KR20160088121A - Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same - Google Patents
Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same Download PDFInfo
- Publication number
- KR20160088121A KR20160088121A KR1020150007431A KR20150007431A KR20160088121A KR 20160088121 A KR20160088121 A KR 20160088121A KR 1020150007431 A KR1020150007431 A KR 1020150007431A KR 20150007431 A KR20150007431 A KR 20150007431A KR 20160088121 A KR20160088121 A KR 20160088121A
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- secondary battery
- lithium secondary
- positive electrode
- electrode active
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01D—COMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
- C01D15/00—Lithium compounds
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G51/00—Compounds of cobalt
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
본 발명은 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지에 관한 것으로서, 더욱 상세하게는 Li 이온이 전이금속층으로 삽입되어 Ni 의 산화수 및 Co 의 산화수는 +3 으로 유지하고, Mn 의 산화수는 +4 로 유지함으로써 구조적으로 안정성이 유지되는 새로운 구조의 리튬이차전지용 양극활물질, 이를 포함하는 리튬이차전지, 및 이의 제조방법에 관한 것이다.
The present invention relates to a positive electrode active material for a lithium secondary battery and a lithium secondary battery comprising the same. More specifically, Li ions are inserted into a transition metal layer to maintain the oxidation number of Ni and the oxidation number of Co at +3, 4, a lithium secondary battery including the same, and a method of manufacturing the same.
최근 전자, 통신, 컴퓨터 산업 등의 급속한 발전에 힘입어, 캠코더, 휴대폰, 노트북 PC 등 휴대용 전자제품의 사용이 일반화됨으로써, 가볍고 오래 사용할 수 있으며 신뢰성이 높은 전지에 대한 요구가 높아지고 있다.Recently, with the rapid development of electronic, communication, and computer industries, the use of portable electronic products such as a camcorder, a mobile phone, and a notebook PC has become common, thereby demanding a lightweight, long-lasting, and reliable battery.
특히, 리튬 이차전지는 작동 전압이 3.7 V 이상으로서, 니켈-카드뮴 전지나 니켈-수소 전지보다 단위 중량당 에너지 밀도가 높다는 측면에서 이들 휴대용 전자정보 통신기기들을 구동할 동력원으로서 리튬 이차전지에 대한 수요가 나날이 증가하고 있다.Particularly, since the lithium secondary battery has an operating voltage of 3.7 V or higher and a higher energy density per unit weight than a nickel-cadmium battery or a nickel-hydrogen battery, the demand for a lithium secondary battery as a power source for driving these portable electronic information communication devices It is increasing day by day.
최근에는 내연기관과 리튬 이차전지를 혼성화(hybrid)하여 전기자동차용 동력원에 관한 연구가 미국, 일본, 유럽 등에서 활발히 진행 중에 있다. 하루에 60마일 미만의 주행거리를 갖는 자동차에 사용되는 플러그인 하이브리드(P-HEV) 전지 개발이 미국을 중심으로 활발히 진행 중이다. 상기 P-HEV용 전지는 거의 전기자동차에 가까운 특성을 갖는 전지로 고용량 전지 개발이 최대의 과제이다. 특히, 2.0g/cc 이상의 높은 탭 밀도와 230mAh/g 이상의 고용량 특성을 갖는 양극 재료를 개발하는 것이 최대의 과제이다.In recent years, studies on a power source for an electric vehicle by hybridizing an internal combustion engine with a lithium secondary battery have been actively conducted in the United States, Japan, and Europe. The development of plug-in hybrid (P-HEV) batteries for vehicles with a mileage less than 60 miles a day is underway in the United States. The P-HEV battery is a battery having characteristics close to those of an electric vehicle, and development of a high capacity battery is a great challenge. In particular, it is a great challenge to develop a cathode material having a high tap density of 2.0 g / cc or more and a high capacity characteristic of 230 mAh / g or more.
현재 상용화되었거나 개발 중인 양극 재료로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiFePO4 등이 있다. 이 중에서 LiCoO2는 안정된 충방전 특성, 우수한 전자전도성, 높은 전지 전압, 높은 안정성, 및 평탄한 방전전압 특성을 갖는 뛰어난 물질이다. 그러나, Co는 매장량이 적고 고가인 데다가 인체에 대한 독성이 있기 때문에 다른 양극 재료 개발이 요망된다. 또한, 충전시의 탈 리튬에 의하여 결정 구조가 불안정해지는 열적 특성이 매우 열악한 단점을 가지고 있다.LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 and the like are currently commercially available or under development. Of these, LiCoO 2 is an excellent material having stable charge / discharge characteristics, excellent electron conductivity, high cell voltage, high stability, and flat discharge voltage characteristics. However, Co has a low reserves, high price, and toxicity to the human body, so development of other cathode materials is desired. In addition, it has a disadvantage in that the crystalline structure is unstable due to the lithium removal during charging.
니켈의 일부를 코발트로 치환한 LiNi1 - xCoxO2(x는 0.1 내지 0.3) 물질의 경우 우수한 충방전 특성과 수명 특성을 보이나, 열적 안전성 문제는 해결하지 못하였다. 또한, 뿐만 아니라 유럽 특허 제0872450호에서는 Ni 자리에 Co와 Mn 뿐만 아니라 다른 금속이 치환된 LiaCobMncMdNi1 -(b+c+d)O2(M=B, Al, Si. Fe, Cr, Cu, Zn, W, Ti, Ga) 형을 개시하였으나, 여전히 Ni계의 열적 안전성은 해결하지 못하였다.
LiNi 1 - x Co x O 2 (x: 0.1-0.3) material in which a portion of nickel was substituted with cobalt exhibited excellent charge / discharge characteristics and lifetime characteristics, but did not solve the thermal stability problem. In addition, in European Patent No. 0872450, Li a Co b Mn c M d Ni 1 - (b + c + d) O 2 (M = B, Al, Si, Fe, Cr, Cu, Zn, W, Ti, and Ga). However, the thermal stability of the Ni system still can not be solved.
본 발명은 구조적으로 안정하여 충방전시 용량 특성이 저하되지 않는 새로운 구조의 양극활물질을 제공하는 것을 목적으로 한다.
It is an object of the present invention to provide a cathode active material having a novel structure which is structurally stable and does not deteriorate capacity characteristics upon charge and discharge.
본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 전체적으로는 층상의 롬보히드럴 R-3m 구조이고, 일부 전이금속층에 Li 이 치환되어 Mn의 산화수가 +4 가로 존재하는 수퍼구조 (superstructure), 즉 2가지 구조가 공존하는 구조를 나타내는 것을 특징으로 하는 리튬이차전지용 양극활물질을 제공한다. In order to solve the problems of the prior art as described above, the present invention provides a superstructure having a layered Lombohydral R-3m structure, in which Li is substituted for some transition metal layers and oxidation number of Mn is +4, That is, the present invention provides a positive electrode active material for a lithium secondary battery, which exhibits a structure in which two structures coexist.
본 발명에 의한 리튬이차전지용 양극활물질에 있어서, Ni 및 Co 의 산화수는 +3 가로 유지되는 것을 특징으로 한다.In the positive electrode active material for a lithium secondary battery according to the present invention, the oxidation number of Ni and Co is maintained at +3.
본 발명에 의한 리튬이차전지용 양극활물질은 Lia[NixCoyMnz]O2, (0.95<a<1.05, x≥0.85, 0<y<0.075, 0.075<z<0.15, y/z<1)로 표시되는 것을 특징으로 한다. The positive electrode active material for a lithium secondary battery according to the present invention comprises Li a [Ni x Co y Mn z ] O 2 , 0.95 <a <1.05, x? 0.85, 0 <y <0.075, 0.075 <z <0.15, y / z < 1). ≪ / RTI >
본 발명에 의한 리튬이차전지용 양극활물질은 Li[Ni0 .85Co0 .05Mn0 .10]O2 로 표시되는 것을 특징으로 한다. Cathode active material for a lithium secondary battery according to the invention is characterized by represented by Li [Ni 0 .85 Co 0 .05
본 발명에 의한 상기 리튬이차전지용 양극활물질은 TEM 피크에서 층상의 롬보히드럴 R-3m 구조 내에 Mn4 + 에 의한 회절 패턴이 나타나는 것을 특징으로 한다.The positive electrode active material for a lithium secondary battery according to the present invention is characterized in that a diffraction pattern due to Mn 4 + appears in the Lombohydral R-3m structure in a layer at a TEM peak.
본 발명에 의한 리튬이차전지용 양극활물질은 XRD 피크에서 2θ의 범위가 20 내지 25 에서 상기 수퍼구조 에 의한 피크가 나타나는 것을 특징으로 한다. The positive electrode active material for a lithium secondary battery according to the present invention is characterized in that a peak due to the superstructure is exhibited at an XRD peak in the range of 20 to 20 in the range of 20 to 25.
본 발명은 또한, 본 발명에 의한 리튬이차전지용 양극활물질을 포함하는 리튬이차전지를 제공한다. The present invention also provides a lithium secondary battery comprising the cathode active material for a lithium secondary battery according to the present invention.
본 발명은 또한, The present invention also relates to
니켈, 코발트 및 망간을 포함하는 전구체, 암모니아 용액, 및 염기성 용액을 반응기에 동시에 투입하여 혼합하여 침전시키고 교반하여 금속복합수산화물을 침전시키는 단계; Adding a precursor including nickel, cobalt and manganese, an ammonia solution, and a basic solution to a reactor at the same time, mixing, precipitating and stirring to precipitate the metal complex hydroxide;
상기 금속복합수산화물을 여과 및 세척 후, 건조하는 단계; 및Filtering and washing the metal complex hydroxide, followed by drying; And
상기 금속복합산화물과 리튬염을 혼합 후 열처리하는 단계; Mixing the metal complex oxide with a lithium salt and then performing heat treatment;
를 포함하는 리튬이차전지 양극활물질의 제조방법에 있어서, A method for producing a lithium secondary battery positive electrode active material,
상기 리튬염을 혼합 후 열처리하는 단계에서 열처리 온도는 670 내지 750℃ 인 것을 특징으로 하는 리튬이차전지 양극활물질의 제조방법을 제공한다.
Wherein the heat treatment is performed at a temperature of 670 to 750 ° C. in the step of heat-treating the lithium salt after mixing the lithium salt.
본 발명에 의한 리튬이차전지용 양극활물질은 Li 이 전이금속층으로 삽입되어 Ni 의 산화수 및 Co 의 산화수는 +3 가로 유지하고, Mn 의 산화수는 +4 가로 유지함으로써 구조적으로 안정됨에 따라 본 발명에 의한 리튬이차전지용 양극활물질을 포함하는 리튬이차전지는 수명 특성 및 용량 특성이 크게 개선된다.
The positive electrode active material for a lithium secondary battery according to the present invention is structurally stable by allowing Li to be inserted into the transition metal layer to maintain the oxidation number of Ni and the oxidation number of Co at +3 and maintain the oxidation number of Mn at +4, The life characteristics and the capacity characteristics of the lithium secondary battery including the cathode active material for the secondary battery are greatly improved.
도 1 내지 도 3은 본 발명의 일 실시예 및 비교예에서 제조된 양극 활물질에 대해 XRD 를 측정한 결과를 나타낸다.
도 4는 본 발명의 실시예 에서 제조된 양극 활물질에 대해 TEM 사진을 측정한 결과를 나타낸다.
도 5 및 도 6 은 본 발명의 실시예 에서 제조된 양극 활물질에 대해 Mn 과 Ni에 대한 X 선 흡수 스펙트라를 측정한 결과를 나타낸다. FIGS. 1 to 3 show the results of XRD measurements of the cathode active material prepared in one embodiment of the present invention and a comparative example.
FIG. 4 shows TEM images of the cathode active material prepared in Examples of the present invention.
5 and 6 show X-ray absorption spectra of Mn and Ni for the cathode active material prepared in the examples of the present invention.
이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited by the following examples.
<< 실시예Example 1> 1>
공침 반응기(용량 4L, 회전모터의 출력 80W이상)에 증류수 4리터를 넣은 뒤 질소가스를 반응기에 0.7리터/분의 속도로 공급함으로써, 용존산소를 제거하고 반응기의 온도를 50℃로 유지시키면서 1000 rpm으로 교반하였다.4 liters of distilled water was placed in a coprecipitation reactor (capacity 4 L, output of a rotary motor was 80 W or more), nitrogen gas was supplied to the reactor at a rate of 0.7 liter / min to remove dissolved oxygen, lt; / RTI >
황산니켈 및 황산코발트 그리고 황산 망간의 몰 비가 85 : 5 : 10 비율로 혼합된 금속 수용액과 암모니아 용액를 각각 반응기에 연속적으로 투입하였다. 또한 pH 조정을 위해 수산화나트륨 용액을 공급하여 pH를 조절하였다. An aqueous metal solution and an ammonia solution mixed in a molar ratio of nickel sulfate, cobalt sulfate and manganese sulfate of 85: 5: 10 were continuously introduced into the reactor, respectively. The pH was adjusted by feeding sodium hydroxide solution for pH adjustment.
임펠러 속도는 1000 rpm으로 조절하였다. 유량을 조절하여 용액의 반응기 내의 평균체류시간은 6.35 시간 정도가 되도록 하였으며, 반응이 정상상태에 도달한 후에 상기 반응물을 지속적으로 얻을 수 있도록 하였다. 상기 금속 복합수산화물을 여과하고, 물 세척한 후에 110℃ 온풍건조기에서 15시간 건조시켰다. The impeller speed was adjusted to 1000 rpm. The flow rate was adjusted so that the average residence time of the solution in the reactor was about 6.35 hours and the reaction was allowed to continue to be obtained after the reaction reached a steady state. The metal complex hydroxide was filtered, washed with water, and dried in a 110 占 폚 hot air dryer for 15 hours.
상기 금속 복합 수산화물과 리튬염과 혼합한 후에 온도를 730 ℃로 하여 15시간 소성시켜 Li[Ni0 .85Co0 .05Mn0 .10]O2 로 표시되는 양극 활물질 분말을 얻었다.
After mixing with the metal complex hydroxide and the lithium salt, the mixture was calcined at a temperature of 730 캜 for 15 hours to obtain a cathode active material powder represented by Li [Ni 0 .85 Co 0 .05 Mn 0 .10 ] O 2 .
<< 비교예Comparative Example 1> 1>
실시예 1에서 황산니켈 및 황산코발트 그리고 황산 망간의 몰 비가 85 : 7.5 : 7.5 비율로 혼합된 금속 수용액을 반응기에 연속적으로 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 양극 활물질 분말을 제조하였다.
The cathode active material powder was prepared in the same manner as in Example 1 except that the aqueous metal solution in which the molar ratio of nickel sulfate, cobalt sulfate, and manganese sulfate was 85: 7.5: 7.5 was continuously introduced into the reactor in Example 1 .
<< 실험예Experimental Example > > XRDXRD 측정 Measure
상기 실시예 1 및 비교예 1에서 제조된 양극 활물질에 대해 XRD 를 측정하고 그 결과를 도 1 내지 도 3에 나타내었다. XRD was measured for the cathode active material prepared in Example 1 and Comparative Example 1, and the results are shown in FIGS. 1 to 3.
도 3에서 본 발명의 실시예에 의한 양극활물질의 경우 전이금속층에 Li 이 치환되어 Mn의 산화수가 +4 가로 존재하는 수퍼구조 (superstructure)에 의한 피크가 나타나는 것을 확인할 수 있다.
In FIG. 3, it can be seen that Li is substituted for the transition metal layer in the case of the cathode active material according to the embodiment of the present invention, and a peak due to a superstructure in which the oxidation number of Mn is +4 is present.
<< 실험예Experimental Example > > TEMTEM 측정 Measure
상기 실시예 1 에서 제조된 양극 활물질에 대해 TEM 사진을 측정하고 그 결과를 도 4에 나타내었다.TEM photographs of the cathode active material prepared in Example 1 were measured and the results are shown in FIG.
도 4에서 보는 바와 같이 층상의 롬보히드럴 구조에 의한 본래의 회절패턴(붉은색 원)에 사이에 Mn4 + 에 의한 작은 점(화살표로 표시)으로 표시된 superstructure의 회절패턴이 나타난다. As shown in FIG. 4, a diffraction pattern of superstructure indicated by small points (indicated by arrows) due to Mn 4 + appears in the original diffraction pattern (red circle) due to the layered Rombohydral structure.
또한, 도 4에서 superstructure가 규칙성을 가지고 나타나는 것을 알 수 있으며, 이는 Mn4 +의 규칙적인 배열이 기본 롬보히드럴 구조의 격자내에 포함되어 있기 때문이다.
Also, it can be seen that the superstructure appears regularly in FIG. 4 because the regular arrangement of Mn 4 + is contained in the lattice of the basic rombo hydral structure.
<< 실험예Experimental Example > X선 흡수 스펙트럼 측정> X-ray absorption spectrum measurement
상기 실시예 1 에서 제조된 양극 활물질에 대해 Mn 과 Ni의 X 선 흡수 스펙트라를 측정하고 그 결과를 도 5 및 도 6에 나타내었다. The X-ray absorption spectra of Mn and Ni were measured for the cathode active material prepared in Example 1, and the results are shown in FIG. 5 and FIG.
도 5 및 도 6에서 상기 실시예 1 에서 제조된 양극 활물질은 내부에 존재하는 수퍼구조 (superstructure)에 의해 Mn 의 산화수는 +4, Ni 의 산화수는 +3 으로 존재하는 것을 확인할 수 있다.
5 and 6, it can be seen that the positive electrode active material prepared in Example 1 has an oxidation number of Mn of +4 and an oxidation number of Ni of +3 due to the superstructure present therein.
<< 제조예Manufacturing example > 전지 제조 > Battery Manufacturing
실시예 1 및 비교예 1 에서 제조된 양극 활물질과 도전재로 수퍼P, 바인더로 폴리비닐리덴 플루오라이드(PVdF)를 각각 85:7.5:7.5의 중량비로 혼합하여 슬러리를 제조하였다.Super P as a cathode active material and a conductive material prepared in Example 1 and Comparative Example 1, and polyvinylidene fluoride (PVdF) as a binder were mixed at a weight ratio of 85: 7.5: 7.5, respectively, to prepare a slurry.
상기 슬러리를 20 ㎛ 두께의 알루미늄박에 균일하게 도포하고, 120 ℃에서 진공 건조하여 양극을 제조하였다.The slurry was uniformly applied to an aluminum foil having a thickness of 20 占 퐉, and vacuum dried at 120 占 폚 to prepare a positive electrode.
상기 제조된 양극과 리튬 호일을 상대 전극으로 하며, 다공성 폴리에틸렌막 (셀가르드 엘엘씨 제, Celgard 2300, 두께: 25 ㎛)을 세퍼레이터로 하고, 에틸렌 카보네이트와 에틸메틸 카보네이트가 부피비로 3:7로 혼합된 용매에 LiPF6가 1.2M 농도로 녹아 있는 액체 전해액을 사용하여 통상적으로 알려져 있는 제조 공정에 따라 코인셀을 제조하였다.
Using the prepared anode and lithium foil as counter electrodes, a porous polyethylene membrane (Celgard 2300, thickness: 25 μm) was used as a separator, and ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 3: 7 Coin cells were prepared according to a conventionally known production process using a liquid electrolyte in which LiPF 6 was dissolved in the solvent at a concentration of 1.2M.
<< 실험예Experimental Example > > 충방전Charging and discharging 용량 및 수명 특성 측정 Measurement of capacity and life characteristics
상기 실시예 1 내지 12 및 비교예 1 내지 8에서 제조된 각 활물질을 이용한 전지에 대하여 충방전 테스트 및 사이클 특성을 측정하고 이를 표 1에 나타내었다.The charge / discharge test and the cycle characteristics of the cells using the active materials prepared in Examples 1 to 12 and Comparative Examples 1 to 8 were measured and shown in Table 1.
전지의 충방전 특성은 2.7 ~ 4.5V의 사이에서 0.1C의 조건에서 각 샘플마다 10회씩 진행하여, 그 평균값을 취하였으며, 수명 특성은 2.7 ~ 4.5V의 사이에서 0.5C, 25 ℃ 조건에서 60회 이상 진행하였다.The charging and discharging characteristics of the battery proceeded by 10 times for each sample under the condition of 0.1 C at 2.7 to 4.5 V, and the average value was taken. The lifetime characteristic was 60 C at 0.5 C and 25 C at 25 C Respectively.
표 1에서 보는 바와 같이 본 발명에 의한 활물질은 비교예의 활물질에 비하여, 초기 충방전 용량 및 효율이 우수하며, 100 사이클에서도 우수한 수명 특성을 나타내는 것을 알 수 있다.As shown in Table 1, the active material according to the present invention exhibits excellent initial charge-discharge capacity and efficiency, and excellent lifetime characteristics even in 100 cycles, as compared with the active material of the comparative example.
((
mAhmAh
/g)/ g)
용량 유지율(0.2 C)Capacity retention rate (0.2 C)
(%)(%)
(℃)(° C)
<< 실험예Experimental Example > > DSCDSC 를 통한 Through 열안정성Thermal stability 측정 Measure
상기 실시예 1 및 비교예 1 에서 제조된 각 활물질들을 포함하는 양극을 각각 4.3 V 충전시킨 상태에서, 시차주사열분석기(DSC)를 이용하여 10 ℃/min의 속도로 승온시키면서 측정하였으며, 그 결과를 상기 표 1에 나타내었다.The anode including the active materials prepared in Example 1 and Comparative Example 1 was charged at 4.3 V and measured at a rate of 10 ° C / min using a differential scanning calorimeter (DSC) Are shown in Table 1 above.
상기 표 1에서 본 발명의 실시예에서 제조된 활물질의 경우 비교예보다 DSC 최대 발열 피크 온도가 크게 개선된 것을 확인할 수 있다.Table 1 shows that the DSC maximum exothermic peak temperature of the active material prepared in the example of the present invention is significantly improved compared with the comparative example.
Claims (8)
전이금속층에 Li 이 치환되어 Mn의 산화수가 +4 가로 존재하는 수퍼구조 (superstructure)가 나타나는 것을 특징으로 하는 리튬이차전지용 양극활물질.
It is a layered Rombohydral R-3m structure,
And a superstructure in which Li is substituted in the transition metal layer so that the oxidation number of Mn is +4 is present in the positive electrode active material for a lithium secondary battery.
Ni 및 Co 의 산화수는 +3 가로 유지되는 것을 특징으로 하는 리튬이차전지용 양극활물질.
The method according to claim 1,
And the oxidation number of Ni and Co is maintained at +3.
상기 리튬이차전지용 양극활물질은 Lia[NixCoyMnz]O2, (0.95<a<1.05, x≥0.85, 0<y<0.075, 0.075<z<0.15, y/z<1)로 표시되는 것을 특징으로 하는 리튬이차전지용 양극활물질.
The method according to claim 1,
The positive electrode active material for a lithium secondary battery according to claim 1 , wherein Li a Ni x Co y Mn z O 2 (0.95 <a <1.05, x 0.85, 0 <y <0.075, 0.075 <z <0.15, y / z < Wherein the positive electrode active material is a positive electrode active material for a lithium secondary battery.
상기 리튬이차전지용 양극활물질은 Li[Ni0 .85Co0 .05Mn0 .10]O2 로 표시되는 것을 특징으로 하는 리튬이차전지용 양극활물질.
The method according to claim 1,
The cathode active material for a lithium secondary battery is a lithium secondary battery positive electrode active material, characterized in that represented by Li [Ni 0 .85 Co 0 .05 Mn 0 .10] O 2.
상기 리튬이차전지용 양극활물질은 XRD 피크에서 2θ의 범위가 20 내지 25 에서 상기 수퍼구조 에 의한 피크가 나타나는 것을 특징으로 하는 리튬이차전지용 양극활물질.
The method according to claim 1,
Wherein the positive electrode active material for a lithium secondary battery exhibits a peak due to the superstructure at an XRD peak in a range of 20 in a range of 20 to 25. The positive electrode active material for a lithium secondary battery according to claim 1,
상기 리튬이차전지용 양극활물질은 TEM 피크에서 층상의 롬보히드럴 R-3m 구조 내에 Mn4 + 에 의한 회절 패턴이 나타나는 것을 특징으로 하는 리튬이차전지용 양극활물질.
The method according to claim 1,
The cathode active material for a lithium secondary battery is a lithium secondary battery positive electrode active material, it characterized in that a diffraction pattern may appear due to the Mn + 4 in rombo hydroxide barrels R-3m structure of the layer in the TEM peak.
A lithium secondary battery comprising the cathode active material for a lithium secondary battery according to any one of claims 1 to 6.
상기 금속복합수산화물을 여과 및 세척 후, 건조하는 단계; 및
상기 금속복합산화물과 리튬염을 혼합 후 열처리하는 단계;
를 포함하는 리튬이차전지 양극활물질의 제조방법에 있어서,
상기 리튬염을 혼합 후 열처리하는 단계에서 열처리 온도는 670 내지 750℃ 인 것을 특징으로 하는 리튬이차전지 양극활물질의 제조방법.Adding a precursor including nickel, cobalt and manganese, an ammonia solution, and a basic solution to a reactor at the same time, mixing, precipitating and stirring to precipitate the metal complex hydroxide;
Filtering and washing the metal complex hydroxide, followed by drying; And
Mixing the metal complex oxide with a lithium salt and then performing heat treatment;
A method for producing a lithium secondary battery positive electrode active material,
Wherein the heat treatment is performed at a temperature of 670 to 750 占 폚 in the step of mixing the lithium salt and heat treating the lithium salt.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150007431A KR102381520B1 (en) | 2015-01-15 | 2015-01-15 | Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same |
PCT/KR2016/000352 WO2016114586A1 (en) | 2015-01-15 | 2016-01-13 | Anode active material for lithium secondary battery and lithium secondary battery comprising same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150007431A KR102381520B1 (en) | 2015-01-15 | 2015-01-15 | Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160088121A true KR20160088121A (en) | 2016-07-25 |
KR102381520B1 KR102381520B1 (en) | 2022-04-01 |
Family
ID=56406069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150007431A KR102381520B1 (en) | 2015-01-15 | 2015-01-15 | Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102381520B1 (en) |
WO (1) | WO2016114586A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210036893A (en) | 2019-05-29 | 2021-04-05 | 이화여자대학교 산학협력단 | Heterolayered nanohybrid, an electrode material including the same, and a secondary battery including the electrode material |
US11211605B2 (en) | 2018-01-17 | 2021-12-28 | Sk Innovation Co., Ltd. | Lithium secondary battery |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002145623A (en) * | 2000-11-06 | 2002-05-22 | Seimi Chem Co Ltd | Lithium-containing transition metal multiple oxide and manufacturing method thereof |
KR20100086668A (en) * | 2009-01-23 | 2010-08-02 | 이화여자대학교 산학협력단 | 3d hierarchical nanostructure of layered lithium manganese oxide and preparation method thereof |
KR20140109317A (en) * | 2013-03-04 | 2014-09-15 | 국립대학법인 울산과학기술대학교 산학협력단 | Positive active material for rechargeable lithium battery, method of manufacturing the same and rechargeable lithium battery including same |
-
2015
- 2015-01-15 KR KR1020150007431A patent/KR102381520B1/en active IP Right Grant
-
2016
- 2016-01-13 WO PCT/KR2016/000352 patent/WO2016114586A1/en active Application Filing
Non-Patent Citations (1)
Title |
---|
Journal of Electrochemical Society.(이태릭) The Electrochemical Society. 2014.12.26., vol.162(제A3059면 내지 제A3063면) 1부.* * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11211605B2 (en) | 2018-01-17 | 2021-12-28 | Sk Innovation Co., Ltd. | Lithium secondary battery |
KR20210036893A (en) | 2019-05-29 | 2021-04-05 | 이화여자대학교 산학협력단 | Heterolayered nanohybrid, an electrode material including the same, and a secondary battery including the electrode material |
Also Published As
Publication number | Publication date |
---|---|
WO2016114586A1 (en) | 2016-07-21 |
KR102381520B1 (en) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110073527B (en) | Nickel active material precursor, method for producing same, nickel active material, and lithium secondary battery | |
KR100822012B1 (en) | Cathode active materials for lithium batteries, Method of preparing thereof and lithium secondary batteries comprising same | |
KR100725399B1 (en) | Core-shell structured cathode active materials with high capacity and safety and their preparing method for lithium secondary batteries | |
KR101577180B1 (en) | Positive electrode active material with improved energy density | |
TWI452758B (en) | Cathode material of lithium ion battery, method for making the same, and lithium ion battery using the same | |
KR20130001703A (en) | Cathod active material, lithium rechargeble battery including the same, and method of activiting the same | |
Ruan et al. | Effect of pre-thermal treatment on the lithium storage performance of LiNi 0.8 Co 0.15 Al 0.05 O 2 | |
KR20160083638A (en) | Cathode active material for lithium secondary and lithium secondary batteries comprising the same | |
KR20140067508A (en) | Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery using the same | |
KR100946387B1 (en) | Olivine type positive active material precursor for lithium battery, olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same | |
KR100805910B1 (en) | Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same | |
EP3659976A1 (en) | Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same | |
KR20150078672A (en) | Complx metal precursor for lithium secondary battery, method for production thereof, cathode active material, lithium secondary battery including the same | |
KR100723973B1 (en) | Core-shell cathode active materials with high safety and high capacity for lithium secondary batteries, Method of preparing thereof And the product thereby | |
KR102152370B1 (en) | Cathode active material and lithium secondary batteries comprising the same | |
KR20120123821A (en) | Method for preparing lithium manganese oxide positive active material for lithium ion secondary battery, positive active material prepared thereby, and lithium ion secondary battery including the same | |
KR20130095572A (en) | Preparation method of a positive active for a lithium secondary battery | |
KR101405663B1 (en) | Positive active material for rechargeable, method for preparing the same, and rechargeable lithium battery comprising the same | |
KR102381520B1 (en) | Positive active material for lithium rechargeable battery, lithium rechargeable battery including the same, and manufacturing method for the same | |
KR101991254B1 (en) | Positive Active material with high Power density and longevity | |
KR101439630B1 (en) | Positive electrode for lithium ion secondary battery and lithium ion secondary battery including the same | |
KR101224618B1 (en) | Positive active material for rechargeable lithium battery, cathod for rechargeable lithium battery, rechargeable lithium battery and method for manufacturing thereof | |
KR20150059820A (en) | Manufacturing method of cathod active material for lithium rechargible battery by coprecipitation, and cathod active material for lithium rechargeable battery made by the same | |
KR101418065B1 (en) | Positive composition for lithium secondary battery comprising lithium-manganese based metal oxide substituted other metal and preparation method thereof | |
KR20220141551A (en) | xLi2MnO3-(1-X)LiMO2(M=Ni,Co,Mn transition metal) surface of Carbon coated lithium secondary battery cathode active material and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |