하고 그 결과를 도 3에 나타내었다.The concentration change of manganese, cobalt, nickel, and aluminum in the positive electrode active material of the secondary battery of Example 4 was confirmed from the TEM measurement results from the surface of the secondary particles to the center direction, and the results are shown in FIG. 3.
도 3에서 망간은 2차 입자의 표면 1 ㎛ 이내에 주로 위치하고, 최대 농도는 5 중량% 이하이고, 표면에서부터 중심방향으로 감소하는 농도구배를 나타내는 것을 확인할 수 있다. In FIG. 3, it can be seen that manganese is mainly located within 1 µm of the surface of the secondary particles, and the maximum concentration is 5% by weight or less, indicating a concentration gradient decreasing from the surface toward the center.
상기 TEM 측정 범위에서의 망간, 코발트, 니켈 및 알루미늄의 중량% 및 원자% 를 측정하고 하기 표 2 및 도 4에 나타내었다.Manganese, cobalt, nickel and aluminum in the TEM measurement range by weight and atomic% were measured and are shown in Tables 2 and 4 below.
<실험예> Mn 농도구배 확인<Experimental Example> Mn concentration gradient check
실시예 4의 이차전지 양극 활물질에 포함되는 니켈, 코발트, 알루미늄 및 Mn 농도 변화를 2차 입자의 표면(surface, line data 2), 및 2차 입자 내부에서 1차 입자 사이의 경계와 접촉하는 부분(grain boundary, line data 6)에서 측정하고 그 결과를 도 5 및 도 6 에 나타내었다. 도 6은 도 5에서 2차 입자의 표면으로부터 입자 내부로 농도구배를 측정한 결과를 확장해서 나타낸다. The portion of nickel, cobalt, aluminum, and Mn concentrations included in the secondary battery positive electrode active material of Example 4 is in contact with the surface of the secondary particles (surface, line data 2), and the boundary between the primary particles inside the secondary particles (grain boundary, line data 6) and the results are shown in Figures 5 and 6. 6 is an enlarged view of the results of measuring the concentration gradient from the surface of the secondary particles to the inside of the particles in FIG. 5.
도 5 및 도 6에서 2차 입자의 표면에서 중심방향으로 Mn 농도가 감소하면서 농도구배를 나타내고, 망간은 2차 입자의 표면 1 ㎛ 이내에 위치하고, 내부에서는 망간이 검출되지 않았다. In FIGS. 5 and 6, the concentration gradient is decreased while the concentration of Mn decreases in the center direction from the surface of the secondary particles, and manganese is located within 1 μm of the surface of the secondary particles, and manganese is not detected inside.
도 5에서 보는 바와 같이 2차 입자의 표면 및 내부에 위치한 1차 입자 사이의 경계, 즉 grain boundary 에서 Mn이 검출되고, 1차 입자 내부에서는 Mn이 검출되지 않았으며, 1차 입자 내부 방향으로 Mn의 농도가 감소하는 농도구배가 관찰되었다.As shown in FIG. 5, Mn was detected at the boundary between the primary particles located on the surface and the inside of the secondary particles, that is, Mn was not detected inside the primary particles, and Mn was not detected inside the primary particles. A concentration gradient in which the concentration of was decreased was observed.
<실험예> XRD 측정<Experimental Example> XRD measurement
상기 실시예 및 비교예에서 제조된 양극활물질에 대해 XRD를 측정하고 그 결과를 도 7 및 도 8에 나타내었다. XRD was measured for the positive electrode active material prepared in Examples and Comparative Examples, and the results are shown in FIGS. 7 and 8.
도 7에서 본 발명의 실시예에 의하여 Mn 함유 용액으로 처리된 본 발명의 양극활물질의 경우 XRD 분석시 (020), (003), (101), (006), (102), (104), (005), (009), (107), (018), (110) 및 (113) 위치에서 피크를 나타내는 것을 확인할 수 있다. In the case of the positive electrode active material of the present invention treated with a solution containing Mn according to an embodiment of the present invention in Figure 7 when analyzing XRD (020), (003), (101), (006), (102), (104), It can be seen that peaks are displayed at positions (005), (009), (107), (018), (110), and (113).
도 8에서 본 발명의 양극활물질의 경우 2θ = 20° 내지 21°사이에서 Li2MnO3에 의한 (020) 피크, 2θ = 36 내지 38°, 44 내지 45° 및 65 내지 66°사이에서 Li1-xMn2O4의 피크가 나타나는 것을 확인할 수 있었다. 즉, 본 발명에 의한 망간 함유 용액으로 코팅된 양극 활물질에서는 망간 산화물이 양극 활물질의 결정구조와는 다른 Li2MnO3 및 Li1-xMn2O4의 스피넬 구조로 존재한다는 것을 확인할 수 있었다.For the positive electrode active material of the present invention in Figure 8 2θ = between 20 ° to 21 ° due to Li 2 MnO 3 (020) peak, 2θ = 36 to 38 °, Li 1 between 44 to 45 ° and from 65 to 66 ° It was confirmed that a peak of -x Mn 2 O 4 appeared. That is, in the positive electrode active material coated with the manganese-containing solution according to the present invention, it was confirmed that manganese oxide exists in a spinel structure of Li 2 MnO 3 and Li 1-x Mn 2 O 4 different from the crystal structure of the positive electrode active material.
<실험예> 리튬 이온 이동 경로 확인<Experimental Example> Lithium ion migration path check
실시예 4의 이차전지 양극 활물질의 1차 입자의 각 위치에 따라 리튬 이온의 확산 경로를 TEM 측정 데이터에서 확인하고 도 9에 나타내었다. 도 9에서 A는 2차 입자의 표면 위치, B는 1차 입자의 중앙 위치, C는 2차 입자 내의 1차 입자 사이의 경계를 나타내었다.The diffusion path of lithium ions according to each position of the primary particles of the secondary battery positive electrode active material of Example 4 was confirmed in TEM measurement data and is shown in FIG. 9. In Fig. 9, A is the surface position of the secondary particles, B is the central position of the primary particles, and C is the boundary between the primary particles in the secondary particles.
도 9에서 입자 내부 B 위치에서는 리튬 이온 확산 경로가 명확하게 존재하고, 2차 입자의 표면 위치인 A 위치 및 2차 입자 내의 1차 입자간 경계인 C 위치에서는 리튬 이온 확산 경로에서 결정 구조가 일그러진 것을 확인하였다.In FIG. 9, the lithium ion diffusion path is clearly present at the B position inside the particle, and the crystal structure is distorted in the lithium ion diffusion path at the A position, which is the surface position of the secondary particle, and the C position, which is the boundary between the primary particles in the secondary particle. Confirmed.
<실험예> 잔류 리튬 측정<Experimental Example> Measurement of residual lithium
실시예 1 내지 6 에서 제조된 양극 활물질 및 및 비교예에서 제조된 양극 활물질의 잔류 리튬을 측정하였다.The residual lithium of the positive electrode active material prepared in Examples 1 to 6 and the positive electrode active material prepared in Comparative Example was measured.
구체적으로, 1 g의 리튬 복합 산화물을 5 g의 증류수에 침지시킨 뒤, 5분 동안 교반하였다. 교반이 끝난 후, 이를 여과하여 여과물을 수득하고, 여기에 0.1 M의 HCl 용액을 첨가하여 pH 5가 되도록 적정하였다. 이때, 첨가된 HCl 용액의 부피를 측정하여 사용된 이차전지 양극 활물질의 잔류 리튬을 분석한 결과를 하기 표 3에 나타내었다.Specifically, 1 g of lithium composite oxide was immersed in 5 g of distilled water, followed by stirring for 5 minutes. After the stirring was completed, it was filtered to obtain a filtrate, and 0.1 M HCl solution was added thereto to titrate to
<제조예>전지의 제조<Production Example> Battery Manufacturing
실시예 1 내지 6에서 제조된 이차전지 양극 활물질 및 비교예 1에서 제조된 양극 활물질을 이용하여 전지를 제조하였다.A battery was manufactured using the secondary battery positive electrode active material prepared in Examples 1 to 6 and the positive electrode active material prepared in Comparative Example 1.
먼저, 이차전지 양극 활물질, 도전재로서 수퍼-P(super-P), 및 결합제로서 폴리비닐리덴플루오라이드(PVdF)를 95:5:3의 중량비로 혼합하여 슬러리를 제조하였다. 제조된 슬러리를 15 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 이를 135℃에서 진공건조하여 리튬 이차 전지용 양극을 제조하였다. First, a slurry was prepared by mixing a secondary battery positive electrode active material, super-P as a conductive material, and polyvinylidene fluoride (PVdF) as a binder in a weight ratio of 95:5:3. The prepared slurry was uniformly applied to an aluminum foil having a thickness of 15 μm, and vacuum dried at 135° C. to prepare a positive electrode for a lithium secondary battery.
수득된 리튬 이차 전지용 양극, 상대 전극으로서 리튬 호일, 세퍼레이터로서 25 ㎛ 두께의 다공성 폴리에틸렌막(Celgard LLC., Celgard 2300), 및 액체 전해액으로서, 1.15 M 농도의 LiPF6가 포함된, 에틸렌 카보네이트와 에틸메틸카보네이트가 3:7의 부피비로 혼합된 용매를 사용하여 코인 전지를 제조하였다. The obtained lithium secondary battery positive electrode, lithium foil as a counter electrode, a 25 µm thick porous polyethylene membrane as a separator (Celgard LLC., Celgard 2300), and liquid electrolyte, containing 1.15 M concentration of LiPF 6 , ethylene carbonate and ethyl A coin cell was prepared using a solvent in which methyl carbonate was mixed in a volume ratio of 3:7.
<실험예> 전지 특성 측정 - 용량 특성<Experimental Example> Battery characteristics measurement-Capacity characteristics
상기 제조예에서 제조된 본 발명의 양극 활물질 및 비교예의 양극 활물질을 포함하는 전지의 초기 용량을 측정하고, 그 결과를 도 10 및 표 4에 나타내었다.The initial capacity of the battery comprising the positive electrode active material of the present invention and the positive electrode active material of the comparative example prepared in the above Preparation Example was measured, and the results are shown in FIGS. 10 and 4.
도 10 및 상기 표 4에서 보는 바와 같이, 본 발명에 따른 이차전지 양극 활물질을 이용하여 제조된 전지는 충방전 효율이 우수하였다.As shown in Figure 10 and Table 4, the battery prepared by using the secondary battery positive electrode active material according to the present invention was excellent in charge and discharge efficiency.
<실험예> 전지 특성 측정 - 수명 특성<Experimental Example> Battery characteristics measurement-Life characteristics
상기 코인 전지의 상온(25℃) 및 고온(45℃)에서 수명 특성을 측정하고, 그 결과를 도 11 및 표 5에 나타내었다.The life characteristics at room temperature (25°C) and high temperature (45°C) of the coin battery were measured, and the results are shown in FIGS. 11 and 5.
도 11 및 상기 표 5에서 보는 바와 같이, 본 발명에 따른 이차전지 양극 활물질을 이용하여 제조된 전지는 비교예 1의 전지보다 수명 특성이 개선되었다. 특히, 실시예 2 내지 4의 이차전지 양극 활물질을 이용하여 제조된 전지는 상온뿐만 아니라 고온에서도 전지의 수명을 유지하는 효과가 우수하였다.As shown in Figure 11 and Table 5, the battery prepared by using the secondary battery positive electrode active material according to the present invention has improved life characteristics than the battery of Comparative Example 1. In particular, the batteries manufactured using the positive electrode active material of the secondary batteries of Examples 2 to 4 were excellent in maintaining the life of the battery at high temperature as well as at room temperature.
<실험예> 전지 특성 측정 - 고온 충방전 특성<Experimental Example> Battery characteristic measurement-High temperature charge/discharge characteristic
코인 전지를 1회 또는 50회 충방전하였을 때의 충방전 특성을 상온(25℃) 및 고온(45℃)에서 측정하고, 그 결과를 dQ/dV 대 전압(V)으로 변환하여 도 12 및 도 13에 나타내었다. When the coin battery is charged or discharged once or 50 times, the charging and discharging characteristics are measured at room temperature (25°C) and high temperature (45°C), and the results are converted into dQ/dV vs. voltage (V) to convert the results to FIG. 12 and FIG. It is shown in 13.
도 12 및 도 13에서 보는 바와 같이, 본 발명에 따른 이차전지 양극 활물질을 이용하여 제조된 전지는 상온뿐만 아니라 고온에서도 충방전 특성이 우수하였다.12 and 13, the battery manufactured using the secondary battery positive electrode active material according to the present invention was excellent in charging and discharging characteristics at room temperature as well as high temperature.
<실험예> 충방전후 XRD 측정<Experimental Example> XRD measurement after charge/discharge
상기 실시예 및 비교예에서 제조된 양극 활물질을 이용하여 제조된 코인 전지에 대해서, 50회 충방전 후 전지를 분해하고, 수득된 양극활물질에 대하여 XRD를 측정하고, 전지 제조전 활물질에 대해 측정한 XRD 데이터와 대비하여 그 결과를 도 14 및 표 6에 나타내었다.For the coin battery prepared by using the positive electrode active material prepared in the above Examples and Comparative Examples, the battery was disassembled after 50 charges and discharges, XRD was measured on the obtained positive electrode active material, and the active material before the battery was measured. The results are shown in FIG. 14 and Table 6 in comparison with XRD data.
도 14 및 표 6에서 보여지는 바와 같이, 본 발명의 실시예 4의 이차전지 양극 활물질을 이용하여 제조된 코인 전지는 50회 충방전 후에도 I(104) 값의 변화가 5% 이하로 비교예보다 적었다. As shown in FIG. 14 and Table 6, the coin battery manufactured using the secondary battery positive electrode active material of Example 4 of the present invention has a change in I(104) value of 5% or less even after 50 charges and discharges than the comparative example Less.
일반적인 전지의 경우 충방전이 계속되면 cation migration 에 의해 결정 구조가 열화된다. 도 15에서 보는 바와 같이 (104) 위치에서의 피크 강도는 cation migration 이 발생한 정도를 나타내는 것으로 판단할 수 있었다. In the case of a typical battery, if charging and discharging continues, the crystal structure is deteriorated by cation migration. As shown in FIG. 15, the peak intensity at the (104) position could be determined to indicate the extent to which cation migration occurred.
본 발명의 양극활물질의 경우 충방전이 계속된 후에도 I(104) 값의 증가가 2.61% 에 불과하여 충방전 후에도 벌크(bulk) 구조가 열화되는 정도가 감소되는 것을 확인할 수 있었다. In the case of the positive electrode active material of the present invention, it was confirmed that even after charging and discharging continued, the increase in the value of I(104) was only 2.61%, so that the degree of deterioration of the bulk structure was reduced even after charging and discharging.
<실험예> 전지의 XPS 확인<Experimental Example> XPS confirmation of the battery
제조예 1에서 실시예 4의 이차전지 양극 활물질을 이용하여 제조된 코인 전지 및 비교예 1에서 제조된 이차전지 양극활물질을 이용하여 제조된 코인 전지를 50회 충방전 전후의 XPS를 측정하고, 그 결과를 도 16, 도 17 및 표 7에 나타내었다.The coin cell produced using the positive electrode active material of the secondary battery of Example 4 in Preparation Example 1 and the coin battery prepared using the secondary battery positive electrode active material of Comparative Example 1 were subjected to XPS measurement before and after 50 charges and discharges. The results are shown in FIGS. 16, 17 and Table 7.
도 16, 및 표 7에서 본 발명에 의한 실시예 4의 이차전지 양극 활물질을 이용하여 제조된 코인 전지는 50회 충방전 후에도 I(Li-F), 즉 Li-F 에 의한 피크의 강도가 감소했다.In FIG. 16 and Table 7, the coin battery manufactured using the positive electrode active material of the secondary battery of Example 4 according to the present invention reduces the intensity of the peak due to I(Li-F), that is, Li-F even after 50 charges and discharges did.
<실험예> 양극활물질 내부의 LiF 생성 측정<Experimental Example> Measurement of LiF production inside the positive electrode active material
제조예 1에서 실시예 4의 이차전지 양극 활물질을 이용하여 제조된 코인 전지 및 비교예 1에서 제조된 이차전지 양극활물질을 이용하여 제조된 코인 전지를 50회 충방전후 양극활물질의 단면을 EDX로 측정하고 그 결과를 도 17에 나타내었다.The cross-section of the positive electrode active material was measured by EDX after 50 times of charging and discharging the coin battery prepared by using the positive electrode active material of the secondary battery of Example 4 in Preparation Example 1 and the secondary battery positive electrode active material of Comparative Example 1 The results are shown in Figure 17.
도 17에서 본 발명의 양극활물질의 경우 입자 내부의 Li-F 가 비교예보다 적게 검출되는 것을 확인할 수 있었다.In FIG. 17, it was confirmed that in the case of the positive electrode active material of the present invention, less Li-F in the particles was detected than the comparative example.
Claims (14)
상기 1차 입자의 표면부에 망간 산화물을 포함하고,
상기 1차 입자의 표면부에서의 Mn 농도가 1차 입자 내부에서의 Mn 농도보다 높은,
이차전지용 양극 활물질.
A plurality of primary particles include agglomerated secondary particles,
Manganese oxide on the surface of the primary particles,
The Mn concentration in the surface portion of the primary particles is higher than the Mn concentration in the primary particles,
Anode active material for secondary batteries.
상기 2차 입자 내부의 1차 입자 사이에 망간 산화물을 포함하는 것인,
이차전지용 양극 활물질.
According to claim 1,
Manganese oxide is included between the primary particles inside the secondary particles,
Anode active material for secondary batteries.
상기 1차 입자는 1차 입자의 중심부로부터 표면부까지 Mn 농도가 구배를 갖는,
이차전지용 양극 활물질.
According to claim 1,
The primary particles have a gradient of Mn concentration from the center to the surface of the primary particles,
Anode active material for secondary batteries.
상기 Mn 산화물은 Li2MnO3, LiMn2O4, MnO2, LiwMn2O4(0<w<1), 및 Li2MnO3(1-v)LiMn2O4(0<v<1) 으로 이루어진 그룹에서 선택되는 것인,
이차전지용 양극 활물질.
According to claim 1,
The Mn oxide is Li 2 MnO 3 , LiMn 2 O 4 , MnO 2 , Li w Mn 2 O 4 (0<w<1), and Li 2 MnO 3 (1-v)LiMn 2 O 4 (0<v< 1) is selected from the group consisting of,
Anode active material for secondary batteries.
상기 Mn 산화물이 2차 입자 표면으로부터 1 ㎛ 이내에 나타나는 것인,
이차전지용 양극 활물질.
According to claim 1,
The Mn oxide appears within 1 μm from the surface of the secondary particles,
Anode active material for secondary batteries.
상기 양극활물질은 XRD 분석시 (020), (003), (101), (006), (102), (104), (005), (009), (107), (018), (110) 및 (113) 위치에서 피크를 나타내는 것인,
이차전지용 양극 활물질.
According to claim 1,
The positive electrode active material is (020), (003), (101), (006), (102), (104), (005), (009), (107), (018), (110) during XRD analysis And (113) showing a peak at position,
Anode active material for secondary batteries.
상기 양극 활물질은 XRD 분석시 2θ = 20° 내지 21° 사이에서 Li2MnO3에 의한 (020) 피크가 나타나는,
이차전지용 양극 활물질.
According to claim 1,
The positive active material exhibits a (020) peak due to Li 2 MnO 3 between 2θ = 20° and 21° during XRD analysis,
Anode active material for secondary batteries.
상기 양극활물질은 XRD 분석시 2θ = 36 내지 38°, 44 내지 45° 및 65 내지 66° 사이에서 Li1-xMn2O4의 피크가 나타나는,
이차전지용 양극 활물질.
According to claim 1,
The positive electrode active material shows a peak of Li 1-x Mn 2 O 4 between 2θ = 36 to 38°, 44 to 45° and 65 to 66° during XRD analysis,
Anode active material for secondary batteries.
상기 양극활물질은 충전전 XRD 분석시에 대비하여 충전후 XRD 분석시 (104) 위치에서의 피크 강도 증가율이 3% 이하인 것인,
이차전지용 양극 활물질.
According to claim 1,
The positive electrode active material has a peak intensity increase rate at a position (104) of XRD analysis after charging compared to that of XRD analysis before charging is 3% or less,
Anode active material for secondary batteries.
상기 양극활물질은 1차 입자 내에 2차 입자의 중심 방향으로 배열되는 리튬 이온 이동 경로를 포함하는 것인,
이차전지용 양극 활물질.
According to claim 1,
The positive electrode active material includes a lithium ion movement path arranged in the center direction of the secondary particles in the primary particles,
Anode active material for secondary batteries.
상기 2차 입자는 하기 화학식 1로 표시되는, 이차전지용 양극 활물질:
[화학식 1]Li1+aNi1-(x+y+z)CoxAlyMnzM1bO2
(상기 화학식 1에서 0≤x≤0.1, 0≤y≤0.02, 0≤z≤0.0006, 0≤a≤0.1, 0≤b≤0.1 이고,
M1 은 Al, Ni, Mn, Cr, Fe, Mg, Sr, V, Zn, W, Zr, B, Ba, Sc, Cu, Ti, Co, 희토류 원소 및 이들의 조합에서 선택되는 하나 이상의 원소이다.)
According to claim 1,
The secondary particles are represented by the following formula (1), the positive electrode active material for a secondary battery:
[Formula 1] Li 1+a Ni 1-(x+y+z) Co x Al y Mn z M1 b O 2
(In Formula 1, 0≤x≤0.1, 0≤y≤0.02, 0≤z≤0.0006, 0≤a≤0.1, 0≤b≤0.1,
M1 is one or more elements selected from Al, Ni, Mn, Cr, Fe, Mg, Sr, V, Zn, W, Zr, B, Ba, Sc, Cu, Ti, Co, rare earth elements and combinations thereof. )
A secondary battery comprising the positive electrode active material for a secondary battery according to any one of claims 1 to 2 and 4 to 12.
상기 전구체에 리튬 화합물 및 알루미늄 화합물을 첨가하고 열처리하여 복합 금속 화합물을 제조하는 제2단계; 및
상기 제조된 복합 금속 화합물을 망간을 포함하는 용액으로 수세하고 건조하는 제3단계;를 포함하는
제 1 항에 의한 이차전지용 양극 활물질의 제조방법.A first step of preparing a precursor comprising nickel and cobalt;
A second step of preparing a composite metal compound by adding a lithium compound and an aluminum compound to the precursor and heat-treating it; And
A third step of washing and drying the prepared composite metal compound with a solution containing manganese.
Method of manufacturing a positive electrode active material for a secondary battery according to claim 1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18206560.7A EP3486978B1 (en) | 2017-11-15 | 2018-11-15 | Cathode active material and preparation method thereof |
HUE18206560A HUE053801T2 (en) | 2017-11-15 | 2018-11-15 | Cathode active material and preparation method thereof |
US16/191,859 US10862119B2 (en) | 2017-11-15 | 2018-11-15 | Cathode active material and manufacturing method thereof |
PL18206560T PL3486978T3 (en) | 2017-11-15 | 2018-11-15 | Cathode active material and preparation method thereof |
CN201811359383.6A CN109786730B (en) | 2017-11-15 | 2018-11-15 | Secondary battery anode active material and method for producing same |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170152449 | 2017-11-15 | ||
KR1020170152450 | 2017-11-15 | ||
KR1020170152451 | 2017-11-15 | ||
KR20170152449 | 2017-11-15 | ||
KR20170152451 | 2017-11-15 | ||
KR20170152450 | 2017-11-15 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20190055729A KR20190055729A (en) | 2019-05-23 |
KR102130484B1 true KR102130484B1 (en) | 2020-07-06 |
Family
ID=66681293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020180126427A KR102130484B1 (en) | 2017-11-15 | 2018-10-23 | Cathode active material and manufacturing method thereof |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102130484B1 (en) |
CN (1) | CN109786730B (en) |
HU (1) | HUE053801T2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112151789B (en) | 2019-06-28 | 2021-10-01 | 宁德时代新能源科技股份有限公司 | Positive electrode material and preparation method and application thereof |
KR102412692B1 (en) * | 2019-10-18 | 2022-06-24 | 주식회사 에코프로비엠 | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same |
KR102324691B1 (en) * | 2019-12-19 | 2021-11-09 | 주식회사 포스코 | Cathode active material method for manufacturing the same, and lithium ion battery including the same |
KR20220055678A (en) * | 2020-10-27 | 2022-05-04 | 주식회사 에코프로비엠 | Positive electrode active material and lithium secondary battery comprising the same |
KR102586106B1 (en) * | 2020-10-29 | 2023-10-05 | 삼성에스디아이 주식회사 | Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same |
KR102654402B1 (en) * | 2021-04-13 | 2024-04-03 | 주식회사 엘 앤 에프 | Novel Precursor Granular for Cathode Active Material of Secondary Battery |
CN114639824B (en) * | 2022-05-19 | 2022-08-12 | 瑞浦兰钧能源股份有限公司 | High-safety ternary cathode material and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001273900A (en) * | 2000-01-21 | 2001-10-05 | Showa Denko Kk | Positive active material, method of manufacturing same, and nonaqueous secondary battery using the active material |
JP2006012426A (en) * | 2004-06-22 | 2006-01-12 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
KR101555594B1 (en) * | 2014-10-02 | 2015-10-06 | 주식회사 에코프로 | Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW363940B (en) | 1996-08-12 | 1999-07-11 | Toda Kogyo Corp | A lithium-nickle-cobalt compound oxide, process thereof and anode active substance for storage battery |
DE69819395T2 (en) | 1997-04-15 | 2004-09-09 | Sanyo Electric Co., Ltd., Moriguchi | Positive electrode material for use of the non-aqueous electrolyte-containing battery and method of manufacturing the same and the non-aqueous electrolyte-containing battery |
US6673491B2 (en) * | 2000-01-21 | 2004-01-06 | Showa Denko Kabushiki Kaisha | Cathode electroactive material, production method therefor, and nonaqueous secondary cell using the same |
JP3890185B2 (en) | 2000-07-27 | 2007-03-07 | 松下電器産業株式会社 | Positive electrode active material and non-aqueous electrolyte secondary battery including the same |
KR100809847B1 (en) | 2002-10-31 | 2008-03-04 | 주식회사 엘지화학 | Lithium transition metal oxide with gradient of metal composition |
JP5137414B2 (en) * | 2007-02-20 | 2013-02-06 | 住友金属鉱山株式会社 | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material |
CN104810517B (en) * | 2007-03-05 | 2020-09-29 | 户田工业株式会社 | Nonaqueous electrolyte secondary battery, Li-Ni composite oxide particle powder, and method for producing same |
US8546018B2 (en) * | 2007-11-12 | 2013-10-01 | Toda Kogyo Corporation | Li—Ni-based composite oxide particles for non-aqueous electrolyte secondary battery, process for producing the same, and non-aqueous electrolyte secondary battery |
CN102971892B (en) * | 2010-02-24 | 2016-05-18 | 株式会社Lg化学 | High power capacity positive electrode active materials and the lithium secondary battery that comprises described high power capacity positive electrode active materials |
KR101320391B1 (en) * | 2011-07-18 | 2013-10-23 | 삼성에스디아이 주식회사 | Positive active material for lithium secondary battery, preparing method thereof, positive electrode including the same, and lithium secondary battery employing the same |
KR102030866B1 (en) * | 2012-04-05 | 2019-10-10 | 도소 가부시키가이샤 | Metal-containing trimanganese tetraoxide composite particles and method for producing same |
US10224541B2 (en) * | 2012-06-08 | 2019-03-05 | Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) | Positive electrode active material precursor for lithium secondary battery, positive electrode active material manufactured by using thereof, and lithium secondary battery including the same |
KR20130138073A (en) * | 2012-06-08 | 2013-12-18 | 한양대학교 산학협력단 | Precursor for cathod active material of lithium secondary battery, cathode active materials made by the same, and lithium secondary battery containing the same |
KR101785266B1 (en) * | 2013-01-18 | 2017-11-06 | 삼성에스디아이 주식회사 | composit cathode active material, cathode and lithium battery containing the material, and preparation method thereof |
CN109599555A (en) * | 2013-02-28 | 2019-04-09 | 日产自动车株式会社 | Positive active material, positive electrode, anode and non-aqueous electrolyte secondary battery |
CN103943822B (en) * | 2014-05-13 | 2017-03-29 | 南通瑞翔新材料有限公司 | A kind of lithium rechargeable battery nickel-base anode active material and preparation method thereof |
KR101909317B1 (en) * | 2014-07-31 | 2018-10-17 | 주식회사 엘지화학 | Cathode active material for lithium secondary battery and method of making the same |
KR101593401B1 (en) * | 2014-10-14 | 2016-02-12 | 주식회사 이엔에프테크놀로지 | Porous cathod active material for lithium rechargeable battery and preparation method thereof |
KR102296877B1 (en) * | 2014-12-03 | 2021-08-31 | 에스케이이노베이션 주식회사 | Lithium secondary battery |
JP6210439B2 (en) * | 2014-12-26 | 2017-10-11 | 住友金属鉱山株式会社 | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material |
-
2018
- 2018-10-23 KR KR1020180126427A patent/KR102130484B1/en active IP Right Grant
- 2018-11-15 HU HUE18206560A patent/HUE053801T2/en unknown
- 2018-11-15 CN CN201811359383.6A patent/CN109786730B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001273900A (en) * | 2000-01-21 | 2001-10-05 | Showa Denko Kk | Positive active material, method of manufacturing same, and nonaqueous secondary battery using the active material |
JP2006012426A (en) * | 2004-06-22 | 2006-01-12 | Nichia Chem Ind Ltd | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery |
KR101555594B1 (en) * | 2014-10-02 | 2015-10-06 | 주식회사 에코프로 | Cathod active material for lithium rechargeable battery and lithium rechargeable battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
CN109786730B (en) | 2022-04-15 |
CN109786730A (en) | 2019-05-21 |
HUE053801T2 (en) | 2021-07-28 |
KR20190055729A (en) | 2019-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102130484B1 (en) | Cathode active material and manufacturing method thereof | |
US20240063382A1 (en) | Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same | |
US12057577B2 (en) | Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same | |
EP3473600B1 (en) | Method for manufacturing a positive electrode active material for a secondary battery | |
JP6894419B2 (en) | Positive electrode active material for secondary batteries and its manufacturing method | |
KR102534607B1 (en) | Positive electrode active material for lithium secondary battery, method for preparing the same, and lithium secondary battery including the same | |
JP6845869B2 (en) | Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery positive electrode active material produced by this method. | |
JP6771419B2 (en) | Lithium composite oxide for lithium secondary batteries and its manufacturing method | |
JP6900223B2 (en) | Lithium composite oxide for lithium secondary batteries and its manufacturing method | |
KR101875868B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
KR101874340B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
KR101890744B1 (en) | Lithium titanium oxide, method for preparing the same, negative electrode including the same, and lithium battery including the negative electrode | |
KR101934853B1 (en) | Lithium complex oxide for lithium rechargeable battery positive active material and preparing method of the same | |
KR101912202B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
US10862119B2 (en) | Cathode active material and manufacturing method thereof | |
KR102174720B1 (en) | Lithium metal complex oxide and manufacturing method of the same | |
KR101708362B1 (en) | Composite, mamufacturing method, anode active material, anode including the anode active material, and lithium secondary battery including the anode | |
KR101934848B1 (en) | Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same | |
KR20160088121A (en) | Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same | |
US20240379956A1 (en) | Lithium complex oxide for lithium secondary battery positive active material and method of preparing the same | |
KR102175137B1 (en) | Positive electrode active material having polymer, method for manufacturing the same, and lithium ion secondary battery including the same | |
US11508960B2 (en) | Lithium metal complex oxide and manufacturing method of the same | |
CN115632125A (en) | Positive electrode active material, and preparation method and application thereof | |
KR20230096886A (en) | Manufacturing method of lithium secondary battery and lithium secondary battery manufactured thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |