[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101912315B1 - Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물 - Google Patents

Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물 Download PDF

Info

Publication number
KR101912315B1
KR101912315B1 KR1020160126961A KR20160126961A KR101912315B1 KR 101912315 B1 KR101912315 B1 KR 101912315B1 KR 1020160126961 A KR1020160126961 A KR 1020160126961A KR 20160126961 A KR20160126961 A KR 20160126961A KR 101912315 B1 KR101912315 B1 KR 101912315B1
Authority
KR
South Korea
Prior art keywords
protein
exosome
cancer
photo
specific binding
Prior art date
Application number
KR1020160126961A
Other languages
English (en)
Other versions
KR20180036402A (ko
Inventor
최철희
최경선
류승욱
임남빈
Original Assignee
주식회사 셀렉스라이프사이언스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020160126961A priority Critical patent/KR101912315B1/ko
Application filed by 주식회사 셀렉스라이프사이언스 filed Critical 주식회사 셀렉스라이프사이언스
Priority to CA3002520A priority patent/CA3002520A1/en
Priority to PCT/KR2017/011070 priority patent/WO2018062973A1/en
Priority to EP17856859.8A priority patent/EP3356522A4/en
Priority to IL259023A priority patent/IL259023B/en
Priority to CN201780003826.5A priority patent/CN108473973A/zh
Priority to JP2018530580A priority patent/JP2019528674A/ja
Priority to AU2017335084A priority patent/AU2017335084B2/en
Priority to US15/803,338 priority patent/US10702581B2/en
Publication of KR20180036402A publication Critical patent/KR20180036402A/ko
Application granted granted Critical
Publication of KR101912315B1 publication Critical patent/KR101912315B1/ko
Priority to US16/887,029 priority patent/US11872193B2/en
Priority to US18/506,575 priority patent/US20240075100A1/en
Priority to US18/412,403 priority patent/US12133879B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • A61K38/1761Apoptosis related proteins, e.g. Apoptotic protease-activating factor-1 (APAF-1), Bax, Bax-inhibitory protein(s)(BI; bax-I), Myeloid cell leukemia associated protein (MCL-1), Inhibitor of apoptosis [IAP] or Bcl-2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4747Apoptosis related proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Oncology (AREA)
  • Hematology (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

본 발명은 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜(Bax:EXPLOR)을 대량으로 제조하는 방법, 상기 엑소솜 제조에 사용될 수 있는 엑소솜 제조용 벡터, 상기 방법으로 제조된 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜 및 이를 유효성분으로 함유하는 항암용 약학적 조성물에 관한 것이다. 본 발명에서 제공하는 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜의 제조방법을 이용하면, Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜을 높은 수율로 제조할 수 있으므로, 상기 엑소솜을 이용하여 항암용 조성물로 널리 활용될 수 있다.

Description

Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물{Process for preparing exosome loading Bcl-2-associated X protein, and pharmaceutical composition for use in preventing or treating cancer containing the same as an active ingredient}
본 발명은 광특이적 결합 단백질을 이용하여 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜의 제조방법, 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물에 관한 것이다.
인체는 대략 200여 종류 100조개의 세포로 이루어져 있고, 세포 내에서 다양한 단백질의 작용에 의해 생리 활성이 조절되어 생명을 유지하고 있다.
세포는 인지질로 구성된 이중막 구조의 세포막으로 둘러 싸여져 있으며, 세포막은 이물질의 세포 내로의 유입을 막고 있다. 지금까지 개발된 단백질 치료제들 역시 대부분 세포막을 통과하여 세포질 내로 들어가지 못하고, 세포 외부에서 작용하거나 혹은 세포막에 있는 수용체(receptor)에 작용하여 세포 내로 신호를 전달하는 방법으로 생리 효과를 나타내고 있다.
세포질에는 수 많은 단백질들이 존재하고, 이들은 서로 작용하여 생리활성을 조절하고 있는 바, 단백질 치료제를 직접 세포 안으로 즉, 세포질로 넣을 수 있다면, 세포의 활성을 좀 더 효과적으로 제어할 수 있을 것이다.
최근 목적 단백질을 세포막을 통과하여 세포 내로 직접 유입시키는 방법에 대한 연구가 활발히 진행되고 있다. 세포막을 통과하는 펩타이드인 세포막 통과 도메인(Protein Transduction Domains, PTDs)과 목적 단백질의 재조합 단백질(recombinant protein)을 만들어 투여하면, 세포막을 통과하여 세포질 내로 들어갈 수 있다(도 1). 세포막 통과 도메인(PTD)에는 HIV-1 TAT, HSV VP22, Antp, dfTAT, Hph-1 등이 있으며, 이들과 목적 단백질을 결합시킨 융합 단백질은 재조합 단백질 형태로 생산하고 분리하는 과정이 필요하며, 이 과정에 단백질의 재접힘(refolding)이 제대로 되지 않아, 활성이 떨어지며, 단백질이 비특이적으로 전달되고, 생체 내에서는 면역 반응을 일으킬 위험이 크며, 비용이 많이 들고, 수율이 낮은 문제점이 있다.
다양한 나노 입자(nanoparticle)와 결합된 목적 단백질은 식작용(Endocytosis)에 의해 세포막을 통과하여 세포질로 들어 갈 수 있다(도 2). 나노 입자에는 Gold NP, Liposome NP, Magnetic NP, Polymeric NP 등이 있으며, 이들과 목적 단백질의 결합체의 분해는 세포 내에서 대부분 리소좀(lysosome)에서 발생하여 목적 단백질이 리소좀 내부에서 분해되어 활성을 잃어버리거나, 세포질에서 목적 단백질과 나노 입자가 따로 분리되기가 어렵고, 나노 입자의 독성이 문제가 될 수 있다.
엑소솜(Exosome)은 세포 간 신호전달을 하기 위하여, 단백질, DNA, RNA 등을 가지고 세포 밖으로 분비되어지는 50 - 200 nm 크기의 막구조의 작은 소낭을 가리킨다.
엑소솜은 원래 적혈구가 성숙되어지는 마지막 단계에서 세포 내 단백질을 배출하여 제거함으로써 적혈구 내에 헤모글로빈만 남기는 과정에서 발견된 것으로서, 이러한 엑소솜은 전자 현미경을 통한 연구에서 원형질막(plasma membrane)으로부터 직접 떨어져 나가는 것이 아니라, 다낭체(Multivesicular bodies, MVBs)라고 불리는 세포 내 특정 구획에서 기원하여 세포 밖으로 방출, 분비되는 것으로 관찰되었다. 즉, 다낭체와 원형질막의 융합이 일어나면, 그러한 소낭들은 세포 밖 환경으로 방출되는데, 이것을 엑소솜이라 부른다(도 3).
이러한 엑소솜이 어떤 분자적 기작에 의해 만들어지는지는 확실히 밝혀진 바가 없으나, B-림프구, T-림프구, 수지상세포, 거대핵세포(megakaryocyte), 대식세포 등을 포함한 다양한 종류의 면역 세포들과 줄기세포 및 종양세포 등도 살아 있는 상태에서 엑소솜을 생산하여 분비한다고 알려져 있다.
엑소솜에는 세포 내의 다양한 단백질, DNA, RNA 등이 포함되어 있다. 이러한 엑소솜에 포함되어 세포 밖으로 분비되는 물질들은 세포막과의 융합 (fusion) 혹은 내포작용 (endocytosis)에 의해 다른 세포 내로 다시 유입되어 세포 간의 통신자로서의 역할을 하기도 한다. 또한, 이러한 엑소솜에 포함되어 세포 밖으로 분비되는 물질들을 분석하여 특정 질환의 진단에 이용될 수 있다.
엑소솜 내에는 여러 종류의 microRNA가 포함되어 있으며, 이것의 존재 유무 및 존재량을 검출하여 질병을 진단하는 방법에 대하여 알려져 있다(KR 10-2010-0127768A 참조). 특히 국제 공개 WO2009-015357A에는 암 유래의 시료(혈액, 타액, 눈물 등)에 존재하는 엑소솜을 검출하여, microRNA의 변화량을 측정하여, 대조군에 비하여 증가 또는 감소할 경우 특정 질환과의 관련성을 예측하고, 진단하는 방법이 개시되어 있다. 특히, 특정 질환(폐질환)을 갖는 환자로부터 얻은 엑소솜을 분석하여, 특정 microRNA와 폐질환과의 관련성에 대하여, 구체적으로 개시하고 있다. 또한, 폐질환 외에도 엑소솜에 포함된 단백질을 이용하여 신장질환을 진단할 수 있는 방법에 대하여도 연구되고 있는 실정이다.
또한, 엑소솜에는 항원을 포함하기도 한다. 한편, 항원제시세포(antigen presenting cell, APC)에서는 다낭체를 포함해 막구조를 가지는 세포 내 구획에서 항원 펩티드가 MHC(major histocompatibility complex) 클래스 II 분자에 선적되기 때문에 이로부터 기원되는 엑소솜도 항원 펩티드-MHC 클래스 II 컴플렉스를 가지고 있다. 따라서, 엑소솜은 면역원(immunogen)의 수송체로서 CD4+ T 림프구에 항원 펩티드를 제시할 수 있고, 그에 따라 T 림프구의 증식과 같은 면역 반응을 유도할 수 있다. 또한, 엑소솜에는 MHC 클래스 I, 열 충격 단백질(HSPs;heat-shock proteins) 등 면역 반응을 자극시킬 수 있는 능력을 가진 분자들이 농축되어 있기 때문에 자가면역 질환(autoimmune disease)이나 종양 치료에 있어서 면역증강 또는 감소의 목적으로 이용될 수 있다.
또한, 상기 목적 단백질이 내부에 포함된 엑소솜은, 생체 내에서 다양한 질환의 치료에 사용될 수 있다. 예를 들어, 목적 단백질로서 항암 효과를 나타내는 단백질이나, siRNA를 포함하는 엑소솜을 제조하고, 이를 암세포에 처리하여 암치료에 사용할 수 있다(도 4).
이와 같이 목적 단백질을 포함하는 엑소솜은 질병의 치료에 사용될 수 있다. 이를 위해서는 목적 단백질을 포함하는 엑소솜을 효율적으로 만들 수 있어야 한다. 한국 공개 특허 제 2004-0015508에는 특정 항원을 포함하는 엑소솜의 제조 방법이 기재되어 있다. 특정 항원에 대한 유전자를 세포주 내에 도입하여 도입된 유전자의 단백질이 세포주 내에서 안정하게 발현되어, 엑소솜을 통하여 세포 밖으로 방출되는 방법과 이러한 엑소솜을 백신(vaccine)으로 사용하는 방법이 개시되어 있다.
그러나, 상기 엑소솜은 세포 내에서 자연적으로 형성되기 때문에, 상기 엑소솜을 생성하는 세포에 목적 단백질을 코딩하는 유전자를 도입한다 하여도, 발현된 단백질이 내부에 포함된 형태의 엑소솜이 제조될 가능성이 매우 낮다는 문제점이 있다.
이에, 본 발명자들은 목적 단백질이 포함된 엑소솜을 보다 효과적으로 제조하는 방법을 개발하기 위하여 연구 노력한 결과, 엑소솜 특이 마커와 목적 단백질을 융합시킨 융합 단백질을 엑소솜을 대량으로 만들어내는 세포에서 발현시킴으로써, 목적 단백질이 포함된 엑소솜을 효율적으로 제조할 수 있음을 확인하였다(도 5).
또한, 상기 방법은 목적 단백질이 엑소솜의 막에 부착되어 있는 바, 엑소솜 특이 마커와 목적 단백질 각각에 광특이적 결합 단백질 쌍의 각각을 융합시킨 융합 단백질을 엑소솜을 대량으로 만들어내는 세포에서 발현시키고, 빛을 조사하여 각각의 융합 단백질을 결합시키면, 이들 결합 단백질이 엑소솜 특이 마커에 의해 엑소솜 내부로 유입되고, 유입된 후에 빛의 조사가 중단되면 엑소솜 내부에서 목적 단백질과 광특이적 결합 단백질의 융합 단백질이 분리되어 목적 단백질이 내부에 유리(free) 상태로 포함된 엑소솜을 효과적으로 제조할 수 있음을 확인하였다(도 6).
Bax(Bcl-2-associated X protein)란, bcl-2-like protein 4라고도 호칭되는 Bcl-2 패밀리 단백질 중의 하나를 의미한다. 상기 Bax는 세포의 세포자멸(apoptosis)를 촉진시키는 역할을 수행하는데, 주로 미토콘드리아의 외막에 결합된 상태로 존재하며, 그의 C-말단의 4개 잔기는 미토콘드리아 내막과 외막사이의 막간 공간에 돌출된 상태로 존재한다. 상기 단백질을 코딩하는 유전자의 구체적인 염기서열 및 단백질 정보는 NCBI에 공지되어 있다(GenBank: NM_001291428, NP_001278357 등).
Bax는 pro-apoptotic 단백질을 합성하는 bcl-2 유전자군의 하나이다. Bax는 p53의 transcriptional target으로 Bax의 transcription은 돌연변이 p53에 의해서 활성화가 억제된다. 혈액 종양과 대장 및 직장암의 세포주에서 Bax의 발현이 현저하게 감소되어 있는 데, 이는 Bax를 합성하는 염기서열 내의 삽입 혹은 결손으로 인한 것으로 알려져 있다.
Apoptosis는 세포자멸사라고도 불리며, 세포가 여러 요인들에 노출되었을 때 손상된 세포의 제거를 위하여 사용되는 과정으로, 이러한 apoptosis 과정에 이상이 생기면 세포의 암 화가 유도된다. 따라서 암세포 제거를 위한 전략 중 하나로 암세포의 apoptosis 유도에 관한 연구가 활발히 진행되어 왔다. Apoptosis는 세포 위축에 의한 염색질의 응축, apoptotic body 형성 및 DNA 단편화 등의 특징을 보이며, 미토콘드리아를 통한 내인성 경로(intrinsic pathway)와 사멸 수용체를 통하는 외인성 경로(extrinsic pathway)의 두 가지 경로를 통해 유도된다. 이러한 apoptosis는 세포 내 pro-apoptotic Bcl-2 family의 활성화, pro-caspase의 분절에 의한 활성화 및 poly ADP-ribose polymerase (PARP)의 단편화 등 다양한 관련 분자에 의하여 조절된다. 특히 caspases는 세포질 내에 존재하는 cysteine proteases의 종에 속하는 단백질로서, 정상적으로 증식 중인 세포에서는 pro-enzyme 형태로 존재하다가 apoptosis 유도 신호에 의해 내인성과 외인성의 경로를 통해 활성화되고, 세포 내 존재하는 PARP등과 같은 표적 단백질에 관여하여 apoptosis의 실행에 중요한 역할을 담당한다.
대부분의 아폽토시스 자극은 bcl-2, bcl-XL(아폽토시스의 억제제 또는 저해제), bax, bak(아폽토시스의 증진제 또는 유도제) 등과 같은 세포 사멸의 작용제 및 길항제 모두를 포함한 상동성 단백질 그룹을 암호화하는 bcl-2 유전자 패밀리의 멤버에 의해 조절되는 경로를 통해 진화적으로 보존된 포유류 세포 사멸을 유도한다. 이들 멤버는 차별적으로 조절되나 서열-상동성 도메인을 공유한다. 아폽토시스 상에서 bcl-2 및 bax(bcl-2 단백질과 21% 상동성 공유)와 같은 프로(pro)- 및 항-아폽토시스 패밀리 멤버의 길항 효과는 아폽토시스를 진행하는 세포 감수성을 측정하는 bax에 대한 bcl-2 비율(bcl-2/bax)로 상동- 또는 이형-이량체의 형성에 의해 조절된다.
Bax 단백질은 발생과정 중 신경세포의 사멸, 림프계 및 생식기관의 항상성 유지, 종양 억제, DNA 손상에 이은 세포사, 허혈-재관류 손상 등에 관여하는 것으로 알려져있다.
따라서, 본 발명자들은 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜을 제조하고, 상기 엑소솜을 처리시 Bax(Bcl-2-associated X protein) 단백질이 타겟 세포의 세포질에 전달되는 것을 확인하였으며, 본 발명의 Bax 단백질을 탑재한 엑소솜이 세포사멸 조절이상과 관련된 질환을 위한 예방 및 치료용 약학적 조성물 또는 암 예방 및 치료용 약학적 조성물로서의 이용 가능함을 확인함으로써, 본 발명을 완성하였다.
본 발명의 목적은 엑소솜 특이 마커와 Bax(Bcl-2-associated X protein) 단백질의 융합 단백질을 포함하는 엑소솜의 대량 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 광특이적 결합 단백질 쌍을 이용하여 엑소솜 막에서 분리된 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜의 대량 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 엑소솜의 제조에 사용될 수 있는 엑소솜 제조용 벡터를 제공하는 것이다.
아울러, 본 발명의 다른 목적은 상기 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은,
a) 엑소솜 생산 세포에, 엑소솜 특이 마커와 Bax(Bcl-2-associated X protein) 단백질이 결합된 형태의 융합 단백질을 코딩하는 폴리뉴클레오티드를 도입하여 형질전환된 세포를 얻는 단계; 및 b) 상기 형질전환된 세포를 배양하는 단계를 포함하는 것을 특징으로 하는 Bax(Bcl-2-associated X protein) 단백질이 엑소솜 막에 부착된 엑소솜을 대량으로 제조하는 방법을 제공한다.
또한, 본 발명은
a) 엑소솜 생산 세포에, 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)을 코딩하는 폴리뉴클레오티드 및 상기 제1 광특이적 결합 단백질과 결합할 수 있는 제2 광특이적 결합 단백질과 Bax(Bcl-2-associated X protein) 단백질이 결합된 형태의 융합 단백질(제2 융합 단백질)을 코딩하는 폴리뉴클레오티드를 도입하는 단계; b) 상기 엑소솜 생산 세포에 상기 제1 광특이적 결합 단백질과 상기 제2 광특이적 결합 단백질의 결합을 유발할 수 있는 광을 조사하는 단계; 및 c) 상기 엑소솜 생산 세포에서 엑소솜이 생산된 다음, 상기 광의 조사를 중지하는 단계를 포함하는, Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜을 대량으로 제조하는 방법을 제공한다.
또한, 본 발명은
(a) 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)을 코딩하는 폴리뉴클레오티드를 포함하는 제1 발현벡터; 및 (b) Bax(Bcl-2-associated X protein) 단백질을 코딩하는 폴리뉴클레오티드가 도입될 수 있는 다클론 부위와 상기 제1 광특이적 결합 단백질과 결합할 수 있는 제2 광특이적 결합 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 제2 발현벡터를 포함하는, 엑소솜 제조용 벡터를 제공한다.
아울러, 본 발명은 상기 방법을 사용하여 제조된, Bax(Bcl-2-associated X protein) 단백질이 내부에 포함된 엑소솜, 상기 엑소솜을 이용하는 것을 특징으로 하는 세포질로 Bax(Bcl-2-associated X protein) 단백질을 전달하는 방법, 그리고 상기 엑소솜을 유효성분으로 포함하는 암 예방 및 치료용 약학적 조성물을 제공한다.
본 발명에서 제공하는 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜의 제조방법을 이용하면, Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜을 높은 수율로 제조할 수 있으며, 또한, Bax(Bcl-2-associated X protein) 단백질이 엑소솜 막으로부터 분리되어 존재하므로 상기 엑소솜을 이용하여 항암용 조성물에 널리 활용될 수 있다.
도 1은 세포막 통과 도메인(PTD)과 목적 단백질의 재조합 단백질을 통한 목적 단백질의 세포질 내 전달방법을 보여주는 그림이다(Steven R. et al. Protein transduction: unrestricted delivery into all cells Trends in Cell biology, 2000).
도 2는 나노 입자와 목적 단백질을 결합시킨 결합체를 endocytosis를 통해 목적 단백질의 세포질 내 전달방법을 보여주는 그림이다(Munish Chanana et al. Physicochemical properties of protein-coated gold nanoparticles in biological fluids and cells before and after proteolytic digestion. Angew. Chem. Int. Ed. 2013).
도 3은 엑소솜이 세포 내 다낭체(Multi vesicular bodies, MVBs)로부터 세포 밖으로 방출, 분리되어 발생되는 과정을 보여주는 그림이다(Graca Raposo and Willem Stoorvogel. Extracellular vesicles: Exosomes, microvesicles, and friends. Cell Biology 200(4), 373-383, 2013).
도 4는 표적화된 엑소솜을 통해 siRNA를 생체 내 전달하여 암을 치료하는 과정을 보여주는 그림이다(Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes.Nature biotechnology 29, 341-345, 2011).
도 5는 본 발명에 따른 광유전자로 디자인된 단백질 운반 엑소솜(Optogenetically-designed, protein-carrying exosomes, EXPLORs)의 제조 공정을 보여주는 개요도 이다.
도 6은 본 발명에 따른 EXPLORs의 광 조사가 중단되면 엑소솜 내부에서 목적 단백질과 광특이적 결합 단백질의 융합 단백질이 분리되는 과정을 보여주는 그림이다.
도 7은 CIBN-EGFP-CD9 유전자와 mCherry-CRY2 유전자가 HEK293T 세포에 도입된 형질전환체에서 청색광의 조사 여부에 따른 mCherry 단백질의 세포 내 위치변화를 나타내는 형광사진이다.
도 8은 본 발명에 따른 EXPLORs를 수득하는 실험 과정을 보여주는 그림이다.
도 9는 청색광의 세기에 따라, 엑소솜의 내부에 포집된 목적 단백질(mCherry 단백질)의 함량변화를 측정한 결과를 나타내는 면역블럿 분석사진이다.
도 10은 목적 단백질(mCherry)을 포함하는 엑소솜을 표적 세포(HT1080 세포)에 처리한 후, 상기 표적 세포에 목적 단백질의 도입 여부를 확인한 결과를 나타내는 전자현미경 사진으로서, 좌측은 엑소솜이 처리되지 않은 표적 세포를 나타내고 우측은 엑소솜이 처리된 표적 세포를 나타낸다.
도 11는 목적 단백질(mCherry)을 포함하는 엑소솜을 표적 세포(HT1080 세포)에 처리한 후, 상기 표적 세포에 목적 단백질의 도입 여부를 확인한 결과를 나타내는 형광사진(a) 및 상기 엑소솜 처리에 의하여 유발된 사멸세포의 비율을 비교한 결과를 나타내는 그래프(b)이다.
도 12는 GIGANTEA-EGFP-CD9 유전자 및 mCherry-FKF1LOV가 HEK293T 세포에 도입된 형질전환체에서 청색광의 조사 여부에 따른 mCherry 단백질의 세포 내 위치변화를 나타내는 형광사진이다.
도 13은 형광이미징을 이용한 Luciferase-mCherry 융합단백질의 발현 정도(a) 및 생산 세포에서의 루시퍼라제 활성 및 분자 개수를 확인한 도이다(b):
Control: 아무것도 처리하지 않은 HEK293T 세포;
OVER: Luciferase-mCherry-CRY2 만을 도입한 HEK293T 세포;
XP: 엑소솜 탑재 기술을 위해 만들어진 상용 벡터인 XPACK (Systems Biosciences)을 이용하여 XPACK-Luciferase-mCherry을 도입한 HEK293T 세포;
EXPLOR: 본 발명의 방법에 따른, Luciferase-mCherry-CRY2와 CIBN-EGFP-CD9를 도입한 HEK293T 세포.
도 14는 생산된 엑소솜 내에서의 루시퍼라제 활성 측정(a) 및 분자 개수(b)를 확인한 도이다:
NEG: 아무것도 처리하지 않은 HEK293T 세포에서 생산된 엑소솜;
OVER: Luciferase-mCherry-CRY2를 도입한 HEK293T 세포에서 생산된 엑소솜;
XP: 엑소솜 탑재 기술을 위해 만들어진 상용 벡터인 XPACK (Systems Biosciences)을 이용하여 XPACK-Luciferase-mCherry을 도입한 HEK293T 세포에서 생산된 엑소솜;
EXPLOR: 본 발명에 따른, Luciferase-mCherry-CRY2와 CIBN-EGFP-CD9를 도입한 HEK293T 세포에서 생산된 엑소솜;
ON: 200 μW의 청색광에서 72시간 배양하여 생산한 엑소솜,
OFF: 빛이 없는 조건에서 72시간 배양하여 생산한 엑소솜.
도 15는 생산된 엑소솜 내의 목적 단백질의 도입 효율(loading efficiency)을 나타낸 도이다.
도 16은 엑소솜을 이용한 표적 세포(HeLa)로의 목적 단백질 전달 효율을 나타낸 도이다:
Control: 아무것도 처리하지 않은 HEK293T 세포에서 생산된 엑소솜;
OVER: Luciferase-mCherry-CRY2를 도입한 HEK293T 세포에서 생산된 엑소솜;
XP: 엑소솜 탑재 기술을 위해 만들어진 상용 벡터인 XPACK (Systems Biosciences)을 이용하여 XPACK-Luciferase-mCherry을 도입한 HEK293T 세포에서 생산된 엑소솜;
EXPLOR: 본 발명에 따른, Luciferase-mCherry-CRY2와 CIBN-EGFP-CD9를 도입한 HEK293T 세포에서 생산된 엑소솜;
ON: 200 μW의 청색광에서 72시간 배양하여 생산한 엑소솜,
OFF: 빛이 없는 조건에서 72시간 배양하여 생산한 엑소솜.
도 17은 세포 내에서 Luciferase-mCherry-CRY2와 CIBN-EGFP-CD9가 HEK293T 세포내에서 같은 위치에 발현하고 있음을 확인한 도이다.
도 18은, 세포 내에서 Bax-mCherry-CRY2 및 CIBN-EGFP-CD9가 HEK293T 세포 내에서 같은 위치에 발현하고 있음을 확인한 도이다.
도 19는, HeLa 세포에 본 발명에 따른 Bax:EXPLOR를 전처리 하였을 경우, cytochrome c release를 확인한 도이다(Scale bars, 20 μm):
mCherry:EXPLOR: Bax 단백질이 탑재되지 않은 엑소솜; 및
Bax:EXPLOR: Bax 단백질이 탑재된 엑소솜.
이하, 본 발명을 상세히 서술한다.
본 발명은 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜을 효율적으로 대량으로 제조하는 방법에 관한 것이다.
본 발명자들은 목적 단백질이 내부에 포함된 엑소솜을 보다 효과적으로 제조하는 방법을 개발하기 위하여 다양한 연구를 수행하던 중, 엑소솜 특이 마커(CD9, CD63, CD81 또는 CD82)에 주목하게 되었다. 상기 엑소솜 특이 마커는 테트라스파닌 패밀리에 속하는 4회 막 관통형의 막 단백질이라는 공통점을 갖고 있으므로, 상기 엑소솜의 막단백질에 목적 단백질을 결합시킬 경우, 비교적 용이하게 엑소솜 내부에 포함될 수 있을 것으로 예측하였다.
이와 같이 엑소솜 막에 특이적으로 많이 존재하고 세포막을 관통하는 엑소솜 특이 마커와 목적 단백질의 융합 단백질을 엑소솜을 대량으로 만드는 세포에서 발현시키면 목적 단백질이 포함된 엑소솜을 대량으로 만들 수 있다.
구체적으로, 본 발명의 목적 단백질인 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜의 제조 방법은 엑소솜 생산 세포에서 엑소솜 특이 마커와 Bax(Bcl-2-associated X protein) 단백질이 결합된 융합 단백질을 코딩하는 폴리뉴클레오티드를 도입하여 발현시키는 것을 특징으로 한다.
이 때 생성된 엑소솜에는 Bax(Bcl-2-associated X protein) 단백질이 엑소솜막에 박혀 있는 엑소솜 특이 마커와 융합되어 있다.
상기 목적 단백질은 상기 엑소솜의 막단백질에 결합되어 있는 상태로서, 표적세포에 도달한 후에도 분리되지 아니한다. 이러한 문제점을 해결하기 위하여, 다양한 연구를 수행한 결과, 광특이적 결합 단백질을 사용하여, 일시적으로 목적 단백질을 상기 마커 단백질과 결합시켜서, 상기 목적 단백질이 내부에 포함된 엑소솜을 제조하는 기술을 개발하였다. 예를 들어, 광특이적 결합 단백질인 CIBN과 CRY2을 이용할 수 있는데, 구체적으로, 상기 CIBN은 상기 마커 단백질의 하나인 CD9과 융합된 형태로 발현되도록 하고, 상기 CRY2는 목적 단백질과 융합된 형태로 발현되도록 이들 융합 단백질을 코딩하는 유전자를 엑소솜 생산 세포에 도입하였다. 상기 엑소솜 생산세포에서 발현된 CIBN-CD9 융합 단백질은 CD9으로 인하여 엑소솜에 포함되는데, 이때, 상기 세포에 푸른 빛 LED 조명을 조사하면, 상기 엑소솜 생산세포에서 발현된 목적단백질-CRY2 융합 단백질의 CRY2 도메인이 CD9에 융합된 CIBN 도메인에 결합되므로, 목적단백질-CRY2-CIBN-CD9 형태의 가역적으로 유도된 융합 단백질이 형성되고, 이와 같은 융합 단백질은 CD9으로 인하여 엑소솜 내부에 포함된다. 이처럼 목적단백질이 내부에 포함된 엑소솜이 생산된 후, 상기 푸른 빛 LED 조명을 더 이상 조사하지 않으면, CIBN-CRY2 결합이 해제되어, 목적단백질이 엑소솜의 세포막에 결합되지 않은 상태로 엑소솜 내부에 포함되게 되므로, 결과적으로는 목적 단백질을 포함하는 엑소솜을 제조할 수 있다(도 5 내지 도 10).
이같이 제조된 엑소솜은 종래의 표적 물질을 포함하는 엑소솜과는 전혀 다른 효과를 나타낼 수 있다. 종래의 엑소솜은 목적 단백질을 엑소솜 내부에 포집시키기 위하여, 엑소솜 특이 마커에 융합시킨 형태로 발현시켰으므로, 상기 목적 단백질이 엑소솜 내부에 포집되기는 하였으나, 엑소솜막에 부착되어 있는 상태로 있으므로 엑소솜막으로부터 분리되지 못하므로, 상기 엑소솜이 표적 세포의 세포막에 융합되는 경우에만, 상기 목적 단백질이 표적 세포로 전달될 수 있고, 이처럼 표적 세포에 융합된 후에도, 엑소솜막에 융합된 엑소솜에 결합된 형태로 존재하기 때문에, 상기 목적 단백질이 표적 세포내에서 그의 효과를 나타낼 확률이 매우 낮다는 한계가 있었다. 그러나, 본 발명에서 제공하는 엑소솜은 엑소솜 내부에 목적 단백질이 막에 결합되지 않은 상태로 포집되어 있으므로, 상기 엑소솜이 표적 세포에 의하여 endocytosis되어 세포질로 들어갔을 때, 엑소솜막에 부착되어 있는 것이 아니므로 엑소솜이 분해되는 경우, 목적 단백질이 표적 세포의 세포질로 전달될 수 있으며, 표적 세포의 세포질 내에서 자유롭게 이동이 가능하므로, 목적 단백질이 표적 세포질에서 생리 활성을 충분히 나타낼 수 있다는 장점이 있다(도 11).
뿐만 아니라, 광조사시 조사되는 광의 세기에 따라서, 마커 단백질에 결합되는 목적 단백질의 결합수준이 변화되므로, 상기 광의 세기를 조절할 경우, 엑소솜내에 포집되는 목적 단백질의 함량을 조절할 수 있다는 장점이 있다.
따라서, 광특이적 결합 단백질을 사용하여 목적 단백질을 포함하는 엑소솜을제조하는 방법은 지금까지 전혀 알려져 있지 않으며, 본 발명자에 의하여 최초로 개발되었다.
따라서 본 발명에서는, 하기 단계로 구성된 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜의 제조방법을 제공한다:
(a) 엑소솜 생산 세포에, 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)을 코딩하는 폴리뉴클레오티드 및 상기 제1 광특이적 결합 단백질과 결합할 수 있는 제2 광특이적 결합 단백질과 Bax(Bcl-2-associated X protein) 단백질이 결합된 형태의 융합 단백질(제2 융합 단백질)을 코딩하는 폴리뉴클레오티드를 도입하는 단계;
(b) 상기 엑소솜 생산 세포에 상기 제1 광특이적 결합 단백질과 상기 제2 광특이적 결합 단백질의 결합을 유발할 수 있는 광을 조사하는 단계; 및
(c) 상기 엑소솜 생산 세포에서 엑소솜이 생산된 다음, 상기 광의 조사를 중지하는 단계.
본 발명의 용어 "엑소솜(exosome)"이란, 다낭체(multivesicular bodies, MVBs)라고 불리는 세포 내 특정 구획에서 기원하여 세포 밖으로 방출 또는 분비되는 원형질막 구조의 작은 소낭을 의미한다.
본 발명에 있어서, 상기 엑소솜은 목적 단백질을 내부에 포함하여 목적 단백질의 표적 세포 또는 조직으로 목적 단백질을 운반하는 운반체로서 역할을 수행할 수 있는데, 상기 엑소솜에 의하여 운반된 목적 단백질은 표적 세포 또는 조직에 작용하여 특정 질환을 치료하거나 또는 특정 질환을 진단하는데 사용될 수 있다.
본 발명의 용어 "엑소솜 생산 세포"란, 상기 엑소솜을 생산할 수 있는 세포를 의미한다.
본 발명에 있어서, 상기 엑소솜 생산 세포는 특별히 이에 제한되지 않으나 한 가지 예로서, B-림프구, T- 림프구, 수지상세포, 거대핵세포(megakaryocyte), 대식세포, 줄기세포 및 종양 세포 등이 될 수 있다. 예를 들어, 본 발명의 실시예에서는 상기 엑소솜 생산 세포로서 불멸화세포주(immortalized cell line)의 일종인 HEK293T 세포를 사용하였다.
본 발명의 용어 "엑소솜 특이 마커"란, 엑소솜의 막에 풍부하게 존재하는 단백질을 의미한다.
본 발명에 있어서, 상기 엑소솜 특이 마커는 특별히 이에 제한되지 않으나, 한 가지 예로서, CD9, CD63, CD81, CD82 등이 될 수 있다. 예를 들어, 본 발명의 실시예에서는 엑소솜 특이 마커로서 CD9을 사용하였다. CD9, CD63, CD81, CD82는 4회 관통형 막단백질로써, 엑소솜의 막단백질에 목적 단백질을 결합시킬 경우 용이하게 목적 단백질을 엑소솜 내부에 존재하게 한다.
본 발명의 용어 "광특이적 결합 단백질"이란, 광유도 이형이합체 형성 단백질 또는 광유도 동형이합체 형성단백질이라고도 하는데, 특정 파장의 광이 조사될 경우, 서로 상이한 단백질과 결합하여 이형이합체를 형성할 수 있는 단백질 또는 서로 동일한 종류의 다른 단백질과 결합하여 동형이합체를 형성할 수 있는 단백질을 의미한다.
본 발명에 있어서, 상기 광특이적 결합 단백질은 특별히 이에 제한되지 않으나, 한 가지 예로서, 광유도 이형이합체 형성 단백질이 될 수 있고, 다른 예로서, CIB(cryptochrome-interacting basic-helix-loop-helix protein), CIBN(N-terminal domain of CIB), PhyB(phytochrome B), PIF(phytochrome interacting factor), FKF1(Flavinbinding, Kelch repeat, F-box 1), GIGANTEA, CRY(chryptochrome), PHR(phytolyase homolgous region) 등이 될 수 있다.
특히, 이형이합체를 형성하는 경우, 두 가지 광특이적 결합 단백질(제1 광특이적 결합 단백질 및 제2 광특이적 결합 단백질)이 사용될 수 있는데, 상기 제1 광특이적 결합 단백질이 CIB 또는 CIBN인 경우, 이에 대한 제2 광특이적 결합 단백질은 CRY 또는 PHR이 될 수 있고, 상기 제1 광특이적 결합 단백질이 PhyB인 경우, 이에 대한 제2 광특이적 결합 단백질은 PIF가 될 수 있으며, 상기 제1 광특이적 결합 단백질이 GIGANTEA인 경우, 이에 대한 제2 광특이적 결합 단백질은 FKF1가 될 수 있다.
예를 들어, 본 발명의 실시예에서는 제1 광특이적 결합 단백질로서 CIBN을사용하고, 제2 광특이적 결합 단백질로서 CRY2를 사용하였으며, 사용된 빛의 파장은 청색광을 나타내는 460 내지 490nm로 설정하고, 상기 빛의 세기는 20 내지 50 μW로 설정하였다.
한편, 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 제1 융합 단백질의 발현여부 및 세포 내 위치를 확인하기 위하여, 마커 단백질을 함께 융합시킬 수도 있다. 예를 들어, 본 발명의 실시예에서는 CIBN과 CD9, 또는 GIGANTEA와 CD9이 결합된 제1 융합 단백질에 형광단백질인 EGFP가 삽입된 형태로 발현시킴으로써, 상기 제1 융합 단백질의 발현여부, 발현수준 및 세포 내 위치를 확인하고자 하였다.
본 발명의 용어 "목적 단백질"이란, 상기 엑소솜의 내부에 포함되도록 상기 제2 광특이적 결합 단백질과 융합된 형태로 발현되는 단백질을 의미한다.
본 발명에 있어서, 상기 목적 단백질은 Bax(Bcl-2-associated X protein) 단백질이며, 상기 Bax 단백질은 서열번호 1로 기재되는 아미노산 서열로 구성되는 것이 바람직하나 이에 한정되지 않는다.
본 발명의 용어 "배양"이란, 세포 혹은 미생물을 적당히 인공적으로 조절한 환경조건에서 생육시키는 방법을 의미한다.
본 발명에 있어서, 형질전환체를 1 내지 3일간 배양한 후, 소태아혈청이 포함되지 아니한 배지로 교체하고 2 내지 5일간 추가로 배양한다.
본 발명에 있어서, 상기 형질전환체를 배양하는 방법은 당업계에 널리 알려져 있는 방법을 이용하여 수행할 수 있다.
상기 배지는 동물세포 배양 시 사용되는 공지된 배지를 의미하고, 시판중인 무혈청 배지(serum free media), 무단백 배지(protein free media) 및 화학 정의 배지(chemically defined media) 등의 그룹 중에서 선택될 수 있다.
상기 무혈청 배지는 동물 세포를 배양하는데 사용되는 소혈청 성분이 제거된 배지로 SFM4CHO(HyClone), EX-Cell(JHR Bioscience) 등이 바람직하고, 인슐린형 성장인자 I(Insulin like growth factor I, IGF-I), 에탄올아민(Ethanolamine), 페릭 클로라이드(Ferric chloride), 및 포스파티딜콜린(Phosphatidyl choline) 등이 첨가될 수 있으나 이에 한정하지 않는다.
상기 무단백 배지는 소혈청 성분이 제거된 무혈청 배지에서 동물 유래 단백질, 특히, 분자량 10kDa 이상인 고분자 단백질이 제거된 동물세포 배양 배지로써, ProCHO(Lonza) 및 PF-CHO(HyClone) 등이 선택될 수 있으나, 이에 한정하지 않는다.
상기 화학 정의 배지는 동물 유래의 성분이 없고, 배지를 구성하는 모든 구성 성분이 공지된 화학적 구조를 가진 동물 세포 배양용 배지로써, CDM4CHO(HyClone), PowerCHO2CD(Lonza), 및 CD-optiCHO(Life Technologies) 등이 선택 될 수 있으나, 이에 한정하지 않는다.
본 발명의 용어 "제1 융합 단백질"이란, 상기 엑소솜 특이 마커와 상기 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질을 의미한다.
본 발명에 있어서, 상기 제1 융합 단백질에 포함된 엑소솜 특이 마커와 제1 광특이적 결합 단백질의 배열순서는 상기 제1 융합 단백질이 엑소솜 생산 세포에서 엑소솜의 내부방향으로 상기 제1 광특이적 결합 단백질이 위치하도록 발현될 수 있는 한, 특별히 이에 제한되지 않으나, 한 가지 예로서 엑소솜 특이 마커의 C-말단에 제1 광특이적 결합 단백질의 N-말단이 결합된 형태로 구성될 수 있다.
또한, 상기 제1 융합 단백질을 구성하는 엑소솜 특이 마커와 제1 광특이적 결합 단백질은 상호 직접적으로 연결될 수도 있고, 링커를 통해 연결될 수도 있다. 상기 링커는 제1 융합 단백질이 엑소솜 생산 세포에서 엑소솜의 내부방향으로 상기 제1 광특이적 결합 단백질이 위치하도록 발현될 수 있는 한, 특별히 이에 제한되지 않으나, 아미노산으로 구성된 펩타이드 링커를 사용할 수 있고, 보다 바람직하게는 잘 구부러지는(flexible) 펩타이드 링커를 사용할 수 있다. 상기 펩타이드 링커는 상기 링커를 코딩하는 핵산을 각 도메인을 코딩하는 핵산 사이에 인프레임(in frame)으로 연결하여 발현벡터 내에 작동 가능하게 연결하여 발현시킬 수 있다.
본 발명의 용어 "제2 융합 단백질"이란, 상기 제2 광특이적 결합 단백질과 상기 목적 단백질이 결합된 형태의 융합 단백질을 의미한다.
본 발명에 있어서, 상기 제2 융합 단백질에 포함된 제2 광특이적 결합 단백질과 목적 단백질의 배열순서는, 상기 제2 융합 단백질이 엑소솜 생산 세포에서 상기 제1 융합 단백질의 제1 광특이적 결합 단백질 부위와 결합하여 엑소솜 내부에 위치할 수 있는 한, 특별히 이에 제한되지 않으나, 한 가지 예로서 제2 광특이적 결합 단백질의 C-말단에 목적 단백질의 N-말단이 결합된 형태로 구성될 수 있다.
또한, 상기 제2 융합 단백질을 구성하는 제2 광특이적 결합 단백질과 목적 단백질은 상호 직접적으로 연결될 수도 있고, 링커를 통해 연결될 수도 있다. 상기 링커는 제2 융합 단백질이 엑소솜 생산 세포에서 상기 제1 융합 단백질의 제1 광특이적 결합 단백질 부위와 결합하여 엑소솜 내부에 위치할 수 있는 한, 특별히 이에 제한되지 않으나, 아미노산으로 구성된 펩타이드 링커를 사용할 수 있고, 보다 바람직하게는 잘 구부러지는(flexible) 펩타이드 링커를 사용할 수 있다. 상기 펩타이드 링커는 상기 링커를 코딩하는 핵산을 각 도메인을 코딩하는 핵산 사이에 인프레임(in frame)으로 연결하여 발현벡터 내에 작동 가능하게 연결하여 발현시킬 수 있다.
아울러, 상기 각 융합 단백질은 이에 포함되는 각 도메인의 야생형의 아미노산 서열과 하나 이상의 아미노산 잔기가 상이한 서열을 가지는 폴리펩티드를 포함할 수 있다. 분자의 활성을 전체적으로 변경시키지 않는 단백질 및 폴리펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다. 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 또한, 아미노산 서열상의 변이 또는 수식에 의해서 단백질의 열, pH등에 대한 구조적 안정성이 증가하거나 단백질 활성이 증가한 단백질을 포함할 수 있다.
끝으로, 상기 융합 단백질 또는 상기 융합 단백질을 구성하는 각 도메인의 폴리펩티드는 당해 분야에 공지된 화학적 펩티드 합성방법으로 제조하거나, 상기 도메인을 코딩하는 유전자를 PCR(polymerase chain reaction) 에 의해 증폭하거나 공지된 방법으로 합성한 후 발현벡터에 클로닝하여 발현시켜서 제조할 수 있다.
한편, 상기 각 융합 단백질은 이들을 코딩하는 폴리뉴클레오티드를 엑소솜 생산 세포에 도입함으로써, 상기 엑소솜 생산 세포에서 발현될 수 있는데, 상기 폴리뉴클레오티드를 엑소솜 생산 세포에 도입하는 방법으로는 당업자에게 공지된 방법을 사용할 수 있는데, 예를 들어, 발현벡터를 사용하여 도입하는 방법을 사용할 수 있다.
본 발명의 용어 "발현벡터"란, 목적하는 숙주세포에서 목적 펩타이드를 발현할 수 있는 재조합 벡터로서, 유전자 삽입물이 발현되도록 작동하게 연결된 필수적인 조절 요소를 포함하는 유전자 제작물을 의미한다. 상기 발현벡터는 개시코돈, 종결코돈, 프로모터, 오퍼레이터 등의 발현조절 요소들을 포함하는데, 상기 개시코돈 및 종결코돈은 일반적으로 폴리펩타이드를 암호화하는 뉴클레오티드 서열의 일부로 간주되며, 유전자 제작물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다.
본 발명의 용어 "작동가능하게 연결(operably linked)"이란, 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질 또는 RNA를 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 상태를 의미다. 예를 들어 프로모터와 단백질 또는 RNA를 코딩하는 핵산 서열이 작동가능하게 연결되어 코딩서열의 발현에 영향을 미칠 수 있다. 발현벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 사용할 수 있다.
또한, 상기 발현벡터는 세포 배양액으로부터 단백질의 분리를 촉진하기 위하여 융합 폴리펩타이드의 배출을 위한 시그널 서열을 포함할 수 있다. 특이적인 개시 시그널은 또한 삽입된 핵산 서열의 효율적인 번역에 필요할 수도 있다. 이들 시그널은 ATG 개시코돈 및 인접한 서열들을 포함한다. 어떤 경우에는, ATG 개시 코돈을 포함할 수 있는 외인성 번역 조절 시그널이 제공되어야 한다. 이들 외인성 번역 조절 시그널들 및 개시코돈들은 다양한 천연 및 합성 공급원일 수 있다. 발현 효율은 적당한 전사 또는 번역 강화 인자의 도입에 의하여 증가될 수 있다.
본 발명의 바람직한 실시양태에 의하면, 상기 발현벡터는 목적 단백질이 엑소솜의 내부에 삽입되었는지의 여부를 확인할 수 있는 태그를 상기 목적 단백질에 결합시켜서 발현시킬 수 있다. 상기 태그는 목적 단백질의 존재 여부를 확인하기 위한 것이므로, 목적 단백질이 제2 광특이적 결합 단백질과 결합된 반대부위에 결합시킬 수 있는데, 한 가지 예로서, 적색형광단백질, 녹색형광단백질 등의 형광단백질을 태그로 사용하여, 목적 단백질의 C-말단 부위에 결합시킬 수 있다.
이 같이 설계된 목적 단백질을 엑소솜 생산 세포에서 발현시키고, 엑소솜이 생산된 후, 상기 형광단백질 태그가 엑소솜에서 검출되는지의 여부를 확인함으로써, 상기 엑소솜이 목적 단백질을 포함하는지의 여부를 확인할 수 있다.
본 발명의 용어 "광(light)"이란, 엑소솜 생산 세포에서 발현된 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질을 임시적으로 결합시키기 위하여 조사하는 빛을 의미한다.
상술한 바와 같이, 엑소솜 생산 세포 내에서 제1 광특이적 결합 단백질은 엑소솜 특이 마커와 함께 제1 융합 단백질 형태로 발현되고, 제2 광특이적 결합 단백질은 목적 단백질과 함께 제2 융합 단백질 형태로 발현되는데, 상기 엑소솜 생산 세포에 상기 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질의 결합에 필요한 광을 조사하면, 상기 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질이 결합되어 결과적으로는, 엑소솜 특이 마커-제1 광특이적 결합 단백질-제2 광특이적 결합 단백질-목적 단백질의 형상을 갖는 융합 단백질 복합체를 임시적으로 형성하는데, 상기 엑소솜 생산 세포에서 엑소솜을 생산하면, 상기 엑소솜 특이 마커로 인하여 목적 단백질이 엑소솜에 연결될 수 있다. 이 경우, 상기 목적 단백질은 엑소솜의 내부에 존재하며, 엑소솜이 생산된 후에 광의 조사를 중지하면, 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질이 분리되고, 이에 따라, 엑소솜 내부에 존재하는 목적 단백질은 엑소솜의 방출시 엑소솜에 포함된 형태로 외부로 방출된다. 또한, 상기 광은 목적 단백질이 엑소솜의 내부로 보다 효과적으로 도입될 수 있도록, 지속적으로 조사하기보다는 간헐적으로 조사함이 바람직하다. 즉, 광을 간헐적으로 조사할 경우에는, 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질의 결합과 분리가 반복되기 때문에, 목적 단백질이 엑소솜 내부로 도입될 확률을 향상시킬 수 있다.
한편, 상기 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질의 결합을 유도하는 광의 파장은 상기 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질의 종류에 따라 달라지므로, 당업자에게 공지된 바에 따라, 광의 파장을 선택할 수 있다. 즉, CRY2와 CIBN을 결합시킬 경우에는 460 내지 490nm의 파장을 갖는 빛을 조사하고, 상기 빛을 10분 이상 조사하지 않을 경우에는 CRY2와 CIBN이 서로 해리되며; PhyB와 PIF를 결합시킬 경우에는 650nm의 파장을 갖는 빛을 10분 동안 조사하고, 750nm의 파장을 갖는 빛을 5분 동안 조사할 경우에는 PhyB와 PIF가 서로 해리되며; FKF1과 GIGANTEA를 결합시킬 경우에는 460nm의 파장을 갖는 빛을 30분 동안 조사할 수 있다. 본 발명의 실시예에서는 CIBN과 CRY2의 결합을 유도하기 위하여 460 내지 490nm의 파장을 갖는 빛을 조사하였다.
본 발명의 실시예에 의하면, CRY2 및 mCherry의 융합 단백질과 CIB 및 CD9의 융합 단백질을 엑소솜을 많이 만들어내는 불멸세포주인 HEK293T 세포 내에서 발현한 결과, 세포질에 균일하게 퍼져있던 mCherry 단백질의 분포가 푸른 빛을 쬐어주었을 때 세포막, 엔도솜 유사 구조 등의 막에 있는 것을 관찰할 수 있었다(도 7 ). 또한, FKF1 및 mCherry의 융합 단백질과 GIGANTEA 및 CD9의 융합 단백질을 HEK293T 세포에서 발현시켰을 때도 유사한 결과를 관찰할 수 있었다(도 12). 또한, CRY2 및 mCherry의 융합 단백질과 CIBN 및 CD9의 융합 단백질을 HEK293T에 발현시키고, 푸른 빛의 세기를 조절한 결과, 20 내지 50 μW의 빛을 조사하였을 때, 엑소솜 내에 포집된 mCherry 단백질이 가장 높은 수준을 나타냄을 확인하였으며(도 9), 상기 세포에서 생산 분리된 엑소솜을 이종세포인 HT1080 세포에 약 250㎍/㎖의 농도로 처리한 결과, HT1080 세포에 대하여 특별한 세포독성을 나타내지 않았고, 상기 HT1080 세포의 세포질로 mCherry 단백질이 전달됨을 확인하였다(도 10).
또한, 본 발명의 엑소솜 내의 목적 단백질의 도입 효율 및 표적 세포로의 엑소솜 전달 효율을 기존의 방법과 비교하기 위하여, 기존 방법으로 XPACK 벡터를 이용하고, 본 발명의 CRY2 및 mCherry 단백질이 결합된 형태의 융합 단백질과 CIBN 및 CD9 단백질이 결합된 형태의 융합 단백질의 발현 벡터를 HEK293T에 도입한 후, 엑소솜 내의 목적 단백질 생산량을 비교한 결과, 본 발명의 방법을 사용하였을 경우 현저하게 도입 효율이 높음을 확인하였다(도 15). 또한, 엑소솜 생산 세포로부터 분리한 엑소솜을 표적 세포(HeLa)에 처리하여, 목적 단백질의 발현 정도를 비교하였을 때에도 본 발명의 방법으로 분리된 엑소솜을 이용하였을 때, 표적 세포에서 목적 단백질의 발현이 가장 높음을 확인하였다(도 16).
본 발명은 다른 양태로서 (a) 엑소솜 특이 마커와 제1광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)을 코딩하는 폴리뉴클레오티드를 포함하는 제1 발현벡터; 및 (b) 목적 단백질을 코딩하는 폴리뉴클레오티드가 도입될 수 있는 다클론 부위(multicloning site)와 상기 제1 광특이적 결합 단백질과 결합할 수 있는 제2 광특이적 결합 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 제2 발현벡터를 포함하는, 엑소솜 제조용 벡터를 제공한다.
본 발명에서 제공하는 엑소솜 제조용 벡터에 있어서, 엑소솜 특이 마커, 제1 광특이적 결합 단백질, 엑소솜 생산 세포 및 제2 광특이적 결합 단백질은 상술한 바와 동일하다.
본 발명의 용어 "엑소솜 생산용 형질전환 세포"란, 상기 엑소솜 생산 세포에 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)을 코딩하는 폴리뉴클레오티드가 도입되어, 상기 제1 융합 단백질을 발현할 수 있는 엑소솜 생산 세포를 의미한다.
본 발명에 있어서, 상기 제2 발현벡터는 상기 제2 광특이적 결합 단백질을 코딩하는 폴리뉴클레오티드가 포함되어 있고, 이에 인접하여 다클론 부위를 포함하도록 구성될 수 있는데, 이처럼 구성된 제2 발현벡터의 상기 다클론 부위에 목적 단백질을 코딩하는 폴리뉴클레오티드가 도입될 경우, 상기 제2 광특이적 결합 단백질과 목적 단백질이 융합된 형태(제2 융합 단백질)로 발현될 수 있다.
본 발명에서 제공하는 엑소솜 제조용 벡터는 상기 엑소솜 생산용 형질전환 세포 및 발현벡터뿐만 아니라, 상기 발현벡터의 도입, 엑소솜 생산용 형질전환 세포의 배양, 상기 엑소솜 생산용 형질전환 세포로부터 생산된 엑소솜을 분리, 정제하는데 적합한 한 종류 또는 그 이상의 다른 구성 성분 조성물, 용액 또는 장치가 포함될 수도 있다. 예를 들어, 상기 발현벡터의 도입에 필요한 적절한 완충액, 상기 엑소솜 생산용 형질전환 세포의 배양에 필요한 배지 및 용기 등을 추가로 포함할 수 있다.
본 발명은 또 다른 양태로서 상기 방법으로 제조되어, Bax(Bcl-2-associated X protein) 단백질이 내부에 포함된 엑소솜을 제공한다.
상술한 방법으로 제조된 엑소솜은 이를 구성하는 원형질 막에는 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)이 포함되어 있고, 엑소솜의 내부에는 상기 제1 광특이적 결합 단백질과 결합할 수 있는 제2 광특이적 결합 단백질과 Bax(Bcl-2-associated X protein) 단백질이 결합된 형태의 융합 단백질(제2 융합 단백질)이 포함되어 있으므로, 상기 엑소솜을 목적 조직 내의 세포에 처리하면, 원형질 막의 융합을 통해, 엑소솜 내부에 포함된 제2 융합 단백질이 목적 조직 내의 세포질로 전달될 수 있다.
본 발명은 또한 상기 방법으로 제조된 Bax(Bcl-2-associated X protein) 단백질이 탑재된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물을 제공한다.
상기 상기 암은 유방암, 대장암, 폐암, 소세포 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 두부 또는 경부암, 피부 또는 안구내 흑색종, 안종양, 복막암, 자궁암, 난소암, 직장암, 항문부근암, 결장암, 나팔관암종, 자궁내막암종, 자궁경부암, 질암, 음문암종, 호지킨병, 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 고환암, 구강암, 담낭암, 담관암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장암, 수뇨관 암, 신장세포 암종, 신장골반 암종, CNS종양, 1차 CNS 림프종, 척수 종양, 뇌간신경교종 및 뇌하수체 선종으로 구성된 군에서 선택되는 하나 이상인 것이 바람직하나 이에 한정되는 것은 아니다.
본 발명의 구체적인 실시예에서, 본 발명자들은 상기 방법으로 제조한 Bax(Bcl-2-associated X protein) 단백질이 탑재된 엑소솜(Bax::EXPLOR)을 이용하여 HeLa 세포에 전처리함으로써 cytochrome c release가 증가하는 것을 확인하였다(도 19 참조).
따라서, 본 발명의 Bax(Bcl-2-associated X protein) 단백질이 탑재된 엑소솜(Bax:EXPLOR)은 항암용 약학적 조성물로 이용할 수 있다.
이하 본 발명을 실시예 및 실험예를 통하여 보다 상세하게 설명한다.
그러나 하기 실시예 및 실험예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예 및 실험예에 한정되는 것은 아니다.
엑소솜의 제조
<1-1> 엑소솜의 제조를 위한 CIBN 및 CRY2의 결합 확인
빛이 없는 조건에서 CIBN-EGFP-CD9 유전자를 포함하는 pcDNA3.1(+) 벡터와 mCherry-CRY2 유전자를 포함하는 pcDNA3.1(+) 벡터를 엑소솜 생산 세포인 HEK293T 세포에 도입하고, 24시간 동안 배양한 다음, 소태아 혈청이 포함되지 않은 배지로 교체하고 48시간 동안 추가로 배양하였다. 배양이 종료된 후, 460 내지 490 nm의 파장을 갖는 청색광을 조사하고, 상기 청색광을 조사하기 전과 조사한 후의 mCherry에서 나타나는 적색 형광의 위치를 공초점 현미경을 통해 확인하였다(도 7).
도 7은 CIBN-EGFP-CD9 유전자와 mCherry-CRY2 유전자가 HEK293T 세포에 도입된 형질전환체에서 청색광의 조사여부에 따른 mCherry 단백질의 세포내 위치변화를 나타내는 형광사진이다. 도 7에서 보듯이, 광특이적 결합 단백질인 CIBN과 CRY2의 결합을 유발시키는 청색광이 조사되기 전에는 mCherry 단백질이 세포질에 고르게 분포하고 있으나, 상기 청색광이 조사된 후에는 mCherry 단백질이 막에 밀집되는 현상이 나타남을 알 수 있었다. 이러한 mCherry 단백질의 밀집은 광특이적 결합 단백질인 CIBN과 CRY2의 결합에 의하여 유발된 것으로 분석되었다.
<1-2> 엑소솜의 제조를 위한 GIGANTEA 및 FKF1의 결합 확인
GIGANTEA-EGFP-CD9 유전자를 포함하는 pcDNA3.1(+) 벡터 및 mCherry-FKF1LOV 유전자를 포함하는 pcDNA3.1(+) 벡터를 사용하고, 상기 실시예 <1-1>과 동일한 방법을 사용하여, 세포 내 엑소솜을 확인하였다. (상기 FKF1LOV에서 LOV는 light-oxygen-voltage domain의 약어로 FKF1 단백질에서 실제로 빛에 의해 다른 단백질과 결합하는 도메인을 나타내며, 따라서 FKF1과 FKF1LOV는 같은 의미로 사용된다.)
상기 실시예 <1-1>과 마찬가지로, 도 12에 나타난 바와 같이, 광특이적 결합 단백질인 GIGANTEA과 FKF1의 결합을 유발시키는 청색광이 조사되기 전에는 mCherry 단백질이 세포질에 고르게 분포하고 있으나, 청색광이 조사된 후에는 mCherry 단백질이 막에 밀집되는 현상이 나타남을 확인하였다(도 12). 따라서, 상기 <1-1>의 결과와 유사하게, mCherry 단백질의 밀집이 광특이적 결합 단백질의 GIGANTEA 및 FKF1의 결합에 의해 유도될 수 있음을 확인할 수 있었다.
엑소솜 생산 및 엑소솜 생산에 있어 빛의 세기가 미치는 효과
0, 5, 20, 50 또는 200 μW의 세기로 460 nm 파장의 빛을 조사하는 LED 등 아래에서, 각각 CIBN-EGFP-CD9 유전자 및 mCherry-CRY2 유전자를 포함하는 각각의 발현벡터를 엑소솜 생산 세포인 HEK293T 세포에 도입하고, 24시간 동안 배양한 다음, 소태아 혈청이 포함되지 않은 배지로 교체하고 48시간 동안 추가로 배양하였다. 배양이 종료된 후, 배양액을 분리하고, 이를 원심분리(3000×g, 15분)하여 세포잔해물이 제거된 상층액을 수득하였다. 상기 수득한 상층액에 상기 상층액의 5배 부피의 ExoQuick-TC Exosome Precipitation Solution(System Biosciences, Mountain View, California, USA)를 가하여 혼합하고, 원심분리(1500×g, 30분)하여 침전된 엑소솜을 수득하고, 상기 수득한 엑소솜에 PBS를 가하여 현탁시켜서 엑소솜 현탁액을 수득하였다. 상기 엑소솜 현탁액을 27-G 바늘이 장착된 주사기를 이용하여 0.2 ㎛ 필터로 여과하여 단일 크기의 엑소솜을 수득하였다(도 8). 그 후 Lysis buffer를 이용하여, Exosome Lysate를 만들고, 면역블럿 분석을 통하여, 엑소솜 안에 들어 있는 mCherry 단백질의 양을 비교하였다(도 9).
도 9는 청색광의 세기에 따라, 엑소솜의 내부에 포집된 목적 단백질(mCherry 단백질)의 함량변화를 측정한 결과를 나타내는 면역블럿 분석사진이다. 도 9에서 보듯이, 20 내지 50 μW의 세기로 청색광을 조사할 경우, 엑소솜내에 포집된 목적 단백질(mCherry 단백질)의 함량이 최대값을 나타냄을 확인하였다. 상기 결과로부터, 광특이적 결합 단백질의 결합시에 조사하는 빛의 세기를 조절함으로써, 엑소솜 내부에 포집되는 목적 단백질의 함량을 조절할 수 있음을 알 수 있었다.
엑소솜의 처리효과
50 μW의 세기로 460 nm 파장의 빛을 조사하는 LED 등 아래에서, 각각 CIBN-EGFP-CD9 유전자 및 mCherry-CRY2 유전자를 포함하는 각각의 발현벡터를 엑소솜 생산 세포인 HEK293T 세포에 도입하고, 실시예 2의 방법으로 엑소솜을 추출하였다. 이어, 상기 추출된 엑소솜을 HT1080 세포에 250 ㎍/㎖의 농도로 24시간 동안 처리하였다. 그런 다음, 상기 HT1080 세포에 4% PFA와 0.01% GA를 포함하는 0.1 M 인산염완충액(pH 7.4)을 가하여 고정시키고, 10% 젤라틴 젤 위에 부착하였다. 젤라틴 젤 위에 부착된 세포는 액체질소를 이용해 하루 동안 냉각시켰으며, -120 ℃에서 cryoultramicrotome을 이용하여 45nm 두께로 절단된 박편을 수득하였다. 이어, 상기 박편에 항-mCherry 항체와 Protein A-gold를 이용하여 면역염색하고, Tecnai G2 Spirit Twin TEM을 통하여 mCherry 단백질을 관찰하였다(도 10).
도 10은 목적 단백질(mCherry)을 포함하는 엑소솜을 표적 세포(HT1080 세포)에 처리한 후, 상기 표적 세포에 목적 단백질의 도입 여부를 확인한 결과를 나타내는 전자현미경 사진으로서, 좌측은 엑소솜이 처리되지 않은 표적 세포를 나타내고 우측은 엑소솜이 처리된 표적 세포를 나타낸다. 도 10에서 보듯이, 본 발명의 엑소솜을 표적 세포에 처리한 경우, 목적 단백질이 표적 세포 내로 전달됨을 확인하였다.
목적 단백질이 포함된 엑소솜의 분석
50 μW의 세기로 460 nm 파장의 빛을 조사하는 LED 등 아래에서, 각각 CIBN-EGFP-CD9 유전자 및 mCherry-CRY2 유전자를 포함하는 각각의 발현벡터를 엑소솜 생산 세포인 HEK293T 세포에 도입하고, 실시예 2의 방법으로 엑소솜을 추출하였다. 이어, 상기 추출된 엑소솜을 HT1080 세포에 250 ㎍/㎖의 농도로 24시간 동안 처리하였다. 그런 다음, 형광 현미경을 통하여, mCherry 단백질의 붉은 형광을 확인하고, LDH cell death assay를 통해 엑소솜을 처리한 세포와 처리하지 않은 세포의 죽은 세포의 비율을 비교하였다(도 11).
도 11은 목적 단백질(mCherry)을 포함하는 엑소솜을 표적 세포(HT1080 세포)에 처리한 후, 상기 표적 세포에 목적 단백질의 도입여부를 확인한 결과를 나타내는 형광사진(a) 및 상기 엑소솜 처리에 의하여 유발된 사멸세포의 비율을 비교한 결과를 나타내는 그래프(b)이다. 도 11에서 보듯이, 엑소솜의 처리에 의하여 세포사멸이 유발되지 않음을 확인하였다.
엑소솜 생산 및 생산된 엑소솜 내 목적 단백질의 도입 효율 비교
<5-1> 엑소솜 생산 효율 확인
본 발명의 엑소솜 생산 및 생산된 엑소솜 내의 목적 단백질의 도입 정도를 기존의 방법과 비교하고자 엑소솜 생산 세포에서 목적 단백질의 발현을 확인하기 위하여, 루시퍼라제 활성(luciferase activity) 측정 실험을 수행하였다.
기존의 방법으로는 엑소솜 탑재 기술을 위해 만들어진 상용 벡터인 XPACK (Systems Biosciences)을 이용하여 XPACK-Luciferase-mCherry를 HEK293T 세포에 도입하였고(XP), 본 발명의 방법을 이용하여 Luciferase-mCherry-CRY2와 CIBN-EGFP-CD9를 HEK293T 세포에 도입하였으며(EXPLOR), 그 후 세포 내 루시퍼라제 활성을 측정하여 상기 두 방법의 효율을 비교하였다. 루시퍼라제 활성은 제조사의 지침을 따라 측정하였으며(Luciferase Assay Reagent, Promega), 결과 값의 표준 곡선을 그린다음, 이를 통해 세포 내 엑소솜의 개수를 정량적으로 계산하였다.
도 14에 나타난 바와 같이, 본 발명의 광특이적 결합 단백질인 CIBN 및 CRY2를 이용한 방법이 기존의 방법인 XP 보다 현저하게 엑소솜으로의 도입 효율이 높음을 확인하였다(도 14).
<5-2> 생산된 엑소솜 내에서 목적 단백질의 발현 확인
상기 실시예 <5-1>의 세포를 72시간 배양하고, 엑소솜을 분리(Exoquick-TC, Systems biosciences)한 후, 기존의 방법인 XP 및 본 발명의 방법을 통해 분리된 엑소솜에 포함된 목적 단백질의 양을 루시퍼라제 활성 측정을 통해 간접적으로 비교한 결과, 도 15에 나타난 바와 같이, 본 발명의 방법은 기존의 방법 보다 현저하게 많은 양의 목적 단백질이 포함된 엑소솜을 생산할 수 있음을 확인하였다(도 15).
<5-3> 목적 단백질의 도입 효율 비교
상기 실시예 <5-1> 및 <5-2>의 루시퍼라제 활성 측정값을 이용하여, 하기 수학식 1로 목적 단백질의 도입 효율(E)을 계산하였다.
[수학식 1]
Figure 112016095435311-pat00001
도 15에 나타난 바와 같이, 본 발명의 CRY2및 CIBN의 결합을 이용하여 생산된 엑소솜이 다른 비교군과 비교하여, 4배 내지 120배 효율이 높음을 확인하였다(도 15).
표적 세포로의 엑소솜 전달 효율 비교
목적 단백질이 도입된 엑소솜을 표적 세포에 처리하였을 때의 효율을 비교하고자, HeLa 세포에 5 × 109 개의 엑소솜을 24시간 동안 처리하고 세포에서 발현되는 형광 세기를 측정한 결과, 도 16에 나타난 바와 같이, 본 발명의 엑소솜(EXPLOR)의 형광 세기가 현저하게 높음을 확인하였다(도 16).
따라서, 본 발명의 엑소솜 이용 방법은 기존의 방법 보다 효과적으로 목적 단백질을 표적 세포로 전달할 수 있음을 알 수 있다.
< 실험예 1> Bax 단백질이 탑재된 엑소솜(Bax:EXPLOR)의 제조
<1-1> 엑소솜 내부의 Bax 단백질 확인
본 발명자들은 서열번호 1로 기재되는 아미노산 서열을 가지는 Bax 단백질이 엑소솜에 탑재된 것을 확인하기 위해 CIBN-EGFP-CD9 및 Bax-mCherry-CRY2 유전자를 발현하고 있는 세포 내에서 CIBN 및 CRY2의 결합 여부를 확인하였다.
구체적으로, 빛이 없는 조건에서 CIBN-EGFP-CD9 유전자를 포함하는 pcDNA3.1(+) 벡터와 Bax-mCherry-CRY2 유전자를 포함하는 pcDNA3.1(+) 벡터를 엑소솜 생산 세포인 HEK293T 세포에 도입하고, 24시간 동안 배양한 다음, 소태아 혈청이 포함되지 않은 배지로 교체하고 48시간 동안 추가로 배양하였다. 배양이 종료된 후, 488 nm의 파장을 갖는 청색광을 조사하고, 상기 청색광을 조사하기 전과 조사한 후의 mCherry에서 나타나는 적색 형광의 위치를 공초점 현미경을 통해 확인하였다. 실험은 5번 이상 반복으로 수행하였다.
그 결과, 도 18에 나타낸 바와 같이 Bax-mCherry-CRY2 (red)는 푸른 빛 자극에 의해 CIBN-EGFP-CD9와 결합하는 것을 확인하였다(도 18). 따라서 Bax 단백질이 exosome 내부에 탑재된 것을 확인하였다.
<2-2> Bax 단백질이 탑재된 엑소솜(Bax:EXPLOR)의 생산
본 발명자들은 Bax 단백질이 탑재된 엑소솜을 수득하기 위하여 하기와 같은 실험을 수행하였다.
구체적으로, CIBN-EGFP-CD9 유전자 및 Bax-mCherry-CRY2 유전자를 포함하는 각각의 발현벡터를 엑소솜 생산 세포인 HEK293T 세포에 도입하고, 24시간 동안 배양한 다음, 소태아 혈청이 포함되지 않은 배지로 교체하고 48시간 동안 50 μW의 세기로 488 nm 파장의 빛을 조사하는 LED 등 아래에서, 추가로 배양하였다. 배양이 종료된 후, 배양액을 분리하고, 이를 원심분리(2000×g, 15분)하여 세포잔해물이 제거된 상층액을 수득하였다. 상기 수득한 상층액에 상기 상층액의 5배 부피의 ExoQuick-TC Exosome Precipitation Solution(System Biosciences, Mountain View, California, USA)를 가하여 4℃서 18시간 동안 혼합한 후, 원심분리(1500×g, 30분)하여 침전된 엑소솜을 수득하고, 상기 수득한 엑소솜에 PBS를 가하여 현탁시켜서 엑소솜 현탁액을 수득하였다(도 8).
이와 더불어, 엑소솜의 대량 생산을 위해 CIBN-EGFP-CD9 유전자 및 Bax-mCherry-CRY2 유전자를 포함하는 각각의 발현벡터를 안정적으로 발현하는, 엑소솜 생산 세포인 HEK293T 세포를 소태아 혈청이 포함되지 않은 배지에서 48~72시간 동안 50 μW의 세기로 488 nm 파장의 빛을 조사하는 LED 등 아래에서 배양하였다. 배양이 종료된 후, 배양액을 분리하고, 이를 원심분리(2000×g, 15분)하여 세포잔해물이 제거된 상층액을 수득하였다. 상층액으로 부터 200 nm 이상의 파티클을 제거하기 위해 0.2 ul PES 멤브레인 (Corning)으로 여과하였다. 동일 여과액으로부터 20nm 이하의 파티클을 제거함과 동시에 여과액으로부터 엑소솜을 농축, 정제하기 위해 Tangential Flow Filtration (TFF) 여과법을 이용하였다. TFF의 멤브레인은 Vivaflow50-100KDa PES 멤브레인 (Sartorius)을 이용하였다. TFF의 기압이 1.5~2 사이에서 여과액을 반복적으로 회전하여 엑소솜을 농축, 정제시켰다. 이후 엑소솜 농축액은 Amicon Ultra-0.5 (100kDa) (Millipore) 필터에 옮겨 10000~14000g 5분간 원심분리하여 수용액을 제거한 후, 실험 목적에 알맞은 버퍼를 채워 필터를 반대 방향으로 돌려 10000~14000g 5분간 원심분리하여 최종 엑소솜을 획득한다.
< 실험예 2> Bax 단백질이 탑재된 엑소솜(Bax:EXPLOR)에 의한 세포 사멸( apoptosis ) 효과 확인
Bax는 apoptotic regulator로서, 과량 발현하면 세포의 mitochondrial membrane에 붙어, cytochrome c를 release 시켜 그 세포의 apoptosis를 유도하는 능력을 가지고 있다. 본 발명자들은 Bax를 포함한 EXPLOR의 Cytochrome c release 능력을 알아보기 위해 상기 <실험예 1>에서 제조한 Bax:EXPLOR를 이용하여 Cytochrome c 방출을 확인하였다.
구체적으로, 0.1 mg/mL의 mCherry:EXPLORs 또는 Bax:EXPLORs가 존재하는 배지에 HeLa 세포를 12시간 동안 배양하였다. 그리고 4% paraformaldehyde를 고정시켰다. 사이토크롬 c의 방출 정도를 측정하기 위해, Alexa Fluor 647과 컨쥬게이트 된 항체와 함께 염색하였고, 공초점 현미경으로 이미지화 하였다. 그런 다음 세포 계수를 통해 사이토크롬 c 비율을 분석하였다(Scale bars, 20 μm). 결과 데이터는 평균 ± SEM (n = 3)로 나타내었으며, Tukey’s post hoc test를 적용하여 ANOVA를 통해 유의성 그룹(significant group effects; **, p < 0.01)을 판단하였다.
그 결과, 도 19에 나타낸 바와 같이 Bax:EXPLOR를 처리한 HeLa 세포에서 mCherry:EXPLOR를 처리한 HeLa 세포보다 많은 cytochrome c release를 확인하였다(도 19).
<110> Korea Advanced Institute of Science and Technology Cellex Life Sciences Inc. <120> Process for preparing exosome loading Bcl-2-associated X protein, and pharmaceutical composition for use in preventing or treating cancer containing the same as an active ingredient <130> 2016P-06-003 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 192 <212> PRT <213> Artificial Sequence <220> <223> Bcl-2-associated X protein <400> 1 Met Asp Gly Ser Gly Glu Gln Pro Arg Gly Gly Gly Pro Thr Ser Ser 1 5 10 15 Glu Gln Ile Met Lys Thr Gly Ala Leu Leu Leu Gln Gly Phe Ile Gln 20 25 30 Asp Arg Ala Gly Arg Met Gly Gly Glu Ala Pro Glu Leu Ala Leu Asp 35 40 45 Pro Val Pro Gln Asp Ala Ser Thr Lys Lys Leu Ser Glu Cys Leu Lys 50 55 60 Arg Ile Gly Asp Glu Leu Asp Ser Asn Met Glu Leu Gln Arg Met Ile 65 70 75 80 Ala Ala Val Asp Thr Asp Ser Pro Arg Glu Val Phe Phe Arg Val Ala 85 90 95 Ala Asp Met Phe Ser Asp Gly Asn Phe Asn Trp Gly Arg Val Val Ala 100 105 110 Leu Phe Tyr Phe Ala Ser Lys Leu Val Leu Lys Ala Leu Cys Thr Lys 115 120 125 Val Pro Glu Leu Ile Arg Thr Ile Met Gly Trp Thr Leu Asp Phe Leu 130 135 140 Arg Glu Arg Leu Leu Gly Trp Ile Gln Asp Gln Gly Gly Trp Asp Gly 145 150 155 160 Leu Leu Ser Tyr Phe Gly Thr Pro Thr Trp Gln Thr Val Thr Ile Phe 165 170 175 Val Ala Gly Val Leu Thr Ala Ser Leu Thr Ile Trp Lys Lys Met Gly 180 185 190

