KR101876826B1 - Cathode composite and all solid lithium secondary battery comprising the same - Google Patents
Cathode composite and all solid lithium secondary battery comprising the same Download PDFInfo
- Publication number
- KR101876826B1 KR101876826B1 KR1020160129949A KR20160129949A KR101876826B1 KR 101876826 B1 KR101876826 B1 KR 101876826B1 KR 1020160129949 A KR1020160129949 A KR 1020160129949A KR 20160129949 A KR20160129949 A KR 20160129949A KR 101876826 B1 KR101876826 B1 KR 101876826B1
- Authority
- KR
- South Korea
- Prior art keywords
- positive electrode
- active material
- potential
- nmc
- formula
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y02E60/122—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 NMC; 2.5 내지 3.5V 미만의 전위를 갖는 양극 활물질 및 3.5 내지 4.5V의 전위를 갖는 양극 활물질 중에서 선택된 어느 하나의 양극 활물질; LLZO; 도전재; 및 바인더;를 포함하는 전고체 리튬이차전지용 양극복합소재에 관한 것으로, 본 발명의 전고체 리튬 이차전지는 상기 양극복합소재가 적용되어 우수한 싸이클 특성을 나타내므로 충방전을 반복해도 전압강하 및 용량저하가 작다.The present invention relates to NMC; A positive electrode active material having a potential of less than 2.5 to 3.5 V and a positive electrode active material having a potential of 3.5 to 4.5 V; LLZO; Conductive material; And a binder. The entire solid lithium secondary battery of the present invention is excellent in cycle characteristics due to the use of the positive electrode composite material. Therefore, even if charge and discharge are repeated, voltage drop and capacity decrease Is small.
Description
본 발명은 양극복합소재 및 그를 포함하는 전고체 리튬 이차전지에 관한 것으로서, 보다 상세하게는 전위가 다른 양극 활물질을 양극에 이용한 양극복합소재 및 그를 포함하는 전고체 리튬 이차전지에 관한 것이다. The present invention relates to a positive electrode composite material and a pre-solid lithium rechargeable battery including the same, and more particularly, to a positive electrode composite material using a positive electrode active material having a different potential as an anode, and a pre-solid lithium rechargeable battery including the same.
전자, 통신, 컴퓨터 산업의 급속한 발전에 따라, 캠코더, 휴대폰, 노트북 PC 등이 눈부신 발전을 거듭함에 따라, 이들 휴대용 전자통신 기기들을 구동할 수 있는 동력원으로서 리튬이차전지의 수요가 나날이 증가하고 있다. 특히 친환경 동력원으로서 전기자동차, 무정전 전원장치, 전동공구 및 인공위성 등의 응용과 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다. 더욱이, 최근 리튬이차전지의 상용화가 확대되면서 리튬이차전지의 대용량화 및 안전성 문제가 더욱 대두되고 있는 실정이다.2. Description of the Related Art With the rapid development of the electronics, communication, and computer industries, the demand for lithium secondary batteries has been increasing as a power source for driving these portable electronic communication devices as camcorders, mobile phones, notebook PCs, and the like have been remarkably developed. In particular, research and development are being actively carried out in Japan, Europe, and the United States, as well as domestic applications for applications such as electric vehicles, uninterruptible power supplies, power tools and satellites as eco-friendly power sources. Furthermore, recent commercialization of lithium secondary batteries has led to a problem of increasing the capacity and safety of lithium secondary batteries.
한편, 리튬이차전지의 양극 소재로서 종래에는 리튬 코발트 산화물(LiCoO2)이 주로 사용되었지만, 현재는 다른 층상 양극 소재로서 리튬 니켈 산화물(Li(Ni-Co-Al)O2), 리튬 복합금속 산화물(Li(Ni-Co-Mn)O2) 등도 사용되고 있으며, 그 외에도 저가격 고안정성의 스피넬형 리튬 망간 산화물(LiMn2O4) 및 올리빈형 인산철 리튬 화합물(LiFePO4)도 주목을 받고 있다.Meanwhile, lithium cobalt oxide (LiCoO 2 ) has been mainly used as a positive electrode material of a lithium secondary battery. Currently, lithium nickel oxide (Li (Ni-Co-Al) O 2 ) (Li (Ni-Co-Mn) O 2 ) are also used. In addition, spinel-type lithium manganese oxide (LiMn 2 O 4 ) and olivine-type lithium iron phosphate compound (LiFePO 4 ) of low cost and high stability are also attracting attention.
하지만, 리튬 코발트 산화물이나 리튬 니켈 산화물, 리튬 복합금속 산화물 등을 사용한 리튬이차전지는, 기본적인 전지 특성은 우수하지만, 안전성, 특히 열안전성, 과충전 특성 등은 충분하지 않다. 이를 개선하기 위해 격리막의 셧-다운(shut-down) 기능, 전해액의 첨가제 및 보호회로나 PTC와 같은 안전소자 등의 다양한 안전기구가 도입되어 있지만, 이들 기구도 양극 소재의 충전성이 그다지 높지 않은 상황 하에서 설계된 것이다. 이로 인해, 고용량화에 대한 요구를 충족시키고자 양극 소재의 충전성을 높이게 되면, 다양한 안전기구의 작동이 불충분하게 되는 경향이 있으며, 안전성이 저하되는 문제가 있다.However, lithium secondary batteries using lithium cobalt oxide, lithium nickel oxide, lithium composite metal oxide or the like are excellent in basic battery characteristics, but safety, particularly, thermal stability, overcharging characteristics and the like are not sufficient. In order to solve this problem, various safety mechanisms such as a shut-down function of a separator, an additive for an electrolyte, a safety circuit such as a protection circuit and a PTC have been introduced. However, It was designed under circumstances. As a result, when the filling property of the anode material is increased in order to satisfy the demand for higher capacity, the operation of various safety mechanisms tends to be insufficient and the safety is lowered.
이처럼 현재 시장에서는 리튬이차전지의 한계로 지적되던 안전성에 대한 불안감, 에너지 밀도 상승의 한계, 그리고 높은 원가 부담을 혁신하기 위한 다양한 전지 솔루션들이 개발 중이며, 완벽한 안전성을 지향하는 전고체 리튬이차전지, 10배 이상의 에너지 밀도 상승이 가능한 금속공기전지, 대용량 에너지의 저장에 적합한 차세대 나트륨 계열 전지, 그리고 풍부한 마그네슘 자원을 활용한 마그네슘 전지 등이 현재 대표적인 차세대 전지로 주목되고 있다.In this way, various battery solutions are being developed to innovate the anxiety about safety, limit of increase of energy density, and high cost burden which are pointed out as limitations of lithium secondary battery in the current market. All solid lithium secondary batteries Next-generation sodium-based batteries suitable for storing large amounts of energy, and magnesium batteries utilizing abundant magnesium resources are currently attracting attention as representative next-generation batteries.
그 중에 전고체 리튬이차전지의 경우, 기존 리튬이온전지에 사용하는 액체 전해질 대신 고체 전해질을 사용함으로 완벽한 안전성 확보가 가장 큰 장점이다. 고체 전해질은 리튬이온전지 전극의 고용량화 및 고전압화에 따른 기존 액체 전해질의 사용 한계성의 극복과 고성능 리튬이온전지의 안전성 담보를 위한 핵심소재이다.In the case of all solid lithium secondary batteries, solid electrolytes are used instead of liquid electrolytes used in conventional lithium ion batteries, which is the most important advantage in ensuring perfect safety. The solid electrolyte is a key material for overcoming limitations of use of existing liquid electrolyte due to high capacity and high voltage of lithium ion battery electrode and assuring the safety of high performance lithium ion battery.
전고체 리튬이차전지는 유기용매가 전혀 포함되지 않은 세라믹 계 기반의 고체 전해질(all-solid-state electrolyte)입자를 가압하여 적용하는 전지로서 고체 전해질 적용에 따라 전해질 층 양면에 위치하는 양극과 음극에는 기존의 리튬이온전지 전극에 존재하는 공극(기공)에 액체 전해액 대신 이온전도체 고체 전해질 및 전자전도체가 균일하게 복합화 된 전극 구조로 되어 있어, 전극과의 물리적인 접촉에 많은 문제점들을 야기하고 있다.A solid-state lithium secondary battery is a cell that applies pressure to ceramic-based solid electrolyte (all-solid-state electrolyte) particles that do not contain any organic solvent. The solid electrolyte is applied to the positive and negative electrodes located on both sides of the electrolyte layer The pore existing in a conventional lithium ion battery electrode has an electrode structure in which an ion conductor solid electrolyte and an electron conductor are uniformly compounded in place of a liquid electrolyte and poses many problems in physical contact with the electrode.
또한 정극 활물질 입자 표면에서 전해질과의 부반응으로 인한 사이클 특성 열화 등의 문제점으로 인해 부반응을 억제하기 위한 반응 억제층을 코팅하는 방법들이 제시되고 있다.Further, methods of coating a reaction inhibiting layer for suppressing side reactions due to problems such as deterioration of cycle characteristics due to side reactions with electrolytes on the surface of the positive electrode active material have been proposed.
본 발명의 목적은 상기의 문제점을 해결하기 위한 것으로, 양극소재의 열화로 인한 싸이클 특성 저하를 개선할 수 있는 새로운 양극 복합소재를 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a new anode composite material capable of improving degradation of cycle characteristics due to deterioration of a cathode material.
본 발명의 다른 목적은 상기 양극복합소재가 적용된 싸이클 특성이 우수한 전고체 리튬 이차전지를 제공하는 데 있다.Another object of the present invention is to provide a pre-solid lithium secondary battery excellent in cycle characteristics to which the above-described anode composite material is applied.
본 발명의 일 측면에 따르면, According to an aspect of the present invention,
화학식 1로 표시되는 NMC; 2.5 내지 3.5V 미만의 전위를 갖는 양극 활물질 및 3.5 내지 4.5V의 전위를 갖는 양극 활물질 중에서 선택된 어느 하나의 양극 활물질; 화학식 2로 표시되는 LLZO; 도전재; 및 바인더;를 포함하는 전고체 리튬이차전지용 양극복합소재가 제공된다.NMC represented by the formula (1); A positive electrode active material having a potential of less than 2.5 to 3.5 V and a positive electrode active material having a potential of 3.5 to 4.5 V; LLZO represented by formula (2); Conductive material; And a binder; and a positive electrode composite material for a pre-solid lithium rechargeable battery.
[화학식 1][Chemical Formula 1]
LiNipCoqMnrMsO2 LiNi p Co q Mn r M s O 2
화학식 1에서, 0<p<0.95, 0<q<0.5, 0<r<0.5, 0≤s≤0.3, p+q+r+s=1 이고, M은 서로 독립적으로 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군으로부터 선택된 어느 하나이고,In the
[화학식 2](2)
LipAlqLayZrzOLi p Al q La y Zr z O
화학식 2에서, 5≤p<9, 0≤q≤1, 2≤y≤4, 1≤z≤3이다.In Formula 2, 5? P <9, 0? Q? 1, 2? Y? 4, 1? Z?
또한 상기 2.5 내지 3.5 V 미만의 전위를 갖는 양극 활물질이 LiFePO4, LixM2(PO4)3(M=Fe, Ti, 0<x≤3), Li4 + xMn5O12(0<x≤3), Li2Mn2O4 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of less than 2.5 to 3.5 V is preferably LiFePO 4 , Li x M 2 (PO 4 ) 3 (M = Fe, Ti, 0 < x ? 3), Li 4 + x Mn 5 O 12 < x < 3), and Li 2 Mn 2 O 4 .
또한 상기 3.5 내지 4.5 V의 전위를 갖는 양극 활물질이 LiMn2O4, LiMnPO4, LiFe1-xMnxPO4(0<x≤0.8), LiVOPO4, Li3V2(PO4)3, LiNi0 . 5Mn0 . 5O2 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of 3.5 to 4.5 V is preferably LiMn 2 O 4 , LiMnPO 4 , LiFe 1-x Mn x PO 4 (0 < x ≦ 0.8), LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 , LiNi 0 . 5 Mn 0 . 5 O 2 .
또한 상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브, 및 그래핀 중에서 선택된 1종 이상일 수 있다.The conductive material may be at least one selected from carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotube, and graphene.
또한 상기 바인더가 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 헥사풀루오로프로필렌(hexafluoro propylene, HFP), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluorideco-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-cotrichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌옥사이드(polypropylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrenebutadiene copolymer) 및 폴리이미드 (polyimide) 중에서 선택된 1종 이상을 포함할 수 있다.The binder may be selected from the group consisting of polyvinylidene fluoride (PVDF), hexafluoro propylene (HFP), polyvinylidene fluoride-hexafluoro propylene, poly But are not limited to, polyvinylidene fluoride-cotrichloroethylene, polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone ), Polyvinylacetate, polyethylene-co-vinyl acetate, polyethylene oxide, polypropylene oxide, polyarylate, cellulose acetate ), Cellulose acetate butyrate, Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan (which may be referred to as " pullulan, carboxyl methyl cellulose, styrene-butadiene rubber, acrylonitrile-styrenebutadiene copolymer, and polyimide. The term " .
또한 상기 바인더가 폴리에틸렌 옥사이드 (polyethylene oxide)일 수 있다.The binder may be polyethylene oxide.
상기 전고체 이차전지용 양극 복합소재가, 상기 NMC와 양극 활물질의 합 100중량부; 상기 LLZO 5 내지 50중량부; 상기 도전재 5 내지 50중량부; 및 상기 바인더 5 내지 50중량부;를 포함할 수 있다.Wherein the positive electrode composite material for the all-solid-state secondary battery comprises 100 parts by weight of the sum of the NMC and the cathode active material; 5 to 50 parts by weight of LLZO; 5 to 50 parts by weight of the conductive material; And 5 to 50 parts by weight of the binder.
또한 상기 NMC와 양극활물질의 중량비가 50;50 내지 95:5일 수 있다.The weight ratio of the NMC and the cathode active material may be 50: 50 to 95: 5.
또한, 상기 NMC와 양극활물질의 중량비가 70:30 내지 90:10일 수 있다.The weight ratio of the NMC and the cathode active material may be 70:30 to 90:10.
또한, 상기 NMC와 양극활물질의 중량비가 80:20일 수 있다.The weight ratio of the NMC and the cathode active material may be 80:20.
본 발명의 다른 하나의 측면에 따르면,According to another aspect of the present invention,
양극복합소재를 포함하는 양극; 고체전해질을 포함하는 고체전해질층; 음극;을 포함하는 전고체 리튬 이차전지이고,A positive electrode comprising a positive electrode composite material; A solid electrolyte layer comprising a solid electrolyte; A lithium secondary battery comprising:
상기 양극복합소재는 화학식 1로 표시되는 NMC와, 2.5 내지 3.5V 미만의 전위를 갖는 양극 활물질 및 3.5 내지 4.5V의 전위를 갖는 양극 활물질 중에서 선택된 어느 하나의 양극 활물질과, 화학식 2로 표시되는 LLZO와, 도전재와, 바인더를 포함하는 것인 전고체 리튬 이차전지가 제공된다.Wherein the positive electrode composite material comprises NMC represented by Chemical Formula 1, a cathode active material having a potential of 2.5 to 3.5 V or less and a cathode active material having a potential of 3.5 to 4.5 V, and a cathode active material selected from the group consisting of LLZO , A conductive material, and a binder.
[화학식 1][Chemical Formula 1]
LiNipCoqMnrMsO2 LiNi p Co q Mn r M s O 2
화학식 1에서, 0<p<0.95, 0<q<0.5, 0<r<0.5, 0≤s≤0.3, p+q+r+s=1 이고, M은 서로 독립적으로 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군으로부터 선택된 어느 하나이고,In the
[화학식 2] (2)
LipAlqLayZrzOLi p Al q La y Zr z O
화학식 2에서, 5≤p<9, 0≤q≤1, 2≤y≤4, 1≤z≤3이다.In Formula 2, 5? P <9, 0? Q? 1, 2? Y? 4, 1? Z?
또한 상기 음극이 소프트 카본, 하드 카본, 인조 흑연, 천연 흑연, 팽창 흑연, 탄소섬유, 난흑연화성탄소, 카본블랙, 카본나노튜브, 아세틸렌 블랙, 케첸 블랙, 그래핀, 플러렌, 활성탄 및 메조 카본 마이크로비드 중에서 선택된 어느 하나의 카본; Si, Sn, Li, Al, Ag, Bi, In, Ge, Pb, Pt, Ti, Zn, Mg, Cd, Ce, Cu, Co, Ni 및 Fe 중에서 선택된 어느 하나의 금속(Me); 상기 금속(Me) 중 2종 이상을 포함하는 합금; 및 상기 금속(Me) 중 1종 이상의 산화물(MeOx); 중에서 선택된 1종 이상을 포함할 수 있다. 여기서 상기 산화물(MeOx )의 구체적인 예로서 TiO2, Li4Ti5O12 등을 들 수 있다.In addition, the negative electrode may be made of any one of soft carbon, hard carbon, artificial graphite, natural graphite, expanded graphite, carbon fiber, hard graphitizable carbon, carbon black, carbon nanotube, acetylene black, Ketjenblack, graphene, fullerene, Any carbon selected from beads; (Me) selected from among Si, Sn, Li, Al, Ag, Bi, In, Ge, Pb, Pt, Ti, Zn, Mg, Cd, Ce, Cu, Co, Ni and Fe; An alloy including at least two of the metals (Me); And at least one oxide (MeOx) of the metal (Me); And the like. Specific examples of the oxide (MeO x) include TiO 2 and Li 4 Ti 5 O 12 .
또한 상기 음극이 리튬을 포함할 수 있다.Further, the cathode may include lithium.
또한 상기 고체전해질 층은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 중에서 선택된 1종 이상을 추가로 포함할 수 있다.In addition, the solid electrolyte layer is LiCl, LiBr, LiI, LiClO 4 , LiBF 4,
또한 상기 2.5 내지 3.5 V 미만의 전위를 갖는 양극 활물질이 LiFePO4, LixM2(PO4)3(M=Fe, Ti, 0<x≤3), Li4 + xMn5O12(0<x≤3), Li2Mn2O4 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of less than 2.5 to 3.5 V is preferably LiFePO 4 , Li x M 2 (PO 4 ) 3 (M = Fe, Ti, 0 < x ? 3), Li 4 + x Mn 5 O 12 < x < 3), and Li 2 Mn 2 O 4 .
또한 상기 3.5 내지 4.5 V의 전위를 갖는 양극 활물질이 LiMn2O4, LiMnPO4, LiFe1-xMnxPO4(0<x≤0.8), LiVOPO4, Li3V2(PO4)3, LiNi0 . 5Mn0 . 5O2 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of 3.5 to 4.5 V is preferably LiMn 2 O 4 , LiMnPO 4 , LiFe 1-x Mn x PO 4 (0 < x ≦ 0.8), LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 , LiNi 0 . 5 Mn 0 . 5 O 2 .
본 발명의 양극복합소재는 양극소재의 열화로 인한 싸이클 특성 저하를 개선할 수 있다.The positive electrode composite material of the present invention can improve degradation of cycle characteristics due to deterioration of the anode material.
본 발명의 전고체 리튬 이차전지는 상기 양극복합소재가 적용되어 우수한 싸이클 특성을 나타내므로 충방전을 반복해도 전압강하 및 용량저하가 작다.The pre-solid lithium secondary battery of the present invention exhibits excellent cycle characteristics due to the use of the positive electrode composite material, so that the voltage drop and the capacity decrease are small even if the charge and discharge are repeated.
도 1은 실시예 2-1, 2-2 및 비교예 2의 충방전 특성 곡선을 나타낸 도면이다.
도 2는 실시예 2-1, 2-2 및 비교예 2의 충방전 사이클 특성을 나타낸 도면이다.Fig. 1 is a graph showing charge-discharge characteristic curves of Examples 2-1 and 2-2 and Comparative Example 2. Fig.
Fig. 2 is a graph showing charge-discharge cycle characteristics of Examples 2-1 and 2-2 and Comparative Example 2. Fig.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily carry out the present invention.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description does not limit the present invention to specific embodiments. In the following description of the present invention, detailed description of related arts will be omitted if it is determined that the gist of the present invention may be blurred .
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms " comprises ", or " having ", and the like, specify that the presence of stated features, integers, steps, operations, elements, or combinations thereof, But do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, or combinations thereof.
이하 본 발명의 양극복합소재를 설명한다.Hereinafter, the positive electrode composite material of the present invention will be described.
본 발명의 양극복합소재는 화학식 1로 표시되는 NMC; 2.5 내지 3.5V 미만의 전위를 갖는 양극 활물질 및 3.5 내지 4.5V의 전위를 갖는 양극 활물질 중에서 선택된 어느 하나의 양극 활물질; 화학식 2로 표시되는 LLZO; 도전재; 및 바인더;를 포함하며 전고체 리튬이차전지용으로 양극에 사용될 수 있다The positive electrode composite material of the present invention comprises NMC represented by formula (1); A positive electrode active material having a potential of less than 2.5 to 3.5 V and a positive electrode active material having a potential of 3.5 to 4.5 V; LLZO represented by formula (2); Conductive material; And a binder, and can be used for an anode for a pre-solid lithium secondary battery
[화학식 1][Chemical Formula 1]
LiNipCoqMnrMsO2 LiNi p Co q Mn r M s O 2
화학식 1에서, 0<p<0.95, 0<q<0.5, 0<r<0.5, 0≤s≤0.3, p+q+r+s=1 이고, M은 서로 독립적으로 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군으로부터 선택된 어느 하나이고,In the
[화학식 2](2)
LipAlqLayZrzOLi p Al q La y Zr z O
화학식 2에서, 5≤p<9, 0≤q≤1, 2≤y≤4, 1≤z≤3이다.In
또한 상기 2.5 내지 3.5 V 미만의 전위를 갖는 양극 활물질이 LiFePO4, LixM2(PO4)3(M=Fe, Ti, 0<x≤3), Li4 + xMn5O12(0<x≤3), Li2Mn2O4 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of less than 2.5 to 3.5 V is preferably LiFePO 4 , Li x M 2 (PO 4 ) 3 (M = Fe, Ti, 0 < x ? 3), Li 4 + x Mn 5 O 12 < x < 3), and Li 2 Mn 2 O 4 .
또한 상기 3.5 내지 4.5 V의 전위를 갖는 양극 활물질이 LiMn2O4, LiMnPO4, LiFe1-xMnxPO4(0<x≤0.8), LiVOPO4, Li3V2(PO4)3, LiNi0 . 5Mn0 . 5O2 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of 3.5 to 4.5 V is preferably LiMn 2 O 4 , LiMnPO 4 , LiFe 1-x Mn x PO 4 (0 < x ≦ 0.8), LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 , LiNi 0 . 5 Mn 0 . 5 O 2 .
또한 상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브, 및 그래핀 중에서 선택된 1종 이상일 수 있다.The conductive material may be at least one selected from carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotube, and graphene.
또한 상기 바인더가 폴리비닐리덴 풀루오라이드 (polyvinylidene fluoride, PVDF), 헥사풀루오로프로필렌(hexafluoro propylene, HFP), 폴리비닐리덴 풀루오라이드-헥사풀루오로프로필렌 (polyvinylidene fluorideco-hexafluoro propylene), 폴리비닐리덴 풀루오라이드-트리클로로에틸렌(polyvinylidene fluoride-cotrichloroethylene), 폴리부틸 아크릴레이트 (polybutyl acrylate), 폴리메틸 메타크릴레이트 (polymethyl methacrylate), 폴리아크릴로니트릴 (polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리비닐아세테이트 (polyvinylacetate), 에틸렌 비닐 아세테이트 공중합체 (polyethylene-co-vinyl acetate), 폴리에틸렌 옥사이드 (polyethylene oxide), 폴리프로필렌옥사이드(polypropylene oxide), 폴리아릴레이트 (polyarylate), 셀룰로오스 아세테이트 (cellulose acetate), 셀룰로오스 아세테이트 부틸레이트 (cellulose acetate butyrate), 셀룰로오스 아세테이트 프로피오네이트 (cellulose acetate propionate), 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알콜(cyanoethylpolyvinylalcohol), 시아노에틸셀룰로오스 (cyanoethylcellulose), 시아노에틸수크로오스(cyanoethylsucrose), 풀루란 (pullulan), 카르복실 메틸 셀룰로오스 (carboxyl methyl cellulose), 스티렌부타디엔 고무 (styrene-butadiene rubber), 아크릴로니트릴스티렌부타디엔 공중합체 (acrylonitrile-styrenebutadiene copolymer) 및 폴리이미드 (polyimide) 중에서 선택된 1종 이상을 포함할 수 있다.The binder may be selected from the group consisting of polyvinylidene fluoride (PVDF), hexafluoro propylene (HFP), polyvinylidene fluoride-hexafluoro propylene, poly But are not limited to, polyvinylidene fluoride-cotrichloroethylene, polybutyl acrylate, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone ), Polyvinylacetate, polyethylene-co-vinyl acetate, polyethylene oxide, polypropylene oxide, polyarylate, cellulose acetate ), Cellulose acetate butyrate, Cellulose acetate propionate, cyanoethylpullulan, cyanoethylpolyvinylalcohol, cyanoethylcellulose, cyanoethylsucrose, pullulan (which may be referred to as " pullulan, carboxyl methyl cellulose, styrene-butadiene rubber, acrylonitrile-styrenebutadiene copolymer, and polyimide. The term " .
또한 상기 바인더가 폴리에틸렌 옥사이드 (polyethylene oxide)일 수 있다.The binder may be polyethylene oxide.
상기 전고체 이차전지용 양극 복합소재가, 상기 NMC와 양극 활물질의 합 100중량부; 상기 LLZO 5 내지 50중량부; 상기 도전재 5 내지 50중량부; 및 상기 바인더 5 내지 50중량부;를 포함할 수 있다.Wherein the positive electrode composite material for the all-solid-state secondary battery comprises 100 parts by weight of the sum of the NMC and the cathode active material; 5 to 50 parts by weight of LLZO; 5 to 50 parts by weight of the conductive material; And 5 to 50 parts by weight of the binder.
또한 상기 NMC와 양극활물질의 중량비가 50;50 내지 95:5일 수 있다.The weight ratio of the NMC and the cathode active material may be 50: 50 to 95: 5.
또한, 상기 NMC와 양극활물질의 중량비가 70:30 내지 90:10일 수 있다.The weight ratio of the NMC and the cathode active material may be 70:30 to 90:10.
또한, 상기 NMC와 양극활물질의 중량비가 80:20일 수 있다.The weight ratio of the NMC and the cathode active material may be 80:20.
본 발명의 다른 하나의 측면에 따르면,According to another aspect of the present invention,
양극복합소재를 포함하는 양극; 고체전해질을 포함하는 고체전해질층; 음극;을 포함하는 전고체 리튬 이차전지이고,A positive electrode comprising a positive electrode composite material; A solid electrolyte layer comprising a solid electrolyte; A lithium secondary battery comprising:
상기 양극복합소재는 화학식 1로 표시되는 NMC와, 2.5 내지 3.5V 미만의 전위를 갖는 양극 활물질 및 3.5 내지 4.5V의 전위를 갖는 양극 활물질 중에서 선택된 어느 하나의 양극 활물질과, 화학식 2로 표시되는 LLZO와, 도전재와, 바인더를 포함하는 것인 전고체 리튬 이차전지가 제공된다.Wherein the positive electrode composite material comprises NMC represented by Chemical Formula 1, a cathode active material having a potential of 2.5 to 3.5 V or less and a cathode active material having a potential of 3.5 to 4.5 V, and a cathode active material selected from the group consisting of LLZO , A conductive material, and a binder.
[화학식 1][Chemical Formula 1]
LiNipCoqMnrMsO2 LiNi p Co q Mn r M s O 2
화학식 1에서, 0<p<0.95, 0<q<0.5, 0<r<0.5, 0≤s≤0.3, p+q+r+s=1 이고, 상기 화학식 1에서, M은 서로 독립적으로 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군으로부터 선택된 어느 하나이고,In the
[화학식 2] (2)
LipAlqLayZrzOLi p Al q La y Zr z O
화학식 2에서, 5≤p<9, 0≤q≤1, 2≤y≤4, 1≤z≤3이다.In
또한 상기 음극이 소프트 카본, 하드 카본, 인조 흑연, 천연 흑연, 팽창 흑연, 탄소섬유, 난흑연화성탄소, 카본블랙, 카본나노튜브, 아세틸렌 블랙, 케첸 블랙, 그래핀, 플러렌, 활성탄 및 메조 카본 마이크로비드 중에서 선택된 어느 하나의 카본; Si, Sn, Li, Al, Ag, Bi, In, Ge, Pb, Pt, Ti, Zn, Mg, Cd, Ce, Cu, Co, Ni 및 Fe 중에서 선택된 어느 하나의 금속(Me); 상기 금속(Me) 중 2종 이상을 포함하는 합금; 및 상기 금속(Me) 중 1종 이상의 산화물(MeOx); 중에서 선택된 1종 이상을 포함할 수 있다. 여기서 상기 산화물(MeOx)의 구체적인 예로서 TiO2, Li4Ti5O12를 들 수 있다. 또한 상기 음극이 리튬을 포함할 수 있다.In addition, the negative electrode may be made of any one of soft carbon, hard carbon, artificial graphite, natural graphite, expanded graphite, carbon fiber, hard graphitizable carbon, carbon black, carbon nanotube, acetylene black, Ketjenblack, graphene, fullerene, Any carbon selected from beads; (Me) selected from among Si, Sn, Li, Al, Ag, Bi, In, Ge, Pb, Pt, Ti, Zn, Mg, Cd, Ce, Cu, Co, Ni and Fe; An alloy including at least two of the metals (Me); And at least one oxide (MeOx) of the metal (Me); And the like. Specific examples of the oxide (MeO x) include TiO 2 and Li 4 Ti 5 O 12 . Further, the cathode may include lithium.
또한 상기 고체전해질층은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 중에서 선택된 1종 이상을 추가로 포함할 수 있다.In addition, the solid electrolyte layer is LiCl, LiBr, LiI, LiClO 4 , LiBF 4,
또한 상기 2.5 내지 3.5 V 미만의 전위를 갖는 양극 활물질이 LiFePO4, LixM2(PO4)3(M=Fe, Ti, 0<x≤3), Li4 + xMn5O12(0<x≤3), Li2Mn2O4 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of less than 2.5 to 3.5 V is preferably LiFePO 4 , Li x M 2 (PO 4 ) 3 (M = Fe, Ti, 0 < x ? 3), Li 4 + x Mn 5 O 12 < x < 3), and Li 2 Mn 2 O 4 .
또한 상기 3.5 내지 4.5 V의 전위를 갖는 양극 활물질이 LiMn2O4, LiMnPO4, LiFe1-xMnxPO4(0<x≤0.8), LiVOPO4, Li3V2(PO4)3, LiNi0 . 5Mn0 . 5O2 중에서 선택된 어느 하나일 수 있다.The cathode active material having a potential of 3.5 to 4.5 V is preferably LiMn 2 O 4 , LiMnPO 4 , LiFe 1-x Mn x PO 4 (0 < x ≦ 0.8), LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 , LiNi 0 . 5 Mn 0 . 5 O 2 .
[실시예][Example]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, this is for illustrative purposes only, and thus the scope of the present invention is not limited thereto.
실시예Example 1: 양극의 제조 1: Preparation of positive electrode
실시예Example 1-1: 양극복합소재( 1-1: anode composite material ( NMCNMC // LFPLFP )를 이용한 전극의 제조) ≪ / RTI >
증류수에 양극 활물질 전구체를 위한 출발물질인 Ni:Co:Mn의 몰비율이 0.7:0.15:0.15가 되도록 니켈황산염(시그마 알드리치), 코발트황산염(SAMCHUN) 및 망간황산염(KANTO Chemical)을 용해시켜 1.66몰 농도인 출발물질 수용액을 제조하였다. 상기 출발물질 수용액, 착화제(NH4OH) 및 반응기의 pH 조절 용액(NaOH)을 공침 반응기에 투입하고 pH 11 조건에서 공침전시켜 침전물을 제조하였다. 상기 침전물을 세척 및 건조하고 분쇄하여 양극 활물질 전구체 분말(NMC)을 제조하였다. 상기 양극 활물질 전구체 분말 4g과 LiOH 1.815g을 혼합하고 Air 분위기 하에서 850℃에서 10h 열처리하여 양극복합소재를 제조하였다.Nickel sulphate (Sigma Aldrich), cobalt sulfate (SAMCHUN) and manganese sulfate (KANTO Chemical) were dissolved in distilled water such that the molar ratio of Ni: Co: Mn as the starting material for the cathode active material precursor was 0.7: 0.15: 0.15. / RTI > was prepared. The starting material aqueous solution, the complexing agent (NH 4 OH) and the pH adjusting solution (NaOH) of the reactor were charged into a coprecipitation reactor and co-precipitated at pH 11 to prepare a precipitate. The precipitate was washed, dried and pulverized to prepare a cathode active material precursor powder (NMC). 4 g of the cathode active material precursor powder and 1.815 g of LiOH were mixed and heat-treated at 850 ° C for 10 hours in an air atmosphere to prepare a positive electrode composite material.
공침법으로 합성된 Ni70% 조성의 NMC과 LFP(LiFePO4, 대정EM사)를 Thinky mixer 혼합기를 이용하여 NMC;LFP의 중량비 8:2로 양극소재 혼합물을 제조하였다. 상기 양극소재 혼합물 70wt%, LLZO(일본 Toshima, LLZO powder 99.9%) 10wt%, 도전재인 Super P 10wt%, 바인더인 PEO(Sigma Aldrich, 분자량 20만, LiClO4 salt 첨가) 10 wt%을 용매(Acetonitrile) 에 용해시키고, Thinky mixer를 이용하여 습식 혼합으로 슬러리를 제조하고, 상기 슬러리를 알루미늄 기판 상에 코팅하고, 건조한 후 양극 전극을 제조하였다. NMC and LFP (LiFePO 4 , Daejeong EM) synthesized by coprecipitation with Ni 70% were prepared by using a Thinky mixer mixer at a weight ratio of NMC: LFP of 8: 2. 10 wt% of Super P as a conductive material, 10 wt% of PEO (Sigma Aldrich, molecular weight: 200,000, LiClO 4 salt added) as a binder was dissolved in a solvent (Acetonitrile ), And slurry was prepared by wet mixing using a Thinky mixer. The slurry was coated on an aluminum substrate and dried to prepare a cathode electrode.
실시예Example 1-2: 양극복합소재( 1-2: anode composite ( NMCNMC // LMOLMO )를 이용한 전극의 제조) ≪ / RTI >
LFP 대신에 LMO(대정EM사)를 사용한 것을 제외하고는 실시예 1-1과 동일한 방법으로 양극복합소재 전극을 제조하였다. A positive electrode composite electrode was prepared in the same manner as in Example 1-1, except that LMO (Daejeong EM Co.) was used instead of LFP.
실시예Example 2: 반쪽전지의 제조 2: Manufacture of half-cell
실시예Example 2-1: 반쪽 전지( 2-1: Half cell ( NMCNMC // LFPLFP ))
상기 실시예 1-1에서 제조된 양극복합소재 전극과 음극으로는 리튬 호일을 사용하고, LLZO 70중량%, LiClO4 salt가 함유된 PEO(폴리에틸렌 옥사이드) 30중량%를 혼합한 다음 아세토나이트릴(Acetonitrile)에 분산시켜 제조한 고체 전해질 막을 분리막과 전해질로 사용하였다. 2032 type 코인셀을 사용하여 반쪽셀을 제조한 후 70℃ 챔버에서 전기화학 평가를 진행하였다.Lithium foil was used for the positive electrode composite material electrode and the negative electrode prepared in Example 1-1, and 30 wt% of PEO (polyethylene oxide) containing 70 wt% of LLZO and LiClO 4 salt was mixed with acetonitrile Acetonitrile) was used as a separator and an electrolyte. A 2032 type coin cell was used to fabricate a half cell and electrochemical evaluation was performed in a 70 ° C chamber.
실시예Example 2-2: 반쪽전지 ( 2-2: Half cell ( NMCNMC // LMOLMO ))
실시예 1-1의 양극복합소재를 사용한 대신에 실시예 1-2의 양극복합소재를 사용한 것을 제외하고는 실시예 2-1과 동일한 방법으로 양극복합소재를 제조하였다.A positive electrode composite material was prepared in the same manner as in Example 2-1, except that the positive electrode composite material of Example 1-2 was used instead of the positive electrode composite material of Example 1-1.
비교예Comparative Example 1: 양극소재( 1: anode material ( NMCNMC ))
증류수에 양극 활물질 전구체를 위한 출발물질인 Ni:Co:Mn의 몰비율이 0.7:0.15:0.15가 되도록 니켈황산염(시그마 알드리치), 코발트황산염(SAMCHUN) 및 망간황산염(KANTO Chemical)을 용해시켜 1.66몰 농도인 출발물질 수용액을 제조하였다. 상기 출발물질 수용액, 착화제(NH4OH) 및 반응기의 pH 조절 용액(NaOH)을 공침 반응기에 투입하고 pH 11 조건에서 공침전시켜 침전물을 제조하였다. 상기 침전물을 세척 및 건조하고 분쇄하여 양극 활물질 전구체 분말(NMC)을 제조하였다. 상기 양극 활물질 전구체 분말 4g과 LiOH 1.815g을 혼합하고 Air 분위기 하에서 850℃에서 10h 열처리하여 양극복합소재를 제조하였다.Nickel sulphate (Sigma Aldrich), cobalt sulfate (SAMCHUN) and manganese sulfate (KANTO Chemical) were dissolved in distilled water such that the molar ratio of Ni: Co: Mn as the starting material for the cathode active material precursor was 0.7: 0.15: 0.15. / RTI > was prepared. The starting material aqueous solution, the complexing agent (NH 4 OH) and the pH adjusting solution (NaOH) of the reactor were charged into a coprecipitation reactor and co-precipitated at pH 11 to prepare a precipitate. The precipitate was washed, dried and pulverized to prepare a cathode active material precursor powder (NMC). 4 g of the cathode active material precursor powder and 1.815 g of LiOH were mixed and heat-treated at 850 ° C for 10 hours in an air atmosphere to prepare a positive electrode composite material.
비교예Comparative Example 2: 반쪽전지 ( 2: Half cell ( NMCNMC ))
실시예 1-1의 양극복합소재를 사용한 대신에 비교예 1의 양극복합소재를 사용한 것을 제외하고는 실시예 2-1과 동일한 방법으로 양극복합소재를 제조하였다.A positive electrode composite material was prepared in the same manner as in Example 2-1, except that the positive electrode composite material of Comparative Example 1 was used instead of the positive electrode composite material of Example 1-1.
[시험예][Test Example]
시험예Test Example 1: 용량 및 사이클 특성 평가 1: Evaluation of capacity and cycle characteristics
도 1 및 2에, 실시예 2-1, 2-2, 비교예 2에 따라 제조된 전고체 리튬이차전지의 용량 및 싸이클 특성 결과를 나타내었다. 측정 조건은 전압 범위 3.0~4.2V, 전류 조건 0.1C, CC 모드로 70℃ 챔버에서 측정하였다. FIGS. 1 and 2 show the capacity and cycle characteristics of all solid lithium secondary batteries produced in accordance with Examples 2-1 and 2-2 and Comparative Example 2. FIG. The measurement conditions were a voltage range of 3.0 to 4.2 V, a current condition of 0.1 C, and a temperature of 70 캜 in a CC mode.
도 1을 참고하면, 비교예, 실시예에 대한 초기 충방전 용량을 나타낸 그래프이다. 비교예인 NMC에 비해 모두 초기 방전 용량이 증가하였고, Blending한 소재들의 산화, 환원 전위가 명확히 나타남을 알 수 있다. 좀 더 자세히 설명하자면 LFP의 경우 초기 충방전 시 3.4V 부근에서 Plateau가 나타나며 LMO의 경우 잘 구분하기 어렵지만 4.0V 부근에서 약간 평탄한 slope을 확인 할 수 있다. Blending 소재들의 산화, 환원 전위 구간은 혼합 비율이 높을수록 이에 비례해서 늘어난 Plateau를 보이게 되지만, 혼합비율이 높을수록 이론적인 용량 감소와 작동전압 저하로 인한 에너지 밀도가 낮아지는 단점이 있다.Referring to FIG. 1, there is shown a graph showing initial charge / discharge capacities for Comparative Examples and Examples. Compared with the NMC, the initial discharge capacity was increased and the oxidation and reduction potentials of the blended materials were clearly observed. More specifically, in the case of LFP, the plateau appears at around 3.4 V during the initial charge / discharge and it is hard to distinguish the LMO, but a slight flat slope can be observed at around 4.0 V. The oxidation and reduction potentials of the blending materials show increased plateau in proportion to the mixing ratio. However, the higher the mixing ratio, the lower the theoretical capacity and the lower the energy density due to the operating voltage drop.
도 2를 참고하면, 비교예, 실시예에 대한 사이클 특성을 나타낸 그래프이다. 초기에는 비교예인 NMC의 용량이 약간 증가 추세여서 우수하게 보이지만 10cycle 이후 급격한 용량 감소를 보이고 있다. 이에 반해 Blending 복합소재의 경우 초기에 작지만 꾸준한 용량 감소와 함께 15cycle 이후에는 비교예인 NMC보다 우수한 사이클 특성을 보여주고 있다. 이는 전고체 전지에서 NMC 고용량 양극소재 열화로 인한 전지 사이클 특성 저하현상을 Blending을 통해 서로 단점을 보완하는 복합소재로 개선할 수 있음을 보여주는 결과이다. Referring to FIG. 2, it is a graph showing the cycle characteristics of Comparative Examples and Examples. Initially, the capacity of the comparative example NMC seems to be excellent because of a slight increase in the capacity, but after 10 cycles, the capacity is rapidly decreased. On the other hand, the Blending composite material showed a small but steady capacity reduction at the beginning and a cycle characteristic superior to the comparative example NMC after 15 cycles. This is a result of demonstrating that battery cell degradation due to deterioration of NMC high capacity anode material in all solid state cells can be improved by blending with composite materials which complement each other.
Claims (16)
2.5 내지 3.5V 미만의 전위를 갖는 양극 활물질 및 3.5 내지 4.5V의 전위를 갖는 양극 활물질 중에서 선택된 어느 하나의 양극 활물질;
화학식 2로 표시되는 LLZO;
도전재; 및
바인더;를 포함하고,
상기 2.5 내지 3.5 V 미만의 전위를 갖는 양극 활물질이 LiFePO4, LixM2(PO4)3(M=Fe, Ti, 0<x≤3), Li4+xMn5O12(0<x≤3), LiMn2O4 중에서 선택된 어느 하나이고,
상기 3.5 내지 4.5 V의 전위를 갖는 양극 활물질이 LiMn2O4, LiMnPO4, LiFe1-xMnxPO4(0<x≤0.8), LiVOPO4, Li3V2(PO4)3, LiNi0.5Mn0.5O2 중에서 선택된 어느 하나이고,
상기 바인더는 폴리에틸렌옥사이드이고,
상기 NMC와 양극활물질의 중량비가 70:30 내지 90:10인 것인, 전고체 리튬이차전지용 양극복합소재:
[화학식 1]
LiNipCoqMnrMsO2
화학식 1에서, 0<p<0.95, 0<q<0.5, 0<r<0.5, 0≤s≤0.3, p+q+r+s=1 이고, M은 서로 독립적으로 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군으로부터 선택된 어느 하나이고,
[화학식 2]
LipAlqLayZrzO
화학식 2에서, 5≤p<9, 0≤q≤1, 2≤y≤4, 1≤z≤3이다.NMC represented by the formula (1);
A positive electrode active material having a potential of less than 2.5 to 3.5 V and a positive electrode active material having a potential of 3.5 to 4.5 V;
LLZO represented by formula (2);
Conductive material; And
And a binder,
Wherein the cathode active material having a potential of less than 2.5 to 3.5 V is LiFePO 4 , Li x M 2 (PO 4 ) 3 (M = Fe, Ti, 0 < x ? 3), Li 4 + x Mn 5 O 12 x? 3), and LiMn 2 O 4 ,
The positive electrode active material having a potential of the 3.5 to 4.5 V LiMn 2 O 4, LiMnPO 4, LiFe 1-x Mn x PO 4 (0 <x≤0.8), LiVOPO 4, Li 3 V 2 (PO 4) 3, LiNi 0.5 Mn 0.5 O 2 ,
Wherein the binder is polyethylene oxide,
Wherein the weight ratio of the NMC and the cathode active material is from 70:30 to 90:10. A positive electrode composite material for a pre-solid lithium rechargeable battery,
[Chemical Formula 1]
LiNi p Co q Mn r M s O 2
In the formula 1, 0 <p <0.95, 0 <q <0.5, 0 <r <0.5, 0? S? 0.3, p + q + r + s = 1, and M is independently selected from Al, Mg, Fe, Wherein at least one element selected from the group consisting of Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti,
(2)
Li p Al q La y Zr z O
In Formula 2, 5? P <9, 0? Q? 1, 2? Y? 4, 1? Z?
상기 도전재가 카본 블랙, 아세틸렌 블랙, 케첸 블랙, 탄소 섬유, 탄소 나노튜브, 및 그래핀 중에서 선택된 1종 이상인 것을 특징으로 하는 전고체 리튬이차전지용 양극복합소재.The method according to claim 1,
Wherein the conductive material is at least one selected from the group consisting of carbon black, acetylene black, ketjen black, carbon fiber, carbon nanotube, and graphene.
상기 전고체 이차전지용 양극 복합소재가,
상기 NMC와 양극 활물질의 합 100중량부;
상기 LLZO 5 내지 50중량부;
상기 도전재 5 내지 50중량부; 및
상기 바인더 5 내지 50중량부;를
포함하는 것을 특징으로 하는 전고체 이차전지용 양극 복합소재.The method according to claim 1,
The positive electrode composite material for a full solid secondary battery according to claim 1,
100 parts by weight of the sum of the NMC and the cathode active material;
5 to 50 parts by weight of LLZO;
5 to 50 parts by weight of the conductive material; And
5 to 50 parts by weight of the binder;
Wherein the positive electrode composite material is a positive electrode composite material for an all solid secondary battery.
상기 NMC와 양극활물질의 중량비가 80:20인 것을 특징으로 하는 전고체 이차전지용 양극 복합소재.8. The method of claim 7,
Wherein the weight ratio of the NMC and the cathode active material is 80:20.
고체전해질을 포함하는 고체전해질층;
음극;을 포함하는 전고체 리튬 이차전지이고,
상기 양극복합소재는
화학식 1 로 표시되는 NMC와,
2.5 내지 3.5V 미만의 전위를 갖는 양극 활물질 및 3.5 내지 4.5V의 전위를 갖는 양극 활물질 중에서 선택된 어느 하나의 양극 활물질과,
화학식 2로 표시되는 LLZO와,
도전재와,
바인더를 포함하고,
상기 2.5 내지 3.5 V 미만의 전위를 갖는 양극 활물질이 LiFePO4, LixM2(PO4)3(M=Fe, Ti, 0<x≤3), Li4+xMn5O12(0<x≤3), LiMn2O4 중에서 선택된 어느 하나이고,
상기 3.5 내지 4.5 V의 전위를 갖는 양극 활물질이 LiMn2O4, LiMnPO4, LiFe1-xMnxPO4(0<x≤0.8), LiVOPO4, Li3V2(PO4)3, LiNi0.5Mn0.5O2 중에서 선택된 어느 하나이고,
상기 바인더는 폴리에틸렌옥사이드이고,
상기 NMC와 양극활물질의 중량비가 70:30 내지 90:10인 것인, 전고체 리튬 이차전지:
[화학식 1]
LiNipCoqMnrMsO2
화학식 1에서, 0<p<0.95, 0<q<0.5, 0<r<0.5, 0≤s≤0.3, p+q+r+s=1 이고, M은 서로 독립적으로 Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti 및 Zr으로 이루어진 군으로부터 선택된 어느 하나이고,
[화학식 2]
LipAlqLayZrzO
화학식 2에서, 5≤p<9, 0≤q≤1, 2≤y≤4, 1≤z≤3이다.A positive electrode comprising a positive electrode composite material;
A solid electrolyte layer comprising a solid electrolyte;
A lithium secondary battery comprising:
The positive electrode composite material
NMC represented by the general formula (1)
A positive electrode active material having a potential of 2.5 to 3.5 V or less and a positive electrode active material having a potential of 3.5 to 4.5 V,
LLZO represented by the general formula (2)
Conductive material,
Comprising a binder,
Wherein the cathode active material having a potential of less than 2.5 to 3.5 V is LiFePO 4 , Li x M 2 (PO 4 ) 3 (M = Fe, Ti, 0 < x ? 3), Li 4 + x Mn 5 O 12 x? 3), and LiMn 2 O 4 ,
The positive electrode active material having a potential of the 3.5 to 4.5 V LiMn 2 O 4, LiMnPO 4, LiFe 1-x Mn x PO 4 (0 <x≤0.8), LiVOPO 4, Li 3 V 2 (PO 4) 3, LiNi 0.5 Mn 0.5 O 2 ,
Wherein the binder is polyethylene oxide,
Wherein the weight ratio of the NMC and the cathode active material is 70:30 to 90:10.
[Chemical Formula 1]
LiNi p Co q Mn r M s O 2
In the formula 1, 0 <p <0.95, 0 <q <0.5, 0 <r <0.5, 0? S? 0.3, p + q + r + s = 1, and M is independently selected from Al, Mg, Fe, Wherein at least one element selected from the group consisting of Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti,
(2)
Li p Al q La y Zr z O
In Formula 2, 5? P <9, 0? Q? 1, 2? Y? 4, 1? Z?
상기 음극이 소프트 카본, 하드 카본, 인조 흑연, 천연 흑연, 팽창 흑연, 탄소섬유, 난흑연화성탄소, 카본블랙, 카본나노튜브, 아세틸렌 블랙, 케첸 블랙, 그래핀, 플러렌, 활성탄 및 메조 카본 마이크로비드 중에서 선택된 어느 하나의 카본; Si, Sn, Li, Al, Ag, Bi, In, Ge, Pb, Pt, Ti, Zn, Mg, Cd, Ce, Cu, Co, Ni 및 Fe 중에서 선택된 어느 하나의 금속(Me); 상기 금속(Me) 중 2종 이상을 포함하는 합금; 및 상기 금속(Me) 중 1종 이상의 산화물(MeOx); 중에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전고체 리튬 이차전지. 12. The method of claim 11,
Wherein the negative electrode is at least one selected from the group consisting of soft carbon, hard carbon, artificial graphite, natural graphite, expanded graphite, carbon fiber, hard graphitizable carbon, carbon black, carbon nanotube, acetylene black, Ketjenblack, graphene, fullerene, Carbon; (Me) selected from among Si, Sn, Li, Al, Ag, Bi, In, Ge, Pb, Pt, Ti, Zn, Mg, Cd, Ce, Cu, Co, Ni and Fe; An alloy including at least two of the metals (Me); And at least one oxide (MeOx) of the metal (Me); Wherein the total amount of the at least one selected from the group consisting of lithium,
상기 음극이 리튬을 포함하는 것을 특징으로 하는 전고체 리튬 이차전지.13. The method of claim 12,
Wherein the cathode comprises lithium. ≪ RTI ID = 0.0 > 11. < / RTI >
상기 고체전해질층은 LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로보란리튬, 저급지방족카르본산리튬 및 테트라페닐붕산리튬 중에서 선택된 1종 이상을 추가로 포함하는 것을 특징으로 하는 전고체 리튬 이차전지.13. The method according to claim 11 or 12,
The solid electrolyte layer is LiCl, LiBr, LiI, LiClO 4 , LiBF 4, LiB 10 Cl 10, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, CH 3 SO 3 Li, CF 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, chloroborane lithium, lithium lower aliphatic carboxylate, and lithium tetraphenylborate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160129949A KR101876826B1 (en) | 2016-10-07 | 2016-10-07 | Cathode composite and all solid lithium secondary battery comprising the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160129949A KR101876826B1 (en) | 2016-10-07 | 2016-10-07 | Cathode composite and all solid lithium secondary battery comprising the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180038831A KR20180038831A (en) | 2018-04-17 |
KR101876826B1 true KR101876826B1 (en) | 2018-07-10 |
Family
ID=62083318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160129949A KR101876826B1 (en) | 2016-10-07 | 2016-10-07 | Cathode composite and all solid lithium secondary battery comprising the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101876826B1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11508992B2 (en) | 2019-05-03 | 2022-11-22 | Samsung Sdi Co. Ltd. | Rechargeable lithium battery |
US11515523B2 (en) | 2019-05-03 | 2022-11-29 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11522183B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11522185B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11658287B2 (en) | 2019-05-03 | 2023-05-23 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11705585B2 (en) | 2018-07-03 | 2023-07-18 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11710820B2 (en) | 2019-05-03 | 2023-07-25 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11728522B2 (en) | 2018-07-03 | 2023-08-15 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102095819B1 (en) * | 2018-10-04 | 2020-04-01 | 한국생산기술연구원 | Cathode composite with improved power performance, and all solid lithium secondary battery comprising the same |
KR102102217B1 (en) * | 2018-11-01 | 2020-04-20 | 한국생산기술연구원 | Cathode comprising cathode material with improved perfomance by cathode active material coating, all solid lithium secondary battery comprising the same and method of manufacturing the same |
KR102682128B1 (en) | 2018-11-07 | 2024-07-08 | 삼성전자주식회사 | Anodeless coating layer for All-solid-state battery and All-solid-state battery including the same |
KR102715034B1 (en) | 2018-11-14 | 2024-10-10 | 삼성전자주식회사 | All solid secondary battery and method of manufacturing the same |
CN109626996A (en) * | 2018-12-04 | 2019-04-16 | 内蒙古工业大学 | A kind of ferro-aluminum codope carbuncle type Li7La3Zr2O12Lithium Ionic Conducting Materials and preparation method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006073482A (en) * | 2004-09-06 | 2006-03-16 | Nissan Motor Co Ltd | Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method |
KR20070114411A (en) * | 2006-05-29 | 2007-12-04 | 주식회사 엘지화학 | Cathode active material and lithium secondary battery containing them |
KR20120108572A (en) * | 2011-03-24 | 2012-10-05 | 현대자동차주식회사 | Cathod for secondary battery and secondary battery including the same |
JP2014011028A (en) * | 2012-06-29 | 2014-01-20 | Toyota Motor Corp | Composite active material, solid state battery, and method for producing composite active material |
KR101394123B1 (en) * | 2012-06-26 | 2014-05-15 | 한국기계연구원 | Oxide solid electrolyte, method for manufacturing of the same and all-solid-state secondary battery using the same |
KR20150129181A (en) * | 2014-05-08 | 2015-11-19 | 국립대학법인 울산과학기술대학교 산학협력단 | Composite electrode-composite electrolyte assembly, method of manufacturing the same, and electrochemical device having the same |
KR20160065896A (en) * | 2013-10-07 | 2016-06-09 | 콴텀스케이프 코포레이션 | Garnet materials for li secondary batteries |
-
2016
- 2016-10-07 KR KR1020160129949A patent/KR101876826B1/en active IP Right Grant
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006073482A (en) * | 2004-09-06 | 2006-03-16 | Nissan Motor Co Ltd | Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method |
KR20070114411A (en) * | 2006-05-29 | 2007-12-04 | 주식회사 엘지화학 | Cathode active material and lithium secondary battery containing them |
KR20120108572A (en) * | 2011-03-24 | 2012-10-05 | 현대자동차주식회사 | Cathod for secondary battery and secondary battery including the same |
KR101394123B1 (en) * | 2012-06-26 | 2014-05-15 | 한국기계연구원 | Oxide solid electrolyte, method for manufacturing of the same and all-solid-state secondary battery using the same |
JP2014011028A (en) * | 2012-06-29 | 2014-01-20 | Toyota Motor Corp | Composite active material, solid state battery, and method for producing composite active material |
KR20150018562A (en) * | 2012-06-29 | 2015-02-23 | 도요타지도샤가부시키가이샤 | Composite active material, solid-state battery and method for producing composite active material |
KR20160065896A (en) * | 2013-10-07 | 2016-06-09 | 콴텀스케이프 코포레이션 | Garnet materials for li secondary batteries |
KR20150129181A (en) * | 2014-05-08 | 2015-11-19 | 국립대학법인 울산과학기술대학교 산학협력단 | Composite electrode-composite electrolyte assembly, method of manufacturing the same, and electrochemical device having the same |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11705585B2 (en) | 2018-07-03 | 2023-07-18 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11728522B2 (en) | 2018-07-03 | 2023-08-15 | Samsung Sdi Co., Ltd. | Electrode for rechargeable lithium battery, and rechargeable lithium battery including the same |
US11508992B2 (en) | 2019-05-03 | 2022-11-22 | Samsung Sdi Co. Ltd. | Rechargeable lithium battery |
US11515523B2 (en) | 2019-05-03 | 2022-11-29 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11522183B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11522185B2 (en) | 2019-05-03 | 2022-12-06 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11658287B2 (en) | 2019-05-03 | 2023-05-23 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
US11710820B2 (en) | 2019-05-03 | 2023-07-25 | Samsung Sdi Co., Ltd. | Rechargeable lithium battery |
Also Published As
Publication number | Publication date |
---|---|
KR20180038831A (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101876826B1 (en) | Cathode composite and all solid lithium secondary battery comprising the same | |
US10511049B2 (en) | Electrolyte system including alkali metal bis(fluorosulfonyl)imide and dimethyoxyethane for improving anodic stability of electrochemical cells | |
US10326136B2 (en) | Porous carbonized composite material for high-performing silicon anodes | |
CN103702929B (en) | Carbon-silicon composite material, method for preparing same, and negative active material comprising same | |
US9660253B2 (en) | Positive electrode active material for sodium battery, and method of producing the same | |
JP5757148B2 (en) | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material | |
KR101670327B1 (en) | Composite cathode materials with controlled irreversible capacity loss for lithium ion batteries | |
US10707530B2 (en) | Carbonate-based electrolyte system improving or supporting efficiency of electrochemical cells having lithium-containing anodes | |
JP5611453B2 (en) | Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode | |
EP2642577A1 (en) | Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery including positive electrode active material | |
JP5099168B2 (en) | Lithium ion secondary battery | |
US20160380309A1 (en) | Long-life lithium-ion batteries | |
JP7427629B2 (en) | A positive electrode and a lithium battery including the positive electrode | |
CN113994512B (en) | Lithium secondary battery and method for manufacturing the same | |
JP2020525989A (en) | Lithium secondary battery and manufacturing method thereof | |
KR20120017671A (en) | Cathode, preparation method thereof, and lithium battery containing the same | |
KR20180066694A (en) | Cathode composite with high power performance and all solid lithium secondary battery comprising the same | |
JP2013506938A (en) | Manganese phosphate and related electrode active materials | |
CN110556521A (en) | Silicon anode material | |
KR101796344B1 (en) | Positive electrode material for lithium secondary battery, preparation thereof, and lithium secondary battery comprising the same | |
KR100897180B1 (en) | Cathode Material Containing Ag Nano Particle as Conductive Material and Lithium Secondary Battery Comprising the Same | |
CN113054191A (en) | Binder solution for all-solid-state battery and electrode slurry including the same | |
KR102207523B1 (en) | Lithium secondary battery | |
US20230395791A1 (en) | Cathode for all-solid-state batteries and method for manufacturing the same | |
US20230178716A1 (en) | Anode current collector including double coating layer and all-solid-state battery including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |