[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR101858280B1 - 열광원을 갖는 euv 마이크로리소그래피 투영 노광 장치 - Google Patents

열광원을 갖는 euv 마이크로리소그래피 투영 노광 장치 Download PDF

Info

Publication number
KR101858280B1
KR101858280B1 KR1020137008560A KR20137008560A KR101858280B1 KR 101858280 B1 KR101858280 B1 KR 101858280B1 KR 1020137008560 A KR1020137008560 A KR 1020137008560A KR 20137008560 A KR20137008560 A KR 20137008560A KR 101858280 B1 KR101858280 B1 KR 101858280B1
Authority
KR
South Korea
Prior art keywords
mirror
radiation
spectral range
light source
group
Prior art date
Application number
KR1020137008560A
Other languages
English (en)
Other versions
KR20130108333A (ko
Inventor
다미안 피올카
Original Assignee
칼 짜이스 에스엠티 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칼 짜이스 에스엠티 게엠베하 filed Critical 칼 짜이스 에스엠티 게엠베하
Publication of KR20130108333A publication Critical patent/KR20130108333A/ko
Application granted granted Critical
Publication of KR101858280B1 publication Critical patent/KR101858280B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/265Selective reaction with inorganic or organometallic reagents after image-wise exposure, e.g. silylation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • G03F7/70158Diffractive optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

본 발명은 5nm 내지 15nm의 제 1 스펙트럼 범위의 방사선을 생성하기 위한 노광 광원 및 1 내지 50 μm의 제 2 스펙트럼 범위의 방사선을 생성하기 위한 열 광원을 갖는 EUV 마이크로리소그래피 투영 노광 장치에 관한 것이다. 장치는 광 경로를 따라 제 1 스펙트럼 범위로부터의 방사선을 가이드하기 위한 미러들의 제 1 그룹을 가져서 제 1 그룹의 각각의 미러가 노광 광원의 동작 동안 제 1 스펙트럼 범위에서 각 미러에 적용된 제 1 관련된 강도 분포를 가질 수 있는 광학 시스템을 또한 포함한다. 이런 경우에, 열 광원은, 제 1 그룹의 적어도 하나의 미러가 열 광원의 동작 동안 적어도 하나의 미러에 적용된 제 2 스펙트럼 범위에서의 제 2 관련된 강도 분포를 가질 수 있고, 여기서 제 1 강도 분포가 위치 독립적 팩터에 의해 필수적으로 제 1 강도 분포와 상이하도록 배열된다.

Description

열광원을 갖는 EUV 마이크로리소그래피 투영 노광 장치{EUV MICROLITHOGRAPHY PROJECTION EXPOSURE APPARATUS WITH A HEAT LIGHT SOURCE}
본 발명은 노광 광원 및 열 광원을 포함하는 EUV 마이크로리소그래피 투영 노광 장치 및 이와 같은 투영 노광 장치를 동작하는 방법에 관한 것이다.
투영 노광 장치 내의 가열 수단의 사용은 공보 US2005140947, US2008049202, US2010060988, US6912077, US6504597, US6466382, WO2009046895A1, EP1670041, EP0823662로 부터 알려져 있다.
마이크로리소그래피 투영 노광 장치는 포토리소그래픽 방법으로 마이크로구조의 구성요소를 생산하기 위해 사용된다. 이런 경우에, 구조화된 마스크, 소위 레티클은 노광 광원 및 조명 옵틱스의 도움으로 조명되고 감광성 층을 갖는 기판상에 투영 옵틱스의 도움으로 이미징된다. 이 경우, 노광 광원은 조명 옵틱스로 보내지는 방사선을 제공한다. 조명 옵틱스는 구조화된 마스크의 위치에서 미리결정된 각도 의존적인 강도 분포를 갖는 균일한 조명을 위해 사용된다. 다양하고 적합한 광학 소자들은 이러한 목적을 위하여 조명 옵틱스 내에 제공된다. 이런 식으로 조명된 구조화된 마스크는 투영 옵틱스의 도움으로 감광성 층에 이미징된다. 이런 식으로, 이와 같은 투영 옵틱스의 도움으로 이미징될 수 있는 최소 구조 폭은 특히 사용된 방사선의 파장에 의해 제어된다(governed). 방사선의 파장이 더 짧으면, 투영 옵틱스의 도움으로 이미징될 수 있는 구조는 더 작다. 이런 이유로, 5nm 내지 15nm의 제 1 스펙트럼 범위의 방사선을 생성하는 노광 광원이 사용된다. 이러한 스펙트럼 범위 내의 광은 노광 광 대신 종종 "사용된 광"이나 "유용한 광"으로 불린다. 이러한 스펙트럼 범위를 위한 투명 물질은 드물기 때문에, 미러가 광학 소자로서 사용된다.
마이크로리소그래피 투영 노광 장치는 소위 스캐너로서 빈번하게 동작된다. 이것이 의미하는 것은 웨이퍼가 투영 옵틱스의 이미지 평면상에 적절하게 이동되는 동안 레티클이 특정 노광 기간 동안 스캐닝 방향을 따라 슬롯(slot)의 형태로 오브젝트 필드를 통해 이동된다는 것이다. 웨이퍼의 레티클에 대한 속도의 비율은 레티클과 웨이퍼 간의 투영 옵틱스의 배율(magnification)에 상응하고, 이것은 일반적으로 1 이하가 된다.
노광 광원의 동작동안, EUV 마이크로리소그래피 노광 장치의 모든 미러는 5nm 내지 15nm의 제 1 스펙트럼 범위에서 스스로에게 적용된 강도 분포를 갖는다. 이런 경우에, 각각의 미러는 자신과 관련된 제 1 강도 분포를 가지고, 이는 노광 광원의 빔 경로 및 특정 실시예에서의 미러의 위치로부터 기인한 것이다. 미러와 관련된 제 1 강도 분포는 다양한 미러에 적용되므로, 미러는 노광 광원의 동작 동안 가열된다. 이것을 보상하기 위하여, 일반적으로 미러에는 적절한 냉각이 제공된다. 각각의 미러와 관련된 제 1 강도 분포는 제 1 스펙트럼 범위에서 시간에 따라 일정하고, 이것은 적절한 냉각과 함께 특정 시간(T1) 이후 평형 상태를 야기하고, 이러한 평형 상태에서 시간에 따라 일정한, 제 1 온도 분포가 각각의 미러에 존재한다. 제 1 온도 분포로의 온도 상승은 미러의 광학 특성의 변화를 야기한다. 예컨대, 미러 기판의 열적 팽창은 미러의 곡률 반경의 변화를 초래한다. 이와 같은 변화는 조명 옵틱스와 투영 옵틱스의 광학적 특성을 사전에 계산할 때 먼저 고려된다. 그러나, 이것은, 미러가 자신의 제 1 온도 분포에 먼저 도달할 때만 최적이 되는 미러의 광학 특성을 야기한다. 노광 광원이 스위치 온 된 후, 노광 광원, 조명 옵틱스 및 투영 옵틱스를 포함하는 광학 시스템이 이것의 최적 상태에 도달하기 전까지 시간(T1)이 소요된다.
본 발명의 목적은 이 시간이 단축된 EUV 투영 노광 장치를 개발하는 것이다.
본 발명에 따라, 이 목적은, 5 nm 내지 15 nm의 제 1 스펙트럼 범위의 방사선을 생성하기 위한 투영 광원에 더하여, 1 내지 50 μm의 제 2 스펙트럼 범위의 방사선을 생성하기 위한 열 광원을 갖는 EUV 마이크로리소그래피 투영 노광 장치에 의해 성취된다. 이런 경우에, 장치는 광 경로를 따라 제 1 스펙트럼 범위로부터의 방사선을 가이드하기 위한 미러들의 제 1 그룹을 갖는 광학 시스템을 포함하여, 제 1 그룹의 각각의 미러는 노광 광원의 동작 동안 제 1 스펙트럼 범위로 자신에게 적용된 제 1 관련된 강도 분포를 가질 수 있다. 더욱이, 열 광원은, 제 1 그룹의 적어도 하나의 미러가 열 광원의 동작 동안 그것에 적용된 제 1 스펙트럼 범위에서의 제 2 관련된 강도 분포를 가질 수 있고, 여기서 제 1 강도 분포는 위치 독립적 팩터에 의해 필수적으로 제 1 강도 분포와 상이하도록 배열된다. 이것은 노광 광원의 동작 전에 적어도 하나의 미러가 제 2 스펙트럼 범위의 방사선에 의해 예열되는 것을 야기하고, 열 광원에 의해 도입된 열의 공간적 분포는 노광 광원의 동작 동안 도입된 열의 공간적 분포와 필수적으로 동일하다. 이런 경우에, 1 보다 큰, 바람직하게는 3 보다 큰, 특히 바람직하게는 5 보다 큰, 특히 10보다 큰 팩터만큼 제 2 강도 분포가 제 1 강도 분포보다 클 경우, 특히 신속한 예열이 성취된다.
이러한 응용의 목적으로, 제 1 강도 분포(I1 (x,y))는, 노광 광원의 동작 동안 방사선이 적용되는 영역(A)에 위치한, 관련된 미러 표면 상의 모든 점(x,y)에 있어서 이어지는 식이 적용될 때, 위치 독립적 팩터에 의해 필수적으로 제 2 강도 분포(I2 (x,y))와 상이하다:
Figure 112013029023497-pct00001
및,
Figure 112013029023497-pct00002
이것은, I1 및 I2의 최대비를 갖는 점(x,y)이, 영역(A)의 모든 점의 평균비(mean ratio)의 10% 초과 만큼 상승하여 차이나지 않는 강도의 비율을 갖는 것을 의미한다. 또한, I1 및 I2의 최소비를 갖는 점(x,y)은, 영역(A)의 모든 점의 평균비의 10% 이하만큼 하락하여 차이나는 강도의 비율을 갖는다. 이러한 응용을 목적으로, 광 경로는, 투영 광원의 동작 동안 방사선이 미러들을 관통하는 시퀀스에 상응하는 순서로 조직화된 미러들의 그룹을 의미한다. 이런 경우에, 또한, 선행하는 것으로부터의 방사선은 조직화된 그룹의 각각의 미러 상에 반사된다. 제 1 광 경로와 관련된 조직화된 그룹이 제 2 광 경로와 관련된 조직화된 그룹의 서브셋일 때, 제 1 광 경로는 제 2 광 경로에 완전히 포함되고, 2개의 조직화된 그룹은 상기 정의의 의미에 부합하는 광 경로를 형성한다. 이런 경우에, 제 2 그룹은 2개의 그룹이 일치할 때, 또한 제 1 그룹의 서브셋이 된다. 이러한 정의는 도 1a, b, c와 관련한 다수의 예시를 사용하여 설명될 것이다.
일 개발에 있어서, EUV 마이크로리소그래피 투영 노광 장치는, 열 광원으로부터 방사선을 수신하고 이 방사선을 제 1 그룹의 적어도 하나의 미러에 전달하는 입력 소자를 포함한다. 이것은, 예컨대 적은 다이버전스를 갖는 열 광원을 사용하는 것이 가능하므로 입력 소자가 제 2 스펙트럼 범위에서의 방사선을 넓히는데 사용되어서, 열 광원의 선택 및 위치에 대한 더 많은 자유를 허용한다.
본 발명의 일 개발에 있어서, 노광 광원의 동작 동안의 제 2 스펙트럼 범위의 방사선에 대한 적어도 하나의 미러의 평균 반사율은 열 광원의 동작 동안의 제 1 스펙트럼 범위의 방사선에 대한 적어도 하나의 미러의 평균 반사율과 5% 포인트 이하만큼 상이하다. 이것은, 제 1 스펙트럼 범위의 노광 광원으로부터의 방사선과 정확히 동일한 방식으로 적어도 하나의 미러에 의해 제 2 스펙트럼 범위의 열 광원으로부터의 방사선이 변형되는 것을 야기한다. 그러므로, 이것은, 다음 미러가, 위치 독립적 팩터에 의해 필수적으로, 노광 광원을 위한 동작 동안 다음 미러에 적용되는, 제 1 강도 분포와는 상이한, 열 광원의 동작 동안 이것에 적용되는 제 2 스펙트럼 범위의 제 2 관련된 강도 분포를 갖는 것을 의미한다.
대안으로 또는 추가로, 마이크로리소그래피 투영 노광 장치는 적어도 하나의 미러를 포함하는 제 2 그룹 - 적어도 2개의 미러를 포함 - 을 가지고, 여기서 제 2 그룹은 제 1 그룹의 서브셋이고, 여기서 열 광원 및 입력 소자는, 열 광원으로부터의 방사선이 제 2 그룹의 모든 미러들을 통해 제 2 광 경로를 따라 가이드되는 방식으로 배열되며, 여기서 제 2 광 경로는 제 1 광 경로에 완전히 포함된다. 이것은, 제 2 그룹의 모든 미러들이 동일한 열 광원에 의해 예열되는 것을 야기하고, 여기서 제 2 스펙트럼 범위에서의 예열에 사용되는 방사선은 제 2 그룹의 미러들 사이의 제 1 스펙트럼 범위에서의 방사선의 광 경로를 따른다.
일 개발에서, 노광 광원의 동작 동안 제 2 스펙트럼 범위의 방사선에 대한 제 2 그룹의 각각의 미러의 평균 반사율은 열 광원의 동작 동안 제 1 스펙트럼 범위의 방사선에 대한 제 2 그룹의 동일한 미러의 평균 방사선과 5% 포인트 이하만큼 상이하다. 그러므로 제 2 스펙트럼 범위로부터의 방사선은 제 1 스펙트럼 범위의 노광 광원으로부터의 방사선과 정확하게 동일한 방식으로 제 2 그룹의 모든 미러들 상에서 변형된다. 이것은, 제 2 그룹의 각각의 미러가 열 광원의 동작 동안 이것에 적용된 제 2 스펙트럼 범위의 제 2 관련된 강도 분포를 갖게 하고, 제 2 그룹의 각각의 미러에 대한 제 1 관련된 강도 분포는 이러한 미러에 대하여 특정된 팩터에 의해 필수적으로 제 2 관련된 강도 분포와 상이하다.
일 실시예에서, 제 2 그룹의 모든 미러의 특정 팩터들은 10% 이하만큼 상이하고, 이 결과, 제 2 그룹의 모든 미러는 동시에 필수적으로 이들의 최적 상태에 도달한다.
마이크로리소그래피 투영 노광 장치의 추가 개선에 있어서, 투영 노광 장치는 레이저가 동시에 열 광원인 플라즈마를 생성하기 위한 레이저를 포함한다. 이것은, 추가적인 열 광원을 추가할 필요가 없으며 사전에 존재하는 구성요소는 열 광원으로서 대신 사용될 수 있는 것을 의미한다.
이러한 실시예에서, 투영 광원은 노광 광원의 동작 동안 레이저의 방사선에 의해 플라즈마 상태로 여기(excite)되는 물질 액적(material droplet)을 포함하고, 여기서 물질 액적은, 레이저의 방사선을 반사한다는 점에 있어서, 열 광원으로서 레이저의 동작 동안 입력 소자로서 사용된다.
반대로, 일부 실시예에서, 입력 소자는 적어도 하나의 미러 상의 제 2 강도 분포를 생성하는 회절 광학 소자의 형태이다. 특히, 광 경로의 다운 스트림 평면 상의 우수한 강도 분포는, 회절 광학 소자의 구조를 선택함으로써 회절 광학 소자의 도움으로 성취될 수 있어서, 방사선의 적합한 각도 분포가 회절에 의해 얻어진다.
본 발명은 또한 상기 기재된 마이크로리소그래피 투영 노광 장치를 동작하는 방법에 관한 것이며, 이 방법은 이하의 단계를 포함한다:
- 제 2 스펙트럼 범위로부터의 방사선에 의한 조사로 기간(T1)에 걸쳐 적어도 하나의 미러를 예열하여, 적어도 하나의 미러 상에 제 2 온도 분포를 생성하는 단계,
- 광학 시스템의 도움으로, 제 1 스펙트럼 범위로부터의 방사선으로 감광성 기판을 노광하는 단계.
이러한 방법은, 적어도 하나의 미러가 사전에 예열되어서 노광 처리를 시작할 때 이것의 최적 상태에 가깝다는 장점을 갖는다.
일 개선에 있어서, 예열 단계 동안, 특히 내열 유리 또는 세란 또는 다른 세라믹을 포함하는 적외선 흡수재가, 적어도 하나의 미러의 전면에 피팅되어서 제 2 스펙트럼 범위로부터의 방사선의 흡수를 증가시킨다. 이것은, 제 2 스펙트럼 범위의 상이한 파장을 갖는 열 광원의 넓은 범위가 사용되도록 허용한다. 미러들의 반사율이 일부 파장에서 매우 높기 때문에, 미러들은 서서히 가열된다. 이러한 이유로, 적외선 흡수재가 사용되고, 이러한 파장에서 방사선에 대한 높은 흡수를 가지는 물질로 구성되어서, 급속 가열을 유발하고 열이 인접하게 배열된 미러에서 방출된다. 내열 유리, 세란 또는 다른 세라믹과 같은 물질은 낮은 열 전도성을 가진다는 추가적인 장점을 가지며, 이 결과, 적외선 흡수재 상의 온도 분포는 제 2 스펙트럼 범위의 입사 방사선의 강도 분포에 상응한다.
일 특정 추가 개발에 있어서, 제 1 온도 분포는, 적어도 하나의 미러 상의 지점에서 1 켈빈(Kelvin) 이하만큼, 제 2 온도 분포와 상이하고, 이러한 제 2 온도 분포는 제 1 스펙트럼 범위로부터의 방사선의 흡수로 인한 노광 단계 동안 적어도 하나의 미러에서 존재한다. 그러므로 예열 단계는 적어도 하나의 미러가 노광 광원의 동작 동안 평형 상태를 야기하는 온도 분포와 상당히 상이하지 않은 온도 분포에 도달하는 것을 야기한다. 그러므로, 미러는 노광 단계의 시작에서 이것의 최적 상태와 매우 작은 한도로 상이하다.
본 발명은 또한 마이크로리소그래피 투영 노광 장치를 동작하는 방법에 관한 것이며, 여기서 노광 광원은 플라즈마를 생성하기 위한 레이저를 포함하고, 이 레이저는 동시에 열 광원이다. 이러한 경우에, 이 방법은 이하의 단계를 포함한다:
- 입력 소자의 도입
- 열 광원으로서의 레이저 동작
- 입력 소자의 제거
- 노광 광원의 구성요소로서의 레이저의 동작.
이러한 방법은, 레이저 형태의 사전에 존재하는 구성요소가 열 광원으로 사용되었기 때문에, 추가적인 열 광원을 사용할 필요성을 회피할 수 있도록 한다.
본 발명은 도면들을 참조하여 더욱 상세하게 설명될 것이다.
도 1a는 노광 광원의 동작 동안의 본 발명에 따른 투영 노광 장치를 도시한다.
도 1b는 조명 옵틱스의 제 1 광학 소자의 평면도를 도시한다.
도 1c는 조명 옵틱스의 제 2 광학 소자의 도면이다.
도 2는 열 광원의 동작 동안의 본 발명에 따른 투영 노광 장치를 도시한다.
도 3a는 제 1 및 제 2 관련 강도 분포를 도시한다.
도 3b는 도 3a에 도시된 강도 분포의 비율을 도시한다.
도 4는 입사 파장의 함수로서 루테늄(ruthenium) 피복 층을 갖는 Mo/Si 층 적층의 반사율을 도시한다.
도 5는 평형 온도까지 미러 상의 한 지점에서의 온도 전개를 개략적으로 도시한다.
도 6은 노광 광원의 동작 동안의 본 발명에 따른 EUV 마이크로리소그래피 투영 노광 장치의 추가 실시예를 도시한다.
도 7은 열 광원의 동작 동안 본 발명에 따른 EUV 마이크로리소그래피 투영 노광 장치의 추가 실시예를 도시한다.
도 8a는 본 발명에 따른 EUV 마이크로리소그래피 투영 노광 장치의 추가 실시예를 도시하며, 이것은 동시에 열 광원으로서 사용되는 레이저를 갖는 노광 광원을 포함한다.
도 8b는 적외선 흡수재 및 그 섹션을 도시한다.
도 1에 도시된 오브젝트에 한 자릿수나 두 자릿수 번호가 제공되는 방식으로 참조 부호가 선택된다. 추가 도면에 도시된 오브젝트는, 마지막 두자릿수가 오브젝트를 표시하고 선행하는 자릿수가 이 오브젝트가 도시된 도면의 번호를 표시하는, 3 이상의 자릿수를 갖는 참조 부호를 갖는다. 그러므로, 다수의 도면에서 도시된 동일한 오브젝트들에 대한 참조 부호의 마지막 두 자릿수가 일치한다. 이러한 오브젝트에 관련된 기재는 선행하는 도면에 관한 기재에 포함될 수 있다.
도 1a는 조명 옵틱스(3) 및 투영 옵틱스(5)를 갖는, 본 발명에 따른 EUV 마이크로리소그래픽 투영 노광 장치(1)의 개선을 도시한다. 이런 경우에, 조명 옵틱스(3)는, 복수의 제 1 반사 패싯 소자(9)를 갖는 제 1 광학 소자(7) 및 복수의 제 2 반사 패싯 소자(13)를 갖는 제 2 광학 소자(11)를 포함한다. 조명 옵틱스(3)는 또한, 제 1 텔레스코프 미러(15) 및 제 2 텔레스코프 미러(17)를 포함하고, 이들은 모두 수직 입사로 동작되도록, 즉, 방사선이 0˚와 45˚사이의 입사 각에서 양쪽 미러에 충돌하도록 배열된다. 이런 경우에, 입사 각도는 반사 광학 표면에 대한 법선과 입사 방사 사이의 각도를 의미한다. 편향 미러(19)는 빔 경로에서 그 다음에 배열되고 오브젝트 평면(23) 상의 오브젝트 필드(21) 상으로 충돌하는 방사선을 편향시킨다. 반사 레티클(22)은 이런 경우에 오브젝트 필드에 그 지점에 배열된다. 편향 미러(19)는 그레이징 입사(grazing incidence)로 동작하고, 즉, 방사선은 45˚내지 90˚ 사이의 입사 각도로 미러에 충돌한다. 반사 구조화된 마스크, 소위 레티클은, 오브젝트 필드(21)의 그 지점에 배열되고 투영 옵틱스(5)의 도움으로 오브젝트 평면(25) 상에 이미징된다. 이미징에 의해 노광된 감광성 층을 갖는 감광성 기판이 이미지 평면상에 위치된다. 투영 옵틱스(5)는 6개의 미러(27, 29, 31, 33, 35, 37)를 포함한다. 투영 옵틱스(5)의 모든 6개의 미러는 광학축(39)에 대해 회전 대칭인 표면을 따라 나아가는 반사 광학 표면을 갖는다.
도 1b는 제 1 광학 소자(7)의 도를 도시하고, 이 소자는 복수의 제 1 반사 패싯 소자(9)를 포함한다. 제 1 반사 패싯 소자(9)의 각각은 입사 방사선의 반사를 위한 반사 표면을 갖는다.
도 1c는 복수의 제 2 반사 패싯 소자(13)를 갖는 제 2 광학 소자(11)의 상응하는 도를 도시한다.
도 1a에 도시된 투영 노광 장치는 또한 제 1 광학 소자(7)에 방사선을 보내는 5nm 내지 15nm의 제 1 스펙트럼 범위의 방사선을 생성하기 위한 노광 광원(43)을 포함한다. 이런 경우에 노광 광원(43)은 소스 플라즈마(45) 및 콜렉터 미러(47)를 포함한다. 노광 광원(43)은 다양한 형태로 구성될 수 있다. 도면은 레이저 플라즈마 소스(LLP)를 도시한다. 이러한 소스 형태는 미리결정된 지점에 적용되는 액적 생성기(49)에 의해 주석(tin)으로부터 작은 물질 액적을 생성함으로써 타이트하게 바운딩된 소스 플라즈마(45)를 생성한다. 여기서, 물질 액적은 고에너지 레이저(51)로 조사되고, 이 결과, 물질은 플라즈마 상태로 변경되며, 5nm 내지 15nm의 파장 범위의 방사선을 방출한다. 이런 경우에, 레이저(51)는, 레이저 방사선이 물질 액적을 충돌시키기 전에 콜렉터 미러의 개구(53)를 통과하도록 배열될 수 있다. 예시로서, 10.6μm의 파장을 갖는, 즉 적외선 범위의 CO2 레이저가 레이저(51)로서 사용된다.
대안으로, 노광 광원(43)은 방전원(discharge source)의 형태가 될 수도 있으며, 여기서 소스 플라즈마(45)는 방전에 의해 생성된다. 콜렉터 미러(49) 및 제 1 반사 패싯 소자(9)가 광학적 효과를 가져서, 소스 플라즈마(45)의 이미지는 제 2 광학 소자(11)의 제 2 반사 소자(13)의 지점들에서 생성된다. 한편, 이러한 목적으로, 콜렉터 미러(49)와 제 1 패싯 소자(9)의 초점 거리는 공간적 거리에 상응하도록 선택된다. 예컨대, 이것은 제 1 반사 패싯 소자(9)의 반사 광학 표면에 적합한 곡률을 제공함으로써 행해진다. 다른 한편, 제 1 반사 패싯 소자(9)는 법선 벡터(normal vector)를 갖는 반사 광학 표면을 가지며, 이 벡터의 방향은 공간에서의 반사 광학 표면의 배향을 정의하고, 제 1 패싯 소자(9)의 반사된 표면의 법선 펙터는, 제 1 패싯 소자(9)에 의해 반사된 방사선이 관련된 제 2 반사 패싯 소자(13)를 충돌하게 배향된다. 제 2 광학 소자(11)는 조명 옵틱스(3)의 동공 평면상에 배열되고, 옵틱스(3)는 미러들(15, 17, 19)의 도움으로 출구 동공 평면상에 이미징된다. 이런 경우에, 조명 옵틱스(3)의 출구 동공 평면은 실제로 투영 옵틱스(5)의 입구 동공 평면(59)에 상응한다. 그러므로, 제 2 광학 소자(11)는 투영 옵틱스(5)의 입구 동공 평면(59)의 광학적 켤레인 평면상에 위치한다. 이런 이유로, 제 2 광학 소자(11) 상의 방사선의 강도 분포와 오브젝트 필드(21)의 영역의 방사선의 각도 의존적 강도 분포 사이의 단순한 관계가 존재한다. 이런 경우에, 투영 옵틱스(5)의 입구 동공 평면은, 주광선(61)이 오브젝트 필드(21)의 중앙 지점에서 광학 축(39)과 교차하는, 광학 축(39)에 직각인 평면으로 정의된다.
미러들(15, 17, 19)을 포함하는, 다운스트림 광학 시스템 및 제 2 패싯 소자(13)의 목적은, 오브젝트 필드(21)에서 수퍼임포징된 제 1 패싯 소자(9)를 이미징하는 것이다. 이런 경우에, 수퍼임포징된 이미징은, 제 1 반사 패싯 소자(9)의 이미지는 오브젝트 평면상에 생성되고 적어도 부분적으로 거기에 중첩되는 것을 의미한다. 이러한 목적으로, 제 2 반사 패싯 소자(13)는 법선 벡터를 갖는 반사 광학 표면을 가지며, 이 벡터의 방향은 공간에서의 반사 광학 표면의 배향을 정의한다. 각각의 제 2 패싯 소자(13)에 있어서, 법선 벡터의 방향은, 관련된 제 1 패싯 소자(9)가 오브젝트 평면(23) 상의 오브젝트 필드(21)에 이미징되게 선택된다. 제 1 패싯 소자(9)가 오브젝트 필드(21)에 이미징되기 때문에, 조명된 오브젝트 필드(21)의 형상은 제 1 패싯 소자(9)의 외부 형상에 상응한다. 그러므로, 제 1 패싯 소자(9)의 외부 형상은, 일반적으로 곡면 형상을 가지도록 선택되어서, 조명된 오브젝트 필드(21)의 긴 경계선은 투영 옵틱스(5)의 광학 축(39) 주변에서 원형의 호(arc) 형태로 필수적으로 나아간다.
미러들(47, 7, 11, 15, 17, 19, 22, 27, 29, 31, 33, 35 및 37)은 광 경로를 따라 제 1 스펙트럼 범위로부터의 방사선을 가이드하기 위한 미러들의 그룹을 형성한다. 이러한 경우, 반사 레티클(22)은 마찬가지로 미러가 되는 것으로 이해된다. 이러한 응용의 목적에 있어서, 광 경로는 미러들의 조직화된 그룹을 의미하고, 그 순서는 노광 광원의 동작 동안 방사선이 미러들을 통과하는 시퀀스에 상응한다. 게다가, 이런 경우에, 이 그룹의 선생하는 것으로부터의 방사선은 조직화된 그룹의 각각의 미러 상에 반사된다. 조직화된 그룹(47, 7, 11, 15, 17, 19, 22, 27, 29, 31, 33, 35 및 37)은 그러므로 제 1 광 경로이다. 방사선이 미러(7, 11 및 15)를 연속하여 통과하므로, 조직화된 그룹(7, 11 및 15)은 마찬가지로 제 2 광 경로이다. 이런 경우에, 미러(7, 11, 15)의 그룹은 미러 그룹(47, 7, 11, 15, 17, 19, 22, 27, 29, 31, 33, 35 및 37)의 서브셋이므로, 제 2 광 경로가 제 1 광 경로에 완전히 포함된다. 조직화된 그룹(11, 7 및 15)은 반대로 시퀀스가 노광 광원(43)의 동작 동안 방사선의 정확한 전파 경로에 상응하지 않기 때문에 광 경로가 아니다. 마찬가지로, 조직화된 그룹(27, 29 및 33)은 미러(33) 상의 방사선이 미러(29) - 그룹 내의 선행하는 것임 - 가 아닌 미러(31)에 의해 반사되므로, 광 경로가 아니다.
노광 광원(43)의 동작 동안, EUV 마이크로리소그래피 투영 노광 장치의 모든 미러들(47, 7, 11, 15, 17, 19, 22, 27, 29, 31, 33, 35, 37)은 그것에 적용되는 5nm 내지 15nm의 제 1 스펙트럼 범위의 강도 분포를 갖는다. 이런 경우에, 각각의 미러는 그것과 관련된 제 1 강도 분포를 갖고, 이러한 분포는 빔 경로에서의 그 위치 및 노광 광원(43)의 형태에서 비롯한다. 콜렉터 미러(47)와 관련된 제 1 강도 분포는 예컨대 콜렉터 미러(47)와 소스 플라즈마(45) 간의 거리 및 제 1 스펙트럼 범위의 소스 플라즈마(45)의 방출 특성 뿐만 아니라 콜렉터 미러(47)의 곡률로부터 기인한다. 미러들과 관련되는 제 1 강도 분포가 다양한 미러에 적용되기 때문에, 미러들은 노광 광원(43)의 동작 동안 가열된다. 이것에 보상하기 위하여, 적절한 냉각이 미러들에 제공된다. 이런 경우에, 예컨대, 이것은, 유체 냉각과 같은 능동 냉각이나 방사된 열 방출을 위한 열 싱크에 의한 수동 냉각이 될 수 있다. 각각의 미러와 관련된, 제 1 스펙트럼 범위의 제 1 강도 분포는 시간에 걸쳐 일정하므로, 이것은 특정 시간(T1) 후 적절한 냉각과 함께 평형 상태를 야기하고, 이러한 평형상태에서, 시간에 걸쳐 일정한 제 1 온도 분포가 각각의 미러에 존재한다. 제 1 온도 분포를 향한 온도 상승은 미러의 광학 특성이 변하도록 유도한다. 예컨대, 미러 기판의 열적 확장은 미러의 곡률 반경의 변화를 유도한다. 이와 같은 변화는 투영 옵틱스 및 광학 옵틱스의 광학적 특성의 계산에서 미리 먼저 고려된다. 그러나, 이것은, 투영 옵틱스 및 조명 옵틱스의 광학적 특성이 미러들이 먼저 제 1 온도 분포에 도달할 때만 최적이 되는 것을 유도한다. 노광 광원이 스위치 온(switch on) 된 후에, 그러므로 조명 옵틱스 및 투영 옵틱스를 포함하는 광학적 시스템이 이것의 최적 상태에 도달하기 전에 시간(T1)까지가 걸린다. 이런 이유로, 본 발명은 열 광원의 도움으로 예열될 미러들을 제공한다.
도 2는 본 발명에 따른 이러한 열 광원의 제 1 개선을 도시한다. 이러한 실시예에서, 열 광원(255)은 1.2μm의 파장을 갖는 적외선 광원의 형태이다. 제 2 스펙트럼 범위의 열 광원(255)으로부터 방출된 방사선은 소스 플라즈마 위치에 가깝게 배열된 입력 소자(257)와 충돌한다. 이러한 경우, 입력 소자(257)는 반사 그레이팅(reflective grating)의 형태이고, 그레이팅 스트러트(grating strut)는 1.2μm의 파장에서의 적외선 방사선의 회절이 그레이팅으로부터 다운스트림에 방사선의 각도 분포를 야기하고, 이것의 결과, 제 2 스펙트럼 범위의 제 2 관련 강도 분포가 콜렉터 미러(247)에 적용되도록 배치된다. 이러한 경우, 콜렉터 미러의 제 2 관련 강도 분포는 위치 독립적 팩터에 의해 필수적으로 콜렉터 미러의 제 1 관련된 제 1 강도 분포와 상이하다. 이것은, 노광 광원(251)이 시간(T1)까지 동작된 바와 같이, 콜렉터 미러(247)가 가열되어서 제 2 온도 분포가 콜렉터 미러(247) 상에서 기간(T2) 후에 존재하는 것, 즉, 제 2 온도 분포는 제 1 온도 분포와 미러 상의 지점에서 1 켈빈 이하만큼 상이한 것을 의미한다. 이런 경우에, 열 광원(255)의 강도는 기간(T2)이 기간(T1)보다 짧도록 충분히 높게 선택된다. 콜렉터 미러(247)는 그러므로 이것의 미리결정된 최적 상태를 더욱 빠르게 취한다.
제 2 스펙트럼 범위의 방사선에 대한 미러들의 평균 반사율이 제 1 스펙트럼 범위의 미러들의 평균 반사율과 5% 포인트 이하만큼 상이한 것이 특히 유리하다. 이러한 경우, 콜렉터 미러(247)는 루테늄으로 구성된 피복 층을 갖는 몰리브덴 및 실리콘의 층들로 구성된 다층 코팅을 갖는다. 이것은 13.5nm의 파장에서의 방사선에 대한 약 67%의 양호한 반사율을 야기한다. 동시에, 열 광원의 파장은 1.2μm이 되도록 선택되어서, 파장 1.2μm에서의 방사선에 대한 콜렉터 미러(247)의 반사율은 62% 내지 72%의 범위이고, 즉, 이것은 5% 포인트 이하만큼 상이하다. 이것은, 제 2 스펙트럼 범위의 열 광원으로부터의 방사선이 제 1 스펙트럼 범위의 노광 광원으로부터의 방사선과 정확하게 동일한 방식으로 콜렉터 미러(247)에 의해 변형되는 것을 야기한다. 그러므로, 이것은, 제 1 광학 소자(207)가 열 광원의 동작 동안 이것에 적용되는 제 2 스펙트럼 범위의 제 2 관련된 강도 분포를 갖고, 이러한 분포는 위치 의존적 팩터에 의해 필수적으로 노광 광원의 동작 동안 제 1 광학 소자에 적용되는 제 1 강도 분포와 상이한 것을, 필수적으로 의미한다. 상응하는 상황은 또한 추가 미러들 상의 코팅에도 적용되고, 이것의 결과, 위치 독립적 팩터에 의해 필수적으로 제 1 스펙트럼 범위의 제 1 관련된 강도 분포와 상이한 제 2 관련 강도 분포는 또한 제 2 광학 소자(211), 제 1 및 제 2 텔레스코프 미러(215 및 217)에 존재하고 열 광원의 동작 동안 폴딩 미러(219)에 존재한다. 폴딩 미러(219)에는, 이것이 그레이징 입사로 동작하므로, 루테늄으로 구성된 순수 금속성 코팅이 제공된다. 이러한 코딩은 또한 13.5nm의 파장에서의 방사선으로부터의 반사율이 1.2μm의 파장에서의 방사선에 대한 반사율과 필수적으로 동일해지는 것을 야기한다. 구조화된 마스크, 소위 레티클(222)은 EUV 마이크로리소그래피 투영 노광 장치의 동작 동안 오브젝트 필드(221) 상에서 위치된다. 이러한 마스크는 투영 옵틱스(205)에 의한 오브젝트 평면(225) 상에 이미징된다. 이러한 경우에, 마스크에 충돌하는 EUV 방사선은 마스크의 구조 상에서 회절되어서, 투영 옵틱스(227, 229, 231, 233, 235, 237)의 미러들에 적용되는 강도 분포가 마스크의 정확한 형태에 의존한다. 그러므로, 열 광원(255)의 동작 동안, 열 마스크는 그러므로 오브젝트 필드(221)에서 사용되어 제 2 스펙트럼 범위의 방사선의 상응하는 회절을 유발한다. 이러한 목적으로, 열 마스크는, EUV 마스크의 이 구조들에 상당한 구조를 가지며, 열 마스크의 구조가 파장의 비율에 해당하게 더 큰, 즉 1.2μm를 13.5nm으로 나눈 팩터만큼 더 크다는 차이가 있다. 이것은, 노광 광원의 동작 동안 위치 독립적 팩터에 의해 필수적으로 제 1 스펙트럼 범위의 개별 미러 상의 강도 분포와 상이한, 제 2 스펙트럼 범위의 강도 분포가 열 광원의 동작 동안 제 1 대물렌즈 미러(227) 및 이것을 따르는 대물렌즈 미러들에 존재하는 것을 초래한다.
마찬가지로 도 2에 도시된 선택적인 변형에서, EUV 마이크로리소그래피 투영 노광 장치는 제 1 편광기(241a) 및 제 2 편광기(241b)를 갖는다. 2개의 편광기는 제 2 스펙트럼 범위의 방사선의 편광을 위한 그레이팅 기간을 갖는 와이어 그레이팅 편광기이다. 1.2μm의 파장에서의 방사선을 방출하는 열 광원의 이러한 케이스에서, 그레이팅 기간은 그러므로 0.6μm이다. 제 2 스펙트럼 범위의 방사선은 제 1 편광기(241a)에 의해 선형으로 편광된다. 제 2 광선 범위의 입력 방사선은 제 2 편광기(241b)의 도움으로 완전히 흡수되고, 제 2 편광기는 제 1 편광기의 지점에서의 방사선의 편광 방향에 대하여 90˚로 회전하도록 배열된다. 이것은, 제 2 스펙트럼 범위의 방사선이 이미지 평면(225) 상의 감광성 층을 갖는 기판에 도달하지 않는 것을 의미한다. 그러므로, 이미지 평면(225) 상의 감광성 층을 갖는 기판의 바람직하지 않은 노광을 유발하는 제 2 스펙트럼 범위의 방사선 없는 동시에 노광 광원 및 열 광원을 동작하는 것이 가능하다. 그러므로, 열 원은 미러를 예열하기 위해 우선 동작될 수 있다. 열 광원과 노광 광원 모두 이로써 제 2 단계에서 동작될 수 있다. 이러한 동작 상태에서, 구조화된 마스크는 제 1 스펙트럼 범위의 방사선을 사용하여 먼저 이미징될 수 있다. 그러나, 미러가 자신의 제 1 온도 분포에 아직 도달하지 않았으므로, 이러한 이미징은 감소된 품질로 발생한다. 조사가, 미러가 제 1 온도 분포와 미러 상의 지점에서 1 켈빈 이하만큼 상이한 일 온도 분포를 취하는 것을 야기한 직후, 열 광원이 스위치 오프될 수 있다. 편광기(241a 및 241b)는 빔 경로로부터 제거될 수 있다. 지연에 의한 열 광원의 스위칭 오프 대신에, 열 광원의 강도는 연속적으로 감소될 수도 있다.
도 3a의 실선은 도 1의 콜렉터 미러(47) 상의 제 1 관련 강도 분포를 개략적으로 도시한다. 이러한 강도 분포는 중심점에 대해 회전 대칭이므로, 강도는 중심점으로부터의 거리의 함수로서 오직 도시된다. 일반적으로, 미러의 강도 분포는 미러 표면상의 지점을 특징으로 하는 2개의 독립된 변수(x,y)의 함수이다. 파선은 콜렉터 미러와 관련된 제 2 강도 분포를 나타내고, 이러한 제 2 강도 분포는 열 광원의 동작 동안 콜렉터 미러에 적용된다. 도 3b는 제 1 및 제 2 강도 분포가 위치 독립적 팩터에 의해 필수적으로 상이하다는 것을 도시한다. 이러한 목적으로, 제 1 강도 분포에 대한 제 2 강도 분포의 비율은 중심점으로부터의 거리의 함수로서 나타난다. 이 비율은 팩터의 10% 이하만큼 콜렉터 미러에 대해 변화한다. 이런 경우에, 콜렉터 미러 상의 임의의 지점에서의 비율은 2.7 내지 3.3이다.
예시로서, 도 4의 실선은 입사 파장의 함수로서 루테늄 피복 층을 갖는 Mo/Si 층의 반사율을 도시한다. 상부 도면은 100nm 내지 3500nm의 범위를 도시하고, 하부 도면은 100nm 내지 12500nm의 범위를 도시한다. 더욱이, 65%의 반사율이 파선으로 표시된다. 루테늄 도포 층을 갖는 몰리브덴 및 실리콘의 전형적인 층 적층은 13.5nm의 파장에서의 방사선에 대한 약 65%의 반사율을 갖는다. 반사율은 우선 긴 파장에서 감소한다. 100nm에 대한 도 4에 도시된 예시의 반사율은 약 10%이다. 더욱 긴 파장에서, 이와 같은 층 적층의 반사율은 금속성 층에 의해 주로 결정된다. 그러므로, 이것은, 50μm를 초과하는 파장에 대한 매우 양호한 반사율을 초래한다. 이러한 이유로, 반사 곡선은 적어도 한번은 65% 표시를 교차하고, 그 결과 100nm 내지 50μm의 범위에서 적어도 하나의 파장이 존재하고, 여기서 반사율은 마찬가지로 65%이다. 이러한 경우에서, 이것은 1.2μm의 파장이다. 정확한 층 시스템에 따라서, 이러한 파장은 변할 수 있어서, 이론적인 계산에 의해서나 실험적으로 적절하게 결정된다. 이것은 적어도 하나의 파장이 결정되도록 허용하고, 여기서 제 2 스펙트럼 범위의 중간 반사율은 제 1 스펙트럼 범위의 미러의 평균 반사율과 5% 포인트 이하만큼 상이하다.
도 5는 미러 상의 한 지점에서 평형 온도를 향하는 온도 전개를 개략적으로 도시한다. 미러가 이 지점에서 자신의 평형 온도에 도달하기 위해서는 노광 광원의 동작 동안 시간(T1)이 걸리는 반면에, 열 광원의 동작(파선)은, 온도가 시간(T2) 후에 이미 도달한 것을 의미한다. 그러므로, 미러는 시간(T2)에 이미 자신의 최적 상태가 되어서, 노광이 시작되는 것을 허용한다.
도 6은 본 발명의 EUV 마이크로리소그래피 투영 노광 장치의 추가 실시예를 도시한다. 이런 경우에, 투영 노광 장치(601)는 조명 옵틱스(603) 및 투영 옵틱스(605)를 포함한다. 도 1a에 도시된 투영 옵틱스(5)와는 반대로, 도 6에 도시된 투영 옵틱스(605)는 네거티브 입구 동공 백 포커스 거리를 갖는다. 이것은, 투영 옵틱스(605)의 입구 동공 평면(659)이 광 경로 방향에서 오브젝트 필드(621) 뒤에 배열되는 것을 의미한다. 오브젝트 필드(621)에서의 구조화된 마스크 상의 반사에 악영향을 주지 않고, 주광선(661)이 더욱 연장되는 경우, 주 광선은 평면(659a) 상에서 광학 축(639)과 교차한다. 오브젝트 필드(621)의 지점에서의 구조화된 마스크 및 편향 미러(619) 상의 반사가 고려되는 경우, 평면(659a)은 입구 동공 평면(659)와 일치한다. 네거티브 입력 동공 백 포커스 거리를 갖는 이와 같은 투영 옵틱스의 경우, 오브젝트 필드(621)의 지점에서의 상이한 오브젝트 필드 지점에 관한 주광선은 광 방향에서의 발산 광선 프로파일을 갖는다. 이와 같은 투영 옵틱스는 US2009/0079952A1에서 알려져 있다. 도 1a에 도시된 조명 옵틱스로부터의 추가 차이점은, 소스 플라즈마(645)가 콜렉터 미러(649)에 의해 중간 포커스(663)에서 우선 이미징되는 것이다. 이러한 중간 포커스(663)는 제 1 패싯된 광학 소자(607)의 제 1 반사 패싯 소자(609)에 의한 제 2 광학 소자(611)의 제 2 반사 패싯 소자(613) 상에 이미징된다.
도 7은 열 광원(755)이 투영 노광 장치의 이러한 실시예에 입력되고, 입력 소자(757)가 도입되어 중간 포커스(663)의 지점에 위치되는 방법을 도시한다. 입력 소자는 다시 회절 구조를 갖는 반사 광학 소자의 형태가 되고, 이 형태로, 제 1 패싯된 광학 소자(707)는 이것에 적용되는 제 2 관련 강도 분포를 가지고, 이 분포는 위치 독립적 팩터에 의해 필수적으로 제 1 관련 강도 분포와 상이하며, 이러한 팩터는 노광 광원의 동작 동안 제 1 패싯된 광학 소자(707)에 적용된다. 이러한 개선에서, 또한, 열 광원(755)의 파장 및 미러들(707, 711, 719, 727, 729, 731, 733, 735 및 737) 상의 코팅은, 제 2 스펙트럼 범위, 즉, 1μm 내지 50μm 내의 방사선에 대한 미러의 평균 반사율은, 열 광원의 동작 동안 5% 포인트 이하만큼, 제 1 스펙트럼 범위, 즉, 5nm 내지 15nm 내의 범위로 미러의 평균 반사율과 상이하도록 선택된다. 이것은, 빔 경로에서 제 1 반사 패싯된 광학 소자(707)로부터의 다운스트림에 배열된 미러들이 이것에 적용된 제 1 스펙트럼 범위의 제 2 관련 강도 분포 또한 갖도록 유도하고, 이 분포는 위치 독립적 팩터에 의해 필수적으로 개별 미러와 관련된 제 1 강도 분포와 상이하다.
도 8a는 본 발명에 따른 EUV 마이크로리소그래피 투영 노광 장치의 추가 개선을 도시한다. 이러한 개선에서, 노광 광원(843)은 동시에 열 광원인 10.6μm의 파장에서의 CO2 레이저(851)를 포함한다. 노광 광원의 동작 동안, 액적 생성기(849)는 레이저(851)로부터의 레이저 방사선을 사용하여 물질 액적을 생성하고 소스 플라즈마(845)의 지점에 이 물질 액적을 옮겨서 물질 액적을 플라즈마 상태로 변경하고, 노광 광원(843)은 레이저(841)가 열 광원으로 동작하는 추가 동작 모드를 갖는다.
그러나, 필터 소자가 이와 같은 노광 광원의 동작 동안 빔 경로에 전형적으로 위치되어서 제 2 스펙트럼 범위의 레이저 방사선의 잔여 구성요소를 필터링하는 것을 주목해야 한다. 레이저가 열 광원으로 동작되기 전에, 이러한 필터 소자는 빔 경로로부터 제거되어야 한다. 예시로서, 레이저는 더 긴 펄스 기간에 이것을 설정함으로써 열 광원으로서 동작될 수 있다. 레이저(851)가 더 긴 펄스 기간을 가지는 경우, 물질 액적은 레이저 펄스의 시작에서 그 플라즈마 상태로 변화되고, 그 결과 레이저 펄스의 나머지 부분은 콜렉터 미러(847)의 방향으로 소스 플라즈마(845)로부터 재반사된다. 5nm 내지 15nm의 제 1 스펙트럼 범위의 방사선에 더하여, 이것은, 제 2 스펙트럼 범위(10.6μm)의 방사선의 높은 구성요소를 초래하고 양쪽 모두 콜렉터 미러(847)로 보내지고 유사한 각도 분포를 갖는다. 그러나, 미러가 파장 10.6μm에서의 방사선에 대하여 95% 초과하는 반사율을 가지므로(도 4 참조), 제 2 스펙트럼 범위의 방사선의 오직 작은 부분이 미러에 의해 정상적으로 흡수된다. 이것을 보상하기 위하여, 미러들은 적외선 흡수재(865)를 각각 제공받는다. 이들은 특히 내열 유리 또는 세란 또는 다른 세라믹으로 구성된 적절하게 형성된 소자이다. 이러한 소자는 가열될 미러의 전면에 배열된다. 이러한 물질은 파장 10.6μm에서의 방사선에 대한 높은 흡수를 가지고, 이 결과 이들은 급속 가열되며, 이 물질과 인접하게 배열된 미러들에 열을 방출한다. 더욱이, 이러한 물질들은 낮은 열 전도성을 갖고, 그 결과, 적외선 흡수재의 온도 분포는 10.6μm 영역에서의 입사 방사선의 강도 분포에 상응한다. 인접 미러는 이런 경우에 적외선 흡수재로부터 방출된 0.5μm 내지 3μm 의 범위의 열적 방사선에 의해 가열된다. 그러나, 적외선 흡수재의 흡수는 10.6μm의 영역의 방사선의 소량이 광 경로의 개별적으로 다음의 미러의 방향에서 반사될 정도로 높다. 이것을 보상하기 위하여, 반사기 포인트(867)가 도 8b에 상세히 도시된 적외선 흡수재의 표면에 배열된다. 도 8b의 좌측 영역은 반사기 포인트(867)를 갖는 적외선 흡수재(865)의 도를 도시하고, 우측 영역은 좌측에 도시된 파선을 따르는 적외선 흡수재를 통하는 섹션을 도시한다. 예시로서, 반사기 포인트는 금속성의 코팅을 갖는 적외선 흡수재의 표면 상의 영역이다. 그러므로 이러한 영역은 10.6μm의 영역 상에서 방사선의 높은 반사율을 갖는다. 10.6μm의 파장에서의 방사선에 대한 적외선 흡수재의 평균 반사율은 그러므로 적외선 흡수재(865) 상의 반사기 포인트(867)의 밀도 분포에 의해 설정된다. 반사기 포인트가 약 100%의 반사율을 가지고 적외선 흡수재가 약 0%의 반사율을 가지는 경우, 평균 반사율은 아래에 위치된 적외선 흡수재(865)의 영역에 대한 반사기 포인트(867)의 영역의 비율에 필수적으로 상응한다.

Claims (14)

  1. EUV-마이크로리소그래피 투영 노광 장치(1, 201, 601, 701 및 801)로서,
    - 5nm 내지 15nm의 제 1 스펙트럼 범위의 방사선을 생성하기 위한 노광 광원(43, 234, 643, 743 및 843),
    - 1μm 내지 50μm의 제 2 스펙트럼 범위의 방사선을 생성하기 위한 열 광원(255, 655 및 755) 및
    - 제1 광 경로를 따라 상기 제 1 스펙트럼 범위로부터의 방사선을 가이드하기 위한 미러들의 제 1 그룹을 가져서, 상기 제 1 그룹의 각각의 미러가 상기 노광 광원(43, 234, 643, 743 및 843)의 동작 동안 상기 제 1 스펙트럼 범위에서 상기 각각의 미러에 적용된 제 1 강도 분포를 가질 수 있는, 광학 시스템을 포함하고,
    상기 열 광원은, 상기 제 1 그룹의 적어도 하나의 미러가 상기 열 광원의 동작 동안 상기 적어도 하나의 미러에 적용된 상기 제 2 스펙트럼 범위의 제 2 강도 분포를 가질 수 있도록 배열되며,
    상기 제 1 강도 분포는 위치 독립적 팩터에 의해 상기 제 2 강도 분포와 상이한 것을 특징으로 하며,
    상기 노광 광원(43, 234, 643, 743 및 843)의 동작 동안의 상기 제 2 스펙트럼 범위의 방사선에 대한 상기 적어도 하나의 미러의 평균 반사율은 상기 열 광원(255, 655 및 755)의 동작 동안의 상기 제 1 스펙트럼 범위의 방사선에 대한 상기 적어도 하나의 미러의 평균 반사율과 5% 포인트 이하만큼 상이한 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  2. 청구항 1에 있어서, 상기 열 광원(255, 655 및 755)으로부터의 방사선을 수신하고 이 방사선을 상기 제 1 그룹의 적어도 하나의 미러에 전달하는 입력 소자(257 및 757)를 포함하는, EUV-마이크로리소그래피 투영 노광 장치.
  3. 청구항 2에 있어서, 상기 입력 소자(257 및 757)는 상기 적어도 하나의 미러 상에 상기 제 2 강도 분포를 생성하기 위한 회절 광학 소자의 형태인 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  4. 삭제
  5. 청구항 2 또는 청구항 3에 있어서, 상기 마이크로리소그래피 투영 노광 장치는 상기 적어도 하나의 미러를 포함하는 제 2 그룹 - 적어도 2개의 미러 포함 - 을 갖고,
    상기 제 2 그룹은 상기 제 1 그룹의 서브셋이고,
    상기 열 광원(255, 655 및 755) 및 상기 입력 소자(257 및 757)는, 상기 열 광원(255, 655 및 755)으로부터의 상기 방사선이 상기 제 2 그룹의 모든 미러를 통해 제 2 광 경로를 따라 가이드되도록 배열되며,
    상기 제 2 광 경로는 상기 제 1 광 경로에 완전히 포함되는 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  6. 청구항 5에 있어서, 상기 노광 광원(43, 234, 643, 743 및 843)의 동작 동안의 상기 제 2 스펙트럼 범위의 방사선에 대한 상기 제 2 그룹의 각각의 미러의 평균 반사율은, 상기 열 광원(255, 655 및 755)의 동작 동안의 상기 제 1 스펙트럼 범위의 방사선에 대한 상기 제 2 그룹의 동일한 미러의 평균 반사율과 5% 포인트 이하만큼 상이한 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  7. 청구항 5에 있어서,
    상기 제 2 그룹의 각각의 미러는 상기 열 광원(255, 655 및 755)의 동작 동안 각각의 미러에 적용된 상기 제 2 스펙트럼 범위에서의 상기 제 2 강도 분포를 가질 수 있고, 여기서 상기 제 2 그룹의 각각의 미러에 있어서, 상기 제 1 강도 분포는 상기 제 2 강도 분포와 상기 각각의 미러에 대해 특정한 팩터만큼 상이한 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  8. 청구항 7에 있어서, 상기 제 2 그룹의 모든 미러의 특정 팩터는 10% 이하만큼 상이한 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  9. 청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
    상기 노광 광원(843)은, 플라즈마를 생성하기 위한 레이저(851)를 포함하며 상기 레이저는 동시에 상기 열 광원인 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  10. 청구항 9에 있어서, 상기 열 광원으로부터 방사선을 수신하고 이 방사선을 상기 제 1 그룹의 상기 적어도 하나의 미러에 가이드하는 입력 소자를 포함하되, 상기 노광 광원(843)이 상기 노광 광원(843)의 동작 동안 상기 레이저(851)의 방사선에 의해 플라즈마 상태로 여기되는 물질 액적을 포함하는 것과, 여기서 상기 물질 액적을 열 광원으로서 레이저의 동작 동안 입력 소자로서 사용되고, 상기 물질 액적이 상기 레이저(851)의 방사선을 반사하는 것을 특징으로 하는, EUV-마이크로리소그래피 투영 노광 장치.
  11. 청구항 1 내지 청구항 3 중 어느 한 항에 기재된 EUV 마이크로리소그래피 투영 노광 장치를 동작하기 위한 방법으로서,
    - 상기 제 2 스펙트럼 범위로부터의 방사선에 의한 조사로 기간(T1)에 걸쳐 적어도 하나의 미러를 예열하여, 적어도 하나의 미러 상에 제 1 온도 분포를 생성하는 단계,
    - 상기 광학 시스템의 도움으로, 상기 제 1 스펙트럼 범위로부터의 방사선으로 감광성 기판을 노광하는 단계를 포함하는, 방법.
  12. 청구항 11에 있어서, 상기 예열 단계 동안, 내열 유리 또는 세란 또는 일부 다른 세라믹을 포함하는 적외선 흡수재(865)가, 적어도 하나의 미러의 전면에 고정되어서 상기 제 2 스펙트럼 범위로부터의 방사선의 흡수를 증가시키는 것을 특징으로 하는, 방법
  13. 청구항 11에 있어서, 상기 제 1 온도 분포는, 적어도 하나의 미러 상의 지점에서 1 켈빈(Kelvin) 이하 만큼, 제 2 온도 분포와 상이하고, 상기 제 2 온도 분포는 상기 제 1 스펙트럼 범위로부터의 방사선의 흡수로 인해 상기 노광 단계 동안 적어도 하나의 미러에 존재하는 것을 특징으로 하는, 방법.
  14. 청구항 9에 기재된 EUV 마이크로리소그래피 투영 노광 장치를 동작하기 위한 방법으로서,
    - 입력 소자의 도입 단계,
    - 열 광원으로서의 레이저 동작 단계,
    - 상기 입력 소자의 제거 단계, 및
    - 상기 노광 광원(843)의 구성요소로서의 레이저의 동작 단계를 포함하는, 방법.
KR1020137008560A 2010-09-24 2011-09-02 열광원을 갖는 euv 마이크로리소그래피 투영 노광 장치 KR101858280B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US38605310P 2010-09-24 2010-09-24
DE102010041298.8 2010-09-24
US61/386,053 2010-09-24
DE102010041298A DE102010041298A1 (de) 2010-09-24 2010-09-24 EUV-Mikrolithographie-Projektionsbelichtungsanlage mit einer Heizlichtquelle
PCT/EP2011/065175 WO2012038239A1 (en) 2010-09-24 2011-09-02 Euv microlithography projection exposure apparatus with a heat light source

Publications (2)

Publication Number Publication Date
KR20130108333A KR20130108333A (ko) 2013-10-02
KR101858280B1 true KR101858280B1 (ko) 2018-05-15

Family

ID=44654087

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137008560A KR101858280B1 (ko) 2010-09-24 2011-09-02 열광원을 갖는 euv 마이크로리소그래피 투영 노광 장치

Country Status (4)

Country Link
US (1) US9588435B2 (ko)
KR (1) KR101858280B1 (ko)
DE (1) DE102010041298A1 (ko)
WO (1) WO2012038239A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011113521A1 (de) * 2011-09-15 2013-01-03 Carl Zeiss Smt Gmbh Mikrolithographische Projektionsbelichtungsanlage
JP6209518B2 (ja) 2011-09-21 2017-10-04 カール・ツァイス・エスエムティー・ゲーエムベーハー マイクロリソグラフィ投影露光装置のミラーの熱作動用の構成体
US9928263B2 (en) * 2013-10-03 2018-03-27 Google Llc Persistent shuffle system
TWI715039B (zh) * 2014-06-03 2021-01-01 荷蘭商Asml荷蘭公司 用於補償一曝光誤差的方法、元件製造方法、基板台、微影裝置、控制系統、用於量測反射率的方法、及用於量測一極紫外線輻射劑量的方法
DE102015211167A1 (de) 2015-06-17 2015-08-20 Carl Zeiss Smt Gmbh Verfahren zum Betreiben einer mikrolithographischen Projektionsbelichtungsanlage, sowie Projektionsbelichtungsanlage
DE102016209876A1 (de) * 2016-06-06 2017-04-27 Carl Zeiss Smt Gmbh Projektionsbelichtungsanlage für die Halbleiterlithographie mit einer Heizlichtquelle und Verfahren zum Heizen einer Komponente der Projektionsbelichtungsanlage
DE102016218746A1 (de) 2016-09-28 2016-11-24 Carl Zeiss Smt Gmbh Verfahren zum Betreiben einer mikrolithographischen Projektionsbelichtungsanlage, sowie Projektionsbelichtungsanlage
WO2019042656A1 (en) 2017-09-04 2019-03-07 Asml Netherlands B.V. HEATING SYSTEM FOR AN OPTICAL COMPONENT OF A LITHOGRAPHIC APPARATUS
US10747119B2 (en) * 2018-09-28 2020-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. Apparatus and method for monitoring reflectivity of the collector for extreme ultraviolet radiation source
DE102018216870A1 (de) * 2018-10-01 2020-04-02 Carl Zeiss Smt Gmbh Verfahren zum Herstellen eines Beleuchtungssystems für eine EUV-Anlage
KR102678312B1 (ko) * 2018-10-18 2024-06-25 삼성전자주식회사 Euv 노광 장치와 노광 방법, 및 그 노광 방법을 포함한 반도체 소자 제조 방법
DE102019215340A1 (de) * 2019-10-07 2021-04-08 Carl Zeiss Smt Gmbh Vorrichtung und Verfahren zum Abschirmen von thermisch zu isolierenden Komponenten in mikrolithographischen Projektionsbelichtungsanlagen
DE102020213983A1 (de) * 2020-11-06 2022-05-12 Carl Zeiss Smt Gmbh Optisches System, insbesondere in einer mikrolithographischen Projektionsbelichtungsanlage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018269A1 (en) * 2001-08-16 2005-01-27 Carl Zeiss Smt Ag Optical system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69220868T2 (de) * 1991-09-07 1997-11-06 Canon K.K., Tokio/Tokyo System zur Stabilisierung der Formen von optischen Elementen, Belichtungsvorrichtung unter Verwendung dieses Systems und Verfahren zur Herstellung von Halbleitervorrichtungen
EP0823662A2 (en) 1996-08-07 1998-02-11 Nikon Corporation Projection exposure apparatus
DE19963588C2 (de) 1999-12-29 2002-01-10 Zeiss Carl Optische Anordnung
DE10000191B8 (de) 2000-01-05 2005-10-06 Carl Zeiss Smt Ag Projektbelichtungsanlage der Mikrolithographie
WO2005022614A1 (ja) 2003-08-28 2005-03-10 Nikon Corporation 露光方法及び装置、並びにデバイス製造方法
JP4666908B2 (ja) 2003-12-12 2011-04-06 キヤノン株式会社 露光装置、計測方法及びデバイス製造方法
US7098994B2 (en) * 2004-01-16 2006-08-29 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
TWI396225B (zh) * 2004-07-23 2013-05-11 尼康股份有限公司 成像面測量方法、曝光方法、元件製造方法以及曝光裝置
WO2006119977A1 (en) 2005-05-13 2006-11-16 Carl Zeiss Smt Ag A six-mirror euv projection system with low incidence angles
US20080049202A1 (en) 2006-08-22 2008-02-28 Carl Zeiss Smt Ag Projection exposure apparatus for semiconductor lithography
US7903234B2 (en) * 2006-11-27 2011-03-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
JP5329520B2 (ja) 2007-03-27 2013-10-30 カール・ツァイス・エスエムティー・ゲーエムベーハー 低角度で入射する補正光を用いる補正光学素子
EP2048540A1 (en) 2007-10-09 2009-04-15 Carl Zeiss SMT AG Microlithographic projection exposure apparatus
US9052615B2 (en) * 2008-08-29 2015-06-09 Gigaphoton Inc. Extreme ultraviolet light source apparatus
EP2161725B1 (en) * 2008-09-04 2015-07-08 ASML Netherlands B.V. Radiation source and related method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018269A1 (en) * 2001-08-16 2005-01-27 Carl Zeiss Smt Ag Optical system

Also Published As

Publication number Publication date
KR20130108333A (ko) 2013-10-02
DE102010041298A1 (de) 2012-03-29
WO2012038239A1 (en) 2012-03-29
US20130222780A1 (en) 2013-08-29
US9588435B2 (en) 2017-03-07

Similar Documents

Publication Publication Date Title
KR101858280B1 (ko) 열광원을 갖는 euv 마이크로리소그래피 투영 노광 장치
KR101572930B1 (ko) 방사 시스템, 방사선 콜렉터, 방사 빔 컨디셔닝 시스템, 방사 시스템용 스펙트럼 퓨리티 필터, 및 스펙트럼 퓨리티 필터 형성 방법
JP4404508B2 (ja) リソグラフィ投影装置
TWI616724B (zh) 微影裝置及元件製造方法
CN102736444B (zh) 用于调节辐射束的光学设备、光刻设备和器件制造方法
US7382436B2 (en) Mirror, lithographic apparatus, device manufacturing method, and device manufactured thereby
JP4508708B2 (ja) Euv光を用いた露光装置および露光方法
JP6222594B2 (ja) マイクロリソグラフィ投影露光装置
JP6186623B2 (ja) マイクロリソグラフィ投影露光装置
JP4966342B2 (ja) 放射源、放射を生成する方法およびリソグラフィ装置
JP5637702B2 (ja) 露光装置およびデバイス製造方法
JP2010114442A (ja) 放射源およびリソグラフィ装置
JP2012506133A (ja) コレクタアセンブリ、放射源、リソグラフィ装置およびデバイス製造方法
JP2002198309A (ja) 熱的な負荷の少ない照明系
TWI452440B (zh) 多層鏡及微影裝置
JP2013505593A (ja) スペクトル純度フィルタ、リソグラフィ装置、及びデバイス製造方法
TW201216006A (en) Illumination system of a microlithographic projection exposure apparatus
TW201515520A (zh) 輻射源及微影裝置
EP1521272A2 (en) Mirror and lithographic apparatus with mirror

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant