[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006073482A - Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method - Google Patents

Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2006073482A
JP2006073482A JP2004258966A JP2004258966A JP2006073482A JP 2006073482 A JP2006073482 A JP 2006073482A JP 2004258966 A JP2004258966 A JP 2004258966A JP 2004258966 A JP2004258966 A JP 2004258966A JP 2006073482 A JP2006073482 A JP 2006073482A
Authority
JP
Japan
Prior art keywords
positive electrode
compound
lithium ion
ion secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004258966A
Other languages
Japanese (ja)
Other versions
JP4923397B2 (en
Inventor
Takanori Ito
孝憲 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004258966A priority Critical patent/JP4923397B2/en
Priority to PCT/JP2005/014613 priority patent/WO2006027925A2/en
Publication of JP2006073482A publication Critical patent/JP2006073482A/en
Application granted granted Critical
Publication of JP4923397B2 publication Critical patent/JP4923397B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1235Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [Mn2O4]2-, e.g. Li2Mn2O4, Li2[MxMn2-x]O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive electrode material suitably used in a nonaqueous electrolyte lithium ion secondary battery capable of supplying power stably for a long period and with high output. <P>SOLUTION: In the positive electrode material for nonaqueous electrolyte lithium ion secondary battery, the surface of a particle made of lithium nickel cobalt manganese oxide is deposited with a lithium compound. Its manufacturing method is also provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、非水電解質リチウムイオン二次電池用正極材料に関する。詳細には、本発明は、正極活物質としてリチウムニッケルコバルトマンガン酸化物を用いた非水電解質リチウムイオン二次電池用正極材料の改良に関する。   The present invention relates to a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery. Specifically, the present invention relates to an improvement in a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery using lithium nickel cobalt manganese oxide as a positive electrode active material.

近年、大気汚染や地球温暖化に対処するため、二酸化炭素量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減が期待されており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が盛んに行われている。   In recent years, in order to cope with air pollution and global warming, reduction of the amount of carbon dioxide has been strongly desired. In the automobile industry, the introduction of electric vehicles (EV) and hybrid electric vehicles (HEV) is expected to reduce carbon dioxide emissions, and the development of secondary batteries for motor drive that holds the key to commercialization of these is actively done. Has been done.

モータ駆動用二次電池としては、全ての電池の中で最も高い理論エネルギーを有するリチウムイオン二次電池が注目を集めており、現在急速に開発が進められている。リチウムイオン二次電池は、一般に、バインダを用いて正極活物質等を正極集電体の両面に塗布した正極と、バインダを用いて負極活物質等を負極集電体の両面に塗布した負極とが、電解質層を介して接続され、電池ケースに収納される構成を有している。   As a secondary battery for driving a motor, a lithium ion secondary battery having the highest theoretical energy among all the batteries is attracting attention, and is currently being developed rapidly. Generally, a lithium ion secondary battery includes a positive electrode in which a positive electrode active material or the like is applied to both surfaces of a positive electrode current collector using a binder, and a negative electrode in which a negative electrode active material or the like is applied to both surfaces of a negative electrode current collector using a binder. However, it has the structure connected through an electrolyte layer and accommodated in a battery case.

このリチウムイオン二次電池の正極活物質としては、近年、リチウムニッケルコバルトマンガン酸化物(Li(Ni,Co,Mn)O)が注目を浴びている。このリチウムニッケルコバルトマンガン酸化物は、リチウムマンガン酸化物やリチウムコバルト酸化物などの従来の正極活物質と比べて比較的高い出力が得られ、高温の電解質中においても安定であるため、有利である。 In recent years, lithium nickel cobalt manganese oxide (Li (Ni, Co, Mn) O 2 ) has attracted attention as a positive electrode active material of this lithium ion secondary battery. This lithium nickel cobalt manganese oxide is advantageous because it provides a relatively high output compared to conventional positive electrode active materials such as lithium manganese oxide and lithium cobalt oxide, and is stable even in high-temperature electrolytes. .

しかしながら、このリチウムニッケルコバルトマンガン酸化物を正極活物質として用い、高温条件下で高出力の充放電を繰り返すと、マンガンイオンが電解液中に溶解する結果、電池の出力や高温でのサイクル耐久性が低下してしまうという問題があった。特に、車両のモータ駆動用電源として車載され、長期間にわたって高出力で電力を供給することが期待される車載用リチウムイオン二次電池において、この問題は顕著である。   However, when this lithium nickel cobalt manganese oxide is used as the positive electrode active material and repeated high-power charge / discharge under high temperature conditions, manganese ions dissolve in the electrolyte, resulting in battery output and high-temperature cycle durability. There was a problem that would decrease. In particular, this problem is remarkable in an in-vehicle lithium ion secondary battery that is mounted on a vehicle as a power source for driving a vehicle and is expected to supply electric power with high output over a long period of time.

一方、同じくマンガンを含有する正極活物質であるリチウムマンガン酸化物(LiMn)においても同様に、マンガンイオンの電解液中への溶解の問題が知られている。そして、リチウムマンガン酸化物におけるかような問題を解決すべく、リチウムマンガン酸化物からなる正極活物質の表面にリチウムバナジウム酸化物(LiV)からなる層を形成して、マンガンイオンの電解液中への溶解を防ぎ、電池性能の低下を抑制する手法が提案されている(特許文献1を参照)。
特開2000−3709号公報
On the other hand, in the case of lithium manganese oxide (LiMn 2 O 4 ), which is also a positive electrode active material containing manganese, a problem of dissolution of manganese ions in the electrolytic solution is also known. And in order to solve such a problem in lithium manganese oxide, a layer made of lithium vanadium oxide (LiV 2 O 4 ) is formed on the surface of the positive electrode active material made of lithium manganese oxide, and electrolysis of manganese ions is performed. There has been proposed a technique for preventing dissolution in a liquid and suppressing a decrease in battery performance (see Patent Document 1).
JP 2000-3709 A

しかしながら、前記特許文献1に記載の正極材料の活物質はスピネル構造を有するリチウムマンガン酸化物である。そもそも、このスピネル系リチウムマンガン酸化物を用いたリチウムイオン二次電池は、容量やサイクル耐久性が充分ではなく、特に長期間の安定した性能が要求される車両のモータ駆動用電源として車載される場合に、充分な電池特性を発揮できない虞があった。   However, the active material of the positive electrode material described in Patent Document 1 is a lithium manganese oxide having a spinel structure. In the first place, the lithium ion secondary battery using this spinel type lithium manganese oxide is mounted on a vehicle as a power source for driving a motor of a vehicle that is not sufficient in capacity and cycle durability and requires a long-term stable performance. In some cases, sufficient battery characteristics may not be exhibited.

そこで、本発明の目的は、長期間にわたり安定して高出力で電力を供給しうる非水電解質リチウムイオン二次電池に好適に用いられる正極材料を提供することである。   Accordingly, an object of the present invention is to provide a positive electrode material suitably used for a non-aqueous electrolyte lithium ion secondary battery that can stably supply power with high output over a long period of time.

本発明は、リチウムニッケルコバルトマンガン酸化物(以下、「LiNiCoMn酸化物」とも称する)からなる粒子の表面にリチウム化合物(以下、「Li化合物」とも称する)が添着されてなる、非水電解質リチウムイオン二次電池用正極材料を提供する。   The present invention relates to a nonaqueous electrolyte lithium ion in which a lithium compound (hereinafter also referred to as “Li compound”) is attached to the surface of particles made of lithium nickel cobalt manganese oxide (hereinafter also referred to as “LiNiCoMn oxide”). A positive electrode material for a secondary battery is provided.

また本発明は、上記の正極材料の製造方法を提供する。   Moreover, this invention provides the manufacturing method of said positive electrode material.

本発明の正極材料を非水電解質リチウムイオン二次電池に採用することで、非水電解質リチウムイオン二次電池の耐久性が向上しうる。   By employing the positive electrode material of the present invention for a non-aqueous electrolyte lithium ion secondary battery, the durability of the non-aqueous electrolyte lithium ion secondary battery can be improved.

本発明の第1の非水電解質リチウムイオン二次電池用正極材料は、正極活物質であるLiNiCoMn酸化物からなる粒子の表面にリチウム化合物が添着されてなることを特徴とする。本発明の正極材料においては、正極活物質粒子の表面にLi化合物が添着されることで、正極活物質中のマンガンイオンの電解液中への溶解が防止され、マンガンイオンの溶解に伴う内部抵抗の上昇や電池性能の低下が抑制されうる。その一因としては、Li化合物を添着することでLi化合物が物理的な障壁として機能し、マンガンイオンの溶解が抑制されることが挙げられる。ただし、その他のメカニズムが存在しても、勿論よい。   The first positive electrode material for a non-aqueous electrolyte lithium ion secondary battery of the present invention is characterized in that a lithium compound is attached to the surface of particles made of LiNiCoMn oxide as a positive electrode active material. In the positive electrode material of the present invention, by adding a Li compound to the surface of the positive electrode active material particles, dissolution of manganese ions in the positive electrode active material into the electrolytic solution is prevented, and internal resistance associated with dissolution of manganese ions Rise and battery performance degradation can be suppressed. One reason for this is that by adding a Li compound, the Li compound functions as a physical barrier, and dissolution of manganese ions is suppressed. However, of course, other mechanisms may exist.

以下、本発明の実施の形態について詳細に説明するが、本発明の技術的範囲は特許請求の範囲の記載に基づいて定められるべきであり、下記の具体的な形態のみには制限されない。   Hereinafter, embodiments of the present invention will be described in detail. However, the technical scope of the present invention should be determined based on the description of the scope of claims, and is not limited to the following specific embodiments.

LiNiCoMn酸化物は、正極活物質として機能する。従って、リチウム原子、ニッケル原子、コバルト原子、およびマンガン原子を含有し、正極活物質として機能しうる酸化物であれば、その具体的な組成などの形態は特に制限されない。また、上記の原子がその他の金属原子により置換されていてもよい。一例を挙げると、下記化学式1:   LiNiCoMn oxide functions as a positive electrode active material. Accordingly, the form of the specific composition and the like is not particularly limited as long as it is an oxide that contains a lithium atom, a nickel atom, a cobalt atom, and a manganese atom and can function as a positive electrode active material. The above atoms may be substituted with other metal atoms. As an example, the following chemical formula 1:

(式中、0<a≦1.2、0.3≦b≦0.9、0.25≦c≦0.6、0.25≦d≦0.6、0≦e≦0.3、1.5≦f≦2.2、0≦g≦0.5であり、Mは、Al、M
g、Ca、Ti、V、Cr、FeおよびGaからなる群から選択される1種または2種以上の原子であり、Nは、F、ClおよびSからなる群から選択される1種または2種以上の原子であり、Mおよび/またはNが2種以上の原子である場合には、eおよび/またはgは、2種以上の原子の合計値である。)
で示される組成が例示される。なお、LiNiCoMn酸化物の組成は、例えば、ICP(誘導結合プラズマ)発光分光分析法、原子吸光光度法、蛍光X線法、キレート滴定法、およびパーティクルアナライザ分析法などにより測定されうる。正確な組成が測定されるのであれば、その他の分析法が採用されてもよく、このことは、後述するその他のパラメータの測定についても同様である。
(Where 0 <a ≦ 1.2, 0.3 ≦ b ≦ 0.9, 0.25 ≦ c ≦ 0.6, 0.25 ≦ d ≦ 0.6, 0 ≦ e ≦ 0.3, 1.5 ≦ f ≦ 2.2, 0 ≦ g ≦ 0.5, and M is Al, M
one or more atoms selected from the group consisting of g, Ca, Ti, V, Cr, Fe and Ga, and N is one or two selected from the group consisting of F, Cl and S When there are two or more kinds of atoms and M and / or N are two or more kinds of atoms, e and / or g is a total value of two or more kinds of atoms. )
The composition shown by is illustrated. The composition of the LiNiCoMn oxide can be measured by, for example, ICP (inductively coupled plasma) emission spectroscopy, atomic absorption photometry, X-ray fluorescence, chelate titration, and particle analyzer analysis. Other analysis methods may be employed as long as the exact composition is measured, and this is the same for the measurement of other parameters described later.

LiNiCoMn酸化物からなる粒子の平均粒径は、正極活物質としての反応性およびサイクル耐久性などの観点から、好ましくは0.1〜20μmである。前記粒子は、1次粒子が凝集してなる2次粒子であってもよい。かような形態において、2次粒子を構成する1次粒子の平均粒径は、好ましくは0.01〜5μmである。これらの平均粒径は、例えば、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)などを用いて観察することにより測定されうる。   The average particle diameter of the particles made of LiNiCoMn oxide is preferably 0.1 to 20 μm from the viewpoint of reactivity as the positive electrode active material and cycle durability. The particles may be secondary particles formed by aggregation of primary particles. In such a form, the average particle diameter of the primary particles constituting the secondary particles is preferably 0.01 to 5 μm. These average particle diameters can be measured by, for example, observation using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or the like.

LiNiCoMn酸化物からなる粒子の形状は球状の形態のみに制限されず、板状、針状、柱状、角状などの形態であってもよい。粒子の形状は、所望の電池特性(例えば、充放電特性やサイクル耐久性など)を考慮して適宜選択されうる。粒子の形状が球状以外の場合には粒子の形状が一様ではないため、かような場合には粒子の絶対最大長を粒子の平均粒径とする。ここで「絶対最大長」とは、図1に示すように、粒子1の輪郭線上の任意の2点間の距離のうち、最大の距離Lをいう。絶対最大長を測定する際には、電子顕微鏡写真の一定の領域中に存在する各粒子の絶対最大長の平均値を用いることが好ましい。あるいは、本発明に用いるLiNiCoMn酸化物を篩分けにより選別する場合には、篩分けに用いる篩の篩い目(メッシュスルーサイズまたはメッシュパスサイズ)を絶対最大長としてもよい。   The shape of the particles made of LiNiCoMn oxide is not limited to a spherical shape, and may be a plate shape, a needle shape, a column shape, a square shape, or the like. The shape of the particles can be appropriately selected in consideration of desired battery characteristics (for example, charge / discharge characteristics and cycle durability). When the particle shape is other than spherical, the particle shape is not uniform. In such a case, the absolute maximum length of the particle is defined as the average particle size of the particle. Here, the “absolute maximum length” means the maximum distance L among the distances between any two points on the outline of the particle 1 as shown in FIG. When measuring the absolute maximum length, it is preferable to use the average value of the absolute maximum length of each particle present in a certain region of the electron micrograph. Alternatively, when the LiNiCoMn oxide used in the present invention is selected by sieving, the sieve mesh (mesh through size or mesh path size) used for sieving may be set as the absolute maximum length.

本発明の正極材料の正極活物質であるLiNiCoMn酸化物からなる粒子の表面付近に存在するマンガン原子の平均価数は、好ましくは+3.5以上、より好ましくは+4以上である。ここで、マンガン原子は価数が+3の場合にマンガンイオンとして電解液へ溶解しやすいことが知られている。これに対し、表面付近のマンガン原子の平均価数を+3.5以上とすることで、+4以上の価数を有するマンガン原子の存在量が充分に多くなり、正極活物質中のマンガンイオンの電解液への溶解がより一層抑制されうるものと考えられる。なお、表面付近に限定したのは、活物質粒子全体の平均価数を+3.5以上とすると、容量が低下する虞があるためである。   The average valence of manganese atoms present in the vicinity of the surface of particles made of LiNiCoMn oxide, which is the positive electrode active material of the positive electrode material of the present invention, is preferably +3.5 or more, more preferably +4 or more. Here, it is known that manganese atoms are easily dissolved in the electrolyte as manganese ions when the valence is +3. On the other hand, by setting the average valence of manganese atoms near the surface to +3.5 or more, the abundance of manganese atoms having a valence of +4 or more is sufficiently increased, and electrolysis of manganese ions in the positive electrode active material is performed. It is considered that dissolution in the liquid can be further suppressed. The reason for limiting to the vicinity of the surface is that if the average valence of the entire active material particles is +3.5 or more, the capacity may decrease.

また、LiNiCoMn酸化物からなる粒子の「表面付近」とは、粒子の表面から、粒子の粒径の1/20の深さまでの領域をいう。例えば、LiNiCoMn酸化物からなる粒子の粒径が2μmの場合、粒子の「表面付近」とは、粒子の表面から、深さ100nmまでの領域である。また、LiNiCoMn酸化物からなる粒子の表面付近に存在するマンガン原子の価数は、例えば、電子エネルギー損失分光法(EELS)により測定されうる。   Further, “near the surface” of a particle made of LiNiCoMn oxide means a region from the surface of the particle to a depth of 1/20 of the particle diameter of the particle. For example, when the particle diameter of a particle made of LiNiCoMn oxide is 2 μm, “near the surface” of the particle is a region from the particle surface to a depth of 100 nm. Moreover, the valence of the manganese atom which exists in the surface vicinity of the particle | grains which consist of LiNiCoMn oxides can be measured by an electron energy loss spectroscopy (EELS), for example.

また、LiNiCoMn酸化物からなる粒子は、その表面付近に、酸素過剰型LiNiCoMn酸化物を含むことが好ましい。これにより、活物質粒子の表面付近のマンガン原子の平均価数が増加し、上記で説明した+3.5以上となり易い。従って、かような形態によっても、正極活物質中のマンガンイオンの電解液への溶解がより一層抑制されうる。なお、「表面付近」の定義は上記と同様である。   Moreover, it is preferable that the particle | grains which consist of LiNiCoMn oxide contain oxygen excess type LiNiCoMn oxide in the surface vicinity. This increases the average valence of manganese atoms near the surface of the active material particles, and tends to be +3.5 or more as described above. Therefore, even in such a form, dissolution of manganese ions in the positive electrode active material into the electrolytic solution can be further suppressed. The definition of “near the surface” is the same as described above.

「酸素過剰型LiNiCoMn酸化物」とは、LiNiCoMn酸化物の不定比化合物であって、酸素過剰型(金属不足型)のものをいう。酸素過剰型LiNiCoMn酸化物では、通常のLiNiCoMn酸化物とは異なり、結晶格子中の金属原子が欠損し、酸素原子が過剰に存在している。また、電気的な中性を維持するためのホール(正孔)が存在している。粒子の表面付近に存在する酸素過剰型LiNiCoMn酸化物の量は特に制限されず、粒子の表面付近の少なくとも一部に酸素過剰部位が存在すればよい。ただし、上述した効果をより発揮させるためには、好ましくは、粒子の表面付近のLiNiCoMn酸化物の半数以上、より好ましくはすべて、が酸素過剰型LiNiCoMn酸化物であるとよい。   “Oxygen-rich LiNiCoMn oxide” refers to a non-stoichiometric compound of LiNiCoMn oxide, which is oxygen-rich (metal-deficient). Unlike an ordinary LiNiCoMn oxide, an oxygen-excess type LiNiCoMn oxide is deficient in metal atoms in the crystal lattice and has excessive oxygen atoms. In addition, there are holes for maintaining electrical neutrality. The amount of the oxygen-excess LiNiCoMn oxide present near the surface of the particle is not particularly limited, and it is sufficient that an oxygen-excess site exists in at least a part near the surface of the particle. However, in order to further exert the above-described effects, it is preferable that more than half of the LiNiCoMn oxide near the surface of the particle, and more preferably, all be an oxygen-excess LiNiCoMn oxide.

LiNiCoMn酸化物からなる粒子の表面に添着されるLi化合物は、特に制限されず、従来公知のLi化合物が用いられうる。また、新たに開発されたLi化合物が用いられてもよい。Li化合物の具体例としては、例えば、LiSO、LiPO、LiPON、LiO−B、LiO−B−LiI、LiO−SiS、LiS−SiS−LiPO、LiCoO、LiMn、LiOH、LiCO、LiS−SiS、LiFePO、LiBr、LiI、酢酸リチウム、リチウムアセチリドエチレンジアミン、安息香酸リチウム、フッ化リチウム、シュウ酸リチウム、ピルビン酸リチウム、ステアリン酸リチウム、酒石酸リチウムなどが例示される。なかでも、リチウムイオンの拡散定数の観点から、LiSO、LiPO、LiPON、LiO−B、LiO−B−LiI、LiO−SiS、LiS−SiS−LiPO、LiCoO、LiMn、LiOH、およびLiCOが好ましく用いられうる。これらのLi化合物は、1種のみが単独で用いられてもよく、2種以上が併用されてもよい。ただし、これらの形態のみには制限されず、その他のLi化合物が用いられても、勿論よい。 The Li compound attached to the surface of the particles made of LiNiCoMn oxide is not particularly limited, and a conventionally known Li compound can be used. A newly developed Li compound may also be used. Specific examples of the Li compound include, for example, Li 2 SO 4 , Li 3 PO 4 , LiPON, Li 2 O—B 2 O 3 , Li 2 O—B 2 O 3 —LiI, Li 2 O—SiS 2 , Li 2 S-SiS 2 -Li 3 PO 4, LiCoO 2, LiMn 2 O 4, LiOH, Li 2 CO 3, Li 2 S-SiS 2, LiFePO 4, LiBr, LiI, lithium acetate, lithium acetylide ethylenediamine, lithium benzoate And lithium fluoride, lithium oxalate, lithium pyruvate, lithium stearate, lithium tartrate and the like. Among them, from the viewpoint of the diffusion constant of the lithium ion, Li 2 SO 4, Li 3 PO 4, LiPON, Li 2 O-B 2 O 3, Li 2 O-B 2 O 3 -LiI, Li 2 O-SiS 2 Li 2 S—SiS 2 —Li 3 PO 4 , LiCoO 2 , LiMn 2 O 4 , LiOH, and Li 2 CO 3 may be preferably used. As for these Li compounds, only 1 type may be used independently and 2 or more types may be used together. However, it is not limited to only these forms, and other Li compounds may be used as a matter of course.

なお、Li化合物の組成は、例えば、ICP(誘導結合プラズマ)発光分光分析法、原子吸光光度法、蛍光X線法、キレート滴定法、およびパーティクルアナライザ分析法などにより測定されうる。   The composition of the Li compound can be measured by, for example, ICP (inductively coupled plasma) emission spectroscopy, atomic absorption photometry, fluorescent X-ray method, chelate titration method, and particle analyzer analysis method.

Li化合物の形状は特に制限されず、LiNiCoMn酸化物について上記で説明したような形状が同様に採用されうる。また、Li化合物の平均粒径についても特に制限されないが、リチウムイオンの拡散性の観点から、好ましくは20〜500nm、より好ましくは50〜400nmである。   The shape of the Li compound is not particularly limited, and the shape described above for the LiNiCoMn oxide can be similarly adopted. The average particle size of the Li compound is not particularly limited, but is preferably 20 to 500 nm, more preferably 50 to 400 nm, from the viewpoint of lithium ion diffusibility.

上述したように、活物質粒子の表面付近のマンガンイオンの価数は+3.5以上であることが好ましい。かような観点から、添着されるLi化合物は、活物質粒子の表面付近のマンガンイオンの価数を上昇させうる化合物であることが好ましい。なお、上記で列挙したLi化合物はいずれも、活物質粒子への添着によって、活物質粒子の表面付近のマンガンイオンの価数を上昇させうる。   As described above, the valence of manganese ions near the surface of the active material particles is preferably +3.5 or more. From such a viewpoint, the Li compound to be attached is preferably a compound capable of increasing the valence of manganese ions near the surface of the active material particles. Note that any of the Li compounds listed above can increase the valence of manganese ions near the surface of the active material particles by being attached to the active material particles.

Li化合物は、リチウムイオン伝導性であることが好ましい。これは、リチウムイオン伝導性を有しないLi化合物が添着された場合、添着された箇所ではリチウムイオンが伝導しないために正極材料の内部抵抗が増大し、電池性能が低下してしまうためである。なお、上記で列挙したLi化合物はいずれもリチウムイオン伝導性を有する。   The Li compound is preferably lithium ion conductive. This is because when a Li compound that does not have lithium ion conductivity is attached, lithium ions do not conduct at the place where the lithium compound is attached, so that the internal resistance of the positive electrode material increases and the battery performance deteriorates. All the Li compounds listed above have lithium ion conductivity.

Li化合物がリチウムイオン伝導性を有する場合、その伝導性は、好ましくは10−15S/m以上、より好ましくは10−12S/m以上である。リチウムイオン伝導性は、例えば、交流インピーダンス法、定電位ステップ法、定電流ステップ法などにより測定されうる。 When the Li compound has lithium ion conductivity, the conductivity is preferably 10 −15 S / m or more, more preferably 10 −12 S / m or more. The lithium ion conductivity can be measured by, for example, an AC impedance method, a constant potential step method, a constant current step method, or the like.

LiNiCoMn酸化物からなる粒子の表面にLi化合物が添着される具体的な形態は、特に制限されない。例えば、図2に示す形態が例示される。図2は、LiNiCoMn酸化物からなる粒子2の表面に、Li化合物からなる被覆層3が形成されてなる形態を有する本発明の正極材料の模式断面図である。一方、図3に示す形態もまた、例示されうる。図3は、LiNiCoMn酸化物からなる粒子2の表面に、Li化合物からなる粒子4が点在するように添着されてなる形態を有する本発明の正極材料の模式斜視図である。なお、Li化合物が添着されるLiNiCoMn酸化物からなる粒子2の「表面」とは、1次粒子の表面であってもよく、1次粒子が凝集してなる2次粒子の表面であってもよい。図2および図3に示すLiNiCoMn酸化物からなる粒子2を2次粒子と仮定すれば、図2および図3は、2次粒子の表面にLi化合物が添着されてなる形態を示す図となる。   The specific form in which the Li compound is attached to the surface of the particles made of LiNiCoMn oxide is not particularly limited. For example, the form shown in FIG. 2 is illustrated. FIG. 2 is a schematic cross-sectional view of a positive electrode material of the present invention having a form in which a coating layer 3 made of a Li compound is formed on the surface of particles 2 made of LiNiCoMn oxide. On the other hand, the form shown in FIG. 3 can also be illustrated. FIG. 3 is a schematic perspective view of the positive electrode material of the present invention having a form in which particles 4 made of Li compound are scattered on the surface of particles 2 made of LiNiCoMn oxide. The “surface” of the particle 2 made of the LiNiCoMn oxide to which the Li compound is attached may be the surface of the primary particle or the surface of the secondary particle formed by aggregation of the primary particles. Good. If the particles 2 made of the LiNiCoMn oxide shown in FIGS. 2 and 3 are assumed to be secondary particles, FIGS. 2 and 3 are diagrams showing a form in which a Li compound is attached to the surface of the secondary particles.

上記の図2および図3に示す形態は、いずれが採用された場合であっても、マンガンイオンの電解液中への溶解が防止され、正極材料の内部抵抗の上昇が抑制されうる。従って、いずれの形態を採用するかは、用いられるLiNiCoMn酸化物やLi化合物の組成、所望の電池性能や入手可能な製造手段などを考慮することにより、適宜選択されうる。例えば、正極活物質からのマンガンイオンの溶解を効果的に防止したい場合には、図2に示すような被覆層3が形成される形態が好ましく採用されうる。一方、正極活物質中のリチウムイオンと電解液とを直接接触させて反応させたい場合には、図3に示すようなLi化合物からなる粒子4が表面に点在する形態が好ましく採用されうる。   Regardless of which of the forms shown in FIGS. 2 and 3 is employed, dissolution of manganese ions in the electrolytic solution can be prevented, and an increase in internal resistance of the positive electrode material can be suppressed. Therefore, which form is adopted can be selected as appropriate in consideration of the composition of the LiNiCoMn oxide or Li compound used, desired battery performance, available manufacturing means, and the like. For example, when it is desired to effectively prevent dissolution of manganese ions from the positive electrode active material, a form in which the coating layer 3 as shown in FIG. 2 is formed can be preferably employed. On the other hand, when it is desired to react the lithium ions in the positive electrode active material directly with the electrolytic solution, a form in which particles 4 made of a Li compound are scattered on the surface as shown in FIG. 3 can be preferably employed.

以下、図2および図3に示す形態のそれぞれの好ましい形態について、説明する。   Hereinafter, each preferable form of the form shown in FIG. 2 and FIG. 3 is demonstrated.

まず、図2に示す形態について、詳細に説明する。上述したように、図2に示す形態においては、LiNiCoMn酸化物からなる粒子2の表面に、Li化合物が添着されることにより、Li化合物からなる被覆層3が形成されている。   First, the embodiment shown in FIG. 2 will be described in detail. As described above, in the form shown in FIG. 2, the coating layer 3 made of the Li compound is formed by attaching the Li compound to the surface of the particle 2 made of the LiNiCoMn oxide.

かような被覆層3の厚さは、好ましくは3〜1000nm、より好ましくは5〜1000nm、さらに好ましくは5〜700nmである。被覆層3の厚さが3nm未満であると、正極活物質であるLiNiCoMn酸化物からのマンガンイオンの溶解を充分に抑制できない虞がある。一方、被覆層3の厚さが1000nmを超えると、Li化合物がたとえリチウムイオン伝導性を有するものであっても、正極材料の内部抵抗が上昇し、電池性能が低下する虞がある。なお、被覆層3の厚さは、例えば、正極材料の断面の電子顕微鏡写真を観察することにより測定されうる。   The thickness of the coating layer 3 is preferably 3 to 1000 nm, more preferably 5 to 1000 nm, and still more preferably 5 to 700 nm. If the thickness of the coating layer 3 is less than 3 nm, dissolution of manganese ions from the LiNiCoMn oxide that is the positive electrode active material may not be sufficiently suppressed. On the other hand, when the thickness of the coating layer 3 exceeds 1000 nm, even if the Li compound has lithium ion conductivity, the internal resistance of the positive electrode material increases, and the battery performance may be deteriorated. Note that the thickness of the coating layer 3 can be measured, for example, by observing an electron micrograph of a cross section of the positive electrode material.

続いて、図3に示す形態について、詳細に説明する。上述したように、図3に示す形態においては、LiNiCoMn酸化物からなる粒子2の表面に、Li化合物からなる粒子4が点在するように添着されている。   Next, the embodiment shown in FIG. 3 will be described in detail. As described above, in the embodiment shown in FIG. 3, the particles 4 made of the Li compound are scattered on the surface of the particles 2 made of the LiNiCoMn oxide.

かような形態において、LiNiCoMn酸化物からなる粒子2の体積に対する、添着されたLi化合物からなる粒子4の体積比は、好ましくは0.5〜250%、より好ましくは0.7〜150%である。Li化合物からなる粒子の体積比が0.5%未満であると、正極活物質であるLiNiCoMn酸化物からのマンガンイオンの溶解を充分に抑制できない虞がある。一方、Li化合物からなる粒子の体積比が250%を超えると、Li化合物がたとえリチウムイオン伝導性を有するものであっても、正極材料の内部抵抗が上昇し、電池性能が低下する虞がある。なお、前記体積比は、例えば、正極材料の電子顕微鏡写真を観察することにより測定されうる。   In such a form, the volume ratio of the particles 4 made of the added Li compound to the volume of the particles 2 made of the LiNiCoMn oxide is preferably 0.5 to 250%, more preferably 0.7 to 150%. is there. If the volume ratio of the particles made of the Li compound is less than 0.5%, the dissolution of manganese ions from the LiNiCoMn oxide that is the positive electrode active material may not be sufficiently suppressed. On the other hand, when the volume ratio of particles made of Li compound exceeds 250%, even if the Li compound has lithium ion conductivity, the internal resistance of the positive electrode material may increase and the battery performance may be deteriorated. . In addition, the said volume ratio can be measured by observing the electron micrograph of positive electrode material, for example.

また図3に示す形態において、点在するように添着されてなるLi化合物からなる粒子4の平均粒径は、好ましくは10〜200μm程度であり、より好ましくは20〜100μmである。Li化合物からなる粒子4の平均粒径が10μm未満であると、Li化合物
を添着させることによる効果が充分に得られない虞がある。一方、前記平均粒径が200μmを超えると、添着による効果が逓減し、さらに、Li化合物による抵抗が増大する虞がある。
Moreover, in the form shown in FIG. 3, the average particle diameter of the particles 4 made of Li compounds adhering so as to be scattered is preferably about 10 to 200 μm, more preferably 20 to 100 μm. If the average particle size of the particles 4 made of the Li compound is less than 10 μm, there is a possibility that the effect of adding the Li compound may not be sufficiently obtained. On the other hand, if the average particle size exceeds 200 μm, the effect of the adhesion may be gradually reduced, and the resistance due to the Li compound may be increased.

本発明の正極材料の表面には、さらに、2価の金属原子を含有する化合物(以下、「2価化合物」とも称する)が添着されていることが好ましい。2価化合物を正極材料の表面に添着させることにより、活物質粒子の表面付近のマンガンイオンの価数が上昇しうる。従って、かような形態によれば、正極活物質中のマンガンイオンの電解液への溶解がより一層抑制されうる。なお、2価化合物が正極材料の表面に添着される形態については特に制限されず、Li化合物がLiNiCoMn酸化物の粒子の表面に添着される形態について上記で説明した図2や図3に示す形態が同様に採用されうる。   It is preferable that a compound containing a divalent metal atom (hereinafter also referred to as “divalent compound”) is further attached to the surface of the positive electrode material of the present invention. By adding the divalent compound to the surface of the positive electrode material, the valence of manganese ions near the surface of the active material particles can be increased. Therefore, according to such a form, dissolution of manganese ions in the positive electrode active material into the electrolytic solution can be further suppressed. The form in which the divalent compound is attached to the surface of the positive electrode material is not particularly limited, and the form shown in FIGS. 2 and 3 described above with respect to the form in which the Li compound is attached to the surface of the LiNiCoMn oxide particles. Can be adopted as well.

例えば、2価化合物が添着されることにより、正極材料の表面に2価化合物からなる被覆層が形成される場合、2価化合物からなる被覆層の厚さは、好ましくは3〜1000nm、より好ましくは5〜500nmである。また、2価化合物からなる粒子が点在するように添着される場合、正極材料(Li化合物が添着されてなるLiNiCoMn酸化物)の体積に対する、添着された2価化合物からなる粒子の体積比は、好ましくは0.5〜30%、より好ましくは0.6〜20%である。   For example, when a coating layer made of a divalent compound is formed on the surface of the positive electrode material by adding a divalent compound, the thickness of the coating layer made of the divalent compound is preferably 3 to 1000 nm, more preferably Is 5 to 500 nm. In addition, when the particles made of the divalent compound are scattered so as to be scattered, the volume ratio of the particles made of the added divalent compound to the volume of the positive electrode material (LiNiCoMn oxide to which the Li compound is added) is , Preferably 0.5 to 30%, more preferably 0.6 to 20%.

なお、場合によっては、LiNiCoMn酸化物からなる粒子の表面に、Li化合物からなる粒子および2価化合物からなる粒子の双方が点在する形態も採用されうる。   In some cases, a form in which both particles made of a Li compound and particles made of a divalent compound are scattered on the surface of particles made of a LiNiCoMn oxide may be employed.

2価化合物に含有される2価の金属原子は、価数が+2である金属原子であれば特に制限されないが、例えば、Mg、Ca、Sr、Baなどのアルカリ土類金属原子や、Zn、Cu、Fe、Ni、V、Nb、Co、Ge、Si、In、Pb、Mnなどが挙げられる。2価化合物についても、上記のような2価の金属原子を含有する化合物であれば特に制限されない。2価化合物の具体例としては、アルカリ土類金属原子を含有する化合物として、MgO、BaO、SrO、CaO、CaCO、SrCO、BaCO、mgCO、CaSO、BaSO、MgSO、Ca(NO、Sr(NO、Ba(NO、Mg(NOなどが挙げられ、その他の化合物として、ZnO、CuO、FeO、NiO、VO、NbO、CoO、GeO、SiO、InO、PbO、CoCO、PbCO、MnCO、FeCO、NiCO、CoSO、PbSO、FeSO、MnSO、CuSO、Co(NO、Fe(NO、Cu(NO、Pb(NO、Ni(NO、Mn(NOなどが挙げられる。 The divalent metal atom contained in the divalent compound is not particularly limited as long as it is a metal atom having a valence of +2, but for example, alkaline earth metal atoms such as Mg, Ca, Sr, Ba, Zn, Examples thereof include Cu, Fe, Ni, V, Nb, Co, Ge, Si, In, Pb, and Mn. The divalent compound is not particularly limited as long as it is a compound containing a divalent metal atom as described above. Specific examples of the divalent compound include MgO, BaO, SrO, CaO, CaCO 3 , SrCO 3 , BaCO 3 , mgCO 3 , CaSO 4 , BaSO 4 , MgSO 4 , and Ca as compounds containing an alkaline earth metal atom. (NO 3 ) 2 , Sr (NO 3 ) 2 , Ba (NO 3 ) 2 , Mg (NO 3 ) 2 and the like, and other compounds include ZnO, CuO, FeO, NiO, VO, NbO, CoO, GeO, SiO, InO, PbO, CoCO 3 , PbCO 3 , MnCO 3 , FeCO 3 , NiCO 3 , CoSO 4 , PbSO 4 , FeSO 4 , MnSO 4 , CuSO 4 , Co (NO 3 ) 2 , Fe (NO 3 ) 2, Cu (NO 3) 2 , Pb (NO 3) 2, Ni (NO 3) 2, Mn (NO 3) 2 and the like It is.

続いて、本発明の正極材料の製造方法について説明する。本発明の正極材料は、例えば、LiNiCoMn酸化物の原料を焼成してLiNiCoMn酸化物を調製し(焼成工程)、このLiNiCoMn酸化物の粒子の表面にLi化合物を添着させる(添着工程)ことにより製造されうる。   Then, the manufacturing method of the positive electrode material of this invention is demonstrated. The positive electrode material of the present invention is produced, for example, by firing a LiNiCoMn oxide raw material to prepare a LiNiCoMn oxide (firing step), and attaching a Li compound to the surface of the LiNiCoMn oxide particles (an attaching step). Can be done.

以下、上記の製造方法の好ましい一形態について詳細に説明するが、本発明の技術的範囲は下記の形態のみには制限されない。   Hereinafter, although one preferable form of said manufacturing method is demonstrated in detail, the technical scope of this invention is not restrict | limited only to the following form.

まず、焼成工程について説明する。   First, the firing process will be described.

焼成工程においては、上述したように、LiNiCoMn酸化物の原料を焼成して、LiNiCoMn酸化物を調製する。   In the firing step, as described above, the LiNiCoMn oxide raw material is fired to prepare the LiNiCoMn oxide.

焼成工程においては、まず、LiNiCoMn酸化物の原料を準備する。前記原料は、焼成によりLiNiCoMn酸化物が調製されうるものであれば特に制限されず、単一の
化合物であってもよいし、2種以上の化合物の混合物であっても構わない。なお、原料中の各成分の組成については特に制限されず、得られるLiNiCoMn酸化物の所望の組成に応じて適宜調節されうる。また、原料が2種以上の化合物の混合物である場合、2種以上の化合物を混合するための混合手段は特に制限されず、従来公知の手段が採用されうる。この際、均一な混合物を得るためには、好ましくは湿式混合が用いられる。湿式混合された原料を、例えば共沈法により共沈させて、後述するように焼成するとよい。場合によっては、原料を篩分けすることによって、粒径の揃った原料のみを選別し、製造に用いてもよい。
In the firing step, first, a raw material for LiNiCoMn oxide is prepared. The raw material is not particularly limited as long as a LiNiCoMn oxide can be prepared by firing, and may be a single compound or a mixture of two or more compounds. In addition, about the composition of each component in a raw material, it does not restrict | limit in particular, According to the desired composition of the LiNiCoMn oxide obtained, it can adjust suitably. Moreover, when a raw material is a mixture of 2 or more types of compounds, the mixing means for mixing 2 or more types of compounds is not specifically limited, A conventionally well-known means may be employ | adopted. At this time, wet mixing is preferably used in order to obtain a uniform mixture. The wet-mixed raw material may be coprecipitated by, for example, a coprecipitation method and fired as described later. In some cases, only raw materials having a uniform particle diameter may be selected by sieving the raw materials and used for production.

原料の一例としては、リチウム化合物、ニッケル化合物、コバルト化合物、およびマンガン化合物の混合物が挙げられる。   Examples of the raw material include a mixture of a lithium compound, a nickel compound, a cobalt compound, and a manganese compound.

すなわち、本発明の第2は、リチウム化合物、ニッケル化合物、コバルト化合物、およびマンガン化合物の混合物を焼成してリチウムニッケルコバルトマンガン酸化物からなる粒子を得る焼成工程と、前記リチウムニッケルコバルトマンガン酸化物からなる粒子の表面にリチウム化合物を添着させる添着工程とを有する、非水電解質リチウムイオン二次電池用正極材料の製造方法である。   That is, the second of the present invention is a firing step of firing a mixture of a lithium compound, a nickel compound, a cobalt compound, and a manganese compound to obtain particles made of lithium nickel cobalt manganese oxide, and the lithium nickel cobalt manganese oxide. And a method for producing a positive electrode material for a non-aqueous electrolyte lithium ion secondary battery, comprising an attaching step of attaching a lithium compound to the surfaces of the particles.

かような原料を焼成することにより、構成原子の分散性に優れ、結晶性が高く、かつ、正極活物質としての反応性も高いLiNiCoMn酸化物が調製されうる。なお、上記のリチウム化合物、ニッケル化合物、コバルト化合物、およびマンガン化合物の具体的な形態について特に制限はないが、例えば、酸化物、炭酸塩といった形態が挙げられる。   By firing such a raw material, a LiNiCoMn oxide having excellent dispersibility of constituent atoms, high crystallinity, and high reactivity as a positive electrode active material can be prepared. In addition, there is no restriction | limiting in particular about the specific form of said lithium compound, a nickel compound, a cobalt compound, and a manganese compound, For example, forms, such as an oxide and carbonate, are mentioned.

焼成条件についても、LiNiCoMn酸化物が得られるのであれば特に制限されない。一例を挙げると、焼成温度は、600〜900℃程度、好ましくは700〜880℃である。焼成時間は、6〜36時間程度、好ましくは12〜30時間である。焼成時の雰囲気条件についても特に制限はないが、酸素雰囲気下にて焼成を行うとよい。酸素雰囲気下にて焼成を行うことにより、得られるLiNiCoMn酸化物の表面付近に過剰酸素が導入され、表面付近に酸素過剰型LiNiCoMn酸化物を含む酸化物が調製されうる。   The firing conditions are not particularly limited as long as a LiNiCoMn oxide can be obtained. As an example, the firing temperature is about 600 to 900 ° C, preferably 700 to 880 ° C. The firing time is about 6 to 36 hours, preferably 12 to 30 hours. There are no particular restrictions on the atmospheric conditions during firing, but firing may be performed in an oxygen atmosphere. By performing firing in an oxygen atmosphere, excess oxygen is introduced near the surface of the obtained LiNiCoMn oxide, and an oxide containing an oxygen-rich LiNiCoMn oxide near the surface can be prepared.

上記の焼成工程後、得られたLiNiCoMn酸化物を室温程度まで冷却するが、この際、急速に冷却するとよい。急冷することで、平均粒径の小さいLiNiCoMn酸化物の粒子を得ることができ、さらに、得られるLiNiCoMn酸化物からなる粒子の表面付近に存在するマンガン原子の平均価数を上昇させることができる。具体的な冷却速度は、好ましくは150℃/min以上、より好ましくは170℃/min以上である。この際、冷却速度を速くすると、より平均粒径の小さい酸化物が得られる。また、上記の急冷は、酸素雰囲気下において行うとよい。これにより、酸化物の表面付近に過剰酸素が導入されうる。   After the above baking step, the obtained LiNiCoMn oxide is cooled to about room temperature. By quenching, LiNiCoMn oxide particles having a small average particle diameter can be obtained, and further, the average valence of manganese atoms existing near the surface of the particles made of the LiNiCoMn oxide can be increased. The specific cooling rate is preferably 150 ° C./min or more, more preferably 170 ° C./min or more. At this time, when the cooling rate is increased, an oxide having a smaller average particle diameter can be obtained. The rapid cooling is preferably performed in an oxygen atmosphere. Thereby, excess oxygen can be introduced near the surface of the oxide.

なお、得られる酸化物の表面付近に確実に過剰酸素を導入して酸素過剰型LiNiCoMn酸化物を存在させるために、上記の焼成工程とは別に酸素雰囲気下にてアニール工程を行ってもよい。この際、アニール温度は250〜600℃程度であり、アニール時間は30分〜12時間程度である。また、酸素雰囲気の酸素圧力は、好ましくは1〜100atm程度であり、より好ましくは1〜50atmである。   Note that an annealing step may be performed in an oxygen atmosphere separately from the above-described firing step in order to reliably introduce excess oxygen near the surface of the obtained oxide and allow the oxygen-excess LiNiCoMn oxide to exist. At this time, the annealing temperature is about 250 to 600 ° C., and the annealing time is about 30 minutes to 12 hours. The oxygen pressure in the oxygen atmosphere is preferably about 1 to 100 atm, more preferably 1 to 50 atm.

上記の焼成工程やアニール工程に用いられる装置は特に制限されず、従来公知の焼成炉やオートクレーブ、製膜装置のチャンバーなどが適宜採用されうる。   The apparatus used in the above baking process or annealing process is not particularly limited, and a conventionally known baking furnace, autoclave, chamber of a film forming apparatus, and the like can be appropriately employed.

必要であれば、上記の焼成工程後またはアニール工程後に、得られたLiNiCoMn酸化物の粒子を篩分けすることで、所望の平均粒径を有する粒子のみを選別してもよい。   If necessary, only particles having a desired average particle diameter may be selected by sieving the obtained LiNiCoMn oxide particles after the firing step or the annealing step.

以上、原料を焼成してLiNiCoMn酸化物を自ら調製する形態について説明したが、かような形態のみには制限されない。場合によっては、市販のLiNiCoMn酸化物を購入して、必要に応じてアニール工程などを行い、後述の添着工程に用いてもよい。   As mentioned above, although the form which bakes a raw material and prepares LiNiCoMn oxide itself was demonstrated, it is not restrict | limited only to such a form. Depending on the case, a commercially available LiNiCoMn oxide may be purchased, and an annealing process etc. may be performed as needed and used for the below-mentioned attachment process.

続いて、添着工程について説明する。   Next, the attaching process will be described.

添着工程においては、上述したように、上記の焼成工程において調製したLiNiCoMn酸化物の粒子の表面にLi化合物を添着させて、本発明の正極材料を得る。   In the attaching step, as described above, the Li compound is attached to the surface of the LiNiCoMn oxide particles prepared in the above firing step to obtain the positive electrode material of the present invention.

添着工程においては、まず、上記で調製したLiNiCoMn酸化物の粒子と、添着させるためのLi化合物を準備する。これらの好ましい形態については、上記で説明した通りであるため、ここでは説明を省略する。   In the attaching step, first, the LiNiCoMn oxide particles prepared above and the Li compound to be attached are prepared. Since these preferable forms are as described above, the description thereof is omitted here.

添着の具体的な方法は特に制限されず、従来公知の添着技術が適宜採用されうる。図2に示すようにLi化合物からなる被覆層3が形成される形態と、図3に示すようにLi化合物からなる粒子4が点在する形態とのいずれが採用されるかは、用いられるLiNiCoMn酸化物の粒子およびLi化合物の体積比や平均粒径を調整することにより、適宜制御されうる。   The specific method of attachment is not particularly limited, and conventionally known attachment techniques can be appropriately employed. Whether the form in which the coating layer 3 made of the Li compound is formed as shown in FIG. 2 or the form in which the particles 4 made of the Li compound are scattered as shown in FIG. 3 is used depends on the LiNiCoMn used. It can be appropriately controlled by adjusting the volume ratio and average particle size of the oxide particles and the Li compound.

Li化合物の添着方法としては、好ましくは乾式方法が採用されうる。すなわち、上記の焼成工程で調製されたLiNiCoMn酸化物とLi化合物とを乾式混合することで、前記酸化物の粒子の表面にLi化合物が添着される。   As a method for attaching the Li compound, a dry method can be preferably employed. That is, the LiNiCoMn oxide prepared in the firing step and the Li compound are dry mixed to attach the Li compound to the surface of the oxide particles.

乾式混合の具体的な手法は特に制限されないが、例えば、化学気相蒸着(CVD)法、物理気相蒸着(PVD)法、パルスレーザ蒸着(PLD)法、またはスパッタリング法などの手法が例示される。これらの手法は、図2に示す被覆層3が形成される形態の正極材料の製造に特に有利である。また、例えば、ハイブリダイゼーションシステム(株式会社奈良機械製作所製)、コスモス(川崎重工業株式会社製)、メカノフュージョン(ホソカワミクロン株式会社製)、サーフュージングシステム(日本ニューマチック工業株式会社製)、メカノミル、スピードニーダー、スピードミル、スピラコーター(以上、岡田精工株式会社製)などの手法も用いられうる。これらの手法は、図3に示す点在型の形態の正極材料の製造に特に有利である。ただし、上述した手法のみには制限されず、その他の手法が用いられても、勿論よい。   The specific method of the dry mixing is not particularly limited, and examples thereof include a chemical vapor deposition (CVD) method, a physical vapor deposition (PVD) method, a pulsed laser deposition (PLD) method, and a sputtering method. The These techniques are particularly advantageous for manufacturing a positive electrode material in a form in which the coating layer 3 shown in FIG. 2 is formed. Also, for example, hybridization system (manufactured by Nara Machinery Co., Ltd.), cosmos (manufactured by Kawasaki Heavy Industries, Ltd.), mechanofusion (manufactured by Hosokawa Micron Corporation), surfing system (manufactured by Nippon Pneumatic Industrial Co., Ltd.), mechanomill, speed Techniques such as a kneader, a speed mill, and a Spira coater (Okada Seiko Co., Ltd.) may also be used. These techniques are particularly advantageous for the production of the cathode material in the dotted form shown in FIG. However, the method is not limited to the above-described method, and other methods may be used as a matter of course.

必要に応じて、得られた粒子を加熱してもよい。加熱することにより、添着したLi化合物が活物質粒子の表面に強固に接着しうる。   If necessary, the obtained particles may be heated. By heating, the attached Li compound can be firmly bonded to the surface of the active material particles.

以上、乾式の添着方法について詳細に説明したが、場合によっては湿式の添着方法も用いられうる。かような場合には、上述した焼成工程において同時に添着工程を行うとよい。すなわち、上記の焼成工程においてLiNiCoMn酸化物の原料を湿式混合する際に、Li化合物を同時に混合し、共沈させ、さらに焼成することで、表面にLi化合物が添着されてなるLiNiCoMn酸化物の粒子(本発明の正極材料)が得られる。   Although the dry attachment method has been described in detail above, a wet attachment method may be used depending on circumstances. In such a case, it is good to perform an attaching process simultaneously in the baking process mentioned above. That is, when the LiNiCoMn oxide raw material is wet-mixed in the above firing step, the Li compound is mixed simultaneously, co-precipitated, and further fired to form a LiNiCoMn oxide particle with the Li compound attached to the surface. (The positive electrode material of the present invention) is obtained.

その後、必要に応じて、2価化合物を添着させてもよい。2価化合物の好ましい形態については上記で説明したとおりである。また、2価化合物の添着方法については、Li化合物の添着について上記で説明した方法が同様に用いられうる。   Thereafter, a divalent compound may be added as necessary. The preferred form of the divalent compound is as described above. Moreover, about the attachment method of a bivalent compound, the method demonstrated above about the attachment of Li compound can be used similarly.

本発明の正極材料は、非水電解質リチウムイオン二次電池の正極に好適に用いられる。すなわち、本発明の第3は、本発明の第1の非水電解質リチウムイオン二次電池用正極材
料を用いた正極である。上述したように、本発明の正極材料を用いることにより、内部抵抗の上昇や電池性能の低下が抑制されうる。以下、本発明の正極材料を用いた非水電解質リチウムイオン二次電池用正極の好ましい一形態について詳細に説明するが、本発明の技術的範囲は下記の形態のみには制限されない。
The positive electrode material of the present invention is suitably used for the positive electrode of a non-aqueous electrolyte lithium ion secondary battery. That is, the third of the present invention is a positive electrode using the first positive electrode material for a non-aqueous electrolyte lithium ion secondary battery of the present invention. As described above, by using the positive electrode material of the present invention, an increase in internal resistance and a decrease in battery performance can be suppressed. Hereinafter, although the preferable one form of the positive electrode for nonaqueous electrolyte lithium ion secondary batteries using the positive electrode material of this invention is demonstrated in detail, the technical scope of this invention is not restrict | limited only to the following form.

本発明の正極は、集電体と、前記集電体上に位置する活物質層とを有し、本発明の第1の正極材料を前記活物質層中に含む点に特徴を有する。本発明の正極においては、前記活物質層において電池反応が進行し、この電池反応によって生じた電子が、外部の負荷に対して電気的仕事をする。   The positive electrode of the present invention is characterized by having a current collector and an active material layer located on the current collector, and including the first positive electrode material of the present invention in the active material layer. In the positive electrode of the present invention, a battery reaction proceeds in the active material layer, and electrons generated by the battery reaction perform electrical work on an external load.

以下、本発明の正極を構成する集電体および活物質層について説明する。   Hereinafter, the current collector and the active material layer constituting the positive electrode of the present invention will be described.

集電体は、アルミ箔、銅箔、ステンレス(SUS)箔など、導電性の材料から構成される。集電体の一般的な厚さは、10〜50μmである。ただし、この範囲を外れる厚さの集電体を用いてもよい。集電体の大きさは、本発明の正極の使用用途に応じて決定される。大型の電池に用いられる大型の正極を作製するのであれば、面積の大きな集電体が用いられる。小型の正極を作製するのであれば、面積の小さな集電体が用いられる。   The current collector is made of a conductive material such as aluminum foil, copper foil, or stainless steel (SUS) foil. A typical thickness of the current collector is 10 to 50 μm. However, a current collector having a thickness outside this range may be used. The magnitude | size of an electrical power collector is determined according to the use application of the positive electrode of this invention. If a large positive electrode used for a large battery is produced, a current collector having a large area is used. If a small positive electrode is produced, a current collector with a small area is used.

活物質層は、前記集電体の面上に位置し、本発明の正極材料を含む。前記活物質層に含まれる本発明の正極材料の好ましい形態については本発明の第1の欄で説明した通りであるため、ここでは詳細な説明を省略する。   The active material layer is located on the surface of the current collector and includes the positive electrode material of the present invention. Since the preferable form of the positive electrode material of the present invention contained in the active material layer is as described in the first column of the present invention, detailed description is omitted here.

活物質層には、必要に応じて、本発明の正極材料以外の正極活物質が含まれてもよい。本発明の正極材料以外の正極活物質としては特に制限はなく、所望の電池性能などに応じて、正極活物質として従来公知の化合物が適宜用いられうる。一例としては、リチウムと遷移金属との複合酸化物が挙げられる。具体的には、LiMnなどのLi−Mn系複合酸化物、LiCoOなどのLi−Co系複合酸化物、LiCrやLiCrOなどのLi−Cr系複合酸化物、LiFeOなどのLi−Fe系複合酸化物などが例示される。また、これらの複合酸化物に含まれる遷移金属の一部が他の元素により置換された化合物が用いられてもよい。これらの他にも、LiFePOなどのリチウムリン酸化合物、リチウム硫酸化合物、V、MnO、TiS、MoS、MoOなどの遷移金属の酸化物や硫化物、PbO、AgO、NiOOHなどが活物質層に含まれてもよい。 The active material layer may contain a positive electrode active material other than the positive electrode material of the present invention, if necessary. There is no restriction | limiting in particular as positive electrode active materials other than the positive electrode material of this invention, According to the desired battery performance etc., a conventionally well-known compound can be used suitably as a positive electrode active material. An example is a composite oxide of lithium and a transition metal. Specifically, Li—Mn composite oxides such as LiMn 2 O 4 , Li—Co composite oxides such as LiCoO 2, and Li—Cr composite oxides such as Li 2 Cr 2 O 7 and Li 2 CrO 4. And Li-Fe-based composite oxides such as LiFeO 2 are exemplified. In addition, a compound in which a part of the transition metal contained in these composite oxides is substituted with another element may be used. Besides these, lithium phosphate compounds such as LiFePO 4 , lithium sulfate compounds, oxides and sulfides of transition metals such as V 2 O 5 , MnO 2 , TiS 2 , MoS 2 , and MoO 3 , PbO 2 , AgO NiOOH or the like may be included in the active material layer.

活物質層には、必要に応じて、上記の物質以外の物質もまた、含まれうる。例えば、バインダ、導電助剤、リチウム塩(支持電解質)、イオン伝導性ポリマー等が含まれうる。また、場合によっては、活物質層に含まれるイオン伝導性ポリマーを重合させるための重合開始剤が含まれてもよい。   In the active material layer, substances other than the above substances may also be included as necessary. For example, a binder, a conductive additive, a lithium salt (supporting electrolyte), an ion conductive polymer, and the like can be included. In some cases, a polymerization initiator for polymerizing the ion conductive polymer contained in the active material layer may be included.

バインダとしては、ポリフッ化ビニリデン(PVdF)、ゴム系バインダ等が挙げられる。   Examples of the binder include polyvinylidene fluoride (PVdF) and a rubber-based binder.

導電助剤とは、電極における活物質層の導電性を向上させるために配合される添加物をいう。導電助剤としては、アセチレンブラック、グラファイトなどのカーボン粉末、メソフェーズ系炭素、難黒鉛化炭素、ケッチェンブラック、気相成長カーボンファイバー(VGCF)などの炭素繊維等が挙げられる。   A conductive support agent means the additive mix | blended in order to improve the electroconductivity of the active material layer in an electrode. Examples of the conductive aid include carbon powders such as acetylene black and graphite, carbon fibers such as mesophase carbon, non-graphitizable carbon, ketjen black, and vapor grown carbon fiber (VGCF).

リチウム塩(支持電解質)としては、LiBETI(リチウムビス(パーフルオロエチレンスルホニルイミド);Li(CSON)、LiPF、LiBF、LiClO、LiAsF、LiCFSO、LiBOB等が挙げられる。 As a lithium salt (supporting electrolyte), LiBETI (lithium bis (perfluoroethylenesulfonylimide); Li (C 2 F 5 SO 2 ) 2 N), LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , LiBOB and the like.

イオン伝導性ポリマーとしては、例えば、ポリエチレンオキシド(PEO)系およびポリプロピレンオキシド(PPO)系のポリマーが挙げられる。ここで、前記イオン伝導性ポリマーは、本発明の正極が採用される非水電解質リチウムイオン二次電池の電解質層において電解質として用いられるイオン伝導性ポリマーと同じであってもよく、異なっていてもよいが、同じであることが好ましい。   Examples of the ion conductive polymer include polyethylene oxide (PEO) -based and polypropylene oxide (PPO) -based polymers. Here, the ion conductive polymer may be the same as or different from the ion conductive polymer used as the electrolyte in the electrolyte layer of the non-aqueous electrolyte lithium ion secondary battery in which the positive electrode of the present invention is employed. Good, but preferably the same.

重合開始剤は、イオン伝導性ポリマーの架橋性基に作用して、架橋反応を進行させるために配合される。開始剤として作用させるための外的要因に応じて、熱重合開始剤、光重合開始剤などに分類される。重合開始剤としては、例えば、熱重合開始剤であるアゾビスイソブチロニトリル(AIBN)や、光重合開始剤であるベンジルジメチルケタール(BDK)等が挙げられる。   The polymerization initiator is blended to act on the crosslinkable group of the ion conductive polymer and advance the crosslinking reaction. It is classified into a thermal polymerization initiator, a photopolymerization initiator and the like according to an external factor for acting as an initiator. Examples of the polymerization initiator include azobisisobutyronitrile (AIBN), which is a thermal polymerization initiator, and benzyl dimethyl ketal (BDK), which is a photopolymerization initiator.

活物質層中に含まれる成分の配合比や、活物質層の大きさ(面積)は、特に限定されない。これらの形態は、電極の活物質層についての公知の知見を適宜参照することにより、調整されうる。   The compounding ratio of the components contained in the active material layer and the size (area) of the active material layer are not particularly limited. These forms can be adjusted by appropriately referring to known knowledge about the active material layer of the electrode.

本発明の正極の製造方法について特に制限はなく、電池の正極の製造に関する従来公知の知見を適宜参照することにより製造されうる。一例を挙げると、本発明の正極材料を含む正極材料スラリーを調製し、この正極材料スラリーを集電体の面に塗布して乾燥させることにより、本発明の正極が製造されうる。   There is no restriction | limiting in particular about the manufacturing method of the positive electrode of this invention, It can manufacture by referring the conventionally well-known knowledge regarding manufacture of the positive electrode of a battery suitably. For example, the positive electrode material of the present invention may be prepared by preparing a positive electrode material slurry containing the positive electrode material of the present invention, applying the positive electrode material slurry to the surface of the current collector, and drying the slurry.

以下、上記の製造方法の好ましい一形態について詳細に説明する。   Hereinafter, a preferred embodiment of the above manufacturing method will be described in detail.

まず、正極材料スラリーを調製する工程について説明する。   First, the process for preparing the positive electrode material slurry will be described.

この工程においては、本発明の第1の正極材料を、適当なスラリー粘度調整溶媒中に添加し分散させて正極材料スラリーを調製する。また、必要であれば、正極材料スラリー中には、本発明の正極材料以外の正極活物質、バインダ、導電助剤、リチウム塩(支持電解質)、イオン伝導性ポリマー、および重合開始剤等の他の成分を添加してもよい。ここで、正極材料スラリー中に含まれる各成分の好ましい形態については、上記で説明した通りであるため、ここでは説明を省略する。   In this step, the positive electrode material slurry is prepared by adding and dispersing the first positive electrode material of the present invention in a suitable slurry viscosity adjusting solvent. Further, if necessary, in the positive electrode material slurry, in addition to the positive electrode active material other than the positive electrode material of the present invention, a binder, a conductive auxiliary agent, a lithium salt (supporting electrolyte), an ion conductive polymer, a polymerization initiator, etc. These components may be added. Here, since the preferable form of each component contained in a positive electrode material slurry is as having demonstrated above, description is abbreviate | omitted here.

なお、正極材料スラリーを調製する際には、各成分の添加の順序などは特に制限されない。例えば、前記スラリー中に含まれる溶媒以外の全ての成分の混合物を調製した後、前記混合物に溶媒を添加し、混合して正極材料スラリーを調製してもよい。また、前記スラリー中に含まれる溶媒以外のいくつかの成分の混合物を調製した後、前記混合物に溶媒を添加し、混合した後、さらに残りの成分を添加し、混合して正極材料スラリーを調製してもよい。この際、各成分の添加や混合のために用いられる装置は特に制限されず、例えば、ホモミキサー等が挙げられる。   In addition, when preparing positive electrode material slurry, the order of addition of each component is not particularly limited. For example, after preparing a mixture of all components other than the solvent contained in the slurry, a solvent may be added to the mixture and mixed to prepare a positive electrode material slurry. In addition, after preparing a mixture of several components other than the solvent contained in the slurry, a solvent is added to the mixture, and after mixing, the remaining components are further added and mixed to prepare a positive electrode material slurry May be. At this time, the apparatus used for adding or mixing each component is not particularly limited, and examples thereof include a homomixer.

次に、正極材料スラリーを塗布する工程について説明する。   Next, the process of applying the positive electrode material slurry will be described.

この工程においては、前記の工程において調製された正極材料スラリーを、適当な集電体上に塗布する。正極材料スラリーを集電体上に塗布する方法は特に制限されず、コーター等の従来公知の方法が用いられうる。可能であれば、スプレー印刷、インクジェット印刷等の印刷方法も用いられうる。次いで、正極材料スラリーが塗布された前記集電体を乾燥させて、スラリー中に含有される溶媒を除去する。乾燥させる際には、例えば、真空乾燥機が用いられうる。また、乾燥条件は、スラリーの種々の性状に応じて変化するため、一義的に決定されえないが、通常、60〜130℃で5〜60分程度である。   In this step, the positive electrode material slurry prepared in the above step is applied onto an appropriate current collector. The method for applying the positive electrode material slurry onto the current collector is not particularly limited, and a conventionally known method such as a coater can be used. If possible, printing methods such as spray printing and ink jet printing can also be used. Next, the current collector coated with the positive electrode material slurry is dried to remove the solvent contained in the slurry. For drying, for example, a vacuum dryer can be used. Moreover, since drying conditions change according to the various properties of the slurry, they cannot be uniquely determined, but are usually about 60 to 130 ° C. for about 5 to 60 minutes.

ここで、活物質層中に含まれるイオン伝導性ポリマーを重合させるための重合開始剤が活物質層中に含まれる場合には、その後、種々の方法により前記イオン伝導性ポリマーを重合(架橋)させて、正極を完成させる。この際の重合(架橋)方法は特に制限されず、活物質層中に含まれる重合開始剤の種類に応じて適宜選択されうる。例えば、熱重合、光(紫外線)重合、放射線重合、電子線重合等が挙げられる。重合(架橋)させるための装置および条件は特に制限されず、従来公知の装置および条件が用いられうる。   Here, when a polymerization initiator for polymerizing the ion conductive polymer contained in the active material layer is contained in the active material layer, the ion conductive polymer is then polymerized (crosslinked) by various methods. To complete the positive electrode. The polymerization (crosslinking) method at this time is not particularly limited, and can be appropriately selected according to the kind of the polymerization initiator contained in the active material layer. Examples thereof include thermal polymerization, photo (ultraviolet) polymerization, radiation polymerization, and electron beam polymerization. The apparatus and conditions for polymerizing (crosslinking) are not particularly limited, and conventionally known apparatuses and conditions can be used.

また、必要であれば、上記の方法により製造された正極にプレス操作を行ってもよい。このプレス操作を行うことで、得られる正極の表面をより平坦化させることが可能となる。前記プレス操作に用いられる装置および条件は特に制限されず、従来公知の装置および方法が適宜用いられうる。   Moreover, if necessary, you may perform press operation to the positive electrode manufactured by said method. By performing this pressing operation, the surface of the obtained positive electrode can be further flattened. The apparatus and conditions used for the press operation are not particularly limited, and conventionally known apparatuses and methods can be appropriately used.

なお、工業的な生産過程においては、生産性を向上させるために、最終的な電池のサイズよりも大きい正極を作製し、これを所定の大きさにカットする工程を採用してもよい。   In an industrial production process, in order to improve productivity, a process of producing a positive electrode larger than the final battery size and cutting it into a predetermined size may be employed.

本発明の正極は、非水電解質リチウムイオン二次電池に好適に用いられる。すなわち、本発明の第4は、本発明の第3の非水電解質リチウムイオン二次電池用正極を用いた電池である。かような電池においては、上述したように、内部抵抗の上昇や電池性能の低下が抑制されうる。以下、上述した本発明の正極を用いた非水電解質リチウムイオン二次電池の好ましい一形態について詳細に説明するが、本発明の技術的範囲は下記の形態のみには制限されない。   The positive electrode of the present invention is suitably used for a non-aqueous electrolyte lithium ion secondary battery. That is, the fourth of the present invention is a battery using the third nonaqueous electrolyte lithium ion secondary battery of the present invention. In such a battery, as described above, an increase in internal resistance and a decrease in battery performance can be suppressed. Hereinafter, although the preferable one form of the nonaqueous electrolyte lithium ion secondary battery using the positive electrode of this invention mentioned above is demonstrated in detail, the technical scope of this invention is not restrict | limited only to the following form.

本発明の電池は、正極として本発明の第3の正極が用いられる、すなわち、正極に本発明の第1の正極材料が含まれる点に特徴を有する。   The battery of the present invention is characterized in that the third positive electrode of the present invention is used as the positive electrode, that is, the first positive electrode material of the present invention is included in the positive electrode.

一般的な電池においては、正極、電解質層、および負極がこの順序に配置され、これらがラミネートシートなどの外装中に封止される。前記負極の具体的な形態や、前記電解質層中に含まれる電解質の形態は特に制限されず、従来公知の形態が採用されうる。例えば、前記負極としては、本発明の正極に用いられるのと同様の集電体上に、グラファイトやハードカーボン等の炭素材料のような負極活物質を含む活物質層が形成されてなる形態が例示されうる。また、前記電解質は、液体電解質、固体電解質、およびゲル電解質のいずれであってもよく、電解液を含む場合、当該電解液は非水系の電解液である。   In a general battery, a positive electrode, an electrolyte layer, and a negative electrode are arranged in this order, and these are sealed in an exterior such as a laminate sheet. The specific form of the negative electrode and the form of the electrolyte contained in the electrolyte layer are not particularly limited, and a conventionally known form can be adopted. For example, the negative electrode has a configuration in which an active material layer containing a negative electrode active material such as a carbon material such as graphite or hard carbon is formed on a current collector similar to that used in the positive electrode of the present invention. Can be exemplified. The electrolyte may be a liquid electrolyte, a solid electrolyte, or a gel electrolyte. When the electrolyte is included, the electrolyte is a non-aqueous electrolyte.

外装の内部に電池要素が収納される場合には、タブが外装の外部に引き出される形で、前記電池要素が収納される。そして、内部の密封性を確保するために、電池要素が収納されていない部位の外装はシールされる。前記外装としては、高分子金属複合フィルムが用いられうる。高分子金属複合フィルムとは、少なくとも金属薄膜および樹脂フィルムが積層されたフィルムである。このような外装の採用によって、薄いラミネート電池が形成されうる。   When the battery element is accommodated inside the exterior, the battery element is accommodated in such a manner that the tab is pulled out of the exterior. And in order to ensure internal sealing performance, the exterior of the site | part in which the battery element is not accommodated is sealed. As the exterior, a polymer metal composite film can be used. The polymer metal composite film is a film in which at least a metal thin film and a resin film are laminated. By adopting such an exterior, a thin laminated battery can be formed.

本発明の電池は、リチウムイオン二次電池である。また、好ましくは、バイポーラ型のリチウムイオン二次電池(バイポーラ電池)である。参考までに、図4に、バイポーラ型でないリチウムイオン二次電池(一般リチウムイオン電池)の概略断面図を示し、図5に、バイポーラ型のリチウムイオン二次電池(バイポーラ電池)の概略断面図を示す。図4および図5からわかるように、一般リチウムイオン電池とバイポーラ電池とは、その電極の配置構成が異なるのみである。通常、一般リチウムイオン電池は電池容量が大きく高エネルギー型の電池であり、長期間持続して電力を供給する性能に優れる。これに対し、バイポーラ電池は高出力密度の電池であり、短時間に大きな電力を供給する性能に優れる。したがって、いずれの形態を採用するかは、必要とする電力の形態に応じて適宜決定され
うる。なお、本発明の技術的範囲がこれらの図面の内容に制限されるものではない。
The battery of the present invention is a lithium ion secondary battery. Further, a bipolar lithium ion secondary battery (bipolar battery) is preferable. For reference, FIG. 4 shows a schematic sectional view of a non-bipolar lithium ion secondary battery (general lithium ion battery), and FIG. 5 shows a schematic sectional view of a bipolar lithium ion secondary battery (bipolar battery). Show. As can be seen from FIGS. 4 and 5, the general lithium ion battery and the bipolar battery differ only in the arrangement of the electrodes. Generally, a general lithium ion battery is a high-energy battery having a large battery capacity, and is excellent in performance of supplying power for a long period of time. On the other hand, a bipolar battery is a battery with a high output density and is excellent in performance of supplying a large amount of power in a short time. Therefore, which form is adopted can be appropriately determined according to the form of required power. The technical scope of the present invention is not limited to the contents of these drawings.

複数個の本発明の電池を、または、少なくとも1つの本発明の電池と他の種類の電池とを、並列接続、直列接続、並列−直列接続、または直列−並列接続により接続し、組電池としてもよい。すなわち、本発明の第5は、本発明の電池を用いた組電池である。これにより、使用目的ごとの電池容量や出力に対する要求に、新たに電池を作製することなく、比較的安価に対応することが可能になる。組電池を製造する際の具体的な形態は特に制限されず、組電池について現在用いられている公知の知見が採用されうる。さらに、本発明の組電池を複数接続して、複合組電池としてもよい。   A plurality of the batteries of the present invention, or at least one battery of the present invention and another type of battery are connected in parallel connection, series connection, parallel-series connection, or series-parallel connection to form an assembled battery. Also good. That is, the fifth aspect of the present invention is an assembled battery using the battery of the present invention. Thereby, it becomes possible to respond to the demand for the battery capacity and output for each purpose of use relatively inexpensively without producing a new battery. The specific form at the time of manufacturing an assembled battery is not specifically limited, The well-known knowledge currently used about an assembled battery can be employ | adopted. Furthermore, a plurality of assembled batteries of the present invention may be connected to form a composite assembled battery.

本発明の電池および組電池、並びにこれらを含む複合組電池は、好ましくは、駆動用電源や補助電源として車両に用いられうる。すなわち、本発明の第6は、本発明の電池または本発明の組電池を搭載する車両である。   The battery and the assembled battery of the present invention, and the composite assembled battery including these can be preferably used in a vehicle as a driving power source or an auxiliary power source. That is, the sixth aspect of the present invention is a vehicle equipped with the battery of the present invention or the assembled battery of the present invention.

本発明の電池または組電池、並びにこれらを含む複合組電池が搭載されうる車両としては、特に制限されないが、電気自動車、燃料電池自動車やこれらのハイブリッドカーが好ましい。   A vehicle on which the battery or the assembled battery of the present invention and the composite assembled battery including these can be mounted is not particularly limited, but an electric vehicle, a fuel cell vehicle, and a hybrid vehicle thereof are preferable.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲は以下の実施例に限定されない。   The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited to the following examples.

<実施例1>
実施例1−1
<正極材料の調製>
正極活物質の原料として、炭酸リチウム(平均粒径:3.2μm)(1)と、炭酸ニッケル(平均粒径:3.0μm)、炭酸コバルト(平均粒径:3.5μm)、および炭酸マンガン(平均粒径:2.5μm)の混合物(2)とを準備した。ここで、前記混合物(2)を構成する3成分の混合は、ニッケル原子、コバルト原子、およびマンガン原子の各モル数が等しくなるように行った。
<Example 1>
Example 1-1
<Preparation of positive electrode material>
As raw materials for the positive electrode active material, lithium carbonate (average particle size: 3.2 μm) (1), nickel carbonate (average particle size: 3.0 μm), cobalt carbonate (average particle size: 3.5 μm), and manganese carbonate A mixture (2) having an average particle diameter of 2.5 μm was prepared. Here, the mixing of the three components constituting the mixture (2) was performed so that the number of moles of nickel atoms, cobalt atoms, and manganese atoms were equal.

続いて、上記の(1)および(2)を、リチウム原子のモル数とニッケル原子、コバルト原子、およびマンガン原子の合計モル数との比が1.2:1となるように混合し、遊星ボールミルにてさらに24時間混合した。その後、酸素雰囲気下で850℃にて24時間焼成した。焼成後、酸素を流通させながら、170℃/minの冷却速度で室温まで冷却し、正極活物質であるLiNiCoMn酸化物を調製した。得られたLiNiCoMn酸化物の組成をICP発光分光分析法により分析した結果、Li1.05Ni0.35Co0.32Mn0.33であった。また、得られたLiNiCoMn酸化物の平均粒径を測定したところ、5μmであった。 Subsequently, the above (1) and (2) are mixed so that the ratio of the number of moles of lithium atoms to the total number of moles of nickel, cobalt, and manganese atoms is 1.2: 1. The mixture was further mixed for 24 hours in a ball mill. Then, it baked at 850 degreeC under oxygen atmosphere for 24 hours. After firing, while flowing oxygen, it was cooled to room temperature at a cooling rate of 170 ° C./min to prepare LiNiCoMn oxide as a positive electrode active material. As a result of analyzing the composition of the obtained LiNiCoMn oxide by ICP emission spectroscopy, it was Li 1.05 Ni 0.35 Co 0.32 Mn 0.33 O 2 . Moreover, it was 5 micrometers when the average particle diameter of the obtained LiNiCoMn oxide was measured.

続いて、リチウム化合物である硫酸リチウム(平均粒径:100nm)を準備した。この硫酸リチウムを用いて、上記で調製したLiNiCoMn酸化物の粒子の表面を3nmの厚さで被覆し、図2に示す形態の正極材料を調製した。具体的には、メカノフュージョン法を用いて活物質粒子の表面に硫酸リチウムを添着させ、その後、大気雰囲気下で300℃にて5時間アニールして、活物質粒子の表面を硫酸リチウムにより被覆した。   Subsequently, lithium sulfate (average particle diameter: 100 nm), which is a lithium compound, was prepared. Using this lithium sulfate, the surface of the LiNiCoMn oxide particles prepared above was coated with a thickness of 3 nm to prepare a positive electrode material having the form shown in FIG. Specifically, lithium sulfate was impregnated on the surface of the active material particles using a mechano-fusion method, and then annealed at 300 ° C. for 5 hours in an air atmosphere to coat the surfaces of the active material particles with lithium sulfate. .

<正極の作製>
上記で調製した正極材料(75質量部)、バインダであるポリフッ化ビニリデン(PVdF)(15質量部)、および導電助剤であるアセチレンブラック(10質量部)を準備し、これに適量のスラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)を
添加し、充分に撹拌混合して、正極材料スラリーを調製した。
<Preparation of positive electrode>
The positive electrode material (75 parts by mass) prepared above, polyvinylidene fluoride (PVdF) (15 parts by mass) as a binder, and acetylene black (10 parts by mass) as a conductive auxiliary agent are prepared, and an appropriate amount of slurry viscosity is prepared. N-methyl-2-pyrrolidone (NMP), which is a adjusting solvent, was added and sufficiently stirred and mixed to prepare a positive electrode material slurry.

上記で調製した正極材料スラリーを、正極集電体であるアルミニウム箔(厚さ:20μm)上にアプリケータにより塗布し、真空乾燥機にて約80℃に加熱して乾燥させた。コイン型電池に用いるため、得られた電極を15mmφで打ち抜き、さらに高真空条件下で90℃にて6時間乾燥させ、正極を作製した。なお、集電体上に形成された正極層の厚さは50μmであった。   The positive electrode material slurry prepared above was applied onto an aluminum foil (thickness: 20 μm) as a positive electrode current collector with an applicator, and dried by heating to about 80 ° C. with a vacuum dryer. For use in a coin-type battery, the obtained electrode was punched out at 15 mmφ, and further dried under high vacuum conditions at 90 ° C. for 6 hours to produce a positive electrode. Note that the thickness of the positive electrode layer formed on the current collector was 50 μm.

<負極の作製>
負極活物質である炭素系材料のカーボン(平均粒径:10μm)(85質量部)、バインダであるポリフッ化ビニリデン(PVdF)(5質量部)、並びに、導電助剤であるアセチレンブラック(8質量%)および気相成長カーボンファイバー(VGCF)(2質量%)を準備し、これに適量のスラリー粘度調整溶媒であるN−メチル−2−ピロリドン(NMP)を添加し、充分に撹拌混合して、負極スラリーを調製した。
<Production of negative electrode>
Carbon (average particle size: 10 μm) (85 parts by mass) of a carbon-based material as a negative electrode active material, polyvinylidene fluoride (PVdF) (5 parts by mass) as a binder, and acetylene black (8 masses) as a conductive auxiliary agent %) And vapor grown carbon fiber (VGCF) (2% by mass), add an appropriate amount of slurry viscosity adjusting solvent N-methyl-2-pyrrolidone (NMP), and stir and mix thoroughly. A negative electrode slurry was prepared.

上記で調製した負極スラリーを、負極集電体である銅箔(厚さ:20μm)上にアプリケータにより塗布し、真空乾燥機にて約80℃に加熱して乾燥させた。コイン型電池に用いるため、得られた電極を16mmφで打ち抜き、さらに高真空条件下で90℃にて6時間乾燥させ、負極を作製した。なお、集電体上に形成された負極層の厚さは80μmであった。   The negative electrode slurry prepared above was applied onto a copper foil (thickness: 20 μm) as a negative electrode current collector by an applicator, and dried by heating to about 80 ° C. with a vacuum dryer. For use in a coin-type battery, the obtained electrode was punched out at 16 mmφ, and further dried under high vacuum conditions at 90 ° C. for 6 hours to produce a negative electrode. The thickness of the negative electrode layer formed on the current collector was 80 μm.

<電解質層の作製>
セパレータとして、ポリプロピレン(PP)系微多孔質セパレータ(微細孔の平均孔径:800nm、空孔率:35%、厚さ:30μm)を準備した。一方、非水系電解液として、1.0MのLiPFを含有する、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との等体積混合溶液を準備した。上記のセパレータに、同じく上記の電解液を注入することにより、電解質層を作製した。
<Preparation of electrolyte layer>
As the separator, a polypropylene (PP) microporous separator (average pore diameter: 800 nm, porosity: 35%, thickness: 30 μm) was prepared. On the other hand, an equal volume mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) containing 1.0 M LiPF 6 was prepared as a non-aqueous electrolyte. Similarly, the above electrolyte solution was injected into the separator to produce an electrolyte layer.

<コイン型2極式セルの作製>
上記で作製した正極、負極および電解質層を用い、コイン型2極式セルを作製した。この際、正負極の容量バランスは正極支配とした。
<Production of coin-type bipolar cell>
Using the positive electrode, negative electrode, and electrolyte layer prepared above, a coin type bipolar cell was prepared. At this time, the capacity balance between the positive and negative electrodes was controlled by the positive electrode.

<保存による内部抵抗の変化の測定>
上記のコイン型2極式セルを作製した直後に、正極の換算で0.2Cの電流で4.1Vの電圧まで充電し、定電圧充電を12時間行った。その後、充電を停止しそのまま室温にて1週間保存した。1週間保存後、一度2.5Vまで放電し、再度3.6Vまで0.2Cの電流で定電流−定電圧充電を12時間行った。その後、直流により初期内部抵抗を測定した。
<Measurement of change in internal resistance due to storage>
Immediately after producing the above coin-type bipolar battery, the battery was charged to a voltage of 4.1 V with a current of 0.2 C in terms of positive electrode, and constant voltage charging was performed for 12 hours. Thereafter, the charging was stopped and stored at room temperature for one week. After storage for 1 week, the battery was once discharged to 2.5 V, and again charged with constant current-constant voltage at a current of 0.2 C to 3.6 V for 12 hours. Thereafter, the initial internal resistance was measured by direct current.

続いて、0.2Cの電流で4.1Vまで定電流−定電圧充電を12時間行い、充電を止めた後、4.1Vの電圧で60℃にて1ヶ月間保存した。その後、上記と同様に直流により内部抵抗(保存後内部抵抗)を測定し、下記数式1に従って、内部抵抗増加率を算出した。結果を下記の表1に示す。   Subsequently, constant current-constant voltage charging was performed at a current of 0.2 C up to 4.1 V for 12 hours. After the charging was stopped, the battery was stored at 60 ° C. for one month at a voltage of 4.1 V. Thereafter, the internal resistance (internal resistance after storage) was measured by direct current in the same manner as described above, and the internal resistance increase rate was calculated according to the following formula 1. The results are shown in Table 1 below.

実施例1−2〜1−9
LiNiCoMn酸化物の粒子の表面を被覆する硫酸リチウムの厚さを、下記の表1に示す値としたこと以外は、実施例1−1と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表1に示す。
Examples 1-2 to 1-9
A positive electrode material was prepared in the same manner as in Example 1-1 except that the thickness of lithium sulfate covering the surfaces of the LiNiCoMn oxide particles was changed to the values shown in Table 1 below, and a coin-type bipolar electrode was prepared. A formula cell was prepared and the change in internal resistance due to storage was measured. The results are shown in Table 1 below.

<比較例>
LiNiCoMn酸化物の粒子の表面を、リチウム化合物である硫酸リチウムにより被覆しなかったこと以外は、実施例1−1と同様の手法によりコイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表1に示す。
<Comparative example>
A coin-type bipolar cell was produced in the same manner as in Example 1-1 except that the surface of the LiNiCoMn oxide particles was not coated with lithium sulfate, which is a lithium compound, and the change in internal resistance due to storage Was measured. The results are shown in Table 1 below.

<実施例2>
実施例2−1
上記の実施例1−5を、実施例2−1とする。
<Example 2>
Example 2-1
The above Example 1-5 is referred to as Example 2-1.

実施例2−2〜2−21
LiNiCoMn酸化物の粒子の表面を被覆するためのリチウム化合物として、硫酸リチウムに代えて下記の表2に示す化合物を用いたこと以外は、実施例2−1と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表2に示す。
Examples 2-2 to 2-21
A positive electrode material was prepared in the same manner as in Example 2-1, except that the compound shown in Table 2 below was used instead of lithium sulfate as the lithium compound for coating the surface of the LiNiCoMn oxide particles. A coin-type bipolar cell was prepared, and the change in internal resistance due to storage was measured. The results are shown in Table 2 below.

<実施例3>
実施例3−1
正極活物質であるLiNiCoMn酸化物の粒子の表面に、リチウム化合物である硫酸リチウムを添着させる際にメカノフュージョン法を用い、この際、LiNiCoMn酸化物に対して0.5体積%の硫酸リチウムを添着させ、図3に示す形態の正極材料を調製したこと以外は、実施例1−1と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表3に示す。
<Example 3>
Example 3-1.
The mechano-fusion method is used to attach lithium sulfate, which is a lithium compound, to the surface of LiNiCoMn oxide particles, which are positive electrode active materials. At this time, 0.5 volume% lithium sulfate is attached to the LiNiCoMn oxide. The positive electrode material was prepared by the same method as in Example 1-1 except that the positive electrode material having the form shown in FIG. 3 was prepared, and a coin-type bipolar battery was prepared. It was measured. The results are shown in Table 3 below.

実施例3−2〜3−11
硫酸リチウムの添着量を、下記の表3に示す値としたこと以外は、実施例3−1と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表3に示す。
Examples 3-2 to 3-11
A positive electrode material was prepared in the same manner as in Example 3-1, except that the amount of lithium sulfate applied was changed to the value shown in Table 3 below, and a coin-type bipolar battery was prepared. The change of was measured. The results are shown in Table 3 below.

<実施例4>
実施例4−1
上記の実施例3−4を、実施例4−1とする。
<Example 4>
Example 4-1
The above Example 3-4 is referred to as Example 4-1.

実施例4−2〜4−21
LiNiCoMn酸化物の粒子の表面に添着させるためのリチウム化合物として、硫酸リチウムに代えて下記の表4に示す化合物を用いたこと以外は、実施例4−1と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表4に示す。
Examples 4-2 to 4-21
A positive electrode material was prepared in the same manner as in Example 4-1, except that the compound shown in Table 4 below was used instead of lithium sulfate as the lithium compound to be attached to the surface of the LiNiCoMn oxide particles. A coin-type bipolar cell was prepared, and the change in internal resistance due to storage was measured. The results are shown in Table 4 below.

<実施例5>
実施例5−1
得られたLiNiCoMn酸化物をオートクレーブ中に仕込み、1atmの酸素圧力下、500℃にて12時間アニールすることにより、正極活物質であるLiNiCoMn酸化物の表面に過剰酸素を導入し、その後にLiNiCoMn酸化物の粒子の表面をリチウム化合物である硫酸リチウムにより被覆したこと以外は、実施例1−5と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表5に示す。
<Example 5>
Example 5-1
The obtained LiNiCoMn oxide was charged into an autoclave and annealed at 500 ° C. for 12 hours under an oxygen pressure of 1 atm to introduce excess oxygen to the surface of the LiNiCoMn oxide as a positive electrode active material, and then LiNiCoMn oxidation. The positive electrode material was prepared by the same method as in Example 1-5, except that the surface of the particles of the product was coated with lithium sulfate, which is a lithium compound, and a coin-type bipolar battery was prepared. Changes were measured. The results are shown in Table 5 below.

実施例5−2〜5−5
アニール時の酸素圧力を、下記の表5に示す値としたこと以外は、実施例5−1と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表5に示す。
Examples 5-2 to 5-5
Except that the oxygen pressure during annealing was set to the values shown in Table 5 below, a positive electrode material was prepared by the same method as in Example 5-1, a coin-type bipolar battery was prepared, and internal resistance due to storage The change of was measured. The results are shown in Table 5 below.

<実施例6>
実施例6−1
得られた正極材料の粒子の表面に、さらに2価化合物である酸化亜鉛(平均粒径:100nm)を被覆したこと以外は、実施例1−5と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表6−1に示す。なお、酸化亜鉛による正極材料の添着はメカノフュージョン法により行い、添着後、酸素雰囲気下、300℃にて5時間アニールを行って、酸化亜鉛により正極材料の表面を被覆した。また、酸化亜鉛の被覆量は、被覆前の正極材料に対して約5体積%であった。
<Example 6>
Example 6-1
A positive electrode material was prepared in the same manner as in Example 1-5, except that the surface of the obtained positive electrode material particles was further coated with zinc oxide (average particle size: 100 nm), which is a divalent compound, and a coin was prepared. A type bipolar cell was prepared and the change in internal resistance due to storage was measured. The results are shown in Table 6-1 below. The positive electrode material was attached with zinc oxide by a mechano-fusion method. After the attachment, annealing was performed at 300 ° C. for 5 hours in an oxygen atmosphere to coat the surface of the positive electrode material with zinc oxide. Moreover, the coating amount of zinc oxide was about 5% by volume with respect to the positive electrode material before coating.

実施例6−2〜6−45
正極材料の粒子の表面をさらに被覆するための2価化合物として、酸化亜鉛に代えて下記の表6に示す化合物を用いたこと以外は、実施例6−1と同様の手法により正極材料を調製し、コイン型2極式セルを作製し、保存による内部抵抗の変化を測定した。結果を下記の表6−1および表6−2に示す。
Examples 6-2 to 6-45
A positive electrode material was prepared in the same manner as in Example 6-1 except that instead of zinc oxide, the compound shown in Table 6 below was used as a divalent compound for further covering the surface of the positive electrode material particles. Then, a coin type bipolar cell was prepared, and the change in internal resistance due to storage was measured. The results are shown in Tables 6-1 and 6-2 below.

以上の結果から、LiNiCoMn酸化物からなる粒子の表面にLi化合物を添着させることで、正極材料の内部抵抗の上昇が抑制されることが示される。従って、かような正極材料を用いることにより、電池の内部抵抗の上昇も抑制され、ひいては電池性能の低下が効果的に防止されることが期待される。   From the above results, it is shown that an increase in the internal resistance of the positive electrode material is suppressed by attaching a Li compound to the surface of the particles made of LiNiCoMn oxide. Therefore, it is expected that by using such a positive electrode material, an increase in the internal resistance of the battery is suppressed, and as a result, a decrease in battery performance is effectively prevented.

また、実施例1と実施例5との比較から、正極活物質であるLiNiCoMn酸化物からなる粒子の表面付近を酸素過剰とすることで、内部抵抗の上昇がより一層抑制されうることが示される。   Moreover, the comparison between Example 1 and Example 5 shows that the increase in internal resistance can be further suppressed by increasing the oxygen in the vicinity of the surface of the particles made of the LiNiCoMn oxide, which is the positive electrode active material. .

さらに、実施例1と実施例6との比較から、本発明の正極材料の表面に2価の金属原子を含有する化合物をさらに添着させることにより、内部抵抗の上昇がより一層抑制されうることが示される。   Furthermore, from the comparison between Example 1 and Example 6, it is possible to further suppress the increase in internal resistance by further attaching a compound containing a divalent metal atom to the surface of the positive electrode material of the present invention. Indicated.

粒子の粒径を測定する際に用いる絶対最大長を説明するための解説図である。It is explanatory drawing for demonstrating the absolute maximum length used when measuring the particle size of particle | grains. LiNiCoMn酸化物からなる粒子の表面に、Li化合物からなる被覆層が形成されてなる形態を有する本発明の正極材料の模式断面図である。It is a schematic cross section of the positive electrode material of the present invention having a form in which a coating layer made of a Li compound is formed on the surface of particles made of LiNiCoMn oxide. LiNiCoMn酸化物からなる粒子の表面に、Li化合物からなる粒子が点在するように添着されてなる形態を有する本発明の正極材料の模式斜視図である。1 is a schematic perspective view of a positive electrode material of the present invention having a form in which particles made of a Li compound are scattered on the surface of particles made of a LiNiCoMn oxide. バイポーラ型でないリチウムイオン二次電池(一般リチウムイオン電池)の概略断面図である。It is a schematic sectional drawing of the lithium ion secondary battery (general lithium ion battery) which is not a bipolar type. バイポーラ型のリチウムイオン二次電池の概略断面図である。It is a schematic sectional drawing of a bipolar type lithium ion secondary battery.

符号の説明Explanation of symbols

1 粒子(不定形粒子を含む)、
2 LiNiCoMn酸化物からなる粒子、
3 Li化合物からなる被覆層、
4 Li化合物からなる粒子、
10 一般リチウムイオン電池、
13 正極、
15 負極、
17 電解質層、
21 正極集電体、
23 負極集電体、
25 正極タブ、
27 負極タブ、
29 外装、
30 バイポーラ電池、
31 集電体、
33 単電池(セル)、
35 絶縁層、
37 積層体(電池要素)、
L 最大の距離。
1 particle (including irregularly shaped particles),
2 particles made of LiNiCoMn oxide,
A coating layer comprising 3 Li compound,
Particles made of 4 Li compound,
10 General lithium ion battery,
13 positive electrode,
15 negative electrode,
17 electrolyte layer,
21 positive electrode current collector,
23 negative electrode current collector,
25 positive electrode tab,
27 negative electrode tab,
29 Exterior,
30 bipolar battery,
31 current collector,
33 single battery (cell),
35 insulation layer,
37 laminate (battery element),
L Maximum distance.

Claims (15)

リチウムニッケルコバルトマンガン酸化物からなる粒子の表面にリチウム化合物が添着されてなる、非水電解質リチウムイオン二次電池用正極材料。   A positive electrode material for a non-aqueous electrolyte lithium ion secondary battery, wherein a lithium compound is attached to the surface of particles made of lithium nickel cobalt manganese oxide. 前記リチウムニッケルコバルトマンガン酸化物からなる粒子の平均粒径は、0.1〜20μmである、請求項1に記載の非水電解質リチウムイオン二次電池用正極材料。   2. The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to claim 1, wherein an average particle diameter of the particles made of the lithium nickel cobalt manganese oxide is 0.1 to 20 μm. 添着された前記リチウム化合物は、前記リチウムニッケルコバルトマンガン酸化物からなる粒子を被覆する被覆層を形成しており、前記被覆層の厚さは3〜1000nmである、請求項1または2に記載の非水電解質リチウムイオン二次電池用正極材料。   The attached lithium compound forms a coating layer that covers the particles of the lithium nickel cobalt manganese oxide, and the thickness of the coating layer is 3 to 1000 nm. Positive electrode material for non-aqueous electrolyte lithium ion secondary battery. 前記リチウムニッケルコバルトマンガン酸化物からなる粒子の体積に対する、添着された前記リチウム化合物の体積比は、0.5〜250%である、請求項1〜3のいずれか1項に記載の非水電解質リチウムイオン二次電池用正極材料。   The nonaqueous electrolyte according to any one of claims 1 to 3, wherein a volume ratio of the attached lithium compound to a volume of particles made of the lithium nickel cobalt manganese oxide is 0.5 to 250%. Positive electrode material for lithium ion secondary battery. 添着された前記リチウム化合物は、リチウムイオン伝導性を有する化合物である、請求項1〜4のいずれか1項に記載の非水電解質リチウムイオン二次電池用正極材料。   The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to any one of claims 1 to 4, wherein the lithium compound attached is a compound having lithium ion conductivity. 添着された前記リチウム化合物は、LiSO、LiPO、LiPON、LiO−B、LiO−B−LiI、LiO−SiS、LiS−SiS−LiPO、LiCoO、LiMn、LiOH、およびLiCOからなる群から選択される1種または2種以上の化合物である、請求項1〜5のいずれか1項に記載の非水電解質リチウムイオン二次電池用正極材料。 The attached lithium compounds are Li 2 SO 4 , Li 3 PO 4 , LiPON, Li 2 O—B 2 O 3 , Li 2 O—B 2 O 3 —LiI, Li 2 O—SiS 2 , Li 2 S. -SiS 2 -Li 3 PO 4, LiCoO 2, LiMn 2 O 4, LiOH, and is one or more compounds selected from the group consisting of Li 2 CO 3, claim 1 The positive electrode material for a non-aqueous electrolyte lithium ion secondary battery according to item 1. 前記リチウムニッケルコバルトマンガン酸化物からなる粒子の表面付近に存在するマンガン原子の平均価数は+3.5以上である、請求項1〜6のいずれか1項に記載の非水電解質リチウムイオン二次電池用正極材料。   The non-aqueous electrolyte lithium ion secondary according to any one of claims 1 to 6, wherein an average valence of manganese atoms existing near the surface of the particles comprising the lithium nickel cobalt manganese oxide is +3.5 or more. Positive electrode material for batteries. 前記リチウムニッケルコバルトマンガン酸化物からなる粒子は、その表面付近に、酸素過剰リチウムニッケルコバルトマンガン酸化物を含む、請求項1〜7のいずれか1項に記載の非水電解質リチウムイオン二次電池用正極材料。   8. The non-aqueous electrolyte lithium ion secondary battery according to claim 1, wherein the particles made of lithium nickel cobalt manganese oxide include oxygen-excess lithium nickel cobalt manganese oxide in the vicinity of the surface thereof. 9. Positive electrode material. さらに、2価の金属原子を含有する化合物が添着されてなる、請求項1〜8のいずれか1項に記載の非水電解質リチウムイオン二次電池用正極材料。   Furthermore, the positive electrode material for nonaqueous electrolyte lithium ion secondary batteries of any one of Claims 1-8 by which the compound containing a bivalent metal atom is attached. 請求項1〜9のいずれか1項に記載の非水電解質リチウムイオン二次電池用正極材料を用いた非水電解質リチウムイオン二次電池用正極。   The positive electrode for nonaqueous electrolyte lithium ion secondary batteries using the positive electrode material for nonaqueous electrolyte lithium ion secondary batteries of any one of Claims 1-9. 請求項10に記載の非水電解質リチウムイオン二次電池用正極を用いた非水電解質リチウムイオン二次電池。   The nonaqueous electrolyte lithium ion secondary battery using the positive electrode for nonaqueous electrolyte lithium ion secondary batteries of Claim 10. 請求項11に記載の非水電解質リチウムイオン二次電池を用いた組電池。   An assembled battery using the nonaqueous electrolyte lithium ion secondary battery according to claim 11. 請求項11に記載の非水電解質リチウムイオン二次電池、または請求項12に記載の組電池を搭載する車両。   A vehicle on which the nonaqueous electrolyte lithium ion secondary battery according to claim 11 or the assembled battery according to claim 12 is mounted. リチウム化合物、ニッケル化合物、コバルト化合物、およびマンガン化合物の混合物を焼成してリチウムニッケルコバルトマンガン酸化物からなる粒子を得る焼成工程と、
前記リチウムニッケルコバルトマンガン酸化物からなる粒子の表面にリチウム化合物を
添着させる添着工程と、
を有する、非水電解質リチウムイオン二次電池用正極材料の製造方法。
A firing step of firing particles of a lithium compound, a nickel compound, a cobalt compound, and a manganese compound to obtain particles made of lithium nickel cobalt manganese oxide;
An attaching step of attaching a lithium compound to the surface of the particles comprising the lithium nickel cobalt manganese oxide;
The manufacturing method of the positive electrode material for non-aqueous electrolyte lithium ion secondary batteries which has this.
前記焼成工程において得られたリチウムニッケルコバルトマンガン酸化物からなる粒子を、酸化雰囲気下において150℃/min以上の速度で冷却する冷却工程をさらに有する、請求項14に記載の製造方法。   The manufacturing method of Claim 14 which further has a cooling process which cools the particle | grains which consist of lithium nickel cobalt manganese oxide obtained in the said baking process at a speed | rate of 150 degrees C / min or more in an oxidizing atmosphere.
JP2004258966A 2004-09-06 2004-09-06 Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same Expired - Lifetime JP4923397B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004258966A JP4923397B2 (en) 2004-09-06 2004-09-06 Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same
PCT/JP2005/014613 WO2006027925A2 (en) 2004-09-06 2005-08-03 Positive electrode material for non-aqueous electrolyte lithium-ion secondary battery and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258966A JP4923397B2 (en) 2004-09-06 2004-09-06 Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006073482A true JP2006073482A (en) 2006-03-16
JP4923397B2 JP4923397B2 (en) 2012-04-25

Family

ID=35771076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258966A Expired - Lifetime JP4923397B2 (en) 2004-09-06 2004-09-06 Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same

Country Status (2)

Country Link
JP (1) JP4923397B2 (en)
WO (1) WO2006027925A2 (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2007287569A (en) * 2006-04-19 2007-11-01 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2007335245A (en) * 2006-06-15 2007-12-27 Sanyo Electric Co Ltd Cathode active material, its manufacturing method, and nonaqueous secondary battery
JP2008000643A (en) * 2006-06-20 2008-01-10 Seiko Epson Corp Liquid drop discharge apparatus, discharge method for liquid-like substance and manufacturing method for secondary battery
JP2008010234A (en) * 2006-06-28 2008-01-17 Sony Corp Positive active material and nonaqueous electrolyte battery
JP2008016243A (en) * 2006-07-04 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008016244A (en) * 2006-07-04 2008-01-24 Sony Corp Cathode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2008027581A (en) * 2006-06-23 2008-02-07 Idemitsu Kosan Co Ltd Electrode material, electrode, and all-solid secondary battery
JP2008041570A (en) * 2006-08-09 2008-02-21 Sony Corp Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2008091328A (en) * 2006-09-04 2008-04-17 Sumitomo Electric Ind Ltd Lithium secondary cell and its manufacturing method
JP2008103193A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for cathode composite material and its manufacturing method
JP2009146739A (en) * 2007-12-14 2009-07-02 Sony Corp Manufacturing method of positive active material
JP2009217946A (en) * 2008-03-07 2009-09-24 Hitachi Vehicle Energy Ltd Organic electrolytic solution secondary battery
JP2010080394A (en) * 2008-09-29 2010-04-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2010080168A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp All-solid lithium secondary battery
EP2192639A1 (en) 2008-11-21 2010-06-02 Hitachi Ltd. Lithuim secondary battery
JP2010535699A (en) * 2007-08-10 2010-11-25 ユミコア ソシエテ アノニム Doped lithium transition metal oxides containing sulfur
JP2011023241A (en) * 2009-07-16 2011-02-03 Sony Corp Secondary battery, anode, cathode, and electrolyte
WO2011083861A1 (en) 2010-01-08 2011-07-14 三菱化学株式会社 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP2011146152A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Cathode paste and manufacturing method of cathode paste
US20120015248A1 (en) * 2010-07-16 2012-01-19 Samsung Sdi Co., Ltd. Positive active material, method of preparing the same, and lithium battery including the positive active material
JP2012018925A (en) * 2010-07-06 2012-01-26 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the same
KR101123057B1 (en) * 2009-01-06 2012-03-20 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
JP2012074467A (en) * 2010-09-28 2012-04-12 Asahi Kasei Corp Anode material, method of manufacturing the same, and electricity-storage device
KR101138637B1 (en) * 2009-01-06 2012-04-26 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
KR101154876B1 (en) * 2009-01-06 2012-06-18 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
KR101169947B1 (en) * 2009-01-06 2012-08-06 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
WO2013021955A1 (en) 2011-08-05 2013-02-14 旭硝子株式会社 Positive electrode active material for lithium-ion secondary battery
WO2013047877A1 (en) 2011-09-30 2013-04-04 旭硝子株式会社 Lithium ion secondary battery positive electrode active material, and production method thereof
WO2014038001A1 (en) * 2012-09-04 2014-03-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2014082050A (en) * 2012-10-15 2014-05-08 Nissan Motor Co Ltd Positive electrode for battery
KR101415590B1 (en) 2006-07-03 2014-08-06 소니 가부시끼가이샤 Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2015099785A (en) * 2010-09-01 2015-05-28 出光興産株式会社 Electrode material and lithium ion battery using the same
KR101553389B1 (en) 2013-04-04 2015-09-30 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
WO2016038983A1 (en) * 2014-09-10 2016-03-17 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2016064966A (en) * 2013-11-29 2016-04-28 株式会社半導体エネルギー研究所 Lithium-manganese composite oxide and secondary battery
KR101623963B1 (en) * 2008-08-04 2016-05-24 소니 가부시끼가이샤 Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2016143527A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Method for producing coated lithium-nickel complex oxide particle
JP2016170942A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Method of manufacturing positive electrode active material for solid battery
JP2017045725A (en) * 2015-08-25 2017-03-02 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
KR20170100453A (en) * 2016-02-25 2017-09-04 주식회사 엘지화학 Positive electrode active material, positive electrode for lithium secondary battery comprising the same
WO2018030199A1 (en) * 2016-08-09 2018-02-15 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
KR20180038831A (en) * 2016-10-07 2018-04-17 한국생산기술연구원 Cathode composite and all solid lithium secondary battery comprising the same
WO2018190374A1 (en) * 2017-04-12 2018-10-18 株式会社村田製作所 Positive electrode active material and method for manufacturing same, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
CN109671906A (en) * 2017-10-13 2019-04-23 丰田自动车株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
US10290862B2 (en) 2015-12-31 2019-05-14 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the composite cathode active material, and method of preparing the composite cathode active material
JP2020004587A (en) * 2018-06-27 2020-01-09 住友金属鉱山株式会社 Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020072092A (en) * 2018-11-02 2020-05-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
CN112786852A (en) * 2019-11-05 2021-05-11 精工爱普生株式会社 Positive electrode active material composite particles and powder
WO2021125882A3 (en) * 2019-12-20 2021-08-12 주식회사 포스코 Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
JP2022091226A (en) * 2020-12-09 2022-06-21 プライムプラネットエナジー&ソリューションズ株式会社 High coverage positive electrode active material particles, manufacturing method of high coverage positive electrode active material particles, and manufacturing method of positive electrode active material particles with lpo layer
JP2022539183A (en) * 2019-07-03 2022-09-07 ユミコア Lithium Nickel Manganese Cobalt Composite Oxide as a Positive Electrode Active Material for Rechargeable Lithium Ion Batteries
JP2022539760A (en) * 2019-07-03 2022-09-13 ユミコア Lithium Nickel Manganese Cobalt Composite Oxide as a Positive Electrode Active Material for Rechargeable Lithium Ion Batteries
WO2024154638A1 (en) * 2023-01-20 2024-07-25 日本化学工業株式会社 Lithium cobalt-based composite oxide particles and production method therefor

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306697B2 (en) * 2006-06-16 2009-08-05 ソニー株式会社 Secondary battery
TWI481100B (en) 2007-01-18 2015-04-11 Lg Chemical Ltd Cathode active material and secondary battery comprising the same
WO2008091074A1 (en) 2007-01-24 2008-07-31 Lg Chem, Ltd. A secondary battery with improved safety
CA2676250A1 (en) * 2007-01-25 2008-07-31 Massachusetts Institute Of Technology Oxide coatings on lithium oxide particles
CN102290573B (en) * 2007-03-30 2015-07-08 索尼株式会社 Cathode active material, cathode and nonaqueous electrolyte battery
JP5077131B2 (en) 2007-08-02 2012-11-21 ソニー株式会社 Positive electrode active material, positive electrode using the same, and nonaqueous electrolyte secondary battery
JP5111421B2 (en) * 2009-03-27 2013-01-09 株式会社日立製作所 Positive electrode material for lithium secondary battery, lithium secondary battery, and secondary battery module using the same
KR101034227B1 (en) 2009-11-25 2011-05-12 주식회사 엘지화학 Cathode based upon two kinds of compounds and lithium secondary battery comprising the same
JP5738667B2 (en) 2010-05-28 2015-06-24 株式会社半導体エネルギー研究所 Power storage device
CN105140512B (en) 2010-06-02 2019-01-22 株式会社半导体能源研究所 Power storage devices
US9419271B2 (en) 2010-07-02 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for forming electrode material
US9287557B2 (en) 2011-01-07 2016-03-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing nonaqueous electrolyte secondary battery
KR101924989B1 (en) 2011-01-07 2018-12-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing power storage device
US9325001B2 (en) * 2011-02-02 2016-04-26 Toyota Jidosha Kabushiki Kaisha Composite active material, method for producing composite active material, and battery
US8945498B2 (en) 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
US9577261B2 (en) 2011-03-18 2017-02-21 Semiconductor Energy Laboratory Co., Ltd. Lithium ion secondary battery and method for manufacturing the same
KR102250080B1 (en) 2011-03-25 2021-05-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Lithium-ion secondary battery
US9118077B2 (en) 2011-08-31 2015-08-25 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP6020490B2 (en) * 2014-03-03 2016-11-02 トヨタ自動車株式会社 Positive electrode of lithium ion secondary battery and method of manufacturing lithium ion secondary battery
EP3121874A1 (en) * 2015-07-20 2017-01-25 Basf Se Cathodes for lithium ion batteries comprising solid lithium oxalate
JP6917161B2 (en) 2016-03-03 2021-08-11 株式会社半導体エネルギー研究所 Positive electrode active material for lithium-ion secondary batteries, secondary batteries, battery control units and electronic devices
GB2566473B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2566472B (en) 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
GB2569389B (en) * 2017-12-18 2022-02-09 Dyson Technology Ltd Compound
GB2569390A (en) 2017-12-18 2019-06-19 Dyson Technology Ltd Compound
GB2569388B (en) 2017-12-18 2022-02-02 Dyson Technology Ltd Compound
KR102175578B1 (en) * 2018-11-14 2020-11-06 삼성에스디아이 주식회사 Positive active material, method of manufacturing the same and rechargeable lithium battery incluidng the same
CN112447952B (en) * 2019-09-02 2022-01-28 宁德时代新能源科技股份有限公司 Positive active material, preparation method thereof, positive pole piece and lithium ion secondary battery
CN111422920A (en) * 2019-12-26 2020-07-17 蜂巢能源科技有限公司 Cobalt-free cathode material of lithium ion battery, preparation method of cobalt-free cathode material and lithium ion battery
CN113839006B (en) * 2020-06-24 2023-07-11 深圳市比亚迪锂电池有限公司 Lithium ion battery anode slurry and lithium ion battery
KR102317602B1 (en) 2021-04-22 2021-10-25 에스케이이노베이션 주식회사 Cathode active material for lithium secondary battery and lithium secondary battery including the same
HUP2400112A1 (en) * 2022-06-29 2024-05-28 Guangdong Brunp Recycling Tech Co Positive electrode material, preparation method therefor, and use thereof
CN115172686A (en) * 2022-06-29 2022-10-11 广东邦普循环科技有限公司 Cathode material and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102332A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Secondary battery
JPH1167209A (en) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd Lithium secondary battery
JPH11162466A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2000072444A (en) * 1998-09-03 2000-03-07 Shin Kobe Electric Mach Co Ltd Lithium manganate and organic electrolyte secondary battery using the same
JP2002231227A (en) * 2000-12-15 2002-08-16 Korea Advanced Inst Of Sci Technol Surface treatment method for positive electrode layer phase structure oxide for lithium secondary battery
JP2003059492A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2003142097A (en) * 2001-09-05 2003-05-16 Samsung Sdi Co Ltd Active material for battery and manufacturing method therefor
JP2004087299A (en) * 2002-08-27 2004-03-18 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6878487B2 (en) * 2001-09-05 2005-04-12 Samsung Sdi, Co., Ltd. Active material for battery and method of preparing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102332A (en) * 1994-09-30 1996-04-16 Hitachi Ltd Secondary battery
JPH1167209A (en) * 1997-08-27 1999-03-09 Sanyo Electric Co Ltd Lithium secondary battery
JPH11162466A (en) * 1997-12-01 1999-06-18 Sanyo Electric Co Ltd Manufacture of positive electrode active material for lithium secondary battery
JP2000072444A (en) * 1998-09-03 2000-03-07 Shin Kobe Electric Mach Co Ltd Lithium manganate and organic electrolyte secondary battery using the same
JP2002231227A (en) * 2000-12-15 2002-08-16 Korea Advanced Inst Of Sci Technol Surface treatment method for positive electrode layer phase structure oxide for lithium secondary battery
JP2003059492A (en) * 2001-08-17 2003-02-28 Matsushita Electric Ind Co Ltd Lithium secondary battery and its manufacturing method
JP2003142097A (en) * 2001-09-05 2003-05-16 Samsung Sdi Co Ltd Active material for battery and manufacturing method therefor
JP2004087299A (en) * 2002-08-27 2004-03-18 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery

Cited By (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2007287569A (en) * 2006-04-19 2007-11-01 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2007335245A (en) * 2006-06-15 2007-12-27 Sanyo Electric Co Ltd Cathode active material, its manufacturing method, and nonaqueous secondary battery
JP2008000643A (en) * 2006-06-20 2008-01-10 Seiko Epson Corp Liquid drop discharge apparatus, discharge method for liquid-like substance and manufacturing method for secondary battery
JP2008027581A (en) * 2006-06-23 2008-02-07 Idemitsu Kosan Co Ltd Electrode material, electrode, and all-solid secondary battery
JP2008010234A (en) * 2006-06-28 2008-01-17 Sony Corp Positive active material and nonaqueous electrolyte battery
US8911903B2 (en) 2006-07-03 2014-12-16 Sony Corporation Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
KR101415590B1 (en) 2006-07-03 2014-08-06 소니 가부시끼가이샤 Cathode active material, its manufacturing method, and non-aqueous electrolyte secondary battery
JP2008016243A (en) * 2006-07-04 2008-01-24 Sony Corp Cathode active material and manufacturing method therefor, and nonaqueous electrolyte secondary battery
JP2008016244A (en) * 2006-07-04 2008-01-24 Sony Corp Cathode active material, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2008041570A (en) * 2006-08-09 2008-02-21 Sony Corp Cathode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2008091328A (en) * 2006-09-04 2008-04-17 Sumitomo Electric Ind Ltd Lithium secondary cell and its manufacturing method
JP2008103193A (en) * 2006-10-19 2008-05-01 Idemitsu Kosan Co Ltd Sulfide-based solid electrolyte for cathode composite material and its manufacturing method
JP2010535699A (en) * 2007-08-10 2010-11-25 ユミコア ソシエテ アノニム Doped lithium transition metal oxides containing sulfur
JP2009146739A (en) * 2007-12-14 2009-07-02 Sony Corp Manufacturing method of positive active material
JP2009217946A (en) * 2008-03-07 2009-09-24 Hitachi Vehicle Energy Ltd Organic electrolytic solution secondary battery
KR101623963B1 (en) * 2008-08-04 2016-05-24 소니 가부시끼가이샤 Positive electrode active material, positive electrode using the same and non-aqueous electrolyte secondary battery
JP2010080168A (en) * 2008-09-25 2010-04-08 Toyota Motor Corp All-solid lithium secondary battery
JP2010080394A (en) * 2008-09-29 2010-04-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and manufacturing method therefor, and nonaqueous electrolyte secondary battery
EP2192639A1 (en) 2008-11-21 2010-06-02 Hitachi Ltd. Lithuim secondary battery
KR101123057B1 (en) * 2009-01-06 2012-03-20 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
KR101304868B1 (en) 2009-01-06 2013-09-06 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
US9225019B2 (en) 2009-01-06 2015-12-29 Lg Chem, Ltd. Cathode active material for lithium secondary battery
US9118075B2 (en) 2009-01-06 2015-08-25 Lg Chem, Ltd. Cathode active material for lithium secondary battery
KR101138637B1 (en) * 2009-01-06 2012-04-26 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
KR101154876B1 (en) * 2009-01-06 2012-06-18 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
JP2012514834A (en) * 2009-01-06 2012-06-28 エルジー・ケム・リミテッド Cathode active material for lithium secondary battery
KR101169947B1 (en) * 2009-01-06 2012-08-06 주식회사 엘지화학 Cathode Active Material for Lithium Secondary Battery
JP2015026622A (en) * 2009-01-06 2015-02-05 エルジー・ケム・リミテッド Cathode active material for lithium secondary battery
KR20190055038A (en) * 2009-07-16 2019-05-22 가부시키가이샤 무라타 세이사쿠쇼 Secondary battery, anode, cathode, and electrolyte
KR102135752B1 (en) * 2009-07-16 2020-07-20 가부시키가이샤 무라타 세이사쿠쇼 Secondary battery, anode, cathode, and electrolyte
KR101799509B1 (en) * 2009-07-16 2017-11-20 소니 주식회사 Secondary battery, anode, cathode, and electrolyte
KR101978434B1 (en) * 2009-07-16 2019-05-14 가부시키가이샤 무라타 세이사쿠쇼 Secondary battery, anode, cathode, and electrolyte
JP2011023241A (en) * 2009-07-16 2011-02-03 Sony Corp Secondary battery, anode, cathode, and electrolyte
KR20170129080A (en) * 2009-07-16 2017-11-24 소니 주식회사 Secondary battery, anode, cathode, and electrolyte
WO2011083861A1 (en) 2010-01-08 2011-07-14 三菱化学株式会社 Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP2011146152A (en) * 2010-01-12 2011-07-28 Toyota Motor Corp Cathode paste and manufacturing method of cathode paste
JP2012018925A (en) * 2010-07-06 2012-01-26 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, method for manufacturing the same, and lithium secondary battery including the same
US8911902B2 (en) 2010-07-06 2014-12-16 Samsung Sdi Co., Ltd. Nickel-based positive electrode active material, method of preparing the same, and lithium battery using the nickel-based positive electrode active material
US20120015248A1 (en) * 2010-07-16 2012-01-19 Samsung Sdi Co., Ltd. Positive active material, method of preparing the same, and lithium battery including the positive active material
US8986886B2 (en) 2010-07-16 2015-03-24 Samsung Sdi Co., Ltd Positive active material, method of preparing the same, and lithium battery including the positive active material
JP2015099785A (en) * 2010-09-01 2015-05-28 出光興産株式会社 Electrode material and lithium ion battery using the same
JP2012074467A (en) * 2010-09-28 2012-04-12 Asahi Kasei Corp Anode material, method of manufacturing the same, and electricity-storage device
US10135064B2 (en) 2011-08-05 2018-11-20 Sumitomo Chemical Co., Ltd. Cathode active material for lithium ion secondary battery
JPWO2013021955A1 (en) * 2011-08-05 2015-03-05 旭硝子株式会社 Positive electrode active material for lithium ion secondary battery
WO2013021955A1 (en) 2011-08-05 2013-02-14 旭硝子株式会社 Positive electrode active material for lithium-ion secondary battery
KR20140051926A (en) 2011-08-05 2014-05-02 아사히 가라스 가부시키가이샤 Positive electrode active material for lithium-ion secondary battery
US10910640B2 (en) 2011-09-30 2021-02-02 Sumitomo Chemical Co., Ltd Cathode active material for lithium ion secondary battery, and process for its production
WO2013047877A1 (en) 2011-09-30 2013-04-04 旭硝子株式会社 Lithium ion secondary battery positive electrode active material, and production method thereof
US10326127B2 (en) 2011-09-30 2019-06-18 Sumitomo Chemical Co., Ltd. Cathode active material for lithium ion secondary battery, and process for its production
KR20140076555A (en) 2011-09-30 2014-06-20 아사히 가라스 가부시키가이샤 Lithium ion secondary battery positive electrode active material, and production method thereof
JPWO2014038001A1 (en) * 2012-09-04 2016-08-08 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2014038001A1 (en) * 2012-09-04 2014-03-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP2014082050A (en) * 2012-10-15 2014-05-08 Nissan Motor Co Ltd Positive electrode for battery
KR101560453B1 (en) * 2012-10-15 2015-10-14 닛산 지도우샤 가부시키가이샤 Positive electrode for battery
KR101553389B1 (en) 2013-04-04 2015-09-30 국립대학법인 울산과학기술대학교 산학협력단 Positive active material for rechargeable lithium battery, coating material for positive active material, method of manufacturing the same and rechargeable lithium battery including same
JP2016064966A (en) * 2013-11-29 2016-04-28 株式会社半導体エネルギー研究所 Lithium-manganese composite oxide and secondary battery
CN106030872A (en) * 2013-11-29 2016-10-12 株式会社半导体能源研究所 Lithium-manganese composite oxide and secondary battery
CN106030872B (en) * 2013-11-29 2018-12-18 株式会社半导体能源研究所 Complex Li-Mn-oxide and secondary cell
JPWO2016038983A1 (en) * 2014-09-10 2017-06-22 日立金属株式会社 Positive electrode active material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2016038983A1 (en) * 2014-09-10 2016-03-17 日立金属株式会社 Positive electrode active material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP2016143527A (en) * 2015-01-30 2016-08-08 住友金属鉱山株式会社 Method for producing coated lithium-nickel complex oxide particle
JP2016170942A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Method of manufacturing positive electrode active material for solid battery
JP2017045725A (en) * 2015-08-25 2017-03-02 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same
US10290862B2 (en) 2015-12-31 2019-05-14 Samsung Electronics Co., Ltd. Composite cathode active material, cathode and lithium battery including the composite cathode active material, and method of preparing the composite cathode active material
KR20170100453A (en) * 2016-02-25 2017-09-04 주식회사 엘지화학 Positive electrode active material, positive electrode for lithium secondary battery comprising the same
KR102237950B1 (en) * 2016-02-25 2021-04-08 주식회사 엘지화학 Positive electrode active material, positive electrode for lithium secondary battery comprising the same
CN109565048A (en) * 2016-08-09 2019-04-02 住友金属矿山株式会社 The manufacturing method of positive active material for non-aqueous electrolyte secondary battery, the positive active material for non-aqueous electrolyte secondary battery
JP7024715B2 (en) 2016-08-09 2022-02-24 住友金属鉱山株式会社 Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
US11482700B2 (en) 2016-08-09 2022-10-25 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
JPWO2018030199A1 (en) * 2016-08-09 2019-06-13 住友金属鉱山株式会社 Method of manufacturing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery
WO2018030199A1 (en) * 2016-08-09 2018-02-15 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nonaqueous electrolyte secondary batteries
CN109565048B (en) * 2016-08-09 2022-04-15 住友金属矿山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
KR101876826B1 (en) * 2016-10-07 2018-07-10 한국생산기술연구원 Cathode composite and all solid lithium secondary battery comprising the same
KR20180038831A (en) * 2016-10-07 2018-04-17 한국생산기술연구원 Cathode composite and all solid lithium secondary battery comprising the same
WO2018190374A1 (en) * 2017-04-12 2018-10-18 株式会社村田製作所 Positive electrode active material and method for manufacturing same, positive electrode, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device, and electric power system
JP2019075237A (en) * 2017-10-13 2019-05-16 トヨタ自動車株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
JP7008262B2 (en) 2017-10-13 2022-01-25 トヨタ自動車株式会社 Lithium-ion secondary battery electrodes and lithium-ion secondary batteries
CN109671906B (en) * 2017-10-13 2022-02-11 丰田自动车株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
CN109671906A (en) * 2017-10-13 2019-04-23 丰田自动车株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020004587A (en) * 2018-06-27 2020-01-09 住友金属鉱山株式会社 Positive electrode active substance for lithium ion secondary battery and manufacturing method thereof, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US11417875B2 (en) 2018-11-02 2022-08-16 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP7531471B2 (en) 2018-11-02 2024-08-09 三星エスディアイ株式会社 Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery including same
JP2022017425A (en) * 2018-11-02 2022-01-25 三星エスディアイ株式会社 Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2020072092A (en) * 2018-11-02 2020-05-07 三星エスディアイ株式会社Samsung SDI Co., Ltd. Positive electrode active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
JP2022539562A (en) * 2019-07-03 2022-09-12 ユミコア Lithium Nickel Manganese Cobalt Composite Oxide as a Positive Electrode Active Material for Rechargeable Lithium Ion Batteries
JP7410984B2 (en) 2019-07-03 2024-01-10 ユミコア Lithium nickel manganese cobalt composite oxide as positive electrode active material for rechargeable lithium ion batteries
JP2022539253A (en) * 2019-07-03 2022-09-07 ユミコア Lithium-nickel-manganese-cobalt composite oxides as positive electrode active materials for rechargeable lithium-ion batteries
JP7477539B2 (en) 2019-07-03 2024-05-01 ユミコア Lithium nickel manganese cobalt composite oxide as a positive electrode active material for rechargeable lithium-ion batteries
JP2022539760A (en) * 2019-07-03 2022-09-13 ユミコア Lithium Nickel Manganese Cobalt Composite Oxide as a Positive Electrode Active Material for Rechargeable Lithium Ion Batteries
JP2022540392A (en) * 2019-07-03 2022-09-15 ユミコア Lithium-nickel-manganese-cobalt composite oxides as positive electrode active materials for rechargeable lithium-ion batteries
JP2022539183A (en) * 2019-07-03 2022-09-07 ユミコア Lithium Nickel Manganese Cobalt Composite Oxide as a Positive Electrode Active Material for Rechargeable Lithium Ion Batteries
JP7376673B2 (en) 2019-07-03 2023-11-08 ユミコア Lithium nickel manganese cobalt composite oxide as positive electrode active material for rechargeable lithium ion batteries
JP7328372B2 (en) 2019-07-03 2023-08-16 ユミコア Lithium Nickel Manganese Cobalt Composite Oxide as a Positive Electrode Active Material for Rechargeable Lithium Ion Batteries
JP7343682B2 (en) 2019-07-03 2023-09-12 ユミコア Lithium nickel manganese cobalt composite oxide as positive electrode active material for rechargeable lithium ion batteries
CN112786852A (en) * 2019-11-05 2021-05-11 精工爱普生株式会社 Positive electrode active material composite particles and powder
JP7333477B2 (en) 2019-12-20 2023-08-24 ポスコホールディングス インコーポレーティッド Positive electrode active material, manufacturing method thereof, and lithium secondary battery including the same
JP2023508026A (en) * 2019-12-20 2023-02-28 ポスコホールディングス インコーポレーティッド Positive electrode active material, manufacturing method thereof, and lithium secondary battery including the same
WO2021125882A3 (en) * 2019-12-20 2021-08-12 주식회사 포스코 Positive electrode active material, method for preparing same, and lithium secondary battery comprising same
JP7341975B2 (en) 2020-12-09 2023-09-11 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing high coverage positive electrode active material particles and method for manufacturing positive electrode active material particles with LPO layer as intermediates
JP2022091226A (en) * 2020-12-09 2022-06-21 プライムプラネットエナジー&ソリューションズ株式会社 High coverage positive electrode active material particles, manufacturing method of high coverage positive electrode active material particles, and manufacturing method of positive electrode active material particles with lpo layer
WO2024154638A1 (en) * 2023-01-20 2024-07-25 日本化学工業株式会社 Lithium cobalt-based composite oxide particles and production method therefor

Also Published As

Publication number Publication date
WO2006027925A3 (en) 2006-11-30
WO2006027925A2 (en) 2006-03-16
JP4923397B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4923397B2 (en) Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same
JP4779323B2 (en) Non-aqueous electrolyte lithium ion secondary battery positive electrode material and method for producing the same
JP4717847B2 (en) Positive electrode active material and lithium secondary battery including the same
US9240592B2 (en) Positive-electrode active material for elevation of output and lithium secondary battery including the same
KR102183996B1 (en) Positive active material and manufacturing method thereof, positive electrode and lithium battery containing the material
JP5079461B2 (en) Positive electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
EP3633768A2 (en) Lithium secondary battery
JP4760816B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery
KR100783293B1 (en) Cathode Active Material and Lithium Secondary Battery Containing the Same
EP2639865A1 (en) Positive active material, method of preparing the same, and lithium secondary battery using the same
JP6811404B2 (en) Non-aqueous electrolyte secondary battery
JP7225415B2 (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
JP6820517B2 (en) Non-aqueous electrolyte secondary battery
JP7357994B2 (en) Method for producing positive electrode active material for secondary batteries
JP2024155978A (en) Method for manufacturing lithium secondary battery and lithium secondary battery manufactured by the same
KR102534215B1 (en) Lithium Secondary Battery Comprising Si Anode
JP7022946B2 (en) Non-aqueous electrolyte secondary battery
KR20070021040A (en) Cathode Active Material and Lithium Secondary Battery Containing Them
US10873089B2 (en) Positive electrode material and lithium secondary battery using the same
KR20070020759A (en) Lithium Secondary Battery Containing Oxide of Inorganic Material
KR20220168449A (en) Dry manufacturing method of positive electrode for lithium secondary battery, the positive electrode manufactured thereby, and the lithium secondary battery comprising the positive electrode
JP2024520714A (en) Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material manufactured by the same
KR20240056446A (en) Current collector for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
KR20230096886A (en) Manufacturing method of lithium secondary battery and lithium secondary battery manufactured thereby
KR20230108718A (en) Positive electrode for lithium secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923397

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250