Claims (16)

  1. 하기의 단계를 포함하는 Bax(Bcl-2-associated X protein) 단백질을 포함하는 엑소솜을 대량으로 제조하는 방법:
    a) 엑소솜 생산 세포에, 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)을 코딩하는 폴리뉴클레오티드 및 상기 제1 광특이적 결합 단백질과 결합할 수 있는 제2 광특이적 결합 단백질과 Bax 단백질이 결합된 형태의 융합 단백질(제2 융합 단백질)을 코딩하는 폴리뉴클레오티드를 도입하는 단계;
    b) 상기 엑소솜 생산 세포에 상기 제1 광특이적 결합 단백질과 상기 제2 광특이적 결합 단백질의 결합을 유발할 수 있는 광을 조사하는 단계; 및
    c) 상기 엑소솜 생산 세포에서 엑소솜이 생산된 다음, 상기 광의 조사를 중지하는 단계,
    여기서, 상기 엑소솜 특이 마커는 CD9, CD63, CD81 및 CD82로 구성된 군으로부터 선택되는 어느 하나이고, 상기 제1 광특이적 결합 단백질은 CIB(cryptochrome-interacting basic-helix-loop-helix protein), CIBN(N-terminal domain of CIB), PhyB(phytochrome B), PIF(phytochrome interacting factor), FKF1(Flavinbinding, Kelch repeat, F-box 1), GIGANTEA, CRY2(chryptochrome 2) 및 PHR(phytolyase homolgous region)로 구성된 군으로부터 선택되는 어느 하나이며, 상기 제2 광특이적 결합 단백질은 CRY2, PHR, PIF 및 FKF1으로 구성된 군으로부터 선택되는 어느 하나임.
  2. 삭제
  3. 제 1항에 있어서, 상기 Bax 단백질은 서열번호 1로 기재되는 아미노산 서열을 포함하는 것을 특징으로 하는 엑소솜을 대량으로 제조하는 방법.
  4. 제 1항에 있어서, 상기 엑소솜 생산 세포는 B-림프구, T- 림프구, 수지상세포, 거대핵세포(megakaryocyte), 대식세포, 줄기세포 및 종양 세포로 구성된 군으로부터 선택되는 어느 하나 이상의 세포인 것을 특징으로 하는 엑소솜을 대량으로 제조하는 방법.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 제 1항에 있어서, 상기 제1 광특이적 결합 단백질이 CIB 또는 CIBN인 경우, 상기 제2 광특이적 결합 단백질은 CRY 또는 PHR이며, 상기 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질의 결합은 460 내지 490 nm의 파장을 갖는 빛을 조사하여 수행되는 것을 특징으로 하는 엑소솜을 대량으로 제조하는 방법.
  9. 제 1항에 있어서, 상기 제1 광특이적 결합 단백질이 PhyB인 경우, 상기 제2 광특이적 결합 단백질은 PIF이며, 상기 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질의 결합은 600 내지 650 nm의 파장을 갖는 빛을 조사하여 수행되는 것을 특징으로 하는 엑소솜을 대량으로 제조하는 방법.
  10. 제 1항에 있어서, 상기 제1 광특이적 결합 단백질이 GIGANTEA인 경우, 상기 제2 광특이적 결합 단백질은 FKF1이며, 상기 제1 광특이적 결합 단백질과 제2 광특이적 결합 단백질의 결합은 460 내지 490 nm의 파장을 갖는 빛을 조사하여 수행되는 것을 특징으로 하는 엑소솜을 대량으로 제조하는 방법.
  11. 제 1항의 방법을 사용하여 제조된, Bax(Bcl-2-associated X protein) 단백질이 내부에 포함된 엑소솜.
  12. 제 11항의 엑소솜을 이용하는 것을 특징으로 하는, 시험관에서(in vitro) 세포질로 Bax(Bcl-2-associated X protein) 단백질을 전달하는 방법.
  13. 제 11항의 엑소솜을 유효성분으로 포함하는 암 예방 및 치료용 약학적 조성물.
  14. 제 13항에 있어서, 상기 암은 유방암, 대장암, 폐암, 소세포 폐암, 위암, 간암, 혈액암, 골암, 췌장암, 피부암, 두부 또는 경부암, 피부 또는 안구내 흑색종, 안종양, 복막암, 자궁암, 난소암, 직장암, 항문부근암, 결장암, 나팔관암종, 자궁내막암종, 자궁경부암, 질암, 음문암종, 호지킨병, 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 고환암, 구강암, 담낭암, 담관암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장암, 수뇨관 암, 신장세포 암종, 신장골반 암종, CNS종양, 1차 CNS 림프종, 척수 종양, 뇌간신경교종 및 뇌하수체 선종으로 구성된 군에서 선택되는 하나 이상인 것을 특징으로 하는 암 예방 및 치료용 약학적 조성물.
  15. 하기를 포함하는 엑소솜 제조용 조성물:
    (a) 엑소솜 특이 마커와 제1 광특이적 결합 단백질이 결합된 형태의 융합 단백질(제1 융합 단백질)을 코딩하는 폴리뉴클레오티드를 포함하는 제1 발현벡터; 및
    (b) Bax(Bcl-2-associated X protein) 단백질을 코딩하는 폴리뉴클레오티드가 도입될 수 있는 다클론 부위와 상기 제1 광특이적 결합 단백질과 결합할 수 있는 제2 광특이적 결합 단백질을 코딩하는 폴리뉴클레오티드를 포함하는 제2 발현벡터,
    여기서, 상기 엑소솜 특이 마커는 CD9, CD63, CD81 및 CD82로 구성된 군으로부터 선택되는 어느 하나이고, 상기 제1 광특이적 결합 단백질은 CIB(cryptochrome-interacting basic-helix-loop-helix protein), CIBN(N-terminal domain of CIB), PhyB(phytochrome B), PIF(phytochrome interacting factor), FKF1(Flavinbinding, Kelch repeat, F-box 1), GIGANTEA, CRY2(chryptochrome 2) 및 PHR(phytolyase homolgous region)로 구성된 군으로부터 선택되는 어느 하나이며, 상기 제2 광특이적 결합 단백질은 CRY2, PHR, PIF 및 FKF1으로 구성된 군으로부터 선택되는 어느 하나임.
  16. 제 15항에 있어서, 상기 제2 발현벡터는 상기 제2 광특이적 결합 단백질과 Bax(Bcl-2-associated X protein) 단백질이 융합된 형태의 융합 단백질(제2 융합 단백질)을 엑소솜 생산 세포에서 발현시키는 것인 엑소솜 제조용 조성물.
KR1020160126961A 2015-05-04 2016-09-30 Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물 KR101912315B1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
KR1020160126961A KR101912315B1 (ko) 2016-09-30 2016-09-30 Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물
AU2017335084A AU2017335084B2 (en) 2016-09-30 2017-09-29 Compositions containing protein loaded exosome and methods for preparing and delivering the same
EP17856859.8A EP3356522A4 (en) 2016-09-30 2017-09-29 PROTEIN-PROTECTED EXOSOME-CONTAINING COMPOSITIONS AND METHODS FOR PREPARING AND ADMINISTERING SAME
IL259023A IL259023B (en) 2016-09-30 2017-09-29 Preparations containing protein-charged exosomes, methods for their production and uses thereof
CN201780003826.5A CN108473973A (zh) 2016-09-30 2017-09-29 包含负载蛋白的外泌体的组合物以及制备和递送该组合物的方法
JP2018530580A JP2019528674A (ja) 2016-09-30 2017-09-29 タンパク質をロードしたエキソソームを含む組成物、並びにその調製及び送達のための方法
CA3002520A CA3002520A1 (en) 2016-09-30 2017-09-29 Compositions containing protein loaded exosome and methods for preparing and delivering the same
PCT/KR2017/011070 WO2018062973A1 (en) 2016-09-30 2017-09-29 Compositions containing protein loaded exosome and methods for preparing and delivering the same
US15/803,338 US10702581B2 (en) 2015-05-04 2017-11-03 Compositions containing protein loaded exosome and methods for preparing and delivering the same
US16/887,029 US11872193B2 (en) 2015-05-04 2020-05-29 Compositions containing protein loaded exosome and methods for preparing and delivering the same
US18/506,575 US20240075100A1 (en) 2015-05-04 2023-11-10 Compositions Containing Protein Loaded Exosome and Methods for Preparing and Delivering the Same
US18/412,403 US12133879B2 (en) 2015-05-04 2024-01-12 Exosomes for target specific delivery and methods for preparing and delivering the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160126961A KR101912315B1 (ko) 2016-09-30 2016-09-30 Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물

Publications (2)

Publication Number Publication Date
KR20180036402A KR20180036402A (ko) 2018-04-09
KR101912315B1 true KR101912315B1 (ko) 2018-10-26

Family

ID=61977999

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160126961A KR101912315B1 (ko) 2015-05-04 2016-09-30 Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물

Country Status (1)

Country Link
KR (1) KR101912315B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240109579A (ko) 2022-12-29 2024-07-11 김세희 리포좀 기반의 엑소좀 모사체 및 이의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168548A2 (en) * 2013-04-12 2014-10-16 El Andaloussi, Samir Therapeutic delivery vesicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014168548A2 (en) * 2013-04-12 2014-10-16 El Andaloussi, Samir Therapeutic delivery vesicles

Also Published As

Publication number Publication date
KR20180036402A (ko) 2018-04-09

Similar Documents

Publication Publication Date Title
KR101733971B1 (ko) 목적 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 이용하여 목적 단백질을 세포질로 전달시키는 방법
KR101877010B1 (ko) super-repressor-IκB 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 염증성 질환 예방 및 치료용 약학적 조성물
KR100859972B1 (ko) 막투과 단백질 도메인 펩타이드
KR101258279B1 (ko) 세포 투과능을 개선한 개량형 신규 거대 분자 전달 도메인 개발 및 이의 이용방법
EP2500350B1 (en) Composite of a protein comprising zinc oxide-bonding peptides and zinc oxide nanoparticles, and use thereof
JP6001082B2 (ja) 細胞透過能を改善した改良形の新規巨大分子伝達ドメインの開発及びその利用方法
Ilk et al. A functional chimaeric S-layer-enhanced green fluorescent protein to follow the uptake of S-layer-coated liposomes into eukaryotic cells
WO2016178532A1 (ko) 목적 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 이용하여 목적 단백질을 세포질로 전달시키는 방법
CN111417646A (zh) 用于治疗癌症的肽皂草素缀合物
KR101912315B1 (ko) Bax 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물
EP2575846B1 (en) Insulin-like growth factor 1 receptor binding peptides
KR101912310B1 (ko) 페록시레독신 i 또는 ii 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 항산화용 약학적 조성물
KR101912313B1 (ko) Cre 재조합 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 표적 유전자의 조건적 녹아웃 대립유전자를 생성하기 위한 조성물
JP5403681B2 (ja) 新規核内移行ペプチド
KR101900465B1 (ko) CRISPR-CAS family를 이용한 게놈 에디팅 툴을 엑소솜으로 전달하는 기술
CN107635548B (zh) 利用突变型伴侣蛋白复合体的细胞内局部性药物递送系统用纳米胶囊
KR102120921B1 (ko) Gba 단백질을 포함하는 엑소솜의 제조 방법 및 상기 제조 방법에 의해 제조된 엑소솜을 유효성분으로 함유하는 고셔병 예방 및 치료용 약학적 조성물
CN114341156A (zh) 包封有肽的铁蛋白
JP2022510309A (ja) ヒトllrc24タンパク質由来の細胞膜透過ドメイン
Rai et al. Synthesis, Characterization and Cytotoxicity of Short Cationic Lipopeptide Lp24
CN116284321A (zh) 一种细胞穿透肽及其应用
Mizejewski Journal of Cancer Biology and Therapeutics Antimicrobial Peptides and Cancer: Potential Use of Antimicrobial-Like Peptides in Chemotherapy

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